JP6322911B2 - Method for producing non-cylindrical permanent magnet - Google Patents

Method for producing non-cylindrical permanent magnet Download PDF

Info

Publication number
JP6322911B2
JP6322911B2 JP2013141594A JP2013141594A JP6322911B2 JP 6322911 B2 JP6322911 B2 JP 6322911B2 JP 2013141594 A JP2013141594 A JP 2013141594A JP 2013141594 A JP2013141594 A JP 2013141594A JP 6322911 B2 JP6322911 B2 JP 6322911B2
Authority
JP
Japan
Prior art keywords
molded body
permanent magnet
extrusion
hole
stress concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013141594A
Other languages
Japanese (ja)
Other versions
JP2015015381A (en
Inventor
寛 宮脇
寛 宮脇
将宏 平岡
将宏 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013141594A priority Critical patent/JP6322911B2/en
Priority to CN201410317550.6A priority patent/CN104282430B/en
Publication of JP2015015381A publication Critical patent/JP2015015381A/en
Application granted granted Critical
Publication of JP6322911B2 publication Critical patent/JP6322911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、押出し加工を経て複数の非筒状の永久磁石を製造する方法に関するものである。 The present invention relates to a method for producing a plurality of non-cylindrical permanent magnets through extrusion.

熱間(温間)塑性加工により磁気異方性を付与された、断面形状が矩形状、円弧状、蒲鉾状、あるいは三日月状等の希土類元素−鉄族金属−ホウ素の永久磁石が、産業上および民生用の分野で利用されている。この永久磁石は、例えば以下のようにして製造される。   Rare earth element-iron group metal-boron permanent magnets with rectangular, arc-shaped, saddle-shaped, or crescent-shaped cross-sections that have been provided with magnetic anisotropy by hot (warm) plastic working are industrially And is used in the consumer sector. This permanent magnet is manufactured as follows, for example.

希土類、鉄族金属およびホウ素を配合した原料を溶解し、得られた磁石合金の溶湯を銅等の回転ロールに噴出させて、ナノレベルの結晶粒からなるフレーク状の超急冷リボンを製造する。この超急冷法により得られた磁石合金粉末を所要粒径に粉砕した後、冷間プレスを行なって圧粉体とする。ついで、この圧粉体を熱間または温間プレスして高密度化し、更に熱間または温間での塑性加工を行なって所望形状とすることで磁気異方性が与えられる。この磁気異方性を付与するための塑性加工方法として、材料歩留および良品率の点で優れる押出し加工が用いられている。なお、塑性加工後の磁石素材は、後工程で着磁されることにより、磁気異方性を有する永久磁石として実用に供される。   A raw material containing a rare earth, an iron group metal and boron is melted, and the obtained melt of the magnet alloy is jetted onto a rotating roll such as copper to produce a flake-shaped ultra-quenched ribbon composed of nano-level crystal grains. The magnet alloy powder obtained by this ultra-quenching method is pulverized to a required particle size, and then cold pressed to obtain a green compact. Then, the green compact is hot or warm pressed to increase the density, and further subjected to hot or warm plastic processing to obtain a desired shape, thereby giving magnetic anisotropy. As a plastic working method for imparting this magnetic anisotropy, an extrusion process excellent in terms of material yield and yield rate is used. In addition, the magnet raw material after plastic working is put to practical use as a permanent magnet having magnetic anisotropy by being magnetized in a subsequent process.

押出し加工により、ラジアル異方性を有する例えば円弧状断面を有する複数の永久磁石を製造する方法として、例えば特許文献1に開示の製造方法が提案されている。この特許文献1では、ダイに形成した貫通孔にフィン付きマンドレルを挿入し、該マンドレルと貫通孔を画成する内壁との間に、得ようとする永久磁石の断面形状に一致する複数の分割孔を画成したもとで、貫通孔に充填した柱状のブランクをパンチによって押圧することで、該ブランクが各分割孔から押出されてラジアル方向(厚み方向)に異方化された複数の永久磁石が製造される。   As a method for manufacturing a plurality of permanent magnets having radial anisotropy, for example, having an arc-shaped cross section by extrusion processing, for example, a manufacturing method disclosed in Patent Document 1 has been proposed. In this Patent Document 1, a mandrel with fins is inserted into a through-hole formed in a die, and a plurality of divisions matching the cross-sectional shape of the permanent magnet to be obtained are provided between the mandrel and an inner wall that defines the through-hole. With the holes defined, by pressing a columnar blank filled in the through-holes with a punch, the blanks are extruded from the respective divided holes and are made anisotropic in the radial direction (thickness direction). A magnet is manufactured.

特開2001−15325号公報JP 2001-15325 A

特許文献1に開示の製造方法では、柱状のブランクを押出す際にフィンで分断される分割部分での結晶配向が揃わなくなり、得られる永久磁石における分割部分の磁気特性が低下するおそれがあった。また、ブランクを押出しつつ分割するために分割部分での応力が大きくなり、得られた永久磁石の分割部分にひびが入ってしまい、後工程で欠陥部分を除去するための研削量が多くなって歩留りが低下する難点も指摘される。   In the manufacturing method disclosed in Patent Document 1, there is a possibility that the crystal orientation in the divided portions divided by the fins is not uniform when the columnar blank is extruded, and the magnetic properties of the divided portions in the obtained permanent magnet may be deteriorated. . In addition, since the blank is divided while being extruded, the stress at the divided portion becomes large, the divided portion of the obtained permanent magnet cracks, and the amount of grinding for removing the defective portion in the subsequent process increases. It is also pointed out that the yield is low.

すなわち本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、優れた磁気異方性を有する非筒状の永久磁石を効率よく製造し得る非筒状の永久磁石の製造方法を提供することを目的とする。 That is, the present invention has been proposed in view of the above-mentioned problems inherent in the above-described conventional technology, and a non-cylindrical permanent magnet having excellent magnetic anisotropy has been proposed. It aims at providing the manufacturing method of the non-cylindrical permanent magnet which can be manufactured efficiently.

前記課題を克服し、所期の目的を達成するため、請求項1の発明に係る非筒状の永久磁石の製造方法は、
希土類、鉄族金属およびホウ素を含む磁石合金をプレスした予備成形体を用意し、
マンドレルが挿通された押出し金型の貫通孔に装填した前記予備成形体を、該予備成形体の外形を拡大または縮小させると共に該予備成形体の押出し方向と直交する方向の中央部を拡げるように押圧パンチで押出して筒状の成形体を成形する押出し加工を行うと共に、予備成形体を押出す過程で、押出し方向に延在する応力集中部を周方向に離間して複数形成し、
得られた成形体に外力を径方向に加えることで、該成形体を前記応力集中部で分断して複数の永久磁石に分割するようにし
前記押出し加工において、減面率は50〜70%、かつ外形の拡大方向または縮小方向の加工率は5〜30%であることを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended object, a method for manufacturing a non-cylindrical permanent magnet according to the invention of claim 1 comprises:
Prepare a pre-formed body pressed with magnet alloy containing rare earth, iron group metal and boron,
Said preform mandrel is loaded into the through hole of the inserted through extrusion die, to widen the center portion in the direction perpendicular to the extrusion direction of the preform causes scales the outline of the preform It performs extrusion molding the extruded tubular molded body with a pressing punch, a preform by extruding process, apart from the stress concentration portion extending in the extrusion direction in the circumferential direction form a plurality of,
By applying an external force to the obtained molded body in the radial direction, the molded body is divided at the stress concentration portion and divided into a plurality of permanent magnets ,
The gist of the extrusion processing is that the area reduction rate is 50 to 70%, and the processing rate in the expansion or reduction direction of the outer shape is 5 to 30% .

請求項1に係る発明によれば、押出し加工により成形した成形体から複数の永久磁石を分割するので、押出し加工時において成形体に加わる圧縮方向(結晶配向方向)は全体に揃って優れた磁気異方性を有し、各永久磁石の分割部分での磁気特性が低下することはなく、磁気特性に優れた複数の非筒状の永久磁石を製造することができる。また、予備成形体を押出し加工する際には押出し方向と直交する厚み方向の内側および外側の夫々が厚み方向に変形されて歪みが与えられるので、成形された成形体の厚み方向の内側および外側での磁気的配向度のバラツキがなく、磁気特性に優れた永久磁石が製造できる。更に、押出し加工に際して成形体を分断する部分に大きな応力が加わることはないので、永久磁石の分割部分にひびが入ることはなく、材料歩留を向上し得る。更にまた、押出し加工時に永久磁石を分断するための応力集中部を形成するので、後工程において別途応力集中部を形成する場合に比べて製造能率を向上することができる。
また、押出し加工において、減面率を50〜70%、かつ外形の拡大方向または縮小方向の加工率を5〜30%としたので、高い磁気特性を有する非筒状の永久磁石を容易に製造し得る。
According to the first aspect of the present invention, since the plurality of permanent magnets are divided from the molded body formed by the extrusion process, the compression direction (crystal orientation direction) applied to the molded body at the time of the extrusion process is excellent throughout. A plurality of non-cylindrical permanent magnets having anisotropy and excellent magnetic characteristics can be produced without lowering the magnetic characteristics in the divided portions of the permanent magnets. Further, when extruding the preform, the inside and outside in the thickness direction orthogonal to the extrusion direction are deformed in the thickness direction to give distortion, so that the inside and outside in the thickness direction of the molded body are formed. Thus, a permanent magnet having excellent magnetic properties can be produced. Furthermore, since a large stress is not applied to the portion where the molded body is divided during the extrusion process, the split portion of the permanent magnet is not cracked, and the material yield can be improved. Furthermore, since the stress concentration portion for dividing the permanent magnet at the time of extrusion is formed, the manufacturing efficiency can be improved as compared with the case where the stress concentration portion is separately formed in the subsequent process.
In extrusion processing, the area reduction rate is 50 to 70% and the processing rate in the direction of enlargement or reduction of the outer shape is 5 to 30%, so it is easy to manufacture non-cylindrical permanent magnets with high magnetic properties. Can do.

請求項に係る発明は、前記応力集中部は、前記成形体における内面または外面において、周方向に連続する2面が角を成すように形成されることを要旨とする。
請求項に係る発明によれば、永久磁石の分断面の平面度が向上して外観を良好にし得る。
The invention according to claim 2 is characterized in that the stress concentration portion is formed so that two circumferentially continuous surfaces form an angle on an inner surface or an outer surface of the molded body.
According to the invention which concerns on Claim 2 , the flatness of the partial cross section of a permanent magnet can improve, and it can make an external appearance favorable.

請求項に係る発明は、前記押出し金型における貫通孔の内面またはマンドレルの外面に、該貫通孔の内面とマンドレルの外面との間に画成した充填空間に突出する突条が突設され、該充填空間を押出された成形体における内面または外面に、前記突条によって厚み方向に凹む応力集中部としての溝が形成されることを要旨とする。
請求項に係る発明によれば、永久磁石の分断面の平面度をより向上することができる。
In the invention according to claim 3 , a protrusion projecting into a filling space defined between the inner surface of the through hole and the outer surface of the mandrel is provided on the inner surface of the through hole or the outer surface of the mandrel in the extrusion mold. The gist is that a groove as a stress concentration portion that is recessed in the thickness direction by the protrusion is formed on an inner surface or an outer surface of the molded body extruded from the filling space.
According to the invention which concerns on Claim 3 , the flatness of the partial cross section of a permanent magnet can be improved more.

請求項に係る発明は、径方向の最大厚みT0に対して応力集中部の径方向の厚みT1が15T0<T1<4/5T0の範囲となるように成形した成形体を、該応力集中部で分断するようにしたことを要旨とする。
請求項に係る発明によれば、応力集中部での分断が容易で、かつ配向性が低下するのを抑えることができる。
The invention according to claim 4 is a molded body molded so that the radial thickness T 1 of the stress concentration portion is in the range of 15T 0 <T 1 <4 / 5T 0 with respect to the maximum radial thickness T 0 . The gist is that the stress concentration part is divided.
According to the invention which concerns on Claim 4 , the division | segmentation in a stress concentration part is easy, and it can suppress that orientation falls.

