JP6321762B1 - Power transmission management apparatus and power transmission method - Google Patents
Power transmission management apparatus and power transmission method Download PDFInfo
- Publication number
- JP6321762B1 JP6321762B1 JP2016234691A JP2016234691A JP6321762B1 JP 6321762 B1 JP6321762 B1 JP 6321762B1 JP 2016234691 A JP2016234691 A JP 2016234691A JP 2016234691 A JP2016234691 A JP 2016234691A JP 6321762 B1 JP6321762 B1 JP 6321762B1
- Authority
- JP
- Japan
- Prior art keywords
- power transmission
- vehicle
- battery
- power
- transmission management
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 266
- 238000000034 method Methods 0.000 title claims abstract description 139
- 238000007600 charging Methods 0.000 claims abstract description 142
- 230000008569 process Effects 0.000 claims abstract description 130
- 238000003860 storage Methods 0.000 claims abstract description 62
- 238000012545 processing Methods 0.000 claims abstract description 48
- 239000003990 capacitor Substances 0.000 claims description 88
- 230000004044 response Effects 0.000 claims description 2
- 238000011946 reduction process Methods 0.000 description 45
- 238000007599 discharging Methods 0.000 description 22
- 238000004891 communication Methods 0.000 description 14
- 230000005611 electricity Effects 0.000 description 14
- 230000009467 reduction Effects 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 12
- 238000010248 power generation Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/51—Photovoltaic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/52—Wind-driven generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/64—Optimising energy costs, e.g. responding to electricity rates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
- B60L53/665—Methods related to measuring, billing or payment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0207—Discounts or incentives, e.g. coupons or rebates
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/40—Business processes related to the transportation industry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/126—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/14—Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】複数の輸送機器にそれぞれ搭載された蓄電器と、外部の電力系統との間での電力伝送を、複雑な制御を必要とせずに安定に行うことを可能する装置を提供する。【解決手段】電力伝送管理装置1は、電力系統要求情報に応じて電力系統30との間の電力伝送を制御する第1制御処理を実行する機能と、複数の輸送機器10のそれぞれの蓄電器12の充電率の相互のばらつき度合が所定の閾値以上である場合に、第1制御処理に先行して、当該ばらつき度合を低減するように、蓄電器12の相互間の電力伝送を制御する第2制御処理を実行する機能とを有する。【選択図】図1The present invention provides an apparatus capable of stably performing power transmission between a power storage device mounted on each of a plurality of transportation devices and an external power system without requiring complicated control. A power transmission management device includes a function of executing a first control process for controlling power transmission to and from a power system in accordance with power system request information, and a battery for each of a plurality of transport devices. 2nd control which controls the electric power transmission between the condensers 12 so that the variation degree may be reduced prior to the first control process when the mutual variation degree of the charging rate is equal to or greater than a predetermined threshold. And a function of executing processing. [Selection] Figure 1
Description
本発明は、車両等の輸送機器に備えられた蓄電器と、電力系統との間で電力伝送を行わせる装置及び方法に関する。 The present invention relates to an apparatus and a method for performing power transmission between a power storage device provided in a transport device such as a vehicle and an electric power system.
従来、例えば、特許文献1に見られるように、複数の車両のそれぞれの蓄電器の蓄電量が過剰に小さい状態、あるいは、過剰に大きい状態で長時間、放置されてしまうのを防止する(ひいては、蓄電器の劣化の早期進行を防止する)ために、複数の車両のうち、蓄電量が大きい蓄電器を有する車両から、蓄電量が小さい蓄電器を有する車両に電力を伝送することで、蓄電量が小さい蓄電器を充電する技術が提案されている。 Conventionally, for example, as seen in Patent Document 1, it is possible to prevent the power storage amount of each battery of a plurality of vehicles from being left for a long time in an excessively small state or in an excessively large state (as a result, In order to prevent early deterioration of the storage battery), a power storage device having a small power storage amount is transmitted by transmitting power from a vehicle having a large power storage amount to a vehicle having a small power storage amount among a plurality of vehicles. A technology for charging the battery has been proposed.
電動車両もしくはハイブリッド車両等の輸送機器に搭載されている蓄電器は比較的大容量である。そこで、例えば、複数の輸送機器の蓄電器から収集した電力を電力系統(送電網)への売電電力として利用すると共に、各輸送機器のユーザに売電対価を与えるシステムを構築することが考えられる。 A capacitor mounted on a transportation device such as an electric vehicle or a hybrid vehicle has a relatively large capacity. Therefore, for example, it is conceivable to construct a system that uses the power collected from the storage devices of a plurality of transport devices as the power sold to the power system (transmission network) and gives the power selling price to the user of each transport device. .
かかるシステムでは、前記特許文献1に見られる技術を適用することが可能である。しかしながら、特許文献1に見られる技術は、複数の輸送機器(車両)の蓄電器の相互間の電力伝送を行うものに過ぎず、それらの蓄電器と外部の電力系統との間での電力伝送と、蓄電器の相互間の電力伝送との関係、あるいは、それらの電力伝送と対価との関係についてはなんら考慮されていない。 In such a system, the technique found in Patent Document 1 can be applied. However, the technology found in Patent Document 1 is merely a method for performing power transmission between capacitors of a plurality of transport devices (vehicles), and power transmission between these capacitors and an external power system; No consideration is given to the relationship between the power transmission between the capacitors or the relationship between the power transmission and the value.
このため、電力系統との間で電力伝送を行うべき時間帯での各輸送機器の蓄電器の蓄電量が、複数の輸送機器の相互間で種々様々な蓄電量となっている状況が発生し易い。このような場合には、複数の蓄電器の全体と、電力系統との間で必要電力量の電力伝送を安定に行うことが困難であると共に、各蓄電器毎の充放電量の制御が複雑なものとなりやすい。また、複数の輸送機器のユーザに対する対価の公平性が損なわれたり、あるいは、該対価が不十分なものとなりやすい。 For this reason, it is easy to generate | occur | produce the situation where the electrical storage amount of the electrical storage device of each transport apparatus in the time zone which should transmit electric power between electric power systems is various various electrical storage amounts between several transport apparatuses. . In such a case, it is difficult to stably transmit the necessary amount of power between the entire plurality of capacitors and the power system, and the control of the charge / discharge amount for each capacitor is complicated. It is easy to become. In addition, the fairness of consideration for users of a plurality of transportation devices is likely to be impaired, or the consideration is likely to be insufficient.
本発明はかかる背景に鑑みてなされたものであり、電動車両等の複数の輸送機器にそれぞれ搭載された蓄電器と、外部の電力系統との間での電力伝送を、複雑な制御を必要とせずに安定に行うことを可能する装置及び方法を提供することを目的とする。 The present invention has been made in view of such a background, and does not require complicated control of power transmission between a power storage device mounted on each of a plurality of transportation devices such as an electric vehicle and an external power system. It is an object of the present invention to provide an apparatus and a method that can be stably performed.
さらに、各輸送機器のユーザが、該輸送機器の蓄電器の充放電に対して適切の対価を取得し得る装置を提供することを目的とする。 Furthermore, it aims at providing the apparatus from which the user of each transport apparatus can acquire appropriate consideration with respect to charging / discharging of the electrical storage apparatus of this transport apparatus.
本発明の電力伝送管理装置は、複数の輸送機器のそれぞれに搭載された蓄電器が電気的に接続される第1接続部と、
該第1接続部との間で電力伝送可能な接続部であって、外部の電力系統に電気的に接続された第2接続部と、
前記複数の輸送機器のそれぞれの蓄電器が前記第1接続部に接続された状態で、前記第1接続部及び前記第2接続部の間の電力伝送と、前記複数の輸送機器のそれぞれの蓄電器の相互間の電力伝送とに関する制御処理を実行可能な制御部とを備えており、
前記制御部は、
前記複数の輸送機器のそれぞれの蓄電器の充電率を示す充電状態情報と、前記電力系統での電力の入出力の要求を示す電力系統要求情報とを取得する機能を有すると共に、
前記電力系統要求情報に応じて前記第1接続部及び前記第2接続部の間の電力伝送を制御する第1制御処理を実行する機能と、
前記複数の輸送機器のそれぞれの蓄電器の充電率の相互のばらつき度合が所定の閾値以上であることが前記充電状態情報に基づいて判断される場合に、前記第1制御処理に先行して該ばらつき度合を低減するように、前記複数の輸送機器のうちの2つ以上の輸送機器のそれぞれの蓄電器の相互間の電力伝送を制御する第2制御処理を実行する機能と
を有するように構成されていることを特徴とする(第1発明)。
The power transmission management device of the present invention includes a first connection part to which a capacitor mounted in each of a plurality of transportation devices is electrically connected,
A second connection portion that is capable of transmitting power to and from the first connection portion and is electrically connected to an external power system;
With each capacitor of the plurality of transport devices connected to the first connection portion, power transmission between the first connection portion and the second connection portion, and each capacitor of the plurality of transport devices A control unit capable of executing control processing related to power transmission between each other,
The controller is
While having a function of acquiring charging state information indicating a charging rate of each storage device of the plurality of transport devices, and power system request information indicating a request for input / output of power in the power system,
A function of executing a first control process for controlling power transmission between the first connection unit and the second connection unit according to the power system request information;
When it is determined based on the state of charge information that the degree of mutual variation of the charging rate of each of the plurality of transport devices is greater than or equal to a predetermined threshold value, the variation precedes the first control process. A function of executing a second control process for controlling power transmission between the respective capacitors of the two or more transport devices among the plurality of transport devices so as to reduce the degree. (First invention).
なお、本発明において、任意の物体A(もしくは設備A)が、他の物体B(もしくは設備B)に「電気的に接続」されているというのは、AとBとの間で随時、電力を伝送し得る状態(AとBとの間の電路が形成されている状態)になっていることを意味する。この場合、AとBとの「電気的な接続」は、導体同士の接触による接続態様に限らず、AとBとの間の電力伝送を、非接触で(電磁波エネルギーを介して)行う態様での接続であってもよい。 In the present invention, an arbitrary object A (or equipment A) is “electrically connected” to another object B (or equipment B). Is in a state where an electric circuit can be transmitted (a state where an electric circuit between A and B is formed). In this case, the “electrical connection” between A and B is not limited to a connection mode by contact between conductors, but a mode in which power transmission between A and B is performed in a non-contact manner (via electromagnetic energy). It may be a connection.
上記第1発明によれば、前記複数の輸送機器のそれぞれの蓄電器の充電率の相互のばらつき度合が所定の閾値以上であることが前記充電状態情報に基づいて判断される場合、すなわち、当該ばらつき度合が大きい場合には、前記第1制御処理に先行して、前記第2制御処理が実行される。 According to the first invention, when it is determined based on the state of charge information that the degree of mutual variation in the charging rate of each of the plurality of transport devices is equal to or greater than a predetermined threshold, that is, the variation When the degree is large, the second control process is executed prior to the first control process.
この第2制御処理により、蓄電器の充電率の相互のばらつき度合が低減される。その結果、各蓄電器の充電率は、概ね互いに一致もしくは近い値に揃うと共に、蓄電率が過大なものとなっていた蓄電器は、当該過大状態が極力解消され、蓄電率が過小なものとなっていた蓄電器は、当該過小状態が極力解消され得る。 By this second control process, the degree of mutual variation in the charging rate of the battery is reduced. As a result, the charging rates of the respective capacitors are almost the same or close to each other, and the capacitors having excessively high storage rates have the excessive state eliminated as much as possible, and the storage rates are too low. In this case, the excessive state can be eliminated as much as possible.
このように複数の輸送機器のそれぞれの蓄電器の充電率の相互のばらつき度合が低減した状態で、前記第1制御処理が実行される。すなわち、複数の輸送機器のそれぞれの蓄電器が電気的に接続された第1接続部と前記外部の電力系統が電気的に接続された第2接続部との間の電力伝送が行われる。ひいては、複数の輸送機器のそれぞれの蓄電器と、電力系統との間で本発明の電力伝送管理装置を介して電力伝送が行われる。 As described above, the first control process is executed in a state where the degree of mutual variation of the charging rates of the respective capacitors of the plurality of transport devices is reduced. In other words, power transmission is performed between the first connection portion to which the respective capacitors of the plurality of transport devices are electrically connected and the second connection portion to which the external power system is electrically connected. As a result, electric power transmission is performed between each electric storage device of a plurality of transportation devices and the electric power system via the electric power transmission management device of the present invention.
この場合、前記ばらつき度合が低減しているので、複数の輸送機器の全て又は大部分の蓄電器が電力系統との間で、本発明の電力伝送管理装置を介して電力を伝送し得る。ひいては、電力系統との間で伝送する電力量を安定に確保し得る。また、各蓄電器のそれぞれの充放電を互いに同様の形態で制御し得る。 In this case, because the degree of variation is reduced, all or most of the plurality of transport devices can transmit power to and from the power system via the power transmission management device of the present invention. As a result, the amount of power transmitted to and from the power system can be secured stably. Moreover, charge / discharge of each capacitor can be controlled in the same manner.
よって、第1発明の電力伝送管理装置によれば、複数の輸送機器にそれぞれ搭載された蓄電器と、外部の電力系統との間での電力伝送を、複雑な制御を必要とせずに安定に行うことが可能となる。 Therefore, according to the power transmission management device of the first aspect of the present invention, power transmission between the power storage device mounted on each of the plurality of transport devices and the external power system is stably performed without requiring complicated control. It becomes possible.
また、前記第2制御処理によって、蓄電器の蓄電率の過剰状態又は過小状態を解消し得るので、各蓄電器が、過大状態又は過小状態の蓄電率で長期的に放置されるのが防止される。その結果、各蓄電器の劣化の進行を抑制することができる。 In addition, the second control process can eliminate the excessive state or the understate of the storage rate of the storage battery, so that each storage battery is prevented from being left for a long time with the storage rate of the excessive state or the understate. As a result, the progress of deterioration of each capacitor can be suppressed.
上記第1発明では、前記制御部は、前記第1制御処理を実行するとき、前記複数の輸送機器のそれぞれの蓄電器のうち、前記充電状態情報により示される充電率が所定の第1閾値よりも低い蓄電器の放電を行わない態様で前記第1制御処理を実行するように構成されていることが好ましい(第2発明)。 In the first invention, when the control unit executes the first control process, the charging rate indicated by the charge state information is less than a predetermined first threshold among the capacitors of each of the plurality of transport devices. It is preferable that the first control process is performed in such a manner that the low capacitor is not discharged (second invention).
これによれば、前記第2制御処理の実行後に、充電率が小さい(第1閾値よりも低い)蓄電器の放電が、前記第1制御処理で禁止されるため、該蓄電器が過放電状態になるのを防止できる。ひいては、該蓄電器の劣化の進行を抑制できる。また、蓄電器の充電率が確保される(低充電率にならない)ため、輸送機器の移動可能距離を確保することができる。従って、輸送機器のユーザの利便性を高めることができる。 According to this, after the execution of the second control process, discharging of the battery having a small charging rate (lower than the first threshold value) is prohibited by the first control process, so that the battery is overdischarged. Can be prevented. As a result, the progress of deterioration of the battery can be suppressed. In addition, since the charging rate of the battery is ensured (it does not become a low charging rate), the movable distance of the transport device can be ensured. Therefore, the convenience of the user of the transport device can be enhanced.
また、上記第1発明及び第2発明では、前記制御部は、前記第1制御処理を実行するとき、前記複数の輸送機器のそれぞれの蓄電器のうち、前記充電状態情報により示される充電率が所定の第2閾値よりも高い蓄電器の充電を行わない態様で前記第1制御処理を実行するように構成されていることが好ましい(第3発明)。 Moreover, in the said 1st invention and 2nd invention, when the said control part performs the said 1st control process, the charge rate shown by the said charge condition information is predetermined among each electrical storage device of these several transport equipment. It is preferable that the first control process is performed in such a manner as not to charge the capacitor higher than the second threshold value (third invention).
これによれば、前記第2制御処理の実行後に、充電率が大きい(第2閾値よりも高い)蓄電器の充電が、前記第1制御処理で禁止されるため、該蓄電器が過充電状態になるのを防止できる。ひいては、該蓄電器の劣化の進行を抑制できる。 According to this, after the execution of the second control process, charging of the capacitor having a large charging rate (higher than the second threshold value) is prohibited by the first control process, so that the capacitor is overcharged. Can be prevented. As a result, the progress of deterioration of the battery can be suppressed.
なお、本発明では、前記第1制御処理の実行前に、前記第2制御処理が実行されるため、第1制御処理の実行時に、いずれかの蓄電器の充電率が上記第1閾値よりも低くなっている状況、あるいは、上記第2閾値よりも高くなっている状況が発生する可能性は低い。従って、前記複数の輸送機器の蓄電器の全体によって、電力系統との間で伝送する電力量を充分に確保できる。 In the present invention, since the second control process is executed before the execution of the first control process, the charging rate of any one of the capacitors is lower than the first threshold value when the first control process is executed. There is a low possibility that a situation in which a situation is present or a situation in which the situation is higher than the second threshold will occur. Therefore, it is possible to secure a sufficient amount of electric power to be transmitted to and from the electric power system by using the entire storage devices of the plurality of transportation devices.