請求項に係る発明は、前記成形体を径方向で挟圧して前記応力集中部で分断するようにしたことを要旨とする。
請求項に係る発明によれば、分断作業が簡単になる。
The gist of the invention according to claim 5 is that the molded body is clamped in the radial direction and divided at the stress concentration portion.
According to the invention which concerns on Claim 5 , a parting operation becomes easy.

本発明に係る非筒状の永久磁石の製造方法によれば、優れた磁気異方性を有する非筒状の永久磁石を効率よく製造し得る。 According to the manufacturing method of the non-cylindrical permanent magnet according to the present invention may be manufactured with good non-cylindrical permanent magnet having excellent magnetic anisotropy efficiency.

実施例に係る永久磁石を製造する押出し成形装置の押出し金型、押圧パンチおよびマンドレルを示す概略図である。It is the schematic which shows the extrusion die, press punch, and mandrel of the extrusion molding apparatus which manufactures the permanent magnet which concerns on an Example. 実施例1に係る断面矩形状の永久磁石を製造する形態の押出し成形装置において、押出し金型の貫通孔にマンドレルを挿入した状態を第1貫通孔側から視た概略図である。In the extrusion molding apparatus of the form which manufactures the permanent cross-sectional magnet which concerns on Example 1, it is the schematic which looked at the state which inserted the mandrel in the through-hole of the extrusion die from the 1st through-hole side. 実施例1に係る永久磁石の製造工程を示す説明図であって、(a)は押出し成形装置により成形された成形体を示し、(b)は成形体を応力集中部で分断する状態を示し、(c)は成形体から複数の永久磁石が分割された状態を示す。It is explanatory drawing which shows the manufacturing process of the permanent magnet which concerns on Example 1, Comprising: (a) shows the molded object shape | molded with the extrusion molding apparatus, (b) shows the state which divides a molded object in a stress concentration part. (C) shows a state in which a plurality of permanent magnets are divided from the molded body. 実施例2に係る断面三日月状の永久磁石の製造工程を示す説明図であって、(a)は押出し成形装置により成形された成形体を応力集中部で分断する状態を示し、(b)は成形体から複数の永久磁石が分割された状態を示す。It is explanatory drawing which shows the manufacturing process of the cross-sectional crescent-shaped permanent magnet which concerns on Example 2, Comprising: (a) shows the state which isolate | separates the molded object shape | molded with the extrusion molding apparatus by a stress concentration part, (b) The state which the some permanent magnet was divided | segmented from the molded object is shown. 実施例3に係る断面蒲鉾状の永久磁石の製造工程を示す説明図であって、(a)は押出し成形装置により成形された成形体を応力集中部で分断する状態を示し、(b)は成形体から複数の永久磁石が分割された状態を示す。It is explanatory drawing which shows the manufacturing process of the cross-sectional saddle-shaped permanent magnet which concerns on Example 3, Comprising: (a) shows the state which cut | disconnects the molded object shape | molded with the extrusion molding apparatus in a stress concentration part, (b) is The state which the some permanent magnet was divided | segmented from the molded object is shown. 実施例4に係る断面円弧状の永久磁石を製造する押出し成形装置の押出し金型およびマンドレルを示す説明図である。It is explanatory drawing which shows the extrusion die and mandrel of the extrusion molding apparatus which manufactures the cross-sectional arc-shaped permanent magnet which concerns on Example 4. FIG. 実施例4に係る永久磁石の製造工程を示す説明図であって、(a)は押出し成形装置により成形された成形体を応力集中部で分断する状態を示し、(b)は成形体から複数の永久磁石が分割された状態を示す。It is explanatory drawing which shows the manufacturing process of the permanent magnet which concerns on Example 4, Comprising: (a) shows the state which divides | segments the molded object shape | molded with the extrusion molding apparatus in a stress concentration part, (b) is two or more from a molded object. This shows a state where the permanent magnet is divided. 実験例における幅方向の磁気的配向度の測定結果を示す図であって、(a)は発明例1の結果を示し、(b)は比較例1の結果を示す。It is a figure which shows the measurement result of the magnetic orientation degree of the width direction in an experiment example, (a) shows the result of invention example 1, (b) shows the result of the comparative example 1. FIG. 実験例における厚み方向の磁気的配向度の測定結果を示す表である。It is a table | surface which shows the measurement result of the magnetic orientation degree of the thickness direction in an experiment example.

次に、本発明に係る非筒状の永久磁石の製造方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。 Next, a method for manufacturing a non-cylindrical permanent magnet according to the present invention will be described below with reference to the accompanying drawings with a preferred embodiment.

図1は、永久磁石の製造方法に用いる押出し成形装置の好適な実施例を示すものであって、押出し成形装置10は、貫通孔11が形成された押出し金型12と、貫通孔11に一方の開口から挿入される押圧パンチ14と、貫通孔11に他方の開口から挿入される貫通孔11より小径のマンドレル16とを備える。押出し金型12の貫通孔11は、第1貫通孔11aと、テーパ孔11bおよび第2貫通孔11cが直列に形成されたものであって、第1貫通孔11aは第2貫通孔11cより大きく開口するように形成されて、テーパ孔11bは第1貫通孔11aから第2貫通孔11cに向かうにつれて一様な傾斜で開口が窄まるように形成されている。また、マンドレル16は、押出し方向に外形が変化しない等形部16aと、該等形部16aの一端に連設されて等形部16aから離間するにつれて外形が一様な傾斜で窄まるように変化するテーパ部16bとを備えている。貫通孔11に挿入されたマンドレル16は、等形部16aが第2貫通孔11c内に位置すると共に、テーパ部16bがテーパ孔11b内に位置するように位置決めされる。そして、マンドレル16を貫通孔11に挿入した状態で第2貫通孔11cの内面(第2貫通孔11cを画成する押出し金型12の内壁)とマンドレル16における等形部16aの外面との間に、該マンドレル16の全周に亘って連通する充填空間20が画成されるようになっている。充填空間20は、製造する永久磁石18,32,34,36の押出し方向に直交する断面形状と略一致する複数の成形空間20aを周方向に相互に連通するように連ねた筒状に画成されるものであって、該成形空間20aの形状は、マンドレル16の等形部16aおよび第2貫通孔11cの各形状を変えることで変更される。そして、押出し成形装置10によって、柱状の予備成形体から、求める永久磁石18,32,34,36の断面形状となる成形部18a,32a,34a,36aが複数周方向に相互に連なった筒状の一次成形体(成形体)22を成形し得るよう構成される。なお、予備成形体において押出し成形装置10による押出し方向と直交する方向を厚み方向と指称すると共に、製造される永久磁石18,32,34,36における押出し金型12の貫通孔11の内面に沿う押出し方向と交差する方向を幅方向と指称するものとする。   FIG. 1 shows a preferred embodiment of an extrusion molding apparatus used in a method for producing a permanent magnet. An extrusion molding apparatus 10 includes an extrusion mold 12 in which a through hole 11 is formed and one through hole 11. And a mandrel 16 having a smaller diameter than the through hole 11 inserted into the through hole 11 from the other opening. The through hole 11 of the extrusion die 12 is a first through hole 11a, a tapered hole 11b, and a second through hole 11c formed in series, and the first through hole 11a is larger than the second through hole 11c. The tapered hole 11b is formed so as to be narrowed with a uniform inclination from the first through hole 11a toward the second through hole 11c. Further, the mandrel 16 has an isomorphous portion 16a whose outer shape does not change in the extrusion direction, and is connected to one end of the isomorphous portion 16a so that the outer shape is narrowed with a uniform inclination as it is separated from the isomorphous portion 16a. And a taper portion 16b that changes. The mandrel 16 inserted into the through hole 11 is positioned so that the isomorphous portion 16a is located in the second through hole 11c and the tapered portion 16b is located in the tapered hole 11b. And between the inner surface (the inner wall of the extrusion die 12 that defines the second through hole 11 c) of the second through hole 11 c and the outer surface of the isomorphic portion 16 a in the mandrel 16 with the mandrel 16 inserted into the through hole 11. In addition, a filling space 20 communicating with the entire circumference of the mandrel 16 is defined. The filling space 20 is defined in a cylindrical shape in which a plurality of molding spaces 20a substantially matching the cross-sectional shape orthogonal to the extrusion direction of the permanent magnets 18, 32, 34, and 36 to be manufactured are connected to each other in the circumferential direction. The shape of the molding space 20a is changed by changing the shapes of the isomorphous portion 16a of the mandrel 16 and the second through hole 11c. Then, by the extrusion molding device 10, a cylindrical shape in which molding parts 18 a, 32 a, 34 a, 36 a having a cross-sectional shape of the permanent magnets 18, 32, 34, 36 to be obtained are connected to each other in a plurality of circumferential directions. The primary molded body (molded body) 22 is configured to be molded. In the preform, the direction perpendicular to the direction of extrusion by the extrusion molding apparatus 10 is referred to as the thickness direction, and along the inner surface of the through hole 11 of the extrusion die 12 in the manufactured permanent magnets 18, 32, 34, 36. The direction intersecting the extrusion direction is referred to as the width direction.

前記マンドレル16を貫通孔11に挿入した実施例の押出し金型12で押出し加工される予備成形体は、図1に示す如く、外形がテーパ孔11cに沿って該予備成形体の厚み方向の中央部側に圧縮しながら縮小するように歪ませられると共に、該予備成形体の厚み方向の中央部側がテーパ部16bに沿って外側に圧縮しながら拡大するように歪ませられることで、筒状の一次成形体22が成形されるようになっている。このように、押出し加工に際して予備成形体の外形および厚み方向の中央部の何れにも歪みを与えることで、一次成形体22の厚み方向(外側、内側)での磁気的配向度の偏りが小さくなり、高い磁気特性が得られるようになる。なお、磁気的配向度は、残留磁束密度(Br)/飽和磁束密度(Js)で規定される値である。   As shown in FIG. 1, the preform molded by the extrusion die 12 of the embodiment in which the mandrel 16 is inserted into the through hole 11 has an outer shape centered in the thickness direction of the preform along the tapered hole 11c. It is distorted so as to be reduced while being compressed toward the part side, and the central part side in the thickness direction of the preform is distorted so as to be expanded while being compressed outward along the taper part 16b. The primary molded body 22 is molded. In this way, by imparting distortion to both the outer shape of the preform and the central portion in the thickness direction during extrusion, the deviation in the degree of magnetic orientation in the thickness direction (outer side, inner side) of the primary molded body 22 is reduced. Thus, high magnetic properties can be obtained. The degree of magnetic orientation is a value defined by residual magnetic flux density (Br) / saturation magnetic flux density (Js).