上記第1〜第3発明では、前記制御部は、前記第2制御処理を実行するとき、前記2つ以上の輸送機器のうち、蓄電器の放電を行う輸送機器に放電指令を送信し、蓄電器の充電を行う輸送機器に充電指令を送信する機能を有するように構成され得る(第4発明)。 In the first to third aspects of the invention, when the control unit executes the second control process, the control unit transmits a discharge command to a transport device that discharges the capacitor among the two or more transport devices, It may be configured to have a function of transmitting a charging command to a transporting device that performs charging (fourth invention).
これによれば、各輸送機器毎に、上記放電指令又は充電指令に応じて、蓄電器の放電又は充電を制御することが可能となる。 According to this, it becomes possible to control the discharging or charging of the battery according to the discharging command or the charging command for each transport device.
上記第1〜第4発明では、前記制御部は、前記第2制御処理を実行するとき、前記複数の輸送機器のそれぞれの蓄電器の充電率のうちの最大の充電率を有する蓄電器が搭載された輸送機器と、最小の充電率を有する蓄電器が搭載された輸送機器とが前記2つ以上の輸送機器に優先的に含まれるように、該2つ以上の輸送機器を選定するように構成されていることが好ましい(第5発明)。 In the first to fourth inventions, when the control unit executes the second control process, a capacitor having the maximum charging rate among the charging rates of the respective capacitors of the plurality of transport devices is mounted. The two or more transport devices are configured to be selected so that the transport device and the transport device equipped with the battery having the minimum charging rate are preferentially included in the two or more transport devices. It is preferable (5th invention).
これによれば、前記第2制御処理において、複数の輸送機器のそれぞれの蓄電器のうち、最大の充電率を有する蓄電器を放電させ、最小の充電率を有する蓄電器を充電させることができる。ひいては、前記ばらつき度合の低減効果を高めることができる。 According to this, in the second control process, it is possible to discharge the capacitor having the maximum charging rate and charge the capacitor having the minimum charging rate among the respective capacitors of the plurality of transport devices. As a result, the effect of reducing the variation degree can be enhanced.
また、第2制御処理によって、各蓄電器の充電率を概ね中程度の充電率に揃えやすくなる。ひいては、各蓄電器の劣化の進行の抑制効果を高めることができると共に、各蓄電器を、前記第1制御処理において、電力系統との間の電力伝送を行わせる蓄電器として最大限に活用することができる。 In addition, the second control process makes it easy to align the charge rates of the respective capacitors to a medium charge rate. As a result, the effect of suppressing the progress of deterioration of each capacitor can be enhanced, and each capacitor can be utilized to the maximum extent as a capacitor for performing power transmission with the power system in the first control process. .
その結果、各輸送機器の蓄電器と電力系統との間の電力伝送によって、各輸送機器のユーザが獲得し得る対価を極力高めることができる。 As a result, the price that can be acquired by the user of each transportation device can be increased as much as possible by the power transmission between the storage device of each transportation device and the power system.
上記第1〜第5発明では、前記制御部は、前記第2制御処理を実行するとき、前記2つ以上の輸送機器のうち、蓄電器の放電を行う輸送機器の台数よりも、蓄電器の充電を行う輸送機器の台数の方が多くなるように前記2つ以上の輸送機器を選定するように構成されていることが好ましい(第6発明)。 In the first to fifth aspects of the invention, when the control unit executes the second control process, the control unit charges the battery more than the number of transport devices that discharge the battery among the two or more transport devices. It is preferable that the two or more transport devices are selected so that the number of transport devices to be performed is larger (sixth invention).
これによれば、前記第2制御処理で充電を行う蓄電器の充電レート(単位時間当たりの充電量)を極力小さくし得る。ここで、蓄電器は、一般に高レートの充電を行うと、劣化の進行が生じ易い。これに対して、第6発明によれば、第2制御処理で充電を行う蓄電器を低レートで充電できるので、該蓄電器の劣化の進行を抑制することができる。 According to this, the charge rate (charge amount per unit time) of the battery that is charged in the second control process can be made as small as possible. Here, in general, when the battery is charged at a high rate, the deterioration tends to occur. On the other hand, according to the sixth aspect of the present invention, since the battery that is charged in the second control process can be charged at a low rate, the progress of deterioration of the battery can be suppressed.
上記第1〜第6発明では、前記複数の輸送機器のそれぞれの蓄電器の放電又は充電に関する対価値を各輸送機器毎に累積的に記録する記録部をさらに備えており、前記制御部は、前記複数の輸送機器のうち、前記第1制御処理により蓄電器の充電又は放電を行った各輸送機器に対応する前記対価値を増加させる機能をさらに有するように構成されていることが好ましい(第7発明)。 In the above first to sixth inventions, the apparatus further includes a recording unit that cumulatively records the value of each of the plurality of transport devices for discharging or charging the storage battery for each transport device, and the control unit includes Of the plurality of transport devices, it is preferable to further have a function of increasing the value corresponding to each transport device that has been charged or discharged by the first control process (seventh invention). ).
これによれば、前記第1制御処理により蓄電器の充電又は放電を行った各輸送機器に対応する前記対価値が増加される。これにより、各輸送機器のユーザは、第1制御処理により蓄電器の充電又は放電を行うことによる対価を獲得できる。 This increases the value corresponding to each transport device that has charged or discharged the capacitor by the first control process. Thereby, the user of each transportation apparatus can acquire the value by charging or discharging the battery by the first control process.
ここで、本発明の電力伝送管理装置は、電力系統との間での電力伝送を安定に行い得るため、該電力伝送管理装置の運営事業者は、安定に利益を確保し得る。ひいては、複数の輸送機器のそれぞれのユーザに、適切に対価を分配することが可能となる。 Here, since the power transmission management device of the present invention can stably perform power transmission to and from the power system, the operator of the power transmission management device can stably ensure profits. As a result, it becomes possible to appropriately distribute the price to each user of the plurality of transport devices.
上記第7発明では前記制御部は、前記複数の輸送機器のうち、前記第2制御処理により蓄電器の放電を行った各輸送機器に対応する前記対価値を増加させる機能をさらに有するように構成されていることが好ましい(第8発明)。 In the seventh aspect of the invention, the control unit is configured to further have a function of increasing the value corresponding to each transport device that has discharged the capacitor by the second control process among the plurality of transport devices. It is preferable (8th invention).
これによれば、前記第2制御処理により蓄電器の放電を行った各輸送機器のユーザは、さらなる対価を取得することができる。 According to this, the user of each transport apparatus which discharged the battery by the second control process can acquire further consideration.
上記第8発明では、前記制御部は、前記複数の輸送機器のうち、前記第2制御処理により蓄電器の充電を行った各輸送機器に対応する前記対価値を減少させる機能をさらに有するように構成され得る(第9発明)。 In the eighth aspect of the invention, the control unit further includes a function of reducing the value corresponding to each transport device that has been charged a capacitor by the second control process among the plurality of transport devices. (9th invention).
これによれば、前記第2制御処理により蓄電器の放電を行った各輸送機器のユーザに対する対価の全体又は一部を、前記第2制御処理により蓄電器の充電を行った各輸送機器のユーザに負担させることが可能となる。このため、電力伝送管理装置の運営業者は、前記第2制御処理でのコスト負担を解消もしくは軽減できる。 According to this, all or a part of the consideration for the user of each transport device that has discharged the capacitor by the second control process is borne to the user of each transport device that has charged the capacitor by the second control process. It becomes possible to make it. For this reason, the operator of the power transmission management device can eliminate or reduce the cost burden in the second control process.
上記第8発明又は第9発明では、前記制御部は、前記第2制御処理により蓄電器の放電を行った各輸送機器に対応する単位放電量当たりの前記対価値の増加分を、前記第1制御処理により蓄電器の放電を行った各輸送機器に関する単位放電量当たりの前記対価値の増加分よりも大きくするように構成され得る(第10発明)。 In the eighth invention or the ninth invention, the controller controls the increase in the value per unit discharge amount corresponding to each transport device that has discharged the battery by the second control process. It can be configured to be larger than the increase in value per unit discharge amount for each transport device that has discharged the battery by the processing (the tenth invention).
これによれば、前記第2制御処理により蓄電器の放電を行う各輸送機器のユーザは、多くの対価を獲得し得る。従って、前記第2制御処理により蓄電器の放電を行うコスト的なメリットが高まる。ひいては、多くの輸送機器のそれぞれのユーザが、本発明の電力伝送管理装置に該輸送機器の蓄電器を電気的に接続することを積極的に実行するようになる。その結果、電力伝送管理装置の運営業者が電力系統との間の電力伝送で獲得し得る利益がより一層高まると共に、各ユーザが取得し得る対価もより一層高まる。 According to this, the user of each transport device that discharges the battery by the second control process can obtain a lot of consideration. Therefore, the cost advantage of discharging the battery by the second control process is increased. As a result, each user of many transportation equipments will actively execute the electrical connection of the storage device's power storage device to the power transmission management device of the present invention. As a result, the profit that the operator of the power transmission management apparatus can obtain from the power transmission to the power system is further increased, and the consideration that each user can acquire is further increased.
また、本発明の電力伝送方法は、複数の輸送機器のそれぞれに搭載された蓄電器と、外部の電力系統とが電気的に接続された電力伝送管理装置における電力伝送方法であって、
前記電力系統での電力の入出力の要求に応じて、前記複数の輸送機器のうちの1つ以上の輸送機器の蓄電器と前記電力系統との間で電力伝送を行う第1ステップと、
前記複数の輸送機器のそれぞれの蓄電器の充電率の相互のばらつき度合が所定の閾値以上である場合に、前記第1ステップに先行して、該ばらつき度合を低減するように該複数の輸送機器のうちの2つ以上の輸送機器のそれぞれの蓄電器の相互間の電力伝送を行う第2ステップとを備えることを特徴とする(第11発明)。
Further, the power transmission method of the present invention is a power transmission method in a power transmission management device in which a storage device mounted on each of a plurality of transportation devices and an external power system are electrically connected,
A first step of performing power transmission between a storage device of one or more transport devices of the plurality of transport devices and the power system in response to a request for input / output of power in the power system;
When the mutual variation degree of the charging rate of each of the storage devices of the plurality of transportation devices is equal to or greater than a predetermined threshold value, prior to the first step, the plurality of transportation devices are configured to reduce the variation degree. And a second step of performing power transmission between the capacitors of each of the two or more transport devices (11th invention).
これによれば、前記第1発明と同様の効果を奏することができる。 According to this, the same effect as the first invention can be obtained.
本発明の一実施形態を図1〜図8を参照して以下に説明する。図1を参照して、本実施形態で説明する全体システムは、所謂、V2Gシステム(V2G:Vehicle to Grid)の一例であり、電力伝送管理装置1と、輸送機器としての複数の車両10,10,…と、発電設備20と、電力系統30とを備える。 An embodiment of the present invention will be described below with reference to FIGS. Referring to FIG. 1, the overall system described in the present embodiment is an example of a so-called V2G system (V2G: Vehicle to Grid), and includes a power transmission management device 1 and a plurality of vehicles 10 and 10 serving as transportation equipment. ,..., A power generation facility 20, and a power system 30.
発電設備20は、例えば風力発電、太陽光発電、火力発電、原子力発電等の設備により構成される。該発電設備20は、電力伝送管理装置1に電力を供給し得るように、該電力伝送管理装置1の接続部1cに電気的に接続されている。 The power generation facility 20 includes, for example, facilities such as wind power generation, solar power generation, thermal power generation, and nuclear power generation. The power generation facility 20 is electrically connected to the connection portion 1 c of the power transmission management device 1 so that power can be supplied to the power transmission management device 1.
なお、本実施形態の説明において、任意の物体A(もしくは設備A)が、他の物体B(もしくは設備B)に「電気的に接続」されているというのは、AとBとの間で随時、電力を伝送し得る状態(AとBとの間の電路が形成されている状態)になっていることを意味する。この場合、AとBとの「電気的な接続」は、導体同士の接触による接続態様に限らず、AとBとの間の電力伝送を、非接触で(電磁波エネルギーを介して)行う態様での接続であってもよい。 In the description of this embodiment, an arbitrary object A (or equipment A) is “electrically connected” to another object B (or equipment B) between A and B. It means that it is in a state where power can be transmitted at any time (a state where an electric circuit between A and B is formed). In this case, the “electrical connection” between A and B is not limited to a connection mode by contact between conductors, but a mode in which power transmission between A and B is performed in a non-contact manner (via electromagnetic energy). It may be a connection.
電力系統30は、複数の電力消費者の受電設備31,31,…に電力を供給する設備(送電網)である。該電力系統30は、電力伝送管理装置1との間で電力を伝送し得るように、電力伝送管理装置1の接続部1aに電気的に接続されている。なお、接続部1aは、本発明における第2接続部に相当する。 The power system 30 is a facility (power transmission network) that supplies power to the power receiving facilities 31, 31,... The power system 30 is electrically connected to the connection unit 1 a of the power transmission management device 1 so that power can be transmitted to and from the power transmission management device 1. The connecting portion 1a corresponds to the second connecting portion in the present invention.
各車両10は、図2に示すように、比較的大容量の蓄電器12が搭載されている車両(例えば電動車両もしくはハイブリッド車両等)である。蓄電器12は、例えば、リチウムイオン電池等の二次電池又はキャパシタから成る複数のセルの集合体として構成される。 As shown in FIG. 2, each vehicle 10 is a vehicle (for example, an electric vehicle or a hybrid vehicle) on which a relatively large capacity battery 12 is mounted. The battery 12 is configured as an aggregate of a plurality of cells including, for example, a secondary battery such as a lithium ion battery or a capacitor.
そして、各車両10は、その蓄電器12と電力伝送管理装置1との間で、電力(蓄電器12の充電電力又は放電電力)を伝送し得る車両として該電力伝送管理装置1にあらかじめ登録されている。 Each vehicle 10 is registered in advance in the power transmission management device 1 as a vehicle capable of transmitting power (charging power or discharging power of the power storage device 12) between the power storage device 12 and the power transmission management device 1. .
各車両10の蓄電器12は、該車両10の駐車場所に配置された外部充電装置5に電気的に接続することによって、該外部充電装置5を介して電力伝送管理装置1の接続部1bに電気的に接続される。なお、接続部1bは本発明における第1接続部に相当する。 The electric storage device 12 of each vehicle 10 is electrically connected to the external charging device 5 disposed in the parking place of the vehicle 10, thereby being electrically connected to the connecting portion 1 b of the power transmission management device 1 via the external charging device 5. Connected. The connecting portion 1b corresponds to the first connecting portion in the present invention.
さらに詳細には、各車両10には、蓄電器12と外部充電装置5との間の電力伝送を行うための機器類を含む蓄電システム11が搭載されている。該蓄電システム11は、蓄電器12の他、外部充電装置5を電気的に接続可能な接続部13と、該蓄電器12及び接続部13の間の電力伝送を行う電力伝送機器としてのAC/DC変換器14と、外部充電装置5と蓄電器12との間での電力伝送をAC/DC変換器14を介して制御する制御部15と、蓄電器12の状態の監視及び管理に関する制御処理を行う制御部16と、外部充電装置5と車両10との間の電力線通信用のPLCユニット17(PLC:Power Line Communications)とを備える。 More specifically, each vehicle 10 is equipped with a power storage system 11 including devices for performing power transmission between the battery 12 and the external charging device 5. The power storage system 11 includes a connection unit 13 that can be electrically connected to the external charging device 5 in addition to the storage unit 12, and AC / DC conversion as a power transmission device that performs power transmission between the storage unit 12 and the connection unit 13. , A control unit 15 that controls power transmission between the external charging device 5 and the battery 12 via the AC / DC converter 14, and a control unit that performs control processing related to monitoring and management of the state of the battery 12 16 and a PLC unit 17 (PLC: Power Line Communications) for power line communication between the external charging device 5 and the vehicle 10.
ここで、外部充電装置5は、車両10の接続部13に電気的に接続された状態で、電力伝送管理装置1と、車両10との間の電力伝送を中継する端末機であり、電力伝送管理装置1との間で電力を伝送し得るように、該電力伝送管理装置1の接続部1bに電気的に接続されている。 Here, the external charging device 5 is a terminal that relays power transmission between the power transmission management device 1 and the vehicle 10 while being electrically connected to the connection unit 13 of the vehicle 10. The power transmission management device 1 is electrically connected to the connection portion 1b so that power can be transmitted to and from the management device 1.