前記押出し成形装置10を用いた押出し加工において、予備成形体を減面率50〜70%で押出し加工する場合では、予備成形体における外形の加工率(以後、外形加工率と称す)Kを、該予備成形体の外形を拡大する場合および縮小する場合の何れにおいても全周に亘って5%≦K≦30%の範囲に設定するのが好ましい。外形加工率Kが5%より小さいと、予備成形体の厚み方向の歪み量にばらつきが生じるために一次成形体22の厚み方向(外側、内側)での残留磁束密度(Br)にばらつきを生じ、従って磁気的配向度の均質化が図られなくなる。また、外形加工率Kが30%より大きくなると、加工し難くなって製造能率が低下する。前記減面率については、50%より小さくすると、予備成形体から一次成形体22に押出し加工する際に与える歪み量が小さく、高い残留磁束密度(Br)が得られない。また減面率が70%より大きくなると、押出し加工に際して押圧パンチ14やマンドレル16に加わる負荷が大きくなって損傷や焼き付き等が発生するおそれがある。なお、減面率とは、加工前の予備成形体における押出し方向と直交する厚み方向の断面での断面積をS0、加工後の一次成形体22における押出し方向と直交する厚み方向の断面での断面積をS1とした場合に、{(S0−S1)/S0}×100(%)の式で定義される比率であって、加工前後における予備成形体と一次成形体22の断面積の減少割合を示している。また、外形加工率Kとは、押出し金型12を貫通孔11の中央で押出し方向に沿って切断した断面において、押出し方向と直交する方向での貫通孔11の中央から第1貫通孔11aの内面までの長さをL0、貫通孔11の中央から第2貫通孔11cの内面までの長さをL1とした場合に、{(|L0−L1|)/L0}×100(%)の式で定義される押出し加工に伴う予備成形体の外形の拡大または縮小の比率であって(図1参照)、加工前後における予備成形体の厚み方向中央から該予備成形体の外面までの長さと一次成形体22の中央から該一次成形体22の外面までの長さの変化割合を示している。 In the extrusion process using the extrusion molding apparatus 10, in the case of extruding a preform with a surface reduction ratio of 50 to 70%, the processing rate of the outer shape of the preform (hereinafter referred to as the outer shape processing rate) K is: It is preferable to set the range of 5% ≦ K ≦ 30% over the entire circumference in both cases where the outer shape of the preform is enlarged and reduced. If the outer shape processing rate K is less than 5%, the amount of distortion in the thickness direction of the preform will vary, so the residual magnetic flux density (Br) in the thickness direction (outside, inside) of the primary molded body 22 will vary. Therefore, the degree of magnetic orientation cannot be homogenized. On the other hand, when the outer shape processing rate K is greater than 30%, it becomes difficult to process and the manufacturing efficiency decreases. When the area reduction ratio is less than 50%, the amount of strain applied when extrusion from the preformed body to the primary molded body 22 is small, and a high residual magnetic flux density (Br) cannot be obtained. Further, if the area reduction ratio is greater than 70%, the load applied to the pressing punch 14 and the mandrel 16 during the extrusion process increases, and there is a risk that damage, seizure, or the like may occur. The area reduction ratio is the cross-sectional area in the cross section in the thickness direction orthogonal to the extrusion direction in the preform before processing, S 0 , and the cross section in the thickness direction orthogonal to the extrusion direction in the primary molded body 22 after processing. Is a ratio defined by the formula {(S 0 −S 1 ) / S 0 } × 100 (%), where S 1 is the cross-sectional area of the preform and primary molded body 22 before and after processing. The reduction rate of the cross-sectional area is shown. In addition, the outer shape processing rate K means that the first through hole 11a extends from the center of the through hole 11 in the direction perpendicular to the extrusion direction in a cross section obtained by cutting the extrusion die 12 along the extrusion direction at the center of the through hole 11. When the length to the inner surface is L 0 and the length from the center of the through hole 11 to the inner surface of the second through hole 11c is L 1 , {(| L 0 −L 1 |) / L 0 } × 100 (%) The ratio of expansion or contraction of the outer shape of the preform according to extrusion processing (see FIG. 1), and the outer surface of the preform from the center in the thickness direction before and after processing The change ratio of the length from the center of the primary molded body 22 to the outer surface of the primary molded body 22 is shown.

前記予備成形体は、希土類、鉄族金属およびホウ素を配合した原料を溶解して得られた溶湯を回転ロールに噴出させて、フレーク状の超急冷リボンを製造し、この磁石合金粉末を所要粒径に粉砕した後、冷間プレスを行なって圧粉体とし、この圧粉体を不活性ガス(例えばAr)の雰囲気下で所要温度(熱間または温間プレスする際の温度)に予備加熱した後、熱間または温間プレスして高密度化することで得られる。また、希土類としては、Y、ランタノイドを採用可能であるが、特にNd、Pr、Dy、Tb、もしくはこれらの2種以上の混合物を好適に採用できる。更に、鉄族金属としては、Fe、Co、Niを採用可能であるが、特にFe、Co、もしくは両者の混合物を好適に採用できる。なお、塑性加工性(割れ防止)を向上する目的で、必要に応じてGaを添加してもよい。また、熱間または温間プレスして高密度化された予備成形体は、不活性ガス(例えばAr)の雰囲気下で、前記押出し成形装置10により押出し加工する際の温度に予備加熱して温度を保持する。なお、予備成形体を成形する際の予備加熱および予備成形体を押出し成形装置10により押出し加工する前の予備加熱は、磁石材料の種類の違いや加工スケジュール等の加工条件に応じて行なうようにすればよく、省略することも可能である。   The preform is produced by injecting molten metal obtained by melting a raw material containing rare earth, iron group metal and boron onto a rotating roll to produce a flake-shaped ultra-quenched ribbon. After being pulverized to a diameter, cold pressing is performed to form a green compact, and this green compact is preheated to a required temperature (hot or temperature during warm pressing) in an atmosphere of an inert gas (for example, Ar). And then densifying by hot or warm pressing. As the rare earth, Y or a lanthanoid can be employed, but Nd, Pr, Dy, Tb, or a mixture of two or more thereof can be suitably employed. Further, Fe, Co, and Ni can be employed as the iron group metal, but in particular, Fe, Co, or a mixture of both can be suitably employed. Ga may be added as necessary for the purpose of improving plastic workability (preventing cracking). Further, the preform formed by hot pressing or warm pressing to be densified is preheated to a temperature at which it is extruded by the extrusion molding apparatus 10 in an inert gas (for example, Ar) atmosphere. Hold. The preheating when forming the preform and the preheating before extruding the preform with the extrusion molding apparatus 10 are performed according to the processing conditions such as the difference in the type of magnet material and the processing schedule. It can be omitted.

ここで、永久磁石が用いられるモータの一般的な形態として、ロータ表面に永久磁石を取り付けた表面磁石型(SPM)モータと、ロータ内部に永久磁石を埋め込んだ磁石埋め込み型(IPM)モータがあり、表面磁石型モータには断面三日月状、断面円弧状および断面蒲鉾状の永久磁石32,36,34が好適に採用され、磁石埋め込み型モータには断面矩形状や断面円弧状の永久磁石18,36が好適に採用される。そして、前記押出し成形装置10では、マンドレル16および貫通孔11の各形状を変更することで、前記各種断面形状の永久磁石18,32,34,36を製造することができる。そこで、断面形状の異なる各永久磁石18,32,34,36を製造する場合につき、以下に個別に説明する。   Here, as a general form of a motor in which a permanent magnet is used, there are a surface magnet type (SPM) motor in which a permanent magnet is attached to a rotor surface and a magnet embedded type (IPM) motor in which a permanent magnet is embedded in the rotor. The permanent magnets 32, 36, 34 having a crescent-shaped, arc-shaped and saddle-shaped cross section are preferably used for the surface magnet type motor, and the permanent magnets 18, 32, 36, 34 having a rectangular shape or a circular arc shape are used for the magnet-embedded motor. 36 is preferably employed. And in the said extrusion molding apparatus 10, the permanent magnets 18, 32, 34, 36 of the said various cross-sectional shape can be manufactured by changing each shape of the mandrel 16 and the through-hole 11. FIG. Therefore, the case where the permanent magnets 18, 32, 34, and 36 having different cross-sectional shapes are manufactured will be individually described below.

実施例1では、断面矩形状の永久磁石18を製造する場合について説明する。この実施例1では、前記押出し金型12に対して、図2に示す如く、開口形状が略矩形状の貫通孔11(第1貫通孔11a、テーパ孔11b、第2貫通孔11c)が形成されている。また押出し金型12には、貫通孔11の各隅部に所定角度(実施例では45°)の傾斜面が形成されている。前記マンドレル16における等形部16aの断面形状は、第2貫通孔11cより小さな矩形状に形成され、第2貫通孔11cにマンドレル16の等形部16aを挿入した状態で、マンドレル16の全周に亘って全体として角筒状の充填空間20が画成される。この充填空間20は、マンドレル16の4つの面の外側に画成された断面矩形状の成形空間20aが角部で相互に連通して構成される。なお、マンドレル16は、各角部が押出し金型12の各傾斜面に対向する状態で貫通孔11に挿入される。また、第2貫通孔11cにマンドレル16の等形部16aを挿入した状態で画成される充填空間20における等形部16aと傾斜面との間の厚み方向の隙間は、第2貫通孔11cおよび等形部16aの面同士が対向する部分の厚み方向の隙間より小さく設定される。また、貫通孔11における第1貫通孔11aおよび第2貫通孔11cの開口寸法は、押出し加工に際して予備成形体の全周の外形加工率が一定となるように設定される。なお、外形加工率については、予備成形の全周に亘って一定となるものに限らず、5〜30%の範囲に収まっていることが好ましい。すなわち、外形加工率がこの範囲に収まっていることで、成形体から分割された永久磁石18の厚み方向の磁気的配向度のバラツキを抑えることができる In the first embodiment, a case where a permanent magnet 18 having a rectangular cross section is manufactured will be described. In the first embodiment, as shown in FIG. 2, through-holes 11 (first through-hole 11a, tapered hole 11b, and second through-hole 11c) having a substantially rectangular opening are formed in the extrusion die 12. Has been. Further, the extrusion die 12 is formed with an inclined surface at a predetermined angle (45 ° in the first embodiment) at each corner of the through hole 11. The cross-sectional shape of the isomorphous portion 16a in the mandrel 16 is formed in a rectangular shape smaller than the second through hole 11c, and the entire circumference of the mandrel 16 is inserted in the state where the isomorphous portion 16a of the mandrel 16 is inserted into the second through hole 11c. A rectangular tube-shaped filling space 20 is defined as a whole. The filling space 20 includes a molding space 20a having a rectangular cross section defined outside the four surfaces of the mandrel 16 and communicating with each other at the corners. The mandrel 16 is inserted into the through hole 11 with each corner portion facing each inclined surface of the extrusion die 12. Further, the gap in the thickness direction between the isomorphous portion 16a and the inclined surface in the filling space 20 defined with the isomorphous portion 16a of the mandrel 16 inserted into the second through hole 11c is the second through hole 11c. And it is set smaller than the gap of the thickness direction of the part which the surfaces of the isomorphic part 16a oppose. Moreover, the opening dimension of the 1st through-hole 11a and the 2nd through-hole 11c in the through-hole 11 is set so that the external shape processing rate of the perimeter of a preforming body may become fixed at the time of an extrusion process. In addition, about an external shape processing rate, it is preferable to be settled in the range which is not restricted to what is constant over the perimeter of a preforming body , and is 5 to 30%. That is, when the outer shape processing rate is within this range, it is possible to suppress variations in the degree of magnetic orientation in the thickness direction of the permanent magnet 18 divided from the molded body .

前記押出し成形装置10では、貫通孔11に第2貫通孔11c側の他方の開口からマンドレル16を挿入すると共に、該貫通孔11に第1貫通孔11a側の一方の開口から予備加熱された予備成形体を装填した状態で、一方の開口から押圧パンチ14を貫通孔11に挿入して押圧プレスする。これにより、予備成形体は、マンドレル16における等形部16aの外面と貫通孔11における第2貫通孔11cの内面との間の充填空間20に押出されることで、図1に示す一次成形体22が成形される。この一次成形体22は、押出し加工時における圧縮方向である押出し方向と直交する厚み方向に磁気異方化されている。また、マンドレル16におけるテーパ部16bと貫通孔11におけるテーパ部11bとで画成される空間を通過する際に、予備成形体における外形が内側に絞り込まれるように縮小されると共に、該予備成形体における厚み方向の中央部が外側に拡げられることで、該予備成形体は厚み方向の外側および内側に歪みが与えられ、成形された一次成形体22の外側および内側での磁気的配向度のばらつきが小さくなる。なお、押出し成形装置10で成形される一次成形体22は、前記充填空間20に押出されることで断面矩形状の成形部18aが周方向に複数(実施例1では4つ)連結された筒状部の端部に有底部22aを有する状態で貫通孔11から排出される。そして、該一次成形体22から有底部22aを切除することで、押出し方向の前後に開口する角筒状の二次成形体(成形体)24(図3(a)参照)が得られる。   In the extrusion molding apparatus 10, the mandrel 16 is inserted into the through hole 11 from the other opening on the second through hole 11c side, and the preheated preheated from the one opening on the first through hole 11a side to the through hole 11 With the molded body loaded, the pressing punch 14 is inserted into the through hole 11 from one opening and pressed. As a result, the preform is extruded into the filling space 20 between the outer surface of the isomorphous portion 16a of the mandrel 16 and the inner surface of the second through hole 11c of the through hole 11, whereby the primary molded body shown in FIG. 22 is molded. The primary molded body 22 is magnetically anisotropic in the thickness direction orthogonal to the extrusion direction, which is the compression direction during extrusion. Further, when passing through the space defined by the tapered portion 16b of the mandrel 16 and the tapered portion 11b of the through hole 11, the preform is reduced so that the outer shape of the preform is narrowed inward, and the preform When the central portion in the thickness direction is expanded outward, the preform is distorted on the outer side and the inner side in the thickness direction, and the degree of magnetic orientation varies between the outer side and the inner side of the molded primary molded body 22. Becomes smaller. The primary molded body 22 molded by the extrusion molding apparatus 10 is extruded into the filling space 20 so that a plurality of molding sections 18a having a rectangular cross section are connected in the circumferential direction (four in the first embodiment). In the state which has the bottomed part 22a in the edge part of a shape part, it discharges | emits from the through-hole 11. FIG. Then, by cutting out the bottomed portion 22a from the primary molded body 22, a rectangular tube-shaped secondary molded body (molded body) 24 (see FIG. 3A) that opens before and after in the extrusion direction is obtained.

前記二次成形体24は、図3(a)に示す如く、内側が断面矩形状に形成されると共に、外側の各角部に対応する部分に傾斜面26が形成された角筒状に成形される。すなわち、内側における2面が角を成すように接続する角張った隅部が、外力を加えた際に応力が集中する応力集中部28として機能する。すなわち、実施例1では、周方向に連結された成形部18a,18aの連結部の内側に応力集中部28が形成される。また、二次成形体24における応力集中部28が形成された角部の厚みは、前記傾斜面26を形成することで他の部位より薄くなっている(他の部位より応力集中部28が脆弱となっている)。そして、図3(b)に示す如く、対向する一対の傾斜面26,26に分割治具30,30を宛てがったもとで、該治具30,30を近接して対向する応力集中部28,28の対向方向に圧力を加えることで、二次成形体24は、長手方向(押出し方向)の全長に亘って延在する4つの応力集中部28を起点として分断されて、図3(c)に示すように、4つに分割され、傾斜面26を形成していた箇所を適宜加工することにより断面矩形状の永久磁石18が得られる。   As shown in FIG. 3A, the secondary molded body 24 is formed into a rectangular tube shape in which the inner side is formed in a rectangular cross section and the inclined surface 26 is formed in a portion corresponding to each outer corner. Is done. In other words, the angular corner connecting the two inner surfaces so as to form a corner functions as a stress concentration portion 28 where stress is concentrated when an external force is applied. That is, in Example 1, the stress concentration part 28 is formed inside the connection part of the shaping | molding parts 18a and 18a connected in the circumferential direction. Further, the thickness of the corner portion where the stress concentration portion 28 is formed in the secondary molded body 24 is thinner than other portions by forming the inclined surface 26 (the stress concentration portion 28 is weaker than other portions). ). Then, as shown in FIG. 3 (b), when the split jigs 30 and 30 are addressed to the pair of opposed inclined surfaces 26 and 26, the stress concentration portions 28 that face the jigs 30 and 30 close to each other. , 28, the secondary molded body 24 is divided starting from four stress concentration portions 28 extending over the entire length in the longitudinal direction (extrusion direction). ), The permanent magnet 18 having a rectangular cross section is obtained by appropriately processing the portion that has been divided into four and formed the inclined surface 26.

なお、実施例1では、押出し加工を経て得られた二次成形体24において、図3(a)に示す如く、応力集中部28での厚み(径方向厚み)T1の上限値は、二次成形体24の最大厚みT0に対し、T1<4/5T0に設定するのが好ましく、T1<3/5T0に設定するのがより好ましい。また、応力集中部28での厚み(径方向厚み)T1の下限値は、二次成形体24の最大厚みT0に対し、T1>1/5T0に設定するのが好ましく、T1>2/5T0に設定するのがより好ましい。すなわち、応力集中部28での厚みT1を上限値(T1<4/5T0)より大きくすると、二次成形体24を応力集中部28で分断する際に大きな力が必要になって欠損するおそれがある。これに対し、応力集中部28での厚みT1を下限値(T1>1/5T0)より小さくすると、押出し加工に際して応力集中部28を成形するときの塑性変形量が大きくなって配向性が低下するおそれがある。 In Example 1, in the secondary molded body 24 obtained through the extrusion process, as shown in FIG. 3A, the upper limit of the thickness (radial thickness) T 1 at the stress concentration portion 28 is 2 The maximum thickness T 0 of the next molded body 24 is preferably set to T 1 <4 / 5T 0, and more preferably set to T 1 <3 / 5T 0 . The lower limit of the thickness (radial thickness) T 1 at the stress concentration portion 28, with respect to the maximum thickness T 0 of the secondary molded body 24 is preferably set to T 1> 1 / 5T 0, T 1 More preferably, it is set to> 2 / 5T 0 . That is, if the thickness T 1 at the stress concentration portion 28 is larger than the upper limit value (T 1 <4 / 5T 0 ), a large force is required when the secondary molded body 24 is divided at the stress concentration portion 28, resulting in a defect. There is a risk. On the other hand, if the thickness T 1 at the stress concentration portion 28 is made smaller than the lower limit (T 1 > 1/5 T 0 ), the amount of plastic deformation when the stress concentration portion 28 is formed during extrusion is increased, and the orientation is increased. May decrease.

このように、実施例1の永久磁石18の製造方法は、押出し加工後の二次成形体24を応力集中部28で分断して複数の永久磁石18が製造される。このため、押出し加工時に分割部分に大きな応力が加わらず、後工程での欠陥部分の研削を必要とせずに歩留りが向上する。また、押出し加工時に予備成形体が従来の技術のようにフィンに押付けられて分断される方法に比べ、永久磁石18の分割部分で結晶配向方向を揃えた磁気異方性に優れた複数の永久磁石18を効率的に製造し得ると共に、各永久磁石18の磁気特性は均質となる。更に、予備成形体を押出し加工する際には厚み方向の外側および内側の夫々が全周に亘って厚み方向に変形されて歪みが与えられるので、成形された成形体22から得られた永久磁石18の厚み方向の外側および内側の磁気的配向度にばらつきがなくなり、厚み方向での磁気特性にバラツキのない優れた永久磁石18が得られる。また、予備成形体を押出し加工する際の外形加工率を全周に亘って一定(または5〜30%の範囲内に収まる)となるようにしたので、永久磁石18は幅方向の全体に亘って厚み方向での磁気特性にバラツキがなくなる。すなわち、磁気特性に優れた永久磁石18を歩留りよく製造することができる。更に、二次成形体24を複数に分断する応力集中部28は、押出し加工時(一次成形体22の成形時)に同時に形成されるので、後工程で別に応力集中部28を形成する場合に比べて工程数を低減して製造能率を向上し得る。また、応力集中部28は、該集中部28を形成する2面が角を成すように接続されているものであるから、二次成形体24に外力を加えた場合には応力集中部28を起点として二次成形体24が綺麗に分断され、平面度の高い分断面が得られる。すなわち、二次成形体24から分割された永久磁石18の分断面の平面度は高く、該永久磁石18の外観は良好となる。なお、二次成形体24から分割された永久磁石18は、後工程で着磁されることにより、磁気異方性を有する永久磁石として実用に供される。   As described above, in the method of manufacturing the permanent magnet 18 according to the first embodiment, the secondary molded body 24 after the extrusion process is divided by the stress concentration portion 28 to manufacture a plurality of permanent magnets 18. For this reason, a large stress is not applied to the divided portion during the extrusion process, and the yield is improved without requiring grinding of the defective portion in the subsequent process. In addition, a plurality of permanent magnets having excellent magnetic anisotropy in which crystal orientation directions are aligned at the divided portions of the permanent magnet 18 are compared with a method in which a preform is pressed against a fin and divided at the time of extrusion as in the prior art. The magnets 18 can be manufactured efficiently, and the magnetic characteristics of the permanent magnets 18 are uniform. Furthermore, when extruding the preform, the outer side and the inner side in the thickness direction are deformed in the thickness direction over the entire circumference so that distortion is applied, so that the permanent magnet obtained from the molded body 22 is obtained. As a result, there is no variation in the degree of magnetic orientation on the outer side and the inner side in the thickness direction, and an excellent permanent magnet 18 having no variation in magnetic characteristics in the thickness direction can be obtained. In addition, since the outer shape processing rate when extruding the preform is constant (or within 5 to 30%) over the entire circumference, the permanent magnet 18 extends over the entire width direction. Thus, there is no variation in the magnetic characteristics in the thickness direction. That is, the permanent magnet 18 having excellent magnetic properties can be manufactured with a high yield. Further, since the stress concentration portion 28 for dividing the secondary molded body 24 into a plurality of parts is formed at the same time during the extrusion process (at the time of forming the primary molded body 22), when the stress concentration portion 28 is separately formed in a subsequent process. Compared with this, the number of steps can be reduced and the production efficiency can be improved. Further, since the stress concentrating portion 28 is connected so that two surfaces forming the concentrating portion 28 form an angle, the stress concentrating portion 28 is formed when an external force is applied to the secondary molded body 24. As a starting point, the secondary molded body 24 is cleanly divided, and a section with high flatness is obtained. That is, the flatness of the sectional surface of the permanent magnet 18 divided from the secondary compact 24 is high, and the appearance of the permanent magnet 18 is good. The permanent magnet 18 divided from the secondary compact 24 is put to practical use as a permanent magnet having magnetic anisotropy by being magnetized in a subsequent process.

実施例1では、断面矩形状の永久磁石18を製造する場合で説明したが、前記押出し金型12の貫通孔11およびマンドレル16の形状を変えることで、図4(b)に示す断面三日月状の永久磁石32を製造することができる。断面三日月状の永久磁石32は、幅方向の中央部が最も厚く、該中央部から離間するにつれて厚みが小さくなるが、予備成形体を押出し加工する際には全周に亘って外形加工率が一定となるように、貫通孔11における第1貫通孔11aおよび第2貫通孔11cの開口形状および開口寸法が設定される。なお、外形加工率については、予備成形体の全周に亘って一定となるものに限らず、5〜30%の範囲に収まっていることが好ましい。すなわち、外形加工率がこの範囲に収まっていることで、成形体から分割された永久磁石32の厚み方向の磁気的配向度のバラツキを抑えることができる。   In the first embodiment, the case where the permanent magnet 18 having a rectangular cross section is manufactured has been described. However, by changing the shape of the through hole 11 and the mandrel 16 of the extrusion die 12, the cross crescent shape shown in FIG. The permanent magnet 32 can be manufactured. The crescent-shaped permanent magnet 32 has the thickest central portion in the width direction, and the thickness decreases as the distance from the central portion increases. However, when extruding the preform, the outer shape processing rate is increased over the entire circumference. The opening shape and opening dimension of the first through hole 11a and the second through hole 11c in the through hole 11 are set so as to be constant. In addition, about an external shape processing rate, it is preferable to be settled in the range which is not restricted to what is constant over the perimeter of a preforming body, and is 5 to 30%. That is, when the outer shape processing rate is within this range, it is possible to suppress variations in the degree of magnetic orientation in the thickness direction of the permanent magnet 32 divided from the molded body.

すなわち、断面三日月状の永久磁石32を製造する場合は、マンドレル16を貫通孔11に挿入した状態で、該マンドレル16における等形部16aの外面と貫通孔11における第2貫通孔11cの内面との間に、断面三日月状の成形空間20aが周方向に相互に連通した筒状の充填空間20を画成するように、マンドレル16および貫通孔11の各形状を設定する。そして、貫通孔11に充填した柱状の予備成形体を押圧パンチ14で押圧プレスすることで、予備成形体の外側および厚み方向の中央部が歪まされて、断面三日月状の成形部32aが複数周方向に連結された筒状部を有する有底筒状の一次成形体22が成形され、該一次成形体22から有底部22aを切除することで略円筒状の二次成形体24が成形される。   That is, when manufacturing the crescent-shaped permanent magnet 32, the mandrel 16 is inserted into the through hole 11, and the outer surface of the isomorphous portion 16 a in the mandrel 16 and the inner surface of the second through hole 11 c in the through hole 11 In the meantime, each shape of the mandrel 16 and the through-hole 11 is set so that the forming space 20a having a crescent-shaped cross section defines a cylindrical filling space 20 communicating with each other in the circumferential direction. Then, the columnar preform formed in the through-hole 11 is pressed and pressed by the pressing punch 14 so that the outside of the preform and the central portion in the thickness direction are distorted, and a plurality of molding parts 32a having a crescent-shaped cross section are formed around the circumference. A bottomed cylindrical primary molded body 22 having cylindrical portions connected in a direction is formed, and a bottomed portion 22a is cut from the primary molded body 22, whereby a substantially cylindrical secondary molded body 24 is formed. .