そして、外部充電装置5は、車両10の接続部13に電気的に接続した状態において、車両10の蓄電器12に充電する電力を、電力伝送管理装置1から受電して車両10に送電したり、あるいは、蓄電器12の放電電力を車両10から受電して、電力伝送管理装置1に送電することが可能である。従って、各車両10の蓄電器12は、接続部13に外部充電装置5を電気的に接続することによって、結果的に、該外部充電装置5を介して電力伝送管理装置1の接続部1bに電気的に接続されることとなる。 Then, the external charging device 5 receives power from the power transmission management device 1 and transmits power to the vehicle 10 in the state where the external charging device 5 is electrically connected to the connection portion 13 of the vehicle 10. Alternatively, it is possible to receive the discharged power of the battery 12 from the vehicle 10 and transmit it to the power transmission management device 1. Therefore, the electric storage device 12 of each vehicle 10 electrically connects the external charging device 5 to the connecting portion 13, and as a result, the electric power is connected to the connecting portion 1 b of the power transmission management device 1 via the external charging device 5. Will be connected.
なお、本実施形態では、外部充電装置5と車両10との間で伝送される電力は交流電力である。 In the present embodiment, the power transmitted between the external charging device 5 and the vehicle 10 is AC power.
また、外部充電装置5には、車両10のPLCユニット17との間で電力線通信を行うPLCユニット5aが搭載されている。該PLCユニット5aは、電力伝送管理装置1の後述する制御部3と、インターネット等の通信網を介して通信可能である。これにより、車両10と電力伝送管理装置1との間でPLCユニット5a,17を介して通信可能となっている。 Further, the external charging device 5 is equipped with a PLC unit 5 a that performs power line communication with the PLC unit 17 of the vehicle 10. The PLC unit 5a can communicate with a control unit 3 (to be described later) of the power transmission management device 1 via a communication network such as the Internet. Thereby, communication is possible between the vehicle 10 and the power transmission management device 1 via the PLC units 5a and 17.
AC/DC変換器14は、制御部15による制御によって、交流電力及び直流電力の一方から他方への電力変換を行い得る電子デバイスである。このAC/DC変換器14は、外部充電装置5から蓄電器12への送電時(蓄電器12の充電時)には、外部充電装置5から接続部13を介して入力される交流電力を直流電力に変換して、該直流電力を蓄電器12に供給するように制御される。 The AC / DC converter 14 is an electronic device that can perform power conversion from one of AC power and DC power to the other under the control of the control unit 15. The AC / DC converter 14 converts the AC power input from the external charging device 5 through the connection unit 13 into DC power during power transmission from the external charging device 5 to the battery 12 (when charging the battery 12). It is controlled to convert and supply the DC power to the battery 12.
また、蓄電器12から外部充電装置5への送電時(蓄電器12の放電時)には、AC/DC変換器14は、蓄電器12から入力される直流電力を交流電力に変換して、該交流電力を外部充電装置5に供給するように制御される。 Further, during power transmission from the battery 12 to the external charging device 5 (when the battery 12 is discharged), the AC / DC converter 14 converts the DC power input from the battery 12 into AC power, and the AC power Is supplied to the external charging device 5.
なお、AC/DC変換器14は、外部充電装置5と蓄電器12との間での電力の伝送量を可変的に制御し得るように構成されている。 The AC / DC converter 14 is configured to variably control the transmission amount of power between the external charging device 5 and the battery 12.
制御部15,16は、それぞれ、CPU、RAM、ROM、インターフェース回路等を含む1つ又は複数の電子回路ユニットにより構成される。そして、制御部15は、実装されたハードウェア構成又はプログラム(ソフトウェア構成)によって実現される機能として、AC/DC変換器14を制御する機能、PLCユニット17を介して外部充電装置5又は電力伝送管理装置1との通信を行う機能、及び制御部16と通信を行う機能を有する。 The control units 15 and 16 are each configured by one or a plurality of electronic circuit units including a CPU, a RAM, a ROM, an interface circuit, and the like. And the control part 15 is the function implement | achieved by the mounted hardware structure or program (software structure), the function which controls the AC / DC converter 14, the external charging device 5 or electric power transmission via the PLC unit 17 It has a function of communicating with the management apparatus 1 and a function of communicating with the control unit 16.
この場合、制御部15は、制御部16との通信によって、蓄電器12の充電率(SOC:State of charge)、温度等、蓄電器12の状態を示すデータを取得可能である。 In this case, the control unit 15 can acquire data indicating the state of the battery 12 such as the state of charge (SOC) and temperature of the battery 12 through communication with the control unit 16.
さらに、制御部15は、外部充電装置5側との通信によって、蓄電器12の放電又は充電に関する指令を、電力伝送管理装置1から外部充電装置5を介して受信したり、蓄電器12の充電率(以降、SOCという)を示すデータ等を外部充電装置5を介して電力伝送管理装置1に送信することが可能である。 Furthermore, the control unit 15 receives a command regarding discharging or charging of the battery 12 from the power transmission management device 1 through the external charging device 5 through communication with the external charging device 5 side, or the charging rate ( Hereinafter, it is possible to transmit data indicating SOC) to the power transmission management device 1 via the external charging device 5.
制御部16には、蓄電器12の電圧、電流、及び温度を示す検出データが図示しないセンサから入力される。そして、制御部16は、実装されたハードウェア構成又はプログラム(ソフトウェア構成)によって実現される機能として、入力された検出データに基づいて蓄電器12のSOCを逐次推定する機能、及び制御部15との通信を行う機能等を有する。 Detection data indicating the voltage, current, and temperature of the battery 12 is input to the control unit 16 from a sensor (not shown). The control unit 16 has a function of sequentially estimating the SOC of the battery 12 based on the input detection data as a function realized by the implemented hardware configuration or program (software configuration), and the control unit 15. It has a function to perform communication.
補足すると、外部充電装置5と車両10との間の通信は、PLC以外の通信方式(例えば、Wi-Fi(登録商標)もしくはBluetooth(登録商標)等の無線通信、あるいは、通信用の信号線を使用した有線通信)で行ってもよい。 Supplementally, the communication between the external charging device 5 and the vehicle 10 is a communication method other than PLC (for example, wireless communication such as Wi-Fi (registered trademark) or Bluetooth (registered trademark)), or a signal line for communication. (Wired communication using).
また、車両10の制御部15が、インターネット等の通信網を介して電力伝送管理装置1と直接的に通信を行い得るように構成されていてもよい。また、車両10の制御部15,16は、単一の電子回路ユニットによりひとまとめに構成されていてもよい。 Moreover, the control part 15 of the vehicle 10 may be comprised so that it can communicate directly with the electric power transmission management apparatus 1 via communication networks, such as the internet. Moreover, the control parts 15 and 16 of the vehicle 10 may be comprised collectively by the single electronic circuit unit.
また、外部充電装置5と車両10との間での電力伝送を、直流電力で行うように外部充電装置5及び蓄電システム11が構成されていてもよい。この場合、蓄電システム11は、蓄電器12と接続部13との間の電力伝送機器として、例えばDC/DCコンバータを含み得る。 In addition, the external charging device 5 and the power storage system 11 may be configured so that power transmission between the external charging device 5 and the vehicle 10 is performed with DC power. In this case, the power storage system 11 can include, for example, a DC / DC converter as a power transmission device between the battery 12 and the connection unit 13.
電力伝送管理装置1は、図1に示す如く、前記接続部1a,1b,1cの間での電力伝送を行い得る電力伝送機器2と、電力伝送機器2を制御する制御部3とを備える。制御部3は、本発明における制御部に相当する。 As shown in FIG. 1, the power transmission management device 1 includes a power transmission device 2 that can perform power transmission between the connection units 1 a, 1 b, and 1 c and a control unit 3 that controls the power transmission device 2. The control unit 3 corresponds to the control unit in the present invention.
電力伝送機器2は、例えば複数の開閉器、継電器等により構成される。また、制御部3は、CPU、RAM、ROM、インターフェース回路等を含む1つ以上の電子回路ユニット、あるいは、1つ以上のコンピュータ、あるいは、これらの電子回路ユニット及びコンピュータの組み合わせにより構成される。なお、電力伝送機器2及び制御部3のそれぞれの構成要素は、複数の箇所に分散配置され得る。 The power transmission device 2 includes, for example, a plurality of switches, relays, and the like. The control unit 3 includes one or more electronic circuit units including a CPU, RAM, ROM, interface circuit, etc., one or more computers, or a combination of these electronic circuit units and computers. In addition, each component of the electric power transmission apparatus 2 and the control part 3 can be distributedly arranged in several places.
そして、制御部3は、実装されたハードウェア構成又はプログラム(ソフトウェア構成)により電力伝送機器2を制御する機能を有する。この場合、制御部3は、接続部1a,1b,1cの相互間の電力伝送を行う電路の継断を制御したり、接続部1bに電気的に接続された複数の車両10の蓄電器12の相互間の電力伝送を行う電路の継断を制御することが可能である。 And the control part 3 has a function which controls the electric power transmission apparatus 2 with the mounted hardware structure or program (software structure). In this case, the control unit 3 controls the connection / disconnection of the electric circuit that performs power transmission between the connection units 1a, 1b, and 1c, or the storage units 12 of the plurality of vehicles 10 that are electrically connected to the connection unit 1b. It is possible to control the disconnection of the electric path that performs the power transmission between them.
かかる電力伝送管理装置1は、制御部3により電力伝送機器2を適宜制御することによって、各車両10の蓄電器12もしくは発電設備20から受電した電力を電力系統30に供給するように、接続部1b又は1cから接続部1aに電力を伝送すること、あるいは、発電設備20もしくは電力系統30から受電した電力を各車両10の蓄電器12に充電するように、接続部1a又は1cから接続部1bを介して各車両10の蓄電器12に電力を伝送すること、あるいは、複数の車両10,10,…のそれぞれの蓄電器12の相互間の電力の伝送を行うこと(すなわち、いずれかの車両10の蓄電器12から受電した電力を、他の車両10の蓄電器12に供給すること)を行い得る。 The power transmission management device 1 is configured so that the control unit 3 appropriately controls the power transmission device 2 to supply the power received from the battery 12 or the power generation facility 20 of each vehicle 10 to the power system 30. Alternatively, the electric power is transmitted from 1c to the connecting portion 1a, or the electric power received from the power generation facility 20 or the electric power system 30 is charged to the battery 12 of each vehicle 10 through the connecting portion 1a or 1c via the connecting portion 1b. The electric power is transmitted to the electric storage device 12 of each vehicle 10, or the electric power is transmitted between the electric storage devices 12 of the plurality of vehicles 10, 10... (That is, the electric storage device 12 of any vehicle 10. To supply the electric power received from the battery 12 of the other vehicle 10).
この場合、電力伝送管理装置1と電力系統30との間の電力伝送は、電力伝送管理装置1の運営事業者と、電力系統30の運営事業者との間で締結された約定に従って行われる。 In this case, power transmission between the power transmission management device 1 and the power system 30 is performed according to a contract concluded between the operator of the power transmission management device 1 and the operator of the power system 30.
例えば、図3Aのグラフで例示する如く、一日のうちで、電力系統30の電力負荷が急激に増加することが予測される時間帯TW(約定時間帯)に、所謂、瞬時予備力として約定された所定の電力量の電力が、電力伝送管理装置1から電力系統30に供給される。 For example, as illustrated in the graph of FIG. 3A, a so-called instantaneous reserve power is contracted in a time zone TW (a contract time zone) in which the power load of the power system 30 is expected to increase rapidly during a day. The predetermined amount of power is supplied from the power transmission management device 1 to the power system 30.
なお、図3Aのグラフにおける縦軸の「電力負荷」は、より詳しくは、電力系統30に対する要求電力量の全体から、該電力系統30に常用的に供給される電力量の全体を差し引いた電力量である。 In addition, the “power load” on the vertical axis in the graph of FIG. 3A is more specifically the power obtained by subtracting the entire amount of power regularly supplied to the power system 30 from the total amount of power required for the power system 30. Amount.
以降、上記のように電力伝送管理装置1から電力系統30に瞬時予備力としての電力を供給することを瞬時予備力送電処理という。この瞬時予備力送電処理では、電力伝送管理装置1は、基本的には、複数の車両10,10,…のそれぞれの蓄電器12から受電した電力の総量を、電力系統30に送電する。この場合、電力系統30に送電すべき電力量及び瞬時予備力送電処理の実行時間帯が約定されている。 Hereinafter, supplying power as the instantaneous reserve from the power transmission management device 1 to the power system 30 as described above is referred to as instantaneous reserve power transmission processing. In this instantaneous reserve power transmission process, the power transmission management device 1 basically transmits the total amount of power received from the respective capacitors 12 of the plurality of vehicles 10, 10,... To the power system 30. In this case, the amount of power to be transmitted to the power system 30 and the execution time zone of the instantaneous reserve power transmission process are contracted.
また、図3Bのグラフの破線枠部分で示す如く、電力系統30が各受電設備31に供給する電力の波形に、基準周波数よりも高周波の変動成分が含まれる状況では、該変動成分を低減する(ひいては、電力波形のひずみを低減する)ように、電力伝送管理装置1から電力系統30への電力伝送と、電力系統30から電力伝送管理装置1への電力伝送とが、比較的短い周期で交互に繰り返される。 Further, as shown by a broken line frame portion of the graph of FIG. 3B, in a situation where the power waveform supplied to each power receiving facility 31 by the power system 30 includes a fluctuation component having a frequency higher than the reference frequency, the fluctuation component is reduced. The power transmission from the power transmission management device 1 to the power system 30 and the power transmission from the power system 30 to the power transmission management device 1 are performed in a relatively short cycle so as to reduce the distortion of the power waveform. Repeated alternately.
以降、上記のように電力伝送管理装置1と電力系統30との間で電力を授受することを周波数調整処理という。この周波数調整処理では、電力伝送管理装置1は、基本的には、電力系統30への送電時には、複数の車両10,10,…のそれぞれの蓄電器12から受電した電力の総量を電力系統30に送電し、電力系統30からの受電時には、その受電電力を、複数の車両10,10,…のそれぞれの蓄電器12に分配供給する。従って、周波数調整処理では、複数の車両10,10,…のそれぞれの蓄電器12の充電及び放電が周期的に繰り返される。この場合、電力伝送管理装置1と電力系統30との間での1周期当たりの電力の伝送量(送電量及び受電量)と、周波数調整処理の実行時間帯とが約定されている。 Hereinafter, the transfer of power between the power transmission management device 1 and the power system 30 as described above is referred to as frequency adjustment processing. In this frequency adjustment process, the power transmission management device 1 basically sends the total amount of power received from the respective capacitors 12 of the plurality of vehicles 10, 10,. When the power is transmitted and received from the power system 30, the received power is distributed and supplied to the respective capacitors 12 of the plurality of vehicles 10, 10,. Therefore, in the frequency adjustment process, charging and discharging of the respective capacitors 12 of the plurality of vehicles 10, 10,... Are periodically repeated. In this case, the transmission amount (power transmission amount and power reception amount) of power per cycle between the power transmission management device 1 and the power system 30 and the execution time zone of the frequency adjustment process are contracted.
なお、瞬時予備力送電処理及び周波数調整処理に関する上記の約定情報(瞬時予備力送電処理で送電する電気量及び実行時間帯、並びに、周波数調整処理での1周期当たりの電力の伝送量及び実行時間帯)が本発明における電力系統要求情報に相当する。該約定情報は、制御部3に、図示しない入力装置を介して、あるいは、他のコンピュータ等から入力されて記憶保持される。 It should be noted that the above-mentioned contract information related to the instantaneous reserve power transmission process and the frequency adjustment process (the amount of electricity transmitted in the instantaneous reserve power transmission process and the execution time zone, and the transmission amount and execution time of power per cycle in the frequency adjustment process) Band) corresponds to power system request information in the present invention. The contract information is input and stored in the control unit 3 via an input device (not shown) or from another computer or the like.
また、電力伝送管理装置1の制御部3には、電力伝送管理装置1との間で電力伝送を行い得る車両10としてあらかじめ登録された各車両10及びそのユーザに関する情報(以降、単に車両別情報という)を記録した記録部3a(データベース)が備えられている。該車両別情報は、例えば、各車両10もしくはユーザへの各種データの送信の宛先を示す情報(メールアドレス等)、各車両10のユーザに対する対価情報、各車両10のユーザに課せられた支払コスト(金銭負担)を示す情報、各車両10と電力伝送管理装置1との電力伝送の履歴情報などを含む。 In addition, the control unit 3 of the power transmission management device 1 stores information on each vehicle 10 and its user registered in advance as vehicles 10 that can perform power transmission with the power transmission management device 1 (hereinafter simply vehicle-specific information). A recording unit 3a (database) is recorded. The vehicle-specific information includes, for example, information (e-mail address, etc.) indicating the destination of transmission of various data to each vehicle 10 or user, consideration information for the user of each vehicle 10, payment cost imposed on the user of each vehicle 10 Information indicating (money burden), history information of power transmission between each vehicle 10 and the power transmission management device 1, and the like.
ここで、本実施形態では、前記瞬時予備力送電処理又は周波数調整処理により、各車両10の蓄電器12と電力伝送管理装置1との間の電力伝送を行った場合には、それぞれの処理毎に、電力伝送管理装置1の運営業者から、該車両10のユーザに対して、金銭、又はポイント等の対価(インセンティブ)が付与される。 Here, in the present embodiment, when power transmission is performed between the battery 12 of each vehicle 10 and the power transmission management device 1 by the instantaneous reserve power transmission process or the frequency adjustment process, for each process. The operator of the power transmission management device 1 gives money (incentive) such as money or points to the user of the vehicle 10.
また、本実施形態では、後述するSOCばらつき低減処理によって、複数の車両10,10,…のそれぞれの蓄電器12の相互間で電力の伝送(授受)が行われる。そして、この場合、蓄電器12の放電を行った車両10のユーザに対して、対価(プラスの対価)が付与されると共に、蓄電器12の充電を行った車両10のユーザに対して、コスト負担(マイナスの対価)が課せられる。 Moreover, in this embodiment, electric power transmission (transmission / reception) is performed between the respective capacitors 12 of the plurality of vehicles 10, 10,. In this case, a consideration (positive consideration) is given to the user of the vehicle 10 that has discharged the capacitor 12, and a cost burden (to the user of the vehicle 10 that has charged the capacitor 12 ( Negative compensation).
そして、記録部3aに記録される上記対価情報は、例えば、各車両10のユーザが取得した対価の値(累積的な対価値)を示す情報と、対価の取得履歴及び使用履歴を示す情報とを含む。なお、各車両10のユーザの累積的な対価値は、ユーザが当該対価を適宜消費した場合には、その使用分だけ減少する。 And the said consideration information recorded on the recording part 3a is the information which shows the value (cumulative value) of the consideration which the user of each vehicle 10 acquired, and the information which shows the acquisition history and usage history of consideration, for example including. Note that the cumulative value of the user of each vehicle 10 decreases by the amount of use when the user appropriately consumes the value.
また、上記支払コストは、各車両10の蓄電器12に、ユーザが所望する量の充電を行った場合に、その充電量に応じて、ユーザが支払うべきコストである。 Moreover, the said payment cost is a cost which a user should pay according to the charge amount, when the battery 12 of each vehicle 10 performs charge of the amount which a user desires.
そして、制御部3は、上記対価情報、支払コストの情報等を、適宜、各車両10に送信したり、あるいは、各車両10のユーザが使用するスマートフォン、タブレット端末、パソコン等の端末機に送信することが可能である。 And the control part 3 transmits the said price information, the information of payment cost, etc. to each vehicle 10 suitably, or transmits to terminals, such as a smart phone, a tablet terminal, and a personal computer which the user of each vehicle 10 uses. Is possible.
補足すると、電力伝送管理装置1には、複数の車両10の蓄電器12及び発電設備20以外の他の電力供給源(例えば定置型の大容量蓄電器等)が電気的に接続されていてもよい。 Supplementally, the power transmission management device 1 may be electrically connected to other power supply sources (for example, stationary large-capacity capacitors) other than the capacitors 12 and the power generation facilities 20 of the plurality of vehicles 10.
次に、本実施形態のシステムの作動(特に、電力伝送管理装置1及び各車両10の蓄電器12の電力伝送に関する作動)を以下に説明する。 Next, the operation of the system of the present embodiment (particularly, the operation related to the power transmission of the power transmission management device 1 and the battery 12 of each vehicle 10) will be described below.
各車両10のユーザは、外部充電装置5を利用し得る駐車場所に車両10を駐車させた場合に、該車両10の接続部13に外部充電装置5を電気的に接続しておく。これにより、車両10の蓄電器12が、電力伝送管理装置1の接続部1bに外部充電装置5を介して電気的に接続さる。 When the user of each vehicle 10 parks the vehicle 10 in a parking place where the external charging device 5 can be used, the external charging device 5 is electrically connected to the connection portion 13 of the vehicle 10. Thereby, the battery 12 of the vehicle 10 is electrically connected to the connection portion 1b of the power transmission management device 1 via the external charging device 5.
そして、電力伝送管理装置1の制御部3は、前記瞬時予備力送電処理又は周波数調整処理によって電力伝送管理装置1と電力系統30との間の電力伝送を行う前の時間帯において、接続部1bに外部充電装置5を介して電気的に接続されている複数の車両10,10,…のそれぞれの蓄電器12のSOCの相互のばらつきを極力低減するための制御処理(以降、SOCばらつき低減処理という)を、各車両10の制御部15との協働によって実行する。なお、SOCばらつき低減処理のうち、制御部3が実行する処理が、本発明における第2制御処理に相当する。 And the control part 3 of the power transmission management apparatus 1 is the connection part 1b in the time slot | zone before performing the power transmission between the power transmission management apparatus 1 and the electric power grid | system 30 by the said instantaneous reserve power transmission process or a frequency adjustment process. , Which are electrically connected to each other via the external charging device 5, a control process (hereinafter referred to as an SOC variation reducing process) for reducing the mutual variations in the SOC of the respective capacitors 12 of the plurality of vehicles 10,. ) Is executed in cooperation with the control unit 15 of each vehicle 10. Of the SOC variation reduction processing, the processing executed by the control unit 3 corresponds to the second control processing in the present invention.
この場合、電力伝送管理装置1の制御部3は、SOCばらつき低減処理を開始するとき、電力伝送管理装置1に電気的に接続されている全ての車両10に対して、各車両10の接続部13に電気的に接続された外部充電装置5のPLCユニット5aを介して各車両10のPLCユニット17にSOCばらつき低減処理の実行開始を示すデータを送信する。 In this case, when the control unit 3 of the power transmission management device 1 starts the SOC variation reduction process, the connection unit of each vehicle 10 is connected to all the vehicles 10 that are electrically connected to the power transmission management device 1. 13 is transmitted to the PLC unit 17 of each vehicle 10 via the PLC unit 5a of the external charging device 5 that is electrically connected to 13.
このとき、該データを受信した各車両10のPLCユニット17は、該車両10の制御部15,16を起動させる。より具体的には、各車両10のPLCユニット17は、例えば、該車両10の制御部15,16の電源回路(図示省略)を制御することで、該制御部15,16に電源電力を給電させる。これにより、該制御部15,16が起動する。 At this time, the PLC unit 17 of each vehicle 10 that has received the data activates the control units 15 and 16 of the vehicle 10. More specifically, the PLC unit 17 of each vehicle 10 supplies power to the control units 15 and 16 by controlling power supply circuits (not shown) of the control units 15 and 16 of the vehicle 10, for example. Let As a result, the control units 15 and 16 are activated.
このように各車両10の制御部15,16が起動した後、SOCばらつき低減処理は、図4及び図5のフローチャートに示す如く実行される。 Thus, after the control parts 15 and 16 of each vehicle 10 start, SOC variation reduction processing is performed as shown to the flowchart of FIG.4 and FIG.5.
なお、図4及び図5において、中央のフローチャートの処理(STEP1〜13の処理)は、電力伝送管理装置1の制御部3の処理、左側のフローチャートの処理(STEP21〜26の処理)は、SOCばらつき低減処理において放電を行う蓄電器12が搭載された車両10の制御部15の処理、右側のフローチャートの処理(STEP31〜36の処理)は、SOCばらつき低減処理において充電を行う蓄電器12が搭載された車両10の制御部15の処理である。 4 and 5, the processing in the central flowchart (steps 1 to 13) is the processing of the control unit 3 of the power transmission management device 1, and the processing in the left flowchart (steps 21 to 26) is the SOC. The process of the control unit 15 of the vehicle 10 in which the capacitor 12 that performs discharging in the variation reducing process and the process in the flowchart on the right side (the processes in STEP 31 to 36) are mounted with the capacitor 12 that performs charging in the SOC variation reducing process. This is a process of the control unit 15 of the vehicle 10.
ただし、STEP21,31の処理及びSTEP22,32の処理は、電力伝送管理装置1に電気的に接続されている全ての車両10において実行される処理である。 However, the processing of STEP 21 and 31 and the processing of STEP 22 and 32 are processing executed in all the vehicles 10 that are electrically connected to the power transmission management device 1.
STEP21,31において、各車両10の制御部15は、制御部16から取得した蓄電器12の現在のSOC(推定値)を示すデータ(これは本発明における充電状態情報に相当する)を、電力伝送管理装置1宛てに、PLCユニット17を介して送信する。このデータは、外部充電装置5のPLCユニット5aで受信された後、該PLCユニット5aから電力伝送管理装置1の制御部3に送信される。 In STEPs 21 and 31, the control unit 15 of each vehicle 10 transmits data indicating the current SOC (estimated value) of the battery 12 acquired from the control unit 16 (this corresponds to the charge state information in the present invention) and transmits power. It transmits to the management apparatus 1 via the PLC unit 17. This data is received by the PLC unit 5a of the external charging device 5, and then transmitted from the PLC unit 5a to the control unit 3 of the power transmission management device 1.
かかる送信データは、電力伝送管理装置1の制御部3で受信される。これにより、該制御部3は、各車両10の蓄電器12のSOCを取得する(STEP1)。 Such transmission data is received by the control unit 3 of the power transmission management device 1. Thereby, this control part 3 acquires SOC of the battery 12 of each vehicle 10 (STEP1).
さらに、STEP22,32において、各車両10の制御部15は、該車両10の利用計画を示すデータと、蓄電器12の充放電に関する要求(充放電要求)を示すデータとを、電力伝送管理装置1に、PLCユニット17を介して送信する。これらのデータは、外部充電装置5のPLCユニット5aで受信された後、該PLCユニット5aから電力伝送管理装置1の制御部3に送信される。 Furthermore, in STEPs 22 and 32, the control unit 15 of each vehicle 10 receives data indicating a use plan of the vehicle 10 and data indicating a request (charge / discharge request) related to charging / discharging of the battery 12. Then, the data is transmitted via the PLC unit 17. These data are received by the PLC unit 5 a of the external charging device 5, and then transmitted from the PLC unit 5 a to the control unit 3 of the power transmission management device 1.
上記利用計画を示すデータは、例えば、車両10の次回の利用開始タイミングを示すデータ(もしくは車両10の不使用時間帯を示すデータ)を含む。また、上記充放電要求を示すデータは、例えば、前記瞬時予備力送電処理又は周波数調整処理による蓄電器12の充放電を許可するか否かを示すデータと、車両10の次回の利用開始時までに必要な蓄電器12の目標SOC(もしくはSOCの増加分の目標値)を示すデータとを含む。 The data indicating the use plan includes, for example, data indicating the next use start timing of the vehicle 10 (or data indicating a non-use time zone of the vehicle 10). The data indicating the charge / discharge request includes, for example, data indicating whether to permit charging / discharging of the battery 12 by the instantaneous reserve power transmission process or the frequency adjustment process, and the next use start time of the vehicle 10. And data indicating the required target SOC of the battery 12 (or a target value for an increase in SOC).
これらの利用計画及び充放電要求は、例えば、各車両10のユーザが、該車両10の駐車時に、該車両10の所定の操作部を操作することで設定された情報である。 These usage plans and charge / discharge requests are information set by, for example, the user of each vehicle 10 operating a predetermined operation unit of the vehicle 10 when the vehicle 10 is parked.
補足すると、上記利用計画及び充放電要求を、例えば、外部充電装置5の所定の操作によって設定し得るように、該外部充電装置5を構成すると共に、該利用計画及び充放電要求を示すデータを、該外部充電装置5から電力伝送管理装置1に送信してもよい。 Supplementally, the external charging device 5 is configured so that the usage plan and the charge / discharge request can be set by, for example, a predetermined operation of the external charging device 5, and data indicating the usage plan and the charge / discharge request is provided. The external charging device 5 may transmit to the power transmission management device 1.
また、例えば、各車両10のユーザが所持するスマートフォン等の端末機が電力伝送管理装置1の制御部3と通信を行い得る場合には、該端末機でユーザが設定した利用計画及び充放電要求を示すデータを、該端末機から電力伝送管理装置1に送信してもよい。 In addition, for example, when a terminal such as a smartphone possessed by the user of each vehicle 10 can communicate with the control unit 3 of the power transmission management device 1, a usage plan and a charge / discharge request set by the user at the terminal May be transmitted from the terminal to the power transmission management device 1.
各車両10の利用計画及び充放電要求を示すデータは、電力伝送管理装置1の制御部3で受信される。これにより、該制御部3は、各車両10に関して設定された利用計画及び充放電要求を取得する(STEP2)。 Data indicating the use plan and charge / discharge request of each vehicle 10 is received by the control unit 3 of the power transmission management device 1. Thereby, this control part 3 acquires the utilization plan and charge / discharge request | requirement set regarding each vehicle 10 (STEP2).
各車両10の蓄電器12のSOCと、各車両10の利用計画及び充放電要求とを取得した電力伝送管理装置1の制御部3は、次に、STEP3において、電力伝送管理装置1に電気的に接続された全ての車両10から、SOCばらつき低減処理の対象車両(SOCばらつき低減処理により充電又は放電を行う蓄電器12が搭載された車両)を選択する。 The control unit 3 of the power transmission management device 1 that has acquired the SOC of the battery 12 of each vehicle 10 and the usage plan and charge / discharge request of each vehicle 10 then electrically connects the power transmission management device 1 to the power transmission management device 1 in STEP 3. From all the connected vehicles 10, a target vehicle for the SOC variation reduction process (a vehicle equipped with a battery 12 that is charged or discharged by the SOC variation reduction process) is selected.
このSTEP3では、電力伝送管理装置1に電気的に接続された全ての車両10のうち、例えば、瞬時予備力送電処理又は周波数調整処理による蓄電器12の充放電を許可しないことが前記充放電要求によって指定された車両10と、前記利用計画により指定された車両10の次回の利用開始タイミングまでの残時間が比較的短く、当該残時間の期間では、SOCばらつき低減処理、あるいは瞬時予備力送電処理又は周波数調整処理、あるいは前記充放電要求により指定された目標SOCまでの蓄電器12の充電を完了することができないことが予測される車両10とを除外した車両10が、SOCばらつき低減処理の対象車両として選択される。 In STEP 3, among all the vehicles 10 electrically connected to the power transmission management device 1, for example, the charging / discharging request does not permit charging / discharging of the battery 12 by instantaneous reserve power transmission processing or frequency adjustment processing. The remaining time until the next use start timing of the designated vehicle 10 and the vehicle 10 designated by the utilization plan is relatively short, and during the remaining time, the SOC variation reducing process or the instantaneous reserve power transmission process or The vehicle 10 excluding the vehicle 10 that is predicted to be unable to complete the charging of the battery 12 up to the target SOC designated by the frequency adjustment process or the charge / discharge request is the target vehicle for the SOC variation reduction process. Selected.
かかるSTEP3で選択される車両10は、その蓄電器12の電力を、SOCばらつき低減処理の実行後に、瞬時予備力送電処理又は周波数調整処理での電力伝送に利用される車両であり、以降、電力利用対象車両10という。 The vehicle 10 selected in STEP 3 is a vehicle that uses the electric power of the battery 12 for power transmission in the instantaneous reserve power transmission process or the frequency adjustment process after the execution of the SOC variation reduction process. The target vehicle 10 is referred to.
次いで、STEP4において、電力伝送管理装置1の制御部3は、各電力利用対象車両10の蓄電器12のSOC(各電力利用対象車両10に関してSTEP1で取得したSOC)の相互のばらつき度合を示す指標値(以降、SOCばらつき度合指標値という)を算出する。 Next, in STEP 4, the control unit 3 of the power transmission management device 1 indicates an index value indicating the degree of mutual variation of the SOC of the battery 12 of each power usage target vehicle 10 (the SOC acquired in STEP 1 for each power usage target vehicle 10). (Hereinafter referred to as SOC variation degree index value) is calculated.
本実施形態では、SOCばらつき度合指標値として、例えば、電力利用対象車両10のそれぞれの蓄電器12のSOCの標準偏差が算出される。 In the present embodiment, as the SOC variation degree index value, for example, the standard deviation of the SOC of each battery 12 of the power usage target vehicle 10 is calculated.
なお、SOCばらつき度合指標値として、標準偏差の代わりに、例えば分散を算出してもよい。あるいは、例えば、電力利用対象車両10のそれぞれの蓄電器12のSOCのうちの最大値と最小値との差を、SOCばらつき度合指標値として算出してもよい。 For example, variance may be calculated as the SOC variation degree index value instead of the standard deviation. Alternatively, for example, the difference between the maximum value and the minimum value of the SOCs of the respective electric storage devices 12 of the electric power utilization target vehicle 10 may be calculated as the SOC variation degree index value.