実施例2では、前記二次成形体24は、図4(a)に示す如く、内側が断面円形に形成されると共に、外側は円弧状の山とV字状の谷とが交互に連なる形状に形成されて、外面に形成されたV字状の谷部分が応力集中部28として機能するようになる。すなわち、実施例2では、周方向に連なる成形部32a,32aの連結部の外面に応力集中部28が形成される。なお、実施例2では、押出し加工を経て得られた二次成形体24において、応力集中部28での厚み(径方向厚み)T1の上限値および下限値は、実施例1と同様に、二次成形体24の最大厚みT0に対し、1/5T0<T1<4/5T0の範囲に設定するのが好ましく、2/5T0<T1<3/5T0の範囲に設定するのがより好ましい。 In Example 2, as shown in FIG. 4A, the secondary molded body 24 is formed such that the inner side is formed in a circular cross section, and the outer side is formed by alternately connecting arc-shaped peaks and V-shaped valleys. The V-shaped valley portion formed on the outer surface functions as the stress concentration portion 28. That is, in Example 2, the stress concentration part 28 is formed in the outer surface of the connection part of the shaping | molding parts 32a and 32a continuous in the circumferential direction. In Example 2, in the secondary molded body 24 obtained through the extrusion process, the upper limit value and the lower limit value of the thickness (radial thickness) T 1 at the stress concentration portion 28 are the same as in Example 1. It is preferable to set the range of 1 / 5T 0 <T 1 <4 / 5T 0 with respect to the maximum thickness T 0 of the secondary molded body 24, and set the range 2 / 5T 0 <T 1 <3 / 5T 0. More preferably.

実施例2では、図4(a)に示す如く、対向する応力集中部28,28に外側から分割治具30,30を宛てがったもとで、該治具30,30を近接して二次成形体24を径方向に挟圧することで、該二次成形体24は、長手方向(押出し方向)の全長に亘って延在する各応力集中部28を起点として分断されて、図4(b)に示すように6つの断面三日月状の永久磁石32が得られる。実施例2においても、実施例1と同様に、磁気特性に優れた永久磁石32を歩留りよく製造することができる。また、得られた断面三日月状の永久磁石32は、磁気特性が均質で外観も良好となる。   In the second embodiment, as shown in FIG. 4A, the split jigs 30 and 30 are addressed to the opposing stress concentration portions 28 and 28 from the outside, and the jigs 30 and 30 are brought close to each other to be secondary. By pressing the compact 24 in the radial direction, the secondary compact 24 is divided starting from each stress concentration portion 28 extending over the entire length in the longitudinal direction (extrusion direction). As shown in FIG. 6, six cross-sectional crescent-shaped permanent magnets 32 are obtained. Also in the second embodiment, as in the first embodiment, the permanent magnet 32 having excellent magnetic characteristics can be manufactured with a high yield. In addition, the obtained crescent-shaped permanent magnet 32 has a uniform magnetic property and good appearance.

実施例3では、図5(b)に示す断面蒲鉾状の永久磁石34を製造する場合で説明する。すなわち、断面蒲鉾状の永久磁石34を製造する場合は、マンドレル16を貫通孔11に挿入した状態で、該マンドレル16における等形部16aの外面と貫通孔11における第2貫通孔11cの内面との間に、断面蒲鉾状の成形空間20aを周方向に相互に連通した筒状の充填空間20を画成するように、マンドレル16および貫通孔11の各形状を設定する。そして、貫通孔11に充填した柱状の予備成形体を押圧パンチ14で押圧プレスすることで、予備成形体の外側および厚み方向の中央部が歪まされて、断面蒲鉾状の成形部34aが複数周方向に連結された筒状部を有する有底筒状の一次成形体22が成形され、該一次成形体22から有底部22aを切除することで略円筒状の二次成形体24が成形される。なお、断面蒲鉾状の永久磁石34は、前記実施例2の断面三日月状の永久磁石32と同様に、幅方向の中央部が最も厚く、該中央部から離間するにつれて厚みが小さくなるが、予備成形体を押出し加工する際には全周に亘って外形加工率が一定となるように、貫通孔11における第1貫通孔11aおよび第2貫通孔11cの開口形状および開口寸法が設定される。また、予備成形体の外形加工率についても、実施例2と同様に全周に亘って一定となるものに限らず、5〜30%の範囲に収まっていることが好ましい。すなわち、外形加工率がこの範囲に収まっていることで、成形体から分割された永久磁石34の厚み方向の磁気的配向度のバラツキを抑えることができる。なお、実施例3では、押出し加工を経て得られた二次成形体24において、応力集中部28での厚み(径方向厚み)T1の上限値および下限値は、実施例1と同様に、二次成形体24の最大厚みT0に対し、1/5T0<T1<4/5T0の範囲に設定するのが好ましく、2/5T0<T1<3/5T0の範囲に設定するのがより好ましい。 In the third embodiment, a case where a permanent magnet 34 having a bowl-shaped cross section shown in FIG. 5B is manufactured will be described. That is, when manufacturing the permanent magnet 34 having a bowl-shaped cross section, with the mandrel 16 inserted into the through hole 11, the outer surface of the isomorphous portion 16a in the mandrel 16 and the inner surface of the second through hole 11c in the through hole 11 In the meantime, each shape of the mandrel 16 and the through hole 11 is set so as to define a cylindrical filling space 20 in which the forming space 20a having a bowl-shaped cross section communicates with each other in the circumferential direction. Then, the columnar preform formed in the through-hole 11 is pressed and pressed by the press punch 14 so that the outer side of the preform and the central portion in the thickness direction are distorted, and a plurality of molding sections 34a having a bowl-shaped cross section are formed. A bottomed cylindrical primary molded body 22 having cylindrical portions connected in a direction is formed, and a bottomed portion 22a is cut from the primary molded body 22, whereby a substantially cylindrical secondary molded body 24 is formed. . Incidentally, the saddle-shaped permanent magnet 34 has the thickest central portion in the width direction and the thickness decreases as the distance from the central portion becomes similar to the crescent-shaped permanent magnet 32 of the second embodiment. When extruding the molded body, the opening shape and opening dimensions of the first through hole 11a and the second through hole 11c in the through hole 11 are set so that the outer shape processing rate is constant over the entire circumference. Also, the outer shape processing rate of the preform is not limited to a constant value over the entire circumference in the same manner as in Example 2, and is preferably within a range of 5 to 30%. That is, when the outer shape processing rate is within this range, it is possible to suppress variations in the degree of magnetic orientation in the thickness direction of the permanent magnet 34 divided from the molded body. In Example 3, in the secondary molded body 24 obtained through the extrusion process, the upper limit value and the lower limit value of the thickness (radial thickness) T 1 at the stress concentration portion 28 are the same as in Example 1. It is preferable to set the range of 1 / 5T 0 <T 1 <4 / 5T 0 with respect to the maximum thickness T 0 of the secondary molded body 24, and set the range 2 / 5T 0 <T 1 <3 / 5T 0. More preferably.

実施例3では、前記二次成形体24は、図5(a)に示す如く、内側が断面矩形状に形成されると共に外側が断面円形に形成され、該実施例3の二次成形体24では、実施例1と同様に内側の各隅部が応力集中部28として機能するようになる。そして、図5(a)に示す如く、対向する応力集中部28,28に外側から分割治具30,30を宛てがったもとで、該治具30,30を近接して二次成形体24を径方向に挟圧することで、該二次成形体24は、長手方向(押出し方向)の全長に亘って延在する各応力集中部28を起点として分断されて、図5(b)に示すように4つの断面蒲鉾状の永久磁石34が得られる。実施例3においても、実施例1と同様に、磁気特性に優れた永久磁石34を歩留りよく製造することができる。また、得られた断面蒲鉾状の永久磁石34は、磁気特性が均質で外観も良好となる。   In Example 3, as shown in FIG. 5A, the secondary molded body 24 has an inner side formed in a rectangular cross section and an outer side formed in a circular cross section, and the secondary molded body 24 of Example 3 is formed. Then, as in the first embodiment, each inner corner portion functions as the stress concentration portion 28. Then, as shown in FIG. 5A, the split jigs 30 and 30 are addressed to the opposing stress concentration portions 28 and 28 from the outside, and the jigs 30 and 30 are brought close to each other to form the secondary molded body 24. 5 in the radial direction, the secondary molded body 24 is divided starting from each stress concentration portion 28 extending over the entire length in the longitudinal direction (extrusion direction), as shown in FIG. Thus, four permanent magnets 34 having a bowl-shaped cross section are obtained. In the third embodiment, as in the first embodiment, the permanent magnet 34 having excellent magnetic characteristics can be manufactured with a high yield. Further, the obtained permanent magnet 34 having a bowl-shaped cross section has uniform magnetic characteristics and good appearance.

実施例4では、断面円弧状の永久磁石36を製造する場合で説明する。すなわち、断面円弧状の永久磁石36を製造する場合は、マンドレル16を貫通孔11に挿入した状態で、該マンドレル16における等形部16aの外面と貫通孔11における第2貫通孔11cの内面との間に、円筒状の充填空間20を画成するように、マンドレル16および貫通孔11の各形状を設定する。また、貫通孔11における第1貫通孔11aおよび第2貫通孔11cの開口寸法は、予備成形体の押出し加工に際して全周に亘って外形加工率が一定となるように設定される。なお、予備成形体の外形加工率については、全周に亘って一定となるものに限らず、5〜30%の範囲に収まっていることが好ましい。すなわち、外形加工率がこの範囲に収まっていることで、成形体から分割された永久磁石36の厚み方向の磁気的配向度のバラツキを抑えることができる。また、実施例4のような断面円弧状の永久磁石36を製造する場合は、押出し加工時に応力集中部28を形成するべく、図6(a),(b)に示す如く、押出し金型12における貫通孔11における第2貫通孔11cの内面に、該第2貫通孔11cに挿入されたマンドレル16における等形部16aのテーパ部16bとの連設端部に対応する位置において複数の内突起(突部)38を周方向に離間して設けると共に、マンドレル16における等形部16aの外面におけるテーパ部16bとの連設端部に各内突起38と対応して外突起(突部)40を夫々設ける。そして、マンドレル16を挿入した貫通孔11に充填した柱状の予備成形体を、押圧パンチ14で押圧プレスすることで、前記内突起38と外突起40とに対応する外面および内面に、押出される過程で厚み方向(径方向)に凹む溝状の応力集中部28,28が形成される。そして、予備成形体の外側および厚み方向の中央部が歪まされ、押出し方向に沿って二次成形体24となる部分の全長に亘って応力集中部28,28が形成されると共に、周方向に隣り合う応力集中部28,28で分けられた複数の成形部36aが周方向に連結された筒状部を有する有底筒状の一次成形体22が成形される。   In the fourth embodiment, a case where a permanent magnet 36 having a circular arc cross section is manufactured will be described. That is, in the case of manufacturing the permanent magnet 36 having a circular arc cross section, the outer surface of the isomorphous portion 16a in the mandrel 16 and the inner surface of the second through hole 11c in the through hole 11 with the mandrel 16 inserted into the through hole 11 In the meantime, the shapes of the mandrel 16 and the through hole 11 are set so as to define a cylindrical filling space 20. Moreover, the opening dimension of the 1st through-hole 11a and the 2nd through-hole 11c in the through-hole 11 is set so that the external shape processing rate may become constant over the perimeter at the time of extrusion of a preforming body. In addition, about the external shape processing rate of a preforming body, it is preferable to be settled in the range of 5 to 30%, not only what becomes constant over a perimeter. That is, when the outer shape processing rate is within this range, it is possible to suppress variations in the degree of magnetic orientation in the thickness direction of the permanent magnet 36 divided from the molded body. Further, when the permanent magnet 36 having a circular arc cross section as in the fourth embodiment is manufactured, as shown in FIGS. 6A and 6B, the extrusion die 12 is formed so as to form the stress concentration portion 28 at the time of extrusion. A plurality of internal projections on the inner surface of the second through-hole 11c in the through-hole 11 at a position corresponding to the continuous end portion with the tapered portion 16b of the isomorphous portion 16a in the mandrel 16 inserted into the second through-hole 11c (Protrusions) 38 are provided apart from each other in the circumferential direction, and outer projections (projections) 40 corresponding to the inner projections 38 at the end portions of the mandrel 16 connected to the tapered portion 16b on the outer surface of the isomorphous portion 16a. Are provided. Then, the columnar preform formed in the through-hole 11 in which the mandrel 16 is inserted is pressed and pressed by the pressing punch 14 to the outer surface and the inner surface corresponding to the inner protrusion 38 and the outer protrusion 40. In the process, groove-like stress concentration portions 28 and 28 that are recessed in the thickness direction (radial direction) are formed. Then, the outside of the preform and the central portion in the thickness direction are distorted, and stress concentration portions 28 and 28 are formed over the entire length of the portion that becomes the secondary molded body 24 along the extrusion direction, and in the circumferential direction. A bottomed cylindrical primary molded body 22 having a cylindrical portion in which a plurality of molded portions 36a divided by adjacent stress concentration portions 28, 28 are connected in the circumferential direction is molded.