次いで、STEP5において、電力伝送管理装置1の制御部3は、SOCばらつき度合指標値が所定の閾値以上であるか否か(SOCのばらつき度合が高いか否か)を判断する。このSTEP5の判断結果が否定的となる状況は、電力利用対象車両10のそれぞれの蓄電器12の現在のSOCのばらつき度合が、小さいものとなっている(それぞれの蓄電器12のSOCが互いに一致もしくは近い値となっている)か、あるいは、以下に説明するSTEP6〜12の処理を経て、該ばらつき度合が小さいものとなった状況である。この場合には、電力伝送管理装置1の制御部3は、SOCばらつき低減処理を終了する。 Next, in STEP 5, the control unit 3 of the power transmission management apparatus 1 determines whether or not the SOC variation degree index value is equal to or greater than a predetermined threshold (whether or not the SOC variation degree is high). The situation in which the determination result in STEP 5 is negative is that the current SOC variation degree of each battery 12 of the electric power utilization target vehicle 10 is small (the SOC of each battery 12 is equal or close to each other). In other words, the degree of variation is small through the processing of STEPs 6 to 12 described below. In this case, the control unit 3 of the power transmission management device 1 ends the SOC variation reduction process.
一方、STEP5の判断結果が肯定的となる場合は、SOCのばらつき度合が大きい状況である。この場合には、電力伝送管理装置1の制御部3は、次に、STEP6において、電力利用対象車両10から、SOCのばらつき度合いを低減するために、蓄電器12の放電を行わせるべき車両10である放電対象車両10と、蓄電器12の充電を行わせるべき車両10である充電対象車両10とを所定の規則に従って選定する。 On the other hand, if the determination result in STEP 5 is affirmative, the degree of variation in SOC is large. In this case, the control unit 3 of the power transmission management device 1 next uses the vehicle 10 to be discharged from the battery 12 in STEP 6 in order to reduce the degree of variation in SOC from the power use target vehicle 10. A certain discharge target vehicle 10 and a charge target vehicle 10 that is a vehicle 10 that should charge the battery 12 are selected according to a predetermined rule.
このSTEP6では、例えば、全ての電力利用対象車両10のうち、蓄電器12のSOCが相対的に上位側の値である1台以上の車両10が放電対象車両10として選定され、蓄電器12のSOCが相対的に下位側の値である複数台の車両10が充電対象車両10として選定される。 In this STEP 6, for example, one or more vehicles 10 whose SOC of the battery 12 is a relatively higher value are selected as the discharge target vehicles 10 among all the electric power use target vehicles 10, and the SOC of the battery 12 is A plurality of vehicles 10 having relatively lower values are selected as the charging target vehicles 10.
この場合、電力利用対象車両10のうち、蓄電器12のSOCが最も高い車両10(又はSOCが所定値以上の高SOC状態である車両10)が放電対象車両10に含まれ、且つ、蓄電器12のSOCが最も低い車両10(又はSOCが所定値以下の低SOC状態である車両10)が充電対象車両10に含まれ、且つ、放電対象車両10の台数よりも、充電対象車両10の台数が多くなるように、放電対象車両10及び充電対象車両10が選定される。 In this case, among the electric power use target vehicles 10, the vehicle 10 having the highest SOC of the battery 12 (or the vehicle 10 in a high SOC state where the SOC is equal to or higher than a predetermined value) is included in the discharge target vehicle 10, and the battery 12 The vehicle 10 with the lowest SOC (or the vehicle 10 in a low SOC state where the SOC is equal to or less than a predetermined value) is included in the charging target vehicle 10 and the number of charging target vehicles 10 is larger than the number of discharging target vehicles 10. Thus, the discharge target vehicle 10 and the charge target vehicle 10 are selected.
なお、電力利用対象車両10うち、放電対象車両10及び充電対象車両10のいずれにも選定されない車両があってもよい。換言すれば、放電対象車両10及び充電対象車両10の総数は、電力利用対象車両10の総数よりも小さくてもよい。 There may be a vehicle that is not selected as either the discharge target vehicle 10 or the charge target vehicle 10 among the power use target vehicles 10. In other words, the total number of discharge target vehicles 10 and charge target vehicles 10 may be smaller than the total number of power utilization target vehicles 10.
次いで、STEP7において、電力伝送管理装置1の制御部3は、各放電対象車両10に、放電対象車両として選定されたことを示す通知データを送信すると共に、各充電対象車両10に、充電対象車両として選定されたことを示す通知データを送信する。 Next, in STEP 7, the control unit 3 of the power transmission management device 1 transmits notification data indicating that the vehicle is selected as a discharge target vehicle to each discharge target vehicle 10, and also transmits to each charge target vehicle 10 a charge target vehicle. Notification data indicating that it has been selected as is transmitted.
これらの通知データは、各充電対象車両10及び各充電対象車両10のそれぞれの制御部15で受信される(STEP23,33)。 These notification data are received by each charging target vehicle 10 and each control unit 15 of each charging target vehicle 10 (STEP 23, 33).
電力伝送管理装置1の制御部3は、次に、STEP8において、SOCばらつき低減処理により達成されるSOCのばらつき度合を、シミュレーションにより予測する。 Next, in STEP 8, the control unit 3 of the power transmission management device 1 predicts the degree of SOC variation achieved by the SOC variation reduction process by simulation.
具体的には、制御部3は、例えば、SOCばらつき低減処理の実行時間幅と、各放電対象車両10の蓄電器12の単位時間当たりの放電量(換言すれば、放電電流値)と、各充電対象車両10の蓄電器12の単位時間当たりの充電量(換言すれば、充電電流値)とを可変パラメータとして、各可変パラメータの値を所定の可変範囲内で暫定的に設定する。 Specifically, the control unit 3 performs, for example, an execution time width of the SOC variation reduction process, a discharge amount per unit time of the battery 12 of each discharge target vehicle 10 (in other words, a discharge current value), and each charge The charge amount per unit time of the battery 12 of the target vehicle 10 (in other words, the charge current value) is set as a variable parameter, and the value of each variable parameter is provisionally set within a predetermined variable range.
なお、各放電対象車両10の蓄電器12の単位時間当たりの放電量の総和(全ての放電対象車両10についての総和)と、各充電対象車両10の蓄電器12の単位時間当たりの充電量の総和(全ての充電対象車両10についての総和)とが互いに一致するように、各放電対象車両10の当該放電量と、各充電対象車両10の当該充電量とが設定される。 In addition, the sum total of the discharge amount per unit time of the battery 12 of each discharge target vehicle 10 (total for all discharge target vehicles 10) and the sum of the charge amount per unit time of the capacitor 12 of each charge target vehicle 10 ( The discharge amount of each discharge target vehicle 10 and the charge amount of each charge target vehicle 10 are set such that the total sum of all the charge target vehicles 10 matches each other.
さらに、制御部3は、上記可変パラメータの設定値を前提条件として、SOCばらつき低減処理を実行したと仮定した場合における放電対象車両10及び充電対象車両10のそれぞれの蓄電器12のSOCの変化をシミュレーションする。 Further, the control unit 3 simulates the change in the SOC of each battery 12 of the discharge target vehicle 10 and the charge target vehicle 10 when it is assumed that the SOC variation reduction process is executed on the assumption that the set value of the variable parameter is a precondition. To do.
そして、制御部3は、このシミュレーションにより得られた放電対象車両10及び充電対象車両10のそれぞれの蓄電器12のSOCの値(すなわち、SOCばらつき低減処理の実行完了時の推定値)を用いて、電力利用対象車両10の全体についてのSOCばらつき度合指標値を算出する。この算出処理は、前記STEP4と同様に行われる。これにより、SOCばらつき低減処理の実行後のSOCのばらつき度合の予測値としてのSOCばらつき度合指標値が算出される。 Then, the control unit 3 uses the SOC value of each battery 12 of the discharge target vehicle 10 and the charge target vehicle 10 obtained by this simulation (that is, the estimated value at the completion of execution of the SOC variation reduction process), An SOC variation degree index value for the entire power usage target vehicle 10 is calculated. This calculation process is performed in the same manner as in STEP4. Thereby, the SOC variation degree index value as the predicted value of the SOC variation degree after execution of the SOC variation reduction process is calculated.
なお、この場合のSOCばらつき度合指標値の算出処理では、電力利用対象車両10のうち、放電対象車両10又は充電対象車両10として選定されていない車両10の蓄電器12のSOCの値としては、STEP1で取得された値がそのまま用いられる。 In the calculation process of the SOC variation degree index value in this case, the SOC value of the battery 12 of the vehicle 10 that is not selected as the discharge target vehicle 10 or the charge target vehicle 10 among the electric power use target vehicles 10 is STEP1. The value acquired in is used as it is.
次いで、電力伝送管理装置1の制御部3は、STEP8で予測したSOCのばらつき度合が、STEP4で算出したSOCばらつき度合から低減するか否かをSTEP9で判断する。この判断処理では、より具体的には、例えば、STEP8で算出したSOCばらつき度合指標値(SOCばらつき低減処理の実行後のSOCのばらつき度合の予測値)が、STEP4で算出されたSOCばらつき度合指標値(SOCばらつき低減処理の実行開始時のSOCのばらつき度合)よりも所定量以上、低下したか否かが判断される。 Next, the control unit 3 of the power transmission management device 1 determines in STEP 9 whether or not the SOC variation degree predicted in STEP 8 is reduced from the SOC variation degree calculated in STEP 4. More specifically, in this determination process, for example, the SOC variation degree index value calculated in STEP 8 (the predicted value of the SOC variation degree after the execution of the SOC variation reduction process) is used as the SOC variation degree index calculated in STEP 4. It is determined whether or not the value has decreased by a predetermined amount or more than the value (degree of SOC variation at the start of execution of the SOC variation reduction process).
そして、STEP9の判断結果が否定的である場合には、制御部3は、前記可変パラメータの値を変更した上で、STEP8の処理を改めて実行し、さらに、STEP9の判断処理を実行する。 If the determination result in STEP 9 is negative, the control unit 3 changes the value of the variable parameter, executes the process in STEP 8 again, and further executes the determination process in STEP 9.
なお、STEP8の処理を所定回数、繰り返しても、STEP9の判断結果が肯定的にならなかった場合には、例えば、放電対象車両10及び充電対象車両10を選定し直した上で、STEP7からの処理を実行してもよい。 In addition, even if the process of STEP 8 is repeated a predetermined number of times, if the determination result of STEP 9 does not become affirmative, for example, after selecting the discharge target vehicle 10 and the charge target vehicle 10 again, from STEP 7 Processing may be executed.
STEP9の判断結果が肯定的になった場合には、電力伝送管理装置1の制御部3は次に、STEP10の処理を実行する。 If the determination result in STEP 9 is affirmative, the control unit 3 of the power transmission management device 1 next executes the process in STEP 10.
このSTEP10では、制御部3は、放電対象車両10の蓄電器12の放電を行わせるための放電指令を放電対象車両10に送信すると共に、充電対象車両10の蓄電器12の充電を行わせるための充電指令を充電対象車両10に送信する。 In STEP 10, the control unit 3 transmits a discharge command for causing the battery 12 of the discharge target vehicle 10 to discharge to the discharge target vehicle 10 and charging for causing the battery 12 of the charge target vehicle 10 to be charged. The command is transmitted to the charging target vehicle 10.
この場合、上記放電指令には、前記SOCばらつき低減処理の実行時間幅と、放電対象車両10の蓄電器12の単位時間当たりの放電量とを指定するデータとして、STEP9の判断処理が肯定的となる直前のSTEP8のシミュレーションで使用した設定値を示すデータが含まれる。 In this case, in the discharge command, the determination process of STEP 9 becomes positive as data specifying the execution time width of the SOC variation reduction process and the discharge amount per unit time of the battery 12 of the discharge target vehicle 10. Data indicating setting values used in the immediately preceding STEP8 simulation is included.
同様に、上記充電指令には、前記SOCばらつき低減処理の実行時間幅と、充電対象車両10の蓄電器12の単位時間当たりの充電量とを指定するデータとして、STEP9の判断処理が肯定的となる直前のSTEP8のシミュレーションで使用した設定値を示すデータが含まれる。 Similarly, in the charge command, the determination process of STEP 9 becomes positive as data specifying the execution time width of the SOC variation reduction process and the charge amount per unit time of the battery 12 of the vehicle 10 to be charged. Data indicating setting values used in the immediately preceding STEP8 simulation is included.
STEP10で電力伝送管理装置1の制御部3が送信する放電指令は、各放電対象車両10の制御部15で受信され(STEP24)、充電指令は、各充電対象車両10の制御部15で受信される(STEP34)。 The discharge command transmitted by the control unit 3 of the power transmission management device 1 in STEP 10 is received by the control unit 15 of each discharge target vehicle 10 (STEP 24), and the charge command is received by the control unit 15 of each charge target vehicle 10. (STEP 34).
そして、放電指令を受信した放電対象車両10の制御部15は、該放電指令に従って、蓄電器12の放電制御を実行する(STEP25)。この場合、制御部15は、放電指令により指定された前記SOCばらつき低減処理の実行時間幅の期間において、指定された放電量で放電対象車両10の蓄電器12の放電を行うように、AC/DC変換器14を制御する。 Then, the control unit 15 of the discharge target vehicle 10 that has received the discharge command performs discharge control of the battery 12 in accordance with the discharge command (STEP 25). In this case, the control unit 15 performs AC / DC so as to discharge the battery 12 of the discharge target vehicle 10 with the specified discharge amount during the execution time width of the SOC variation reduction process specified by the discharge command. The converter 14 is controlled.
また、充電指令を受信した充電対象車両10の制御部15は、該充電電指令に従って、蓄電器12の充電制御を実行する(STEP35)。この場合、制御部15は、充電指令により指定された前記SOCばらつき低減処理の実行時間幅の期間において、指定された充電量で充電対象車両10の蓄電器12の充電を行うように、AC/DC変換器14を制御する。 Further, the control unit 15 of the charging target vehicle 10 that has received the charging command executes charging control of the battery 12 in accordance with the charging power command (STEP 35). In this case, the control unit 15 performs AC / DC charging so that the battery 12 of the charging target vehicle 10 is charged with the specified charge amount during the execution time width of the SOC variation reduction process specified by the charge command. The converter 14 is controlled.
上記の如く各放電対象車両10の蓄電器12の放電制御と各充電対象車両10の蓄電器12の充電制御とを実行することで、各放電対象車両10の蓄電器12が出力する放電電力は、該放電対象車両10から外部充電装置5を介して電力伝送管理装置1に伝送される。そして、電力伝送管理装置1が各放電対象車両10の蓄電器12から受電した放電電力の総量が、電力伝送管理装置1から充電対象車両10のそれぞれの蓄電器12に分配供給される。 By executing the discharge control of the battery 12 of each vehicle 10 to be discharged and the charge control of the battery 12 of the vehicle 10 to be charged as described above, the discharge power output from the battery 12 of each vehicle 10 to be discharged becomes the discharge power. It is transmitted from the target vehicle 10 to the power transmission management device 1 via the external charging device 5. Then, the total amount of discharge power received by the power transmission management device 1 from the capacitors 12 of each discharge target vehicle 10 is distributed and supplied from the power transmission management device 1 to the respective capacitors 12 of the charge target vehicle 10.
これにより、各放電対象車両10の蓄電器12のSOCが減少すると共に、各充電対象車両10の蓄電器12のSOCが増加する。 As a result, the SOC of the battery 12 of each discharge target vehicle 10 decreases and the SOC of the battery 12 of each charge target vehicle 10 increases.
この場合、本実施形態では、充電対象車両10の台数が、放電対象車両10の台数よりも多くなるように該充電対象車両10及び放電対象車両10が選定されている。このため、各充電対象車両10の蓄電器12を、単位時間当たりの充電量(所謂、充電レート)が小さくなる態様で(すなわち、低レートで)充電することができる。 In this case, in the present embodiment, the charging target vehicle 10 and the discharging target vehicle 10 are selected so that the number of charging target vehicles 10 is larger than the number of discharging target vehicles 10. For this reason, the battery 12 of each vehicle 10 to be charged can be charged in such a manner that the amount of charge per unit time (so-called charging rate) becomes small (that is, at a low rate).
ここで、一般に、蓄電器12は、その充電を高レートで(単位時間当たりの充電量が大きい態様で)行うと、劣化が進行し易いものの、本実施形態では、各充電対象車両10の蓄電器12の充電を低レートで行うことができる。このため、蓄電器12の劣化の進行を極力抑制できる。 Here, in general, when the battery 12 is charged at a high rate (in a mode in which the amount of charge per unit time is large), deterioration tends to proceed. However, in this embodiment, the battery 12 of each vehicle 10 to be charged is charged. Can be charged at a low rate. For this reason, the progress of the deterioration of the battery 12 can be suppressed as much as possible.
放電対象車両10の制御部15は、蓄電器12の放電制御が終了すると、次に、STEP26において、放電結果情報を電力伝送管理装置1に送信する。該放電結果情報は、例えば、今回のSOCばらつき低減処理での放電対象車両10の蓄電器12のトータルの放電量(又は該蓄電器12のSOCの減少量)を示す情報である。 When the discharge control of the battery 12 ends, the control unit 15 of the discharge target vehicle 10 next transmits the discharge result information to the power transmission management device 1 in STEP 26. The discharge result information is, for example, information indicating the total discharge amount of the battery 12 of the discharge target vehicle 10 (or the decrease amount of the SOC of the battery 12) in the current SOC variation reduction process.
また、充電対象車両10の制御部15は、蓄電器12の充電制御が終了すると、次に、STEP36において、充電結果情報を電力伝送管理装置1に送信する。該充電結果情報は、例えば、今回のSOCばらつき低減処理での充電対象車両10の蓄電器12のトータルの充電量(又は該蓄電器12のSOCの増加量)を示す情報である。 In addition, when the charging control of the battery 12 ends, the control unit 15 of the charging target vehicle 10 next transmits charging result information to the power transmission management device 1 in STEP 36. The charge result information is, for example, information indicating the total charge amount of the battery 12 of the vehicle 10 to be charged (or the increase in the SOC of the battery 12) in the current SOC variation reduction process.
上記放電結果情報及び充電結果情報は、電力伝送管理装置1の制御部3で受信される(STEP11)。 The discharge result information and the charge result information are received by the control unit 3 of the power transmission management device 1 (STEP 11).
そして、電力伝送管理装置1の制御部3は、STEP12において、各放電対象車両10毎に受信した放電結果情報に基づいて、各放電対象車両10に対応して記録部3aに記録されている対価情報を更新すると共に、各充電対象車両10毎に受信した充電結果情報に基づいて、各充電対象車両10に対応して記録部3aに記録されている対価情報を更新する。 And the control part 3 of the electric power transmission management apparatus 1 is the consideration recorded on the recording part 3a corresponding to each discharge target vehicle 10 based on the discharge result information received for every discharge target vehicle 10 in STEP12. While updating the information, based on the charging result information received for each charging target vehicle 10, the consideration information recorded in the recording unit 3 a corresponding to each charging target vehicle 10 is updated.
具体的には、各放電対象車両10のユーザについての累積的な対価値が、放電結果情報により示されるトータルの放電量に比例した増加分だけ増加される。また、各充電対象車両10のユーザについての累積的な対価値が、充電結果情報により示されるトータルの充電量に比例した減少分だけ、減少される。なお、放電対象車両10又は充電対象車両10として選定されていない電力利用対象車両10のユーザに対応する累積的な対価値は、増減されずに現状に維持される。 Specifically, the cumulative value for the user of each discharge target vehicle 10 is increased by an increase proportional to the total discharge amount indicated by the discharge result information. Further, the cumulative value for the user of each charging target vehicle 10 is reduced by a reduction proportional to the total amount of charge indicated by the charging result information. In addition, the cumulative value corresponding to the user of the power use target vehicle 10 that is not selected as the discharge target vehicle 10 or the charge target vehicle 10 is maintained without being increased or decreased.
ここで、SOCばらつき低減処理での各放電対象車両10の蓄電器12の単位放電量当たりの対価値の増加分(換言すれば、単位放電量当たりに付与される対価)と、各充電対象車両10の蓄電器12の単位充電量当たりの対価値の減少分(換言すれば、単位充電量当たりに課せられる支払コスト)とは、あらかじめ定められている。一例として、単位放電量当たりの対価値の増加分と、単位充電量当たりの対価値の減少分(負担分)とは、例えば互いに同じ値に設定される。 Here, the increase in value per unit discharge amount (in other words, the value given per unit discharge amount) of the storage battery 12 of each discharge target vehicle 10 in the SOC variation reduction process, and each charge target vehicle 10. The amount of decrease in value per unit charge amount of the battery 12 (in other words, the payment cost imposed per unit charge amount) is determined in advance. As an example, the increase in value per unit discharge amount and the decrease in value per unit charge amount (burden) are set to the same value, for example.
この場合には、結果的に、放電対象車両10のユーザと充電対象車両10のユーザとの間で対価の授受が行われる。従って、電力伝送管理装置1の運営業者にとっては、SOCばらつき低減処理でのコスト負担が実質的に無いこととなる。 In this case, as a result, the payment is exchanged between the user of the discharge target vehicle 10 and the user of the charge target vehicle 10. Therefore, for the operator of the power transmission management device 1, there is substantially no cost burden in the SOC variation reduction processing.
電力伝送管理装置1の制御部3は、STEP12の処理の後、STEP13において、更新後の対価値等を示す対価情報を、放電対象車両10及び充電対象車両10のそれぞれに送信する。 After the processing of STEP 12, the control unit 3 of the power transmission management device 1 transmits consideration information indicating the updated value and the like to each of the discharge target vehicle 10 and the charge target vehicle 10 in STEP 13.
該対価情報は、放電対象車両10及び充電対象車両10のそれぞれの制御部15で受信されると共に記憶保持される(STEP26,36)。 The consideration information is received and stored in the respective control units 15 of the discharge target vehicle 10 and the charge target vehicle 10 (STEPs 26 and 36).
かかる対価情報は、放電対象車両10及び充電対象車両10のそれぞれの次回の運転開始時等に、表示器での視覚的な表示、あるいは、音声により、該車両10のユーザに報知される。 Such consideration information is notified to the user of the vehicle 10 by visual display on the display or by voice when the next driving of the vehicle 10 to be discharged and the vehicle 10 to be charged is started next time.
なお、電力伝送管理装置1からの上記対価情報の送信は、放電対象車両10及び充電対象車両10のそれぞれのユーザが使用するスマートフォン等の端末機宛てに行ってもよい。 In addition, you may perform the transmission of the said value information from the electric power transmission management apparatus 1 addressed to terminals, such as a smart phone which each user of the discharge object vehicle 10 and the charge object vehicle 10 uses.
上記対価情報を送信した電力伝送管理装置1の制御部3は、STEP4からの処理を再度実行する。この場合のSTEP4の処理(SOCばらつき度合い指標値を算出する処理)では、各放電対象車両10の蓄電器12のSOCの値として、前記放電制御による放電後の推定値が用いられると共に、各充電対象車両10の蓄電器12のSOCの値として、前記充電制御による充電後の推定値が用いられる。 The control unit 3 of the power transmission management device 1 that has transmitted the consideration information executes the processing from STEP 4 again. In the processing of STEP 4 (processing for calculating the SOC variation degree index value) in this case, the estimated value after discharging by the discharge control is used as the SOC value of the battery 12 of each discharging target vehicle 10, and each charging target As the SOC value of the battery 12 of the vehicle 10, the estimated value after charging by the charging control is used.
ここで、各放電対象車両10の蓄電器12の放電制御と各充電対象車両10の蓄電器12の充電制御とによって、基本的には、STEP4の次のSTEP5の判断結果が否定的になる。これにより、SOCばらつき低減処理が終了する。 Here, the determination result of STEP5 next to STEP4 is basically negative by the discharge control of the battery 12 of each vehicle 10 to be discharged and the charge control of the battery 12 of each vehicle 10 to be charged. Thereby, the SOC variation reduction process is completed.
ただし、電力利用対象車両10のうちの放電対象車両10及び充電対象車両10の組み合わせ、あるいは、放電制御及び充電制御で使用した前記可変パラメータの設定値によっては、SOCのばらつき度合の低減が不十分になり、ひいては、STEP5の判断結果が肯定的になる場合もある。この場合には、STEP6からの処理が再度実行される。 However, depending on the combination of the discharge target vehicle 10 and the charge target vehicle 10 among the power use target vehicles 10 or the set values of the variable parameters used in the discharge control and the charge control, the degree of variation in the SOC is not sufficiently reduced. As a result, the determination result in STEP 5 may be affirmative. In this case, the processing from STEP 6 is executed again.
本実施形態では、SOCばらつき低減処理は、以上の如く実行される。 In the present embodiment, the SOC variation reduction process is executed as described above.
電力伝送管理装置1の制御部3は、上記の如くSOCばらつき低減処理を実行した後、所定の時間帯において、前記電力利用対象車両10のそれぞれの制御部15との協働によって、前記瞬時予備力送電処理又は周波数調整処理を実行する。なお、該瞬時予備力送電処理又は周波数調整処理のうち、制御部3が実行する処理が、本発明における第1制御処理に相当する。 After executing the SOC variation reducing process as described above, the control unit 3 of the power transmission management device 1 cooperates with each control unit 15 of the power usage target vehicle 10 in a predetermined time zone to perform the instantaneous standby operation. A power transmission process or a frequency adjustment process is executed. Of the instantaneous reserve power transmission process or the frequency adjustment process, the process executed by the control unit 3 corresponds to the first control process in the present invention.
この場合、瞬時予備力送電処理を行う時間帯では、例えば、前記電力利用対象車両10のうち、蓄電器12のSOCが所定の下限閾値(例えば10%等)以上となっている各車両10が、電力供給源の車両として選定される。なお、該下限閾値は、本発明における第1閾値に相当する。 In this case, in the time zone in which the instantaneous reserve power transmission process is performed, for example, among the power usage target vehicles 10, each vehicle 10 in which the SOC of the battery 12 is equal to or higher than a predetermined lower threshold (for example, 10%) Selected as a vehicle for power supply. Note that the lower threshold corresponds to the first threshold in the present invention.
そして、当該選定車両10のそれぞれの蓄電器12から電力伝送管理装置1に外部充電装置5を介して電力が供給されると共に、該電力の総量が電力伝送管理装置1から電力系統30に送電される。 Then, electric power is supplied from each of the capacitors 12 of the selected vehicle 10 to the power transmission management device 1 via the external charging device 5, and the total amount of the power is transmitted from the power transmission management device 1 to the power system 30. .
この場合、当該選定車両10のそれぞれの蓄電器12の放電は、該蓄電器12のSOCが上記所定の下限閾値以上に保たれる範囲で行われる。 In this case, the discharge of each battery 12 of the selected vehicle 10 is performed in a range in which the SOC of the battery 12 is maintained at or above the predetermined lower limit threshold.
また、周波数調整処理を行う時間帯では、例えば、前記電力利用対象車両10のうち、蓄電器12のSOCが所定の上限閾値(例えば90%等)以下、且つ、上記所定の下限閾値以上となっている各車両10が、電力の送電及び受電を行う車両として選定される。なお、該上限閾値は、本発明における第2閾値に相当する。 Further, in the time zone in which the frequency adjustment process is performed, for example, the SOC of the battery 12 in the electric power usage target vehicle 10 is equal to or lower than a predetermined upper threshold (for example, 90%) and equal to or higher than the predetermined lower threshold. Each vehicle 10 is selected as a vehicle that transmits and receives power. Note that the upper threshold corresponds to the second threshold in the present invention.
そして、当該選定車両10のそれぞれの蓄電器12の放電電力を電力伝送管理装置1を経由して電力系統30に供給することと、当該選定車両10のそれぞれの蓄電器12の充電電力を電力系統30から電力伝送管理装置1を経由して該蓄電器12に供給することとが交互に繰り返される。 Then, the discharge power of each battery 12 of the selected vehicle 10 is supplied to the power system 30 via the power transmission management device 1, and the charging power of each battery 12 of the selected vehicle 10 is supplied from the power system 30. Supplying to the battery 12 via the power transmission management device 1 is repeated alternately.
この場合、電力伝送管理装置1から電力系統30への送電時には、当該選定車両10のそれぞれの蓄電器12から電力伝送管理装置1に供給された放電電力の総量が電力系統30に供給される。また、電力系統30から電力伝送管理装置1への送電時には、電力伝送管理装置1が電力系統30から受電した電力の総量が、当該選定車両10のそれぞれの蓄電器12に分配供給され、各蓄電器12が充電される。 In this case, at the time of power transmission from the power transmission management device 1 to the power system 30, the total amount of discharge power supplied from each storage battery 12 of the selected vehicle 10 to the power transmission management device 1 is supplied to the power system 30. Further, at the time of power transmission from the power system 30 to the power transmission management device 1, the total amount of power received by the power transmission management device 1 from the power system 30 is distributed and supplied to the respective capacitors 12 of the selected vehicle 10. Is charged.
次に、電力伝送管理装置1の制御部3は、前記瞬時予備力送電処理又は周波数調整処理が終了した後の時間帯において、前記電力利用対象車両10のそれぞれの制御部15との協働によって、該電力利用対象車両10のそれぞれの蓄電器12を充電する処理を実行する。 Next, the control unit 3 of the power transmission management device 1 cooperates with each control unit 15 of the power utilization target vehicle 10 in the time zone after the instantaneous reserve power transmission process or the frequency adjustment process is completed. Then, the process of charging each battery 12 of the electric power utilization target vehicle 10 is executed.
この場合、蓄電器12のSOC(推定値)が前記充放電要求により指定された目標SOCに満たない電力利用対象車両10に対して、電力伝送管理装置1から蓄電器12の充電電力が供給され、該蓄電器12が目標SOCまで充電される。 In this case, the charging power of the battery 12 is supplied from the power transmission management device 1 to the power use target vehicle 10 whose SOC (estimated value) of the battery 12 is less than the target SOC specified by the charge / discharge request. The battery 12 is charged to the target SOC.
この充電処理では、電力伝送管理装置1は、前記発電設備20から受電した電力を、蓄電器12の充電を行う電力利用対象車両10に供給する。また、該電力利用対象車両10の蓄電器12への充電電力の供給は、該電力利用対象車両10に関する前記利用計画により指定された該電力利用対象車両10の利用開始タイミングまでに充電を完了し得る時間帯であって、且つ、電力伝送管理装置1が前記発電設備20から受電する電力の利用単価が極力安価となる時間帯(例えば夜間の時間帯)で行われる。 In this charging process, the power transmission management device 1 supplies the power received from the power generation facility 20 to the power usage target vehicle 10 that charges the battery 12. Further, the supply of the charging power to the battery 12 of the power usage target vehicle 10 can complete the charging by the use start timing of the power usage target vehicle 10 specified by the usage plan related to the power usage target vehicle 10. It is performed in a time zone (for example, a night time zone) where the unit price of power received by the power transmission management device 1 from the power generation facility 20 is as low as possible.
かかる充電処理における蓄電器12の単位充電量当たりに課せられる支払コストは、本実施形態では、前記瞬時予備力送電処理での蓄電器12の単位放電量当たりの対価よりも低コストとなるように設定されている。 In this embodiment, the payment cost imposed per unit charge amount of the battery 12 in the charging process is set to be lower than the price per unit discharge amount of the battery 12 in the instantaneous reserve power transmission process. ing.
なお、車両10の蓄電器12の充電処理は、前記電力利用対象車両10以外の車両10についても、上記と同様に行われる。 Note that the charging process of the battery 12 of the vehicle 10 is performed in the same manner as described above for the vehicles 10 other than the electric power utilization target vehicle 10.
本実施形態では、以上説明した如く、前記瞬時予備力送電処理又は周波数調整処理によって電力伝送管理装置1と電力系統30との間の電力伝送を行う前の時間帯において、SOCばらつき低減処理が実行される。そして、該SOCばらつき低減処理により、前記電力利用対象車両10のそれぞれの蓄電器12のSOCの相互のばらつき度合が低減される。 In the present embodiment, as described above, the SOC variation reduction process is executed in the time zone before the power transmission between the power transmission management device 1 and the power system 30 by the instantaneous reserve power transmission process or the frequency adjustment process. Is done. Then, by the SOC variation reducing process, the mutual variation degree of the SOC of each battery 12 of the electric power utilization target vehicle 10 is reduced.
このため、電力利用対象車両10のそれぞれの蓄電器12のSOCは、瞬時予備力送電処理又は周波数調整処理の実行前には、100%もしくは0%に近づき過ぎない中間程度の値になりやすい。 For this reason, the SOC of each battery 12 of the power usage target vehicle 10 tends to be an intermediate value that does not approach 100% or 0% before the execution of the instantaneous reserve power transmission process or the frequency adjustment process.
ここで、蓄電器12のSOCが100%もしくはそれに近い高SOC状態である場合には、該蓄電器12は、実質的に充電ができないために、周波数調整処理では使用することができない。 Here, when the SOC of the battery 12 is 100% or a high SOC state close to 100%, the battery 12 cannot be used for the frequency adjustment process because it cannot be substantially charged.
また、高SOC状態の蓄電器12は、瞬時予備力送電処理で放電を行う蓄電器として使用することはできるものの、該蓄電器12の劣化防止もしくは過熱防止等のために、単位時間当たりの放電量は所定値以下に制限する必要がある。このため、瞬時予備力送電処理を実行する時間帯内での該蓄電器12(高SOC状態の蓄電器12)のトータルの放電量は放電可能量のうちの一部にとどまり易い。ひいては、該蓄電器12を搭載した車両10のユーザが取得し得る対価が少ないものとなりやすい。 In addition, although the battery 12 in the high SOC state can be used as a battery that discharges in instantaneous reserve power transmission processing, the discharge amount per unit time is predetermined in order to prevent deterioration or overheating of the battery 12. Must be limited to below the value. For this reason, the total discharge amount of the battery 12 (the battery 12 in the high SOC state) within the time zone in which the instantaneous reserve power transmission process is executed tends to remain only a part of the dischargeable amount. Eventually, the price that can be acquired by the user of the vehicle 10 equipped with the battery 12 is likely to be small.