なお、実施例4では、図7(a)に示す押出し加工を経て得られた二次成形体24において、応力集中部28での厚み(径方向厚み)T1の上限値および下限値は、実施例1と同様に、二次成形体24の最大厚みT0に対し、1/5T0<T1<4/5T0の範囲に設定するのが好ましく、2/5T0<T1<3/5T0の範囲に設定するのがより好ましい。 In Example 4, in the secondary molded body 24 obtained through the extrusion process shown in FIG. 7A, the upper limit value and lower limit value of the thickness (radial thickness) T 1 at the stress concentration portion 28 are: Similarly to Example 1, it is preferable to set a range of 1 / 5T 0 <T 1 <4 / 5T 0 with respect to the maximum thickness T 0 of the secondary molded body 24. 2 / 5T 0 <T 1 <3 It is more preferable to set within the range of / 5T 0 .

ここで、前記押出し金型12の内突起38およびマンドレル16の外突起40は、前述した如く、マンドレル16を貫通孔11に挿入したときの等形部16aにおけるテーパ部16bとの連設端部に対応する金型内面およびマンドレル外面に夫々設けるのが好適であるが、押出し金型12の内突起38は、貫通孔11に挿入されたマンドレル16の等形部16aにおけるテーパ部16bとの連設端部より押出し方向後側に設けられるものであってもよく、各内突起38と対応する外突起40とは、押出し方向から見て厚み方向に整列していればよい。また、内突起38および外突起40により形成される溝状の応力集中部28は、その先端(溝の底)が先鋭となっている方が、応力集中部28で成形部36aを分断する際の分断面の平面度が向上することから、内突起38および外突起40の形状は、断面三角形でかつ突出端部側の内角が鋭角となっているのが好適である。なお、内突起38および外突起40の形状は、断面三角形に限らず、断面矩形状のものや突出端部が弧状となっているもの等、その他の形状であってもよい。   Here, the inner protrusion 38 of the extrusion die 12 and the outer protrusion 40 of the mandrel 16 are connected to the tapered portion 16b of the isomorphous portion 16a when the mandrel 16 is inserted into the through hole 11, as described above. However, the inner protrusion 38 of the extrusion die 12 is connected to the tapered portion 16b of the isomorphous portion 16a of the mandrel 16 inserted into the through hole 11. The inner projections 38 and the corresponding outer projections 40 only need to be aligned in the thickness direction when viewed from the extrusion direction. Further, the groove-shaped stress concentration portion 28 formed by the inner protrusion 38 and the outer protrusion 40 has a sharp tip (bottom of the groove) when the molded portion 36a is divided by the stress concentration portion 28. Therefore, it is preferable that the shape of the inner protrusion 38 and the outer protrusion 40 is a triangular cross section and the inner angle on the protruding end side is an acute angle. In addition, the shape of the inner protrusion 38 and the outer protrusion 40 is not limited to a triangular cross-section, and may be other shapes such as a rectangular cross-section or an arc-shaped protruding end.

実施例4の二次成形体24は、図7(a)に示す如く、外面および内面に径方向(厚み方向)に対向するように形成された応力集中部28,28によって周方向に分けられた複数(実例施4では4つ)の成形部36aが連結された円筒状となっている。すなわち、実施例4の二次成形体24では、周方向に連結する成形部36a,36aの連結部の外面および内面に、応力集中部28が夫々形成されている。そして、図7(a)に示す如く、二次成形体24の中心を挟んで対向する応力集中部28,28の外側に分割治具30,30を宛てがったもとで、該治具30,30を近接して二次成形体24を径方向に挟圧することで、二次成形体24は、長手方向(押出し方向)の全長に亘って延在する各応力集中部28で分断されて、図7(b)に示すように4つの断面円弧状の永久磁石36が得られる。実施例4においても、実施例1と同様に、磁気特性に優れた永久磁石36を歩留りよく製造することができる。また、得られた断面円弧状の永久磁石36は、磁気特性が均質で外観も良好となる。更に、実施例4では、前記突起38,40によって形成される応力集中部28は略V字状の溝となっているので、該応力集中部28で分断された永久磁石36における分断面の平面度はより高く、永久磁石36の外観はより良好になる。なお、押出し金型12およびマンドレル16に形成した突起38,40によって応力集中部28を形成する場合は、押出し金型12およびマンドレル16の何れか一方にのみ突条を設けて一次成形体22における外面または内面の何れか一方の面に応力集中部28を形成する形態を採用し得る。   As shown in FIG. 7A, the secondary molded body 24 of Example 4 is divided in the circumferential direction by stress concentration portions 28 and 28 formed so as to face the outer surface and the inner surface in the radial direction (thickness direction). In addition, it has a cylindrical shape in which a plurality of (four in Example 4) molding portions 36a are connected. That is, in the secondary molded body 24 of Example 4, the stress concentration portions 28 are formed on the outer surface and the inner surface of the connecting portions of the forming portions 36a and 36a that are connected in the circumferential direction. Then, as shown in FIG. 7A, the split jigs 30, 30 are addressed outside the stress concentration portions 28, 28 facing each other across the center of the secondary molded body 24. By pressing the secondary molded body 24 in the radial direction with 30 close, the secondary molded body 24 is divided at each stress concentration portion 28 extending over the entire length in the longitudinal direction (extrusion direction), As shown in FIG. 7B, four permanent magnets 36 having an arcuate cross section are obtained. In the fourth embodiment, as in the first embodiment, the permanent magnet 36 having excellent magnetic properties can be manufactured with a high yield. Further, the obtained permanent magnet 36 having an arc-shaped cross section has a uniform magnetic characteristic and a good appearance. Furthermore, in the fourth embodiment, the stress concentration portion 28 formed by the protrusions 38 and 40 is a substantially V-shaped groove, so that the plane of the sectional surface of the permanent magnet 36 divided by the stress concentration portion 28 is obtained. The degree is higher and the appearance of the permanent magnet 36 is better. When the stress concentration portion 28 is formed by the protrusions 38 and 40 formed on the extrusion die 12 and the mandrel 16, a protrusion is provided only on one of the extrusion die 12 and the mandrel 16, and the primary molded body 22 The form which forms the stress concentration part 28 in any one surface of an outer surface or an inner surface can be employ | adopted.

〔実験例〕
Nd:29.5質量%、Co:5質量%、B:0.9質量%、Ga:0.6質量%、残部が実質的にFeからなる磁性合金を溶製し、単ロール法で急冷して厚さ25μm、平均結晶粒径0.1μm以下の磁性薄帯を得た。更に、この磁性薄帯を粉砕して300μm以下の長さの磁性粉体を得た。この磁性粉体を面圧略3.0tonで冷間プレスして圧粉成形し、Ar雰囲気下において温度600〜900℃に予備加熱した後、Ar雰囲気下において温度600〜900℃、圧力200MPaでホットプレスを行ない、柱状の予備成形体を製造した。そして、この予備成形体から断面三日月状の永久磁石32を成形する本発明の製造方法により製造した発明例1と、上記と同じ条件で製造した予備成形体を、金型の貫通孔にフィン付きマンドレルを挿入することで画成した複数の分割孔から押出す前記特許文献1に開示の製造方法により製造した比較例1とについて、磁気的配向度の違いについて検証した。
[Experimental example]
Nd: 29.5% by mass, Co: 5% by mass, B: 0.9% by mass, Ga: 0.6% by mass, a magnetic alloy consisting essentially of Fe is melted and rapidly cooled by a single roll method Thus, a magnetic ribbon having a thickness of 25 μm and an average crystal grain size of 0.1 μm or less was obtained. Further, the magnetic ribbon was pulverized to obtain a magnetic powder having a length of 300 μm or less. The magnetic powder was cold pressed at a surface pressure of about 3.0 ton and compacted, preheated to a temperature of 600 to 900 ° C. in an Ar atmosphere, and then heated to a temperature of 600 to 900 ° C. and a pressure of 200 MPa in an Ar atmosphere. Hot pressing was performed to manufacture a columnar preform. And the invention example 1 manufactured with the manufacturing method of this invention which shape | molds the crescent-shaped permanent magnet 32 from this preform, and the preform manufactured on the same conditions as above are finned to the through-hole of a metal mold | die. About the comparative example 1 manufactured with the manufacturing method disclosed by the said patent document 1 extruded from the some division hole defined by inserting the mandrel, it verified about the difference in a magnetic orientation degree.

前記予備成形体を押出し加工する際の条件として、予備成形体および押出し金型12の温度は600〜900℃とし、加工機としては50トン油圧プレスを用いた。また予備成形体を押出し加工する前に、該予備成形体を600〜900℃に予備加熱した。なお、予備成形体に対する一次成形体の減面率を55%で一定としたもとで、発明例1では外形加工率Kを5%とし、比較例1では外形加工率を0%とした。発明例1および比較例1の各永久磁石32の磁気的配向度(磁気特性)の具体的な測定については、長さ方向(押出し方向)の中央部における幅方向の中央部と両端部から、幅×長さが7mm×7mmとなる試料を切り出すと共に、該試料の厚み方向両面を0.5mmずつ削って、幅×長さ×厚みが7mm×7mm×6mmとなる磁気測定試料を採用した。また磁気測定試料は、押出し加工により得られた成形体における押出し方向の前端(先端)から長さ方向で異なる複数位置から切り出したものを用意した。そして、各磁気測定試料を、3.2MA/mの磁界中で着磁したものを使用した。前記着磁により飽和磁化に達している各磁気測定試料について、pulse励磁型−BHトレーサーにて磁気的配向度を測定し、発明例1の測定結果を図8(a)に示すと共に、比較例1の測定結果を図8(b)に示す。   As conditions for extruding the preform, the temperature of the preform and the extrusion die 12 was 600 to 900 ° C., and a 50-ton hydraulic press was used as the processing machine. Further, before the preform was extruded, the preform was preheated to 600 to 900 ° C. It should be noted that, with the area reduction rate of the primary molded body with respect to the preformed body being constant at 55%, the profile processing rate K was 5% in Invention Example 1, and the profile processing rate was 0% in Comparative Example 1. For the specific measurement of the degree of magnetic orientation (magnetic characteristics) of each permanent magnet 32 of Invention Example 1 and Comparative Example 1, from the central part and both end parts in the width direction in the central part in the length direction (extrusion direction), A sample having a width × length of 7 mm × 7 mm was cut out, and both sides in the thickness direction of the sample were cut by 0.5 mm, and a magnetic measurement sample having a width × length × thickness of 7 mm × 7 mm × 6 mm was employed. Magnetic measurement samples were prepared by cutting out from a plurality of different positions in the length direction from the front end (tip) in the extrusion direction of the molded body obtained by extrusion. And what magnetized each magnetic measurement sample in the magnetic field of 3.2 MA / m was used. For each magnetic measurement sample that has reached saturation magnetization due to the magnetization, the degree of magnetic orientation is measured with a pulse excitation type-BH tracer, and the measurement result of Invention Example 1 is shown in FIG. The measurement result of 1 is shown in FIG.