また、蓄電器12のSOCが0%もしくはそれに近い低SOC状態である場合には、該蓄電器12は、実質的に放電できないために、瞬時予備力送電処理及び周波数調整処理の両方で使用することができない。 Further, when the SOC of the battery 12 is 0% or a low SOC state close to it, the battery 12 cannot be substantially discharged, so that it can be used for both the instantaneous reserve power transmission process and the frequency adjustment process. Can not.
従って、電力伝送管理装置1に電気的に接続された複数の電力利用対象車両10,10,…のうちに、蓄電器12が高SOC状態又は低SOC状態となっている車両10があると、瞬時予備力送電処理又は周波数調整処理で使用し得る蓄電器12の個数が少なくなりやすい。 Therefore, if there is a vehicle 10 in which the battery 12 is in a high SOC state or a low SOC state among a plurality of power use target vehicles 10, 10,... The number of capacitors 12 that can be used in the reserve power transmission process or the frequency adjustment process tends to decrease.
ひいては、電力伝送管理装置1と電力系統30との間で、車両10の蓄電器12を利用して伝送し得るトータルの電力量を十分に多くすることができない状況が発生し易い。また、車両10の蓄電器12を利用して伝送し得るトータルの電力量が、約定に基づく電力量に対して不足する虞れもある。その結果、電力伝送管理装置1の運営業者、あるいは、各車両10のユーザが獲得し得る利益が少なくなりやすい。 Eventually, a situation in which the total amount of power that can be transmitted using the battery 12 of the vehicle 10 cannot be sufficiently increased between the power transmission management device 1 and the power system 30 is likely to occur. Further, the total amount of power that can be transmitted using the battery 12 of the vehicle 10 may be insufficient with respect to the amount of power based on the contract. As a result, the profit that the operator of the power transmission management device 1 or the user of each vehicle 10 can obtain is likely to decrease.
さらに、蓄電器12は、一般に、高SOC状態又は低SOC状態での放置が長時間にわたって継続すると、劣化が早期に進行しやすい。 Furthermore, in general, when the battery 12 is left in a high SOC state or a low SOC state for a long time, the deterioration is likely to proceed at an early stage.
一方、本実施形態では、前記した如く、前記SOCばらつき低減処理によって、電力利用対象車両10のそれぞれの蓄電器12のSOCが、瞬時予備力送電処理又は周波数調整処理の実行前には、中間程度の値になりやすい。すなわち、各電力利用対象車両10の蓄電器12は、高SOC状態又は低SOC状態から中程度のSOC状態に変化するか、もしくは、中程度のSOC状態に維持される。 On the other hand, in the present embodiment, as described above, the SOC variation reduction process causes the SOC of each battery 12 of the electric power utilization target vehicle 10 to be intermediate before the execution of the instantaneous reserve power transmission process or the frequency adjustment process. It tends to be a value. That is, the battery 12 of each power usage target vehicle 10 changes from a high SOC state or a low SOC state to a medium SOC state, or is maintained in a medium SOC state.
一例を図6を参照して説明する。この例では、前記SOCばらつき低減処理の対象となる電力利用対象車両10は例えば4台であり、それぞれの蓄電器12のSOCは、SOCばらつき低減処理の開始時において、それぞれ100%、60%、40%、0%である。この場合、SOCばらつき度合指標値としての標準偏差は、36.0である。以降、蓄電器12のSOCが100%である車両10を車両10a、SOCが60%である車両10を車両10b、SOCが40%である車両10を車両10c、SOCが0%である車両10を車両10dと表記する。 An example will be described with reference to FIG. In this example, there are, for example, four power usage target vehicles 10 to be subjected to the SOC variation reduction process, and the SOC of each battery 12 is 100%, 60%, and 40, respectively, at the start of the SOC variation reduction process. %, 0%. In this case, the standard deviation as the SOC variation degree index value is 36.0. Thereafter, the vehicle 10 having the SOC of the battery 12 of 100% is the vehicle 10a, the vehicle 10 having the SOC of 60% is the vehicle 10b, the vehicle 10 having the SOC of 40% is the vehicle 10c, and the vehicle 10 having the SOC of 0% is the vehicle 10b. This is described as a vehicle 10d.
これらの車両10a〜10dに対するSOCばらつき低減処理では、例えば車両10aが放電対象車両10(1台)として選定され、車両10c,10dが充電対象車両10(2台)として選定される。なお、この例では、車両10bは、放電対象車両10又は充電対象車両10として選定されない。 In the SOC variation reduction processing for these vehicles 10a to 10d, for example, the vehicle 10a is selected as the discharge target vehicle 10 (one), and the vehicles 10c and 10d are selected as the charge target vehicles 10 (two). In this example, the vehicle 10b is not selected as the discharge target vehicle 10 or the charge target vehicle 10.
そして、放電対象車両10である車両10aの蓄電器12が、例えば50%のSOC相当の電気量を放電し、該電気量のうちの10%のSOC相当の電気量(車両10aの蓄電器12のトータルの放電量のうちの1/5)と、40%のSOC相当の電気量(車両10aの蓄電器12のトータルの放電量のうちの4/5)とが、それぞれ、充電対象車両10としての車両10c,10dに充電される。なお、X%のSOC相当の電気量というのは、より詳しくは、蓄電器12の満充電容量のX%の電気量(=満受電容量×X/100)を意味する。 Then, the battery 12 of the vehicle 10a, which is the vehicle 10 to be discharged, discharges, for example, an amount of electricity equivalent to 50% of the SOC, and the amount of electricity equivalent to 10% of the amount of electricity (the total of the capacitors 12 of the vehicle 10a). 1/5) and the amount of electricity equivalent to 40% SOC (4/5 of the total discharge amount of the battery 12 of the vehicle 10a), respectively, as the vehicle 10 to be charged 10c and 10d are charged. In addition, the amount of electricity corresponding to SOC of X% means more specifically the amount of electricity of X% of the full charge capacity of the battery 12 (= full power reception capacity × X / 100).
上記の如く、車両10aの蓄電器12の放電及び車両10c,10dのそれぞれの蓄電器12の放電を行うことにより、SOCばらつき低減処理の終了時には、車両10a〜10dのそれぞれの蓄電器12のSOCは、それぞれ、50%、60%、50%、40%となる。従って、SOCばらつき度合指標値としての標準偏差は、SOCばらつき低減処理の開始時の36.0から、7.1まで低下する。また、車両10a〜10dのそれぞれの蓄電器12のSOCは、中程度のSOC状態となる。 As described above, by discharging the capacitor 12 of the vehicle 10a and discharging the capacitor 12 of each of the vehicles 10c and 10d, the SOC of each of the capacitors 12 of the vehicles 10a to 10d is determined at the end of the SOC variation reduction process. , 50%, 60%, 50%, and 40%. Therefore, the standard deviation as the SOC variation degree index value decreases from 36.0 at the start of the SOC variation reduction process to 7.1. Further, the SOC of each battery 12 of vehicles 10a to 10d is in an intermediate SOC state.
このように、SOCばらつき低減処理によって、基本的には、電力利用対象車両10のそれぞれの蓄電器12のSOCのばらつき度合が低減する。その結果、電力利用対象車両10のそれぞれの蓄電器12のSOCが概ね中程度の値に揃う。 As described above, the SOC variation reduction processing basically reduces the degree of variation in the SOC of each battery 12 of the power usage target vehicle 10. As a result, the SOCs of the respective storage batteries 12 of the electric power utilization target vehicle 10 are substantially set to a medium value.
なお、図6に示す例では、SOCばらつき低減処理の実行によって、蓄電器12の放電を行う車両10aのユーザは、該蓄電器12の放電量(SOCの減少量)に応じた対価(プラスの対価)を取得し、蓄電器12の充電を行う車両10c,10dのユーザは、それぞれの蓄電器12の充電量(SOCの増加量)に応じた対価(マイナスの対価)を支払うこととなる。 In the example shown in FIG. 6, the user of the vehicle 10 a that discharges the battery 12 by executing the SOC variation reduction process gives consideration (positive consideration) according to the discharge amount (SOC reduction amount) of the battery 12. And the users of the vehicles 10c and 10d who charge the storage battery 12 pay the consideration (negative compensation) according to the charge amount (increased SOC) of each storage battery 12.
補足すると、SOCばらつき低減処理の実行開始前に、仮に、全ての電力利用対象車両10の蓄電器12のSOCが高SOC状態となっている状況、あるいは、全ての電力利用対象車両10の蓄電器12のSOCが低SOC状態となっている状況では、SOCばらつき低減処理によって、電力利用対象車両10のそれぞれの蓄電器12のSOCを中程度の値に変化させることはできないものの、電力利用対象車両10の台数が十分に多い場合、一般には、電力利用対象車両10のそれぞれの蓄電器12のSOCは、高SOC状態と低SOC状態との間の種々様々な値で分布する(高SOC状態側及び低SOC状態側の一方側だけに偏って分布する状況は一般には生じ難い)。 Supplementally, before starting the execution of the SOC variation reduction process, it is assumed that the SOCs of the capacitors 12 of all the electric power usage target vehicles 10 are in a high SOC state or the electric capacitors 12 of all the electric power usage target vehicles 10 In a situation where the SOC is in a low SOC state, the SOC variation reduction processing cannot change the SOC of each battery 12 of the power usage target vehicle 10 to a medium value, but the number of power usage target vehicles 10 In general, the SOC of each battery 12 of the electric power utilization target vehicle 10 is distributed in various values between the high SOC state and the low SOC state (the high SOC state side and the low SOC state). In general, it is unlikely that the situation is unevenly distributed only on one side.
従って、ほとんどの場合、電力利用対象車両10のそれぞれの蓄電器12のSOCは、SOCばらつき低減処理によって、概ね中程度の値に揃う。 Therefore, in most cases, the SOC of each battery 12 of the electric power utilization target vehicle 10 is substantially set to a medium value by the SOC variation reduction process.
本実施形態では、上記のように、SOCばらつき低減処理によって、基本的には、電力利用対象車両10のそれぞれの蓄電器12のSOCが概ね中程度の値に揃った状態となる。そして、この状態では、全ての電力利用対象車両10のそれぞれの蓄電器12を、前記瞬時予備力送電処理及び周波数調整処理で利用できる。 In the present embodiment, as described above, the SOC variation reducing process basically sets the SOC of each battery 12 of the electric power utilization target vehicle 10 to a substantially medium value. And in this state, each battery 12 of all the electric power utilization object vehicles 10 can be used by the above-mentioned instantaneous reserve power transmission processing and frequency adjustment processing.
従って、電力伝送管理装置1は、瞬時予備力送電処理及び周波数調整処理で電力系統30との間で伝送し得る電力量を多くすることができる。ひいては、当該電力の伝送によって、電力伝送管理装置1の運営事業者が獲得する利益を高めることができると共に、瞬時予備力送電処理及び周波数調整処理で利用者した車両10のユーザに対する対価を高めることができる。 Therefore, the power transmission management device 1 can increase the amount of power that can be transmitted to and from the power system 30 in the instantaneous reserve power transmission process and the frequency adjustment process. Eventually, the profit obtained by the operator of the power transmission management device 1 can be increased by transmitting the power, and the consideration for the user of the vehicle 10 used by the instantaneous reserve power transmission process and the frequency adjustment process can be increased. Can do.
特に、SOCばらつき低減処理の実行開始前に蓄電器12のSOCが高SOC状態となっていた車両10(例えば図6に示した車両10a)は、SOCばらつき低減処理での該蓄電器12の放電と、瞬時予備力送電処理による該蓄電器12の放電とによって、該蓄電器12の当初の電気量(蓄電量)の多くを放電できる。このため、該車両10のユーザは、多くの対価を取得することができる。 In particular, the vehicle 10 (for example, the vehicle 10a shown in FIG. 6) in which the SOC of the battery 12 is in a high SOC state before the execution of the SOC variation reduction process is started, the discharge of the battery 12 in the SOC variation reduction process, Most of the initial amount of electricity (storage amount) of the battery 12 can be discharged by the discharge of the battery 12 by the instantaneous reserve power transmission process. For this reason, the user of this vehicle 10 can acquire many considerations.
また、SOCばらつき低減処理の実行開始前に蓄電器12のSOCが低SOC状態となっていた車両10(例えば、図6に示した車両10d)は、SOCばらつき低減処理での該蓄電器12の充電によって、周波数調整処理で利用し得るようになるか、あるいは、該周波数調整処理と瞬時予備力送電処理との両方で利用し得るようになる。 Further, the vehicle 10 (for example, the vehicle 10d shown in FIG. 6) in which the SOC of the battery 12 is in a low SOC state before the execution of the SOC variation reduction process is performed is caused by the charging of the battery 12 in the SOC variation reduction process. It can be used in the frequency adjustment process, or can be used in both the frequency adjustment process and the instantaneous reserve power transmission process.
そのため、該車両10のユーザは、SOCばらつき低減処理での該蓄電器12の充電による対価値の減少分を補い得るように、対価を取得することができる。 Therefore, the user of the vehicle 10 can acquire the price so as to compensate for the decrease in the value due to the charging of the battery 12 in the SOC variation reduction process.
さらに、SOCばらつき低減処理の実行開始前に蓄電器12のSOCが高SOC状態又は低SOC状態となっていた車両10においては、SOCばらつき低減処理によって、蓄電器12のSOCが中程度のSOCに変化する。このため、該蓄電器12が、長時間にわたって、高SOC状態又は低SOC状態に維持されるのが防止される。その結果、蓄電器12の劣化の進行を抑制することができる。 Further, in the vehicle 10 in which the SOC of the battery 12 is in the high SOC state or the low SOC state before the execution of the SOC variation reducing process is started, the SOC of the battery 12 is changed to a medium SOC by the SOC variation reducing process. . This prevents the battery 12 from being maintained in a high SOC state or a low SOC state for a long time. As a result, the progress of deterioration of the battery 12 can be suppressed.
ここで、電力利用対象車両10のそれぞれユーザが取得する対価及び支払いコストに関して図7及び図8を参照して説明する。 Here, the consideration and payment cost acquired by each user of the electric power utilization target vehicle 10 will be described with reference to FIGS. 7 and 8.
図7は実施例を示す図、図8は比較例を示す図である。より詳しくは、図7は、図6の上段側に例示した4台の車両10a〜10d(蓄電器12の当初のSOC(初期SOC)がそれぞれ100%、60%、40%、0%である車両10a〜10d)に関して、前記SOCばらつき処理と、瞬時予備力送電処理と、周波数調整処理とを実行することにより各ユーザが取得し得る対価と、これらの処理及び動作の後の蓄電器12の充電(目標SOCまでの充電)による支払コストを棒グラフ状に例示している。 FIG. 7 is a diagram showing an example, and FIG. 8 is a diagram showing a comparative example. More specifically, FIG. 7 shows four vehicles 10a to 10d illustrated on the upper side of FIG. 6 (vehicles in which the initial SOC (initial SOC) of the battery 12 is 100%, 60%, 40%, and 0%, respectively). 10a to 10d), the consideration that each user can obtain by executing the SOC variation process, the instantaneous reserve power transmission process, and the frequency adjustment process, and the charging of the battery 12 after these processes and operations ( The payment cost by charging to the target SOC is illustrated in a bar graph shape.
また、図8は、上記4台の車両10a〜10dに関して、前記SOCばらつき処理を実行せずに、瞬時予備力送電処理及び周波数調整処理を実行することにより各ユーザが取得し得る対価と、これらの動作の後の蓄電器12の充電(目標SOCまでの充電)による支払コストを棒グラフ状に示している。 Further, FIG. 8 shows the consideration that each user can acquire by executing the instantaneous reserve power transmission process and the frequency adjustment process without executing the SOC variation process for the four vehicles 10a to 10d. The payment cost for charging the battery 12 (charging to the target SOC) after the above operation is shown in a bar graph.
これらの実施例及び比較例では、車両10a〜10dのそれぞれの蓄電器12の最終的な充電は、100%のSOCを目標SOCとして行われるものする。また、瞬時予備力送電処理を行う時間帯で各蓄電器12が放電可能なトータルの放電量の最大値は、50%のSOC相当の電気量であるする。 In these examples and comparative examples, the final charging of the respective capacitors 12 of the vehicles 10a to 10d is performed with 100% SOC as the target SOC. Further, the maximum value of the total discharge amount that can be discharged by each battery 12 in the time zone in which the instantaneous reserve power transmission process is performed is an electric amount equivalent to 50% SOC.