(成形体から分割された永久磁石の幅方向での磁気的配向度の測定結果について)
図8(a),(b)に示す結果から、発明例1においては、幅方向中央部および両端部における磁気的配向度は、押出し加工時に磁石を分断する比較例1に比べて向上することが確認されると共に、幅方向中央部および両端部における磁気的配向度は略同じであり、幅方向に均質な磁気的特性を有することも確認された。また、発明例1の永久磁石32の外観は良好で分割部分にひびもなく、研削を必要とする欠陥部分は極僅かであった。すなわち、本発明によれば、高い磁気特性を有する永久磁石を、生産性、材料歩留、良品率および製造コストの点で優れている押出し加工により成形された成形体から製造し得ることが確認された。
(Measurement results of the degree of magnetic orientation in the width direction of the permanent magnet divided from the compact)
From the results shown in FIGS. 8 (a) and 8 (b), in Invention Example 1, the degree of magnetic orientation at the center and both ends in the width direction is improved as compared with Comparative Example 1 in which the magnet is divided during extrusion. It was also confirmed that the degree of magnetic orientation at the center and both ends in the width direction was substantially the same, and the magnetic characteristics were homogeneous in the width direction. In addition, the appearance of the permanent magnet 32 of Invention Example 1 was good, there were no cracks in the divided portions, and there were very few defective portions that required grinding. That is, according to the present invention, it is confirmed that a permanent magnet having high magnetic properties can be manufactured from a molded body formed by an extrusion process that is excellent in terms of productivity, material yield, yield rate, and manufacturing cost. It was done.

(成形体から分割された永久磁石の厚み方向での磁気的配向度の測定結果について)
前記段落〔0038〕で説明した条件で製作した予備成形体から押出し加工される断面三日月状の永久磁石32における厚み方向での磁気的配向度について、前記外形加工率Kを変えることで、該外形加工率Kの影響を検証した。なお、予備成形体に対する一次成形体22の減面率は55%とし、発明例2は実験例1の発明例1と同じ外形加工率Kを5%とし、発明例3では外形加工率Kを10%とし、発明例4では外形加工率Kを20%とし、発明例5では外形加工率Kを30%とした。また、比較例2として、上記と同じ予備成形体から減面率55%で外形加工率を0%、すなわち予備成形体の外形を変形させることなく押出し加工して、応力集中部によって周方向に分けられた複数の成形部が形成された一次成形体を製造し、該一次成形体から分割した永久磁石について磁気的配向度を測定した。なお、予備成形体を押出し加工する際の減面率および外形加工率K以外の各種条件については、前述した通りである。
(Measurement results of the degree of magnetic orientation in the thickness direction of the permanent magnet divided from the compact)
By changing the outer shape processing rate K, the degree of magnetic orientation in the thickness direction of the crescent-shaped permanent magnet 32 extruded from the preform manufactured under the conditions described in the paragraph [0038], the outer shape ratio K is changed. The influence of the processing rate K was verified. The area reduction rate of the primary molded body 22 with respect to the preformed body is 55%. Inventive example 2 has the same outer shape processing rate K as that of inventive example 1 of experimental example 1, and in inventive example 3, the outer shape processing rate K is 10%, in Example 4, the outer shape processing rate K was 20%, and in Example 5, the outer shape processing rate K was 30%. Further, as Comparative Example 2, extrusion processing was performed from the same preform as described above with a reduction in surface area of 55% and an outer shape processing rate of 0%, that is, without deforming the outer shape of the preform, and in the circumferential direction by the stress concentration portion. A primary molded body in which a plurality of divided molded parts were formed was manufactured, and the degree of magnetic orientation was measured for the permanent magnets divided from the primary molded body. Various conditions other than the area reduction rate and the outer shape processing rate K when extruding the preform are as described above.

発明例2〜5および比較例2の各永久磁石32の磁気的配向度(磁気特性)の具体的な測定については、幅方向の中央部における厚み方向の中央部と内面部(一次成形体22の内側)および外面部(一次成形体22の外側)から、幅×長さが7mm×7mmとなる試料を切り出すと共に、該試料の厚み方向両面を0.5mmずつ削って、幅×長さ×厚みが7mm×7mm×6mmとなる磁気測定試料を採用した。そして、各磁気測定試料を、3.2MA/mの磁界中で着磁したものを使用した。前記着磁により飽和磁化に達している各磁気測定試料について、pulse励磁型−BHトレーサーにて磁気的配向度を測定し、発明例2〜5および比較例2の測定結果を図9に示す。   About the specific measurement of the magnetic orientation degree (magnetic property) of each permanent magnet 32 of Invention Examples 2 to 5 and Comparative Example 2, the central portion in the thickness direction and the inner surface portion (primary compact 22 in the central portion in the width direction). ) And an outer surface portion (outside of the primary molded body 22), a sample having a width × length of 7 mm × 7 mm was cut out, and both sides in the thickness direction of the sample were cut by 0.5 mm each to obtain a width × length × A magnetic measurement sample having a thickness of 7 mm × 7 mm × 6 mm was employed. And what magnetized each magnetic measurement sample in the magnetic field of 3.2 MA / m was used. About each magnetic measurement sample which has reached saturation magnetization by the said magnetization, the magnetic orientation degree was measured with the pulse excitation type | mold -BH tracer, and the measurement result of invention example 2-5 and the comparative example 2 is shown in FIG.

図9に示す結果から、外形加工率Kを5%とした発明例2では、外形加工率Kを0%とした比較例2に比べて外面部の磁気的配向度が向上することが確認された。また、発明例2〜4の磁気的配向度の測定値から、外形加工率Kを大きくするにつれて、外面部の磁気的配向度が向上することが確認された。すなわち、押出し加工に際して材料に与える歪み量(加工率)を大きくすることで、磁気的配向度が向上し、磁気特性も向上することが確認された。更に、外形加工率Kを20%とした発明例4および外形加工率Kを30%とした発明例5では、内面部、中央部および外面部の磁気的配向度が略同じとなり、厚み方向に均質な磁気特性を有することも確認された。本発明によれば、厚み方向に均質で高い磁気特性を有する永久磁石を、押出し加工により成形された成形体から製造し得ることが確認された。すなわち、押出し加工に際して予備成形体の外形および厚み方向の中央部を何れも歪ませて筒状の成形体を成形した後に、該成形体を応力集中部で分割する本発明の製造方法によれば、幅方向および厚み方向の磁気的配向度が均質で磁気特性に優れた永久磁石が製造できることが確認された。   From the results shown in FIG. 9, it is confirmed that the invention example 2 in which the outer shape processing rate K is 5% improves the magnetic orientation degree of the outer surface portion as compared with the comparative example 2 in which the outer shape processing rate K is 0%. It was. Moreover, it was confirmed from the measured value of the magnetic orientation degree of the invention examples 2-4 that the magnetic orientation degree of an outer surface part improves as the external shape processing rate K is enlarged. That is, it was confirmed that the degree of magnetic orientation was improved and the magnetic properties were improved by increasing the amount of strain (processing rate) applied to the material during extrusion. Further, in Invention Example 4 in which the outer shape processing rate K is 20% and in Invention Example 5 in which the outer shape processing rate K is 30%, the magnetic orientation degrees of the inner surface portion, the central portion, and the outer surface portion are substantially the same, and in the thickness direction. It was also confirmed to have homogeneous magnetic properties. According to the present invention, it has been confirmed that a permanent magnet which is homogeneous in the thickness direction and has high magnetic properties can be produced from a molded body formed by extrusion. That is, according to the manufacturing method of the present invention, after forming the cylindrical molded body by distorting both the outer shape of the preform and the central portion in the thickness direction during extrusion, the molded body is divided at the stress concentration portion. It was confirmed that a permanent magnet having uniform magnetic orientation in the width direction and thickness direction and excellent magnetic properties can be produced.

〔変更例〕
本発明は、実施例の構成に限定されず、種々の変更が可能であり、例えば以下の構成を採用し得る。
(1) 実施例では、有底部を有する一次成形体を押出し成形した後、該一次成形体の有底部を切除して筒状の二次成形体を得るようにしたが、得ようとする断面形状の永久磁石に対応する成形部が複数周方向に連結された筒状部のみからなる筒状の二次成形体を押出し加工によって成形するようにしてもよい。
(2) 実施例1では、二次成形体における4つの角部に傾斜面を形成するようにしたが、該傾斜面は必須ではなく、角張ったままであってもよい。
(3) 実施例では、断面が矩形状、三日月状、蒲鉾状、円弧状の永久磁石を製造する場合で説明したが、永久磁石の形状はこれらの形状に限定されるものでなく、その他各種の形状であってもよい。また、押出し加工により成形する一次成形体において周方向に連結される成形部(永久磁石に対応する部分)の数は、2つ以上であればよく、各実施例に例示した数に限定されない。
(4) 実施例1〜3において、押出し金型における貫通孔の内面やマンドレルの外面に、一次成形体に形成される応力集中部に対応する位置に実施例4のように突起を突設し、応力集中部の内面および外面または何れか一方の面に溝を形成するようにしてもよい。また、応力集中部を形成するための突起に代えて、押出し方向に沿って所定長さで延在する突条(突部)を用いることができる。なお、突条は、押出し金型およびマンドレルの全長に設けられるものに限らず、貫通孔にマンドレルが挿入される領域にのみ設けられたものであってもよい。
(5) 各実施例では、成形体を応力集中部で分断する際に、該成形体の中心を挟んで対向する応力集中部を分割治具で外側から挟圧するようにしたが、応力集中部以外の部分を挟圧して分断するようにしてもよい。但し、応力集中部で挟圧する方が、各応力集中部での分断が容易となる。
(6) 各実施例では、予備成形体から一次成形体を押出し加工する際に、外形を縮小するように絞り込むと共に、厚み方向の中央部を拡げるように変形させたが、外形を拡大すると共に厚み方向の中央部を拡げるように変形させることで、厚み方向の外側および内側に歪みを付与するようにしてもよい。
(7) 予備成形体は、中実である必要はなく、マンドレルより小径の中心通孔が形成された筒状のものであってもよい。そして、予備成形体を筒状とした場合は、押出し金型の貫通孔に予備成形体を挿入した際に、中心通孔にマンドレルのテーパ部が挿入されるので位置決めできる。
(8) 予備成形体は、磁石合金粉末を冷間プレスにより圧粉体とし、熱間または温間プレスを経ず、押出し加工(塑性加工)により得ることもできる。
[Example of change]
The present invention is not limited to the configuration of the embodiment, and various modifications are possible. For example, the following configurations can be adopted.
(1) In the example, after extruding a primary molded body having a bottomed portion, the bottomed portion of the primary molded body was cut out to obtain a cylindrical secondary molded body. You may make it shape | mold the cylindrical secondary compact | molding | casting body which consists only of the cylindrical part with which the shaping | molding part corresponding to the shape permanent magnet was connected in the circumferential direction by extrusion.
(2) In Example 1, inclined surfaces are formed at the four corners of the secondary molded body. However, the inclined surfaces are not essential and may remain angular.
(3) In the embodiments, the case where the permanent magnet having a rectangular, crescent-shaped, bowl-shaped, or arc-shaped cross section is described is described. However, the shape of the permanent magnet is not limited to these shapes, and various other types are also described. The shape may also be Moreover, the number of the molding parts (parts corresponding to the permanent magnets) connected in the circumferential direction in the primary molded body molded by the extrusion process may be two or more, and is not limited to the number exemplified in each example.
(4) In Examples 1 to 3, protrusions are provided on the inner surface of the through hole and the outer surface of the mandrel in the extrusion die at positions corresponding to the stress concentration portions formed in the primary molded body as in Example 4. The grooves may be formed on the inner surface and / or the outer surface of the stress concentration portion. Further, instead of the protrusions for forming the stress concentration portion, it is possible to use ridges (projections) extending a predetermined length along the extrusion direction. The protrusions are not limited to those provided over the entire length of the extrusion mold and the mandrel, but may be provided only in a region where the mandrel is inserted into the through hole.
(5) In each example, when the molded body was divided at the stress concentration portion, the stress concentration portion opposed to the center of the molded body was clamped from the outside with a split jig. Other portions may be sandwiched and divided. However, it is easier to sever at each stress concentration part when the stress is concentrated at the stress concentration part.
(6) In each example, when extruding the primary molded body from the preform, it was narrowed down to reduce the outer shape and deformed so as to expand the central part in the thickness direction. You may make it give distortion to the outer side and inner side of a thickness direction by making it deform | transform so that the center part of the thickness direction may be expanded.
(7) The preform does not need to be solid, and may be a cylinder having a central through hole having a smaller diameter than the mandrel. When the preform is formed into a cylindrical shape, the mandrel taper portion is inserted into the central through hole when the preform is inserted into the through hole of the extrusion mold, so that the preform can be positioned.
(8) The preform can also be obtained by extruding (plastic working) a magnet alloy powder into a green compact by cold pressing, without passing through hot or warm pressing.

12 押出し金型,11 貫通孔,14 押圧パンチ,16 マンドレル
18 断面矩形状の永久磁石,20 充填空間,24 二次成形体(成形体)
28 応力集中部,32 断面三日月状の永久磁石,34 断面蒲鉾状の永久磁石
36 断面円弧状の永久磁石,38 内突起(突部),40 外突起(突部)
0 成形体の径方向の最大厚み,T1 応力集中部の径方向厚み
12 Extrusion mold, 11 Through hole, 14 Press punch, 16 Mandrel 18 Permanent magnet with rectangular cross section, 20 Filling space, 24 Secondary compact (molded compact)
28 Stress Concentration Section, 32 Crescent-shaped Permanent Magnet, 34 Cross-Section Permanent Magnet 36 Permanent Arc-shaped Permanent Magnet, 38 Inner Projection (Projection), 40 Outer Projection (Projection)
Maximum radial thickness of T 0 compact, radial thickness of T 1 stress concentration part

Claims (5)

希土類、鉄族金属およびホウ素を含む磁石合金をプレスした予備成形体を用意し、
マンドレル(16)が挿通された押出し金型(12)の貫通孔(11)に装填した前記予備成形体を、該予備成形体の外形を拡大または縮小させると共に該予備成形体の押出し方向と直交する方向の中央部を拡げるように押圧パンチ(14)で押出して筒状の成形体(24)を成形する押出し加工を行うと共に、予備成形体を押出す過程で、押出し方向に延在する応力集中部(28)を周方向に離間して複数形成し、
得られた成形体(24)に外力を径方向に加えることで、該成形体(24)を前記応力集中部(28)で分断して複数の永久磁石(18,32,34,36)に分割するようにし
前記押出し加工において、減面率は50〜70%、かつ外形の拡大方向または縮小方向の加工率は5〜30%である
ことを特徴とする非筒状の永久磁石の製造方法。
Prepare a pre-formed body pressed with magnet alloy containing rare earth, iron group metal and boron,
It said preform mandrel (16) is loaded into the through-hole (11) of the insertion has been extrusion die (12), perpendicular to the extrusion direction of the preform causes scales the outline of the preform Extrusion is performed with a pressing punch (14) to form a cylindrical molded body (24) so that the central part in the direction of expansion is expanded, and stress that extends in the extrusion direction during the process of extruding the preform A plurality of concentrated portions (28) are formed spaced apart in the circumferential direction,
By applying an external force in the radial direction to the obtained molded body (24), the molded body (24) is divided by the stress concentration portion (28) to form a plurality of permanent magnets (18, 32, 34, 36). Like to split ,
The method for manufacturing a non-cylindrical permanent magnet, wherein the area reduction ratio is 50 to 70% in the extrusion process, and the process ratio in the direction of expansion or contraction of the outer shape is 5 to 30%. .
前記応力集中部(28)は、前記成形体(24)における内面または外面において、周方向に連続する2面が角を成すように形成される請求項1記載の非筒状の永久磁石の製造方法。 The stress concentration portion (28), in the inner or outer surface of the molded body (24), two surfaces contiguous to the circumferential direction of the non-cylindrical permanent magnet of claim 1 Symbol placement is formed so as to form an angle Production method. 前記押出し金型(12)における貫通孔(11)の内面またはマンドレル(16)の外面に、該貫通孔(11)の内面とマンドレル(16)の外面との間に画成した充填空間(20)に突出する突部(38,40)が突設され、該充填空間(20)を押出された成形体(22)における内面または外面に、前記突部(38,40)によって径方向に凹む応力集中部(28)としての溝が形成される請求項1または2記載の非筒状の永久磁石の製造方法。 Filling space (20) defined between the inner surface of the through hole (11) and the outer surface of the mandrel (16) on the inner surface of the through hole (11) or the outer surface of the mandrel (16) in the extrusion die (12). The protrusions (38, 40) protruding to the outer surface of the molded body (22) extruded from the filling space (20) are radially recessed by the protrusions (38, 40). The method for producing a non-cylindrical permanent magnet according to claim 1 or 2 , wherein a groove is formed as the stress concentration portion (28). 径方向の最大厚みT0に対して応力集中部(28)の径方向厚みT1が1/5T0<T1<4/5T0の範囲となるように成形した成形体(24)を、該応力集中部(28)で分断するようにした請求項1〜の何れか一項に記載の非筒状の永久磁石の製造方法。 Stress concentrator relative to the maximum thickness T 0 of the radial and radial thickness T 1 is 1 / 5T 0 <T 1 < 4 / 5T 0 in a range of as molded molded article (28) (24), The method for manufacturing a non-cylindrical permanent magnet according to any one of claims 1 to 3 , wherein the stress concentration portion (28) is divided. 前記成形体(24)を径方向で挟圧して前記応力集中部(28)で分断するようにした請求項1〜の何れか一項に記載の非筒状の永久磁石の製造方法。 The method for producing a non-cylindrical permanent magnet according to any one of claims 1 to 4 , wherein the molded body (24) is clamped in a radial direction and divided by the stress concentration portion (28).
JP2013141594A 2013-07-05 2013-07-05 Method for producing non-cylindrical permanent magnet Active JP6322911B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013141594A JP6322911B2 (en) 2013-07-05 2013-07-05 Method for producing non-cylindrical permanent magnet
CN201410317550.6A CN104282430B (en) 2013-07-05 2014-07-04 The manufacture method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141594A JP6322911B2 (en) 2013-07-05 2013-07-05 Method for producing non-cylindrical permanent magnet

Publications (2)

Publication Number Publication Date
JP2015015381A JP2015015381A (en) 2015-01-22
JP6322911B2 true JP6322911B2 (en) 2018-05-16

Family

ID=52257233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141594A Active JP6322911B2 (en) 2013-07-05 2013-07-05 Method for producing non-cylindrical permanent magnet

Country Status (2)

Country Link
JP (1) JP6322911B2 (en)
CN (1) CN104282430B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022198A (en) 2015-07-08 2017-01-26 株式会社ジェイテクト Manufacturing method for magnet and magnet
JP7155971B2 (en) * 2018-12-05 2022-10-19 大同特殊鋼株式会社 Arc-shaped permanent magnet and manufacturing method thereof
JP7251280B2 (en) * 2019-04-05 2023-04-04 大同特殊鋼株式会社 Manufacturing method of deformed piece magnet
CN114653937A (en) * 2020-12-22 2022-06-24 Tdk株式会社 Extrusion die for hot-worked magnet and method for manufacturing hot-worked magnet using same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754925B2 (en) * 1973-05-14 1982-11-20
JPS58182207A (en) * 1982-04-19 1983-10-25 Matsushita Electric Ind Co Ltd Preparation of manganese-aluminum-carbon alloy magnet
JPH0639675B2 (en) * 1985-07-05 1994-05-25 松下電器産業株式会社 Method for producing manganese-aluminum-carbon alloy magnet
JPS6258004U (en) * 1985-09-30 1987-04-10
JPS63260120A (en) * 1987-04-17 1988-10-27 Fuji Elelctrochem Co Ltd Metal mold for anisotropic ferrite magnet
JPH071742B2 (en) * 1987-05-02 1995-01-11 富士電気化学株式会社 Anisotropic ferrite magnet molding
JPH03265102A (en) * 1990-03-15 1991-11-26 Tdk Corp Diametrical anisotropic cylindrical permanent magnet and manufacture thereof
JPH04342924A (en) * 1991-05-21 1992-11-30 Mitsubishi Electric Corp Manufacture of deflecting yoke core
JP2001015325A (en) * 1999-06-28 2001-01-19 Daido Steel Co Ltd Radial anisotropic rare earth magnet having circular arc section, and manufacturing method and manufacturing equipment thereof
JP4561974B2 (en) * 2004-09-01 2010-10-13 大同特殊鋼株式会社 Manufacturing method of ring magnet material
JP2007059445A (en) * 2005-08-22 2007-03-08 Daido Steel Co Ltd Manufacturing method of annular magnetic material, and the annular magnetic material manufactured by the method
JP2008023650A (en) * 2006-07-20 2008-02-07 Tdk Corp Grinding device and method
JP2008172977A (en) * 2007-01-15 2008-07-24 Jtekt Corp Cylindrical-magnet manufacturing method and cylindrical-magnet manufacturing device
US8937419B2 (en) * 2007-06-28 2015-01-20 Hitachi Metals, Ltd. Radially anisotropic ring R-TM-B magnet, its production method, die for producing it, and rotor for brushless motor
JP4497198B2 (en) * 2007-12-06 2010-07-07 トヨタ自動車株式会社 Permanent magnet and method for manufacturing the same, and rotor and IPM motor
CN102171908B (en) * 2008-10-02 2014-05-28 日产自动车株式会社 Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
JP5614096B2 (en) * 2010-05-19 2014-10-29 日産自動車株式会社 Permanent magnet embedded in rotor core of rotating electrical machine and method for manufacturing the same
JP6035024B2 (en) * 2012-01-10 2016-11-30 大同特殊鋼株式会社 Method for producing non-cylindrical permanent magnet

Also Published As

Publication number Publication date
CN104282430A (en) 2015-01-14
CN104282430B (en) 2017-09-12
JP2015015381A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP4957415B2 (en) Method for manufacturing permanent magnet and permanent magnet
CN101103422B (en) Process for producing radially anisotropic magnet
JP6322911B2 (en) Method for producing non-cylindrical permanent magnet
KR101313521B1 (en) Substantially cylindrical powder compact and powder die device
TWI466141B (en) Manufacture of rare earth magnets
JP6035024B2 (en) Method for producing non-cylindrical permanent magnet
KR20060050946A (en) Method for manufacturing ring-shaped magnetic materials and manufacturing device used for it
JP2006230099A (en) Ring magnet and apparatus and method for manufacturing ring magnet
CN105081317B (en) A kind of mould of a multi-cavity mold
CN106653266A (en) Method for fabricating non-planar magnet
CN103128283B (en) Forming die and method for preparing pressed billet of non-oriented neodymium iron boron cylindrical magnet
JP2003347142A (en) Method of manufacturing cylindrical anisotropic magnet and cylindrical anisotropic magnet
JP4995430B2 (en) Manufacturing method of tile-like rare earth sintered magnet
JP2008208388A (en) Die for molding
JP5704186B2 (en) Rare earth magnet manufacturing method
CN107851506B (en) Mold and method for forming permanent magnets from preforms and thermal deformation system
JP7155971B2 (en) Arc-shaped permanent magnet and manufacturing method thereof
JP4561974B2 (en) Manufacturing method of ring magnet material
JP5862927B2 (en) Green compact mold equipment for curved plate parts
JP6112084B2 (en) Rare earth magnet manufacturing method
TWI594824B (en) Mold for manufacturing ring-shaped nd-fe-b magnet and manufacturing method thereof
CN202824653U (en) Rare earth forming mould
JP6354684B2 (en) Plastic working method
JP2007059445A (en) Manufacturing method of annular magnetic material, and the annular magnetic material manufactured by the method
JP2001015325A (en) Radial anisotropic rare earth magnet having circular arc section, and manufacturing method and manufacturing equipment thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6322911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150