また、各蓄電器12は、最終的な充電の前に、瞬時予備力送電処理によって、10%のSOCまで放電が行われるものとする。すなわち、各蓄電器12の最終的な充電時の充電量は、いずれの車両10a〜10dについても、90%のSOC相当の電気量であるとする。 In addition, each capacitor 12 is assumed to be discharged to 10% SOC by instantaneous reserve power transmission processing before final charging. That is, it is assumed that the charging amount at the time of final charging of each battery 12 is an electric amount equivalent to 90% SOC for any of the vehicles 10a to 10d.
また、SOCばらつき低減処理での放電対象車両10の蓄電器12の単位放電量当たりの支払コスト(対価負担分)は、蓄電器12の最終的な充電時の支払いコストと同一(もしくはほぼ同一)であるとする。 In addition, the payment cost per unit discharge amount of the storage battery 12 of the discharge target vehicle 10 in the SOC variation reduction process is the same (or almost the same) as the payment cost at the time of final charging of the storage battery 12. And
図7に例示する実施例では、蓄電器12の初期SOCが100%である車両10aのユーザは、例えば、SOCばらつき低減処理での放電による対価Aa(50%のSOC相当の放電量に応じた対価)と、瞬時予備力送電処理による対価Ba(40%のSOC相当の放電量に応じた対価)と、周波数調整処理による対価Caとを取得し、蓄電器12の最終的な充電による支払コストDa(90%のSOC相当の充電量に応じたコスト)を負担する。 In the example illustrated in FIG. 7, the user of the vehicle 10 a whose initial SOC of the battery 12 is 100% is, for example, the consideration Aa due to the discharge in the SOC variation reduction processing (the consideration according to the amount of discharge equivalent to 50% SOC). ), The consideration Ba (the compensation corresponding to the amount of discharge equivalent to 40% SOC) by the instantaneous reserve power transmission processing, and the compensation Ca by the frequency adjustment processing, and the payment cost Da ( The cost corresponding to the amount of charge equivalent to 90% SOC).
また、蓄電器12の初期SOCが60%である車両10aのユーザは、例えば、瞬時予備力送電処理による対価Bb(50%のSOC相当の放電量に応じた対価)と、周波数調整処理による対価Cbとを取得し、蓄電器12の最終的な充電による支払コストDb(=Da)を負担する。なお、車両10bは、図6に示した如く、SOCばらつき低減処理での放電対象車両10又は充電対象車両10として選定されないので、該車両10aのユーザは、SOCばらつき低減処理による対価の取得又は支払コストの負担は発生しない。 Further, a user of the vehicle 10a whose initial SOC of the battery 12 is 60% may be, for example, a consideration Bb (a compensation according to a discharge amount equivalent to a 50% SOC) and a consideration Cb by a frequency adjustment process. And pay the payment cost Db (= Da) for the final charging of the battery 12. Since the vehicle 10b is not selected as the discharge target vehicle 10 or the charge target vehicle 10 in the SOC variation reduction process as shown in FIG. 6, the user of the vehicle 10a acquires or pays the value through the SOC variation reduction process. There is no cost burden.
また、蓄電器12の初期SOCが40%である車両10cのユーザは、例えば、瞬時予備力送電処理による対価Bc(40%のSOC相当の放電量に応じた対価)と、周波数調整処理による対価Ccとを取得し、蓄電器12の最終的な充電による支払コストDc(=Da)と、SOCばらつき低減処理での充電による支払コストA’c(10%のSOC相当の充電量に応じた支払コスト)を負担する。 Further, the user of the vehicle 10c whose initial SOC of the battery 12 is 40% may be, for example, a consideration Bc (a compensation corresponding to a discharge amount equivalent to 40% SOC) by a instantaneous reserve power transmission process and a consideration Cc by a frequency adjustment process. And the payment cost Dc (= Da) due to the final charge of the battery 12 and the payment cost A′c due to the charge in the SOC variation reduction processing (payment cost according to the charge amount equivalent to 10% SOC) To bear.
また、蓄電器12の初期SOCが0%である車両10dのユーザは、例えば、瞬時予備力送電処理による対価Bd(30%のSOC相当の放電量に応じた対価)と、周波数調整処理による対価Cdとを取得し、蓄電器12の最終的な充電による充電コストDd(=Da)と、SOCばらつき低減処理での充電による支払コストA’d(40%のSOC相当の充電量に応じた支払コスト)を負担する。 In addition, the user of the vehicle 10d whose initial SOC of the battery 12 is 0% may be, for example, a consideration Bd (a compensation corresponding to a discharge amount equivalent to 30% SOC) by the instantaneous reserve power transmission process and a consideration Cd by the frequency adjustment process. And the charging cost Dd (= Da) due to the final charging of the battery 12 and the payment cost A′d due to the charging in the SOC variation reduction process (payment cost according to the amount of charge equivalent to 40% SOC) To bear.
なお、本実施形態の実施例では、Aa=A’c+A’dである。 In the example of this embodiment, Aa = A′c + A′d.
一方、SOCばらつき低減処理を行わない比較例では、図8に例示するように、蓄電器12の初期SOCが100%である車両10aのユーザは、瞬時予備力送電処理による対価Ba(50%のSOC相当の放電量に応じた対価)だけを取得し、蓄電器12の最終的な充電による支払コストDa(50%のSOC相当の充電量に応じた支払コスト)を負担する。 On the other hand, in the comparative example in which the SOC variation reduction process is not performed, as illustrated in FIG. 8, the user of the vehicle 10 a whose initial SOC of the battery 12 is 100% is considered to be the consideration Ba (50% SOC) by the instantaneous reserve power transmission process. Only the cost corresponding to the corresponding amount of discharge) is acquired, and the payment cost Da (payment cost corresponding to the amount of charge equivalent to 50% SOC) by the final charge of the battery 12 is borne.
なお、車両10aの蓄電器12は、周波数調整処理で利用できないので、車両10aのユーザは周波数調整処理による対価を取得することができない。 In addition, since the battery 12 of the vehicle 10a cannot be used in the frequency adjustment process, the user of the vehicle 10a cannot obtain the compensation by the frequency adjustment process.
また、蓄電器12の初期SOCが60%である車両10aのユーザは、例えば、瞬時予備力送電処理による対価Bb(50%のSOC相当の放電量に応じた対価)と、周波数調整処理による対価Cbとを取得し、蓄電器12の最終的な充電による充電コストDb(90%のSOC相当の充電量に応じた支払コスト)を負担する。 Further, a user of the vehicle 10a whose initial SOC of the battery 12 is 60% may be, for example, a consideration Bb (a compensation according to a discharge amount equivalent to a 50% SOC) and a consideration Cb by a frequency adjustment process. And charge the charging cost Db (payment cost according to the amount of charge equivalent to 90% SOC) due to the final charging of the battery 12.
また、蓄電器12の初期SOCが40%である車両10cのユーザは、例えば、瞬時予備力送電処理による対価Bc(30%のSOC相当の放電量に応じた対価)と、周波数調整処理による対価Ccとを取得し、蓄電器12の最終的な充電による支払コストDc(90%のSOC相当の充電量に応じた支払コスト)を負担する。 Further, the user of the vehicle 10c whose initial SOC of the battery 12 is 40% may be, for example, a consideration Bc (a compensation corresponding to a discharge amount equivalent to a 30% SOC) by a instantaneous reserve power transmission process and a consideration Cc by a frequency adjustment process. And pay the payment cost Dc (the payment cost according to the amount of charge equivalent to 90% SOC) due to the final charging of the battery 12.
また、蓄電器12の初期SOCが0%である車両10dのユーザは、対価を取得することなく、蓄電器12の最終的な充電による支払コストDdを負担する。 Moreover, the user of the vehicle 10d whose initial SOC of the battery 12 is 0% bears the payment cost Dd due to the final charge of the battery 12 without acquiring the consideration.
図7及び図8を比較して判るように、図7に示す実施例においては、車両10a〜10dのいずれもが、瞬時予備力送電処理及び周波数調整処理で利用されるため、車両10a〜10dのそれぞれのユーザは、瞬時予備力送電処理及び周波数調整処理による対価を取得することができる。 As can be seen by comparing FIG. 7 and FIG. 8, in the embodiment shown in FIG. 7, all of the vehicles 10a to 10d are used in the instantaneous reserve power transmission process and the frequency adjustment process. Each of the users can acquire the compensation by the instantaneous reserve power transmission process and the frequency adjustment process.
これに対して、図8に示す比較例では、蓄電器12の初期SOCが100%である車両10aのユーザは、周波数調整処理による対価を取得できず、蓄電器12の初期SOCが0%である車両10dのユーザは、瞬時予備力送電処理及び周波数調整処理による対価を取得できない。 On the other hand, in the comparative example shown in FIG. 8, the user of the vehicle 10a whose initial SOC of the battery 12 is 100% cannot acquire the value by the frequency adjustment process, and the vehicle whose initial SOC of the battery 12 is 0%. The user of 10d cannot acquire the compensation by the instantaneous reserve power transmission process and the frequency adjustment process.
この場合、実施例における車両10aは、蓄電器12の充電による支払コストDaが、比較例に比して増加するものの、SOCばらつき低減処理での放電による対価Aaと、周波数調整処理による対価Caとを取得できる。従って、蓄電器12の充電による支払コストDaの増加分を十分に補い得るように、対価Aa,Caを取得できる。 In this case, in the vehicle 10a in the embodiment, although the payment cost Da due to the charging of the battery 12 increases as compared with the comparative example, the consideration Aa due to the discharge in the SOC variation reduction processing and the consideration Ca due to the frequency adjustment processing are obtained. You can get it. Accordingly, the considerations Aa and Ca can be acquired so that the increase in the payment cost Da due to the charging of the battery 12 can be sufficiently compensated.
また、実施例における車両10c,10dのそれぞれのユーザは、SOCばらつき低減処理での充電による支払コストA’c,A’dが比較例に対して増加するものの、瞬時予備力送電処理及び周波数調整処理による対価が増加する。また、このため、車両10c,10dのそれぞれのユーザの支払コストの負担が、比較例よりも軽減される。 In addition, each user of the vehicles 10c and 10d in the embodiment, although the payment costs A′c and A′d due to charging in the SOC variation reduction process increase compared to the comparative example, the instantaneous reserve power transmission process and the frequency adjustment Consideration for processing increases. For this reason, the burden of the payment cost of each user of vehicle 10c, 10d is reduced rather than a comparative example.
また、図8に示す比較例では、電力伝送管理装置1が瞬時予備力送電処理で蓄電器12の電力を使用し得る車両10は、車両10a〜10cの3台であると共に、それらの3台分の蓄電器12から、瞬時予備力送電処理の時間帯で放電し得る総電気量は、130%のSOC相当の電気量である。さらに、比較例では、周波数調整処理で蓄電器12の充電及び放電の繰り返しを行い得る車両10は、車両10b,10cの2台である。 Further, in the comparative example shown in FIG. 8, the power transmission management device 1 has three vehicles 10 a to 10 c that can use the power of the storage battery 12 in the instantaneous reserve power transmission process, and three vehicles 10 a to 10 c. The total amount of electricity that can be discharged from the battery 12 in the time zone of the instantaneous reserve power transmission process is an amount of electricity equivalent to 130% SOC. Furthermore, in the comparative example, there are two vehicles 10b and 10c that can repeatedly charge and discharge the battery 12 in the frequency adjustment process.
これに対して、図7に示す実施例では、電力伝送管理装置1が瞬時予備力送電処理で蓄電器12の電力を使用し得る車両10は、車両10a〜10dの4台であると共に、それらの4台分の蓄電器12から、瞬時予備力送電処理の時間帯で放電し得る総電気量は、170%のSOC相当の電気量となる。従って、瞬時予備力送電処理の時間帯で放電し得る総電気量が増加する。 On the other hand, in the embodiment shown in FIG. 7, there are four vehicles 10, 10 a to 10 d, in which the power transmission management device 1 can use the power of the battery 12 in the instantaneous reserve power transmission process. The total amount of electricity that can be discharged from the four capacitors 12 in the time zone of instantaneous reserve power transmission processing is an amount of electricity equivalent to 170% SOC. Accordingly, the total amount of electricity that can be discharged in the time zone of the instantaneous reserve power transmission process increases.
さらに、図7に示す実施例では、周波数調整処理で蓄電器12の充電及び放電の繰り返しを行い得る車両10が、車両10a〜10dの4台であるから、周波数調整処理で蓄電器12の電力を利用して電力伝送管理装置1と電力系統30との間で授受し得る総電気量を比較例より増加する。 Further, in the embodiment shown in FIG. 7, since there are four vehicles 10, 10 a to 10 d, that can repeatedly charge and discharge the capacitor 12 in the frequency adjustment process, the power of the capacitor 12 is used in the frequency adjustment process. Thus, the total amount of electricity that can be transferred between the power transmission management device 1 and the power system 30 is increased as compared with the comparative example.
このように、SOCばらつき低減処理を実行する本実施形態によれば、瞬時予備力供給動作において、車両10の蓄電器12の電力を利用して電力伝送管理装置1から電力系統30に送電し得る電力量と、周波数調整処理において、車両10の蓄電器12の電力を利用して電力伝送管理装置1と電力系統30との間で授受し得る電力量とを多くすることができる。 As described above, according to the present embodiment that executes the SOC variation reduction process, the power that can be transmitted from the power transmission management device 1 to the power system 30 using the power of the battery 12 of the vehicle 10 in the instantaneous reserve power supply operation. In the frequency adjustment process, the amount of power that can be exchanged between the power transmission management device 1 and the power system 30 using the power of the battery 12 of the vehicle 10 can be increased.
従って、電力伝送管理装置1の運営業者が獲得する利益を高めることができる。ひいては、電力伝送管理装置1の運営業者は、電力利用対象車両10のそれぞれの蓄電器12の充電による支払コストの単価(単位充電量当たりの支払コスト)をより一層低くしたり、あるいは、電力利用対象車両10のそれぞれの蓄電器12の放電による対価の単価(単位放電量当たりの対価)をより一層高めることが可能となる。その結果、車両10のユーザが取得する対価をより一層高めること、あるいは、該ユーザの支払コストをより一層抑制することが可能となる。 Therefore, the profit which the operator of the electric power transmission management apparatus 1 acquires can be improved. Eventually, the operator of the power transmission management device 1 can further reduce the unit cost (payment cost per unit charge amount) of the charging cost due to charging of each storage battery 12 of the power usage target vehicle 10, or It is possible to further increase the unit price of the charge (the price per unit discharge amount) due to the discharge of each battery 12 of the vehicle 10. As a result, the consideration acquired by the user of the vehicle 10 can be further increased, or the user's payment cost can be further suppressed.
なお、以上説明した実施形態では、SOCばらつき低減処理において、放電対象車両10の蓄電器12の単位放電量当たりの対価値の増加分と、充電対象車両10の蓄電器12の単位充電量当たりの対価値の減少分(負担分)とを同じ値とした。ただし、例えば、単位放電量当たりの対価値の増加分を、単位充電量当たりの対価値の減少分よりも大きくしてもよい。 In the embodiment described above, in the SOC variation reducing process, the increase in value per unit discharge amount of the battery 12 of the vehicle 10 to be discharged and the value per unit charge amount of the battery 12 of the vehicle 10 to be charged are set. The amount of decrease (burden) was set to the same value. However, for example, the increase in value per unit discharge amount may be larger than the decrease in value per unit charge amount.
さらに、SOCばらつき低減処理において、放電対象車両10の蓄電器12の単位放電量当たりの対価値の増加分を、例えば瞬時予備力送電処理での蓄電器12の単位放電量当たりの対価よりも大きくしてもよい。 Further, in the SOC variation reducing process, the increase in value per unit discharge amount of the battery 12 of the discharge target vehicle 10 is set to be larger than the price per unit discharge amount of the battery 12 in the instantaneous reserve power transmission process, for example. Also good.
このようにすることにり、SOCばらつき低減処理での放電対象車両10のユーザは、より多くの対価を獲得できるため、コストメリットを高めることができる。ひいては、本実施形態のシステム(V2Gシステム)に参加する車両10をより多くすることが可能となる。 By doing in this way, since the user of the discharge target vehicle 10 in the SOC variation reduction process can acquire more consideration, the cost merit can be increased. As a result, the number of vehicles 10 participating in the system (V2G system) of the present embodiment can be increased.
その結果、電力伝送管理装置1と電力系統30との間で伝送し得る電力量をより一層多くすることが可能となる。ひいては、電力伝送管理装置1の運営業者が獲得し得る利益を増加させることができる。 As a result, the amount of power that can be transmitted between the power transmission management device 1 and the power system 30 can be further increased. As a result, the profit which the operator of the electric power transmission management apparatus 1 can acquire can be increased.
また、前記実施形態では、輸送機器が車両10である場合と一例として説明した。ただし、本発明における輸送機器は、車両10以外の輸送機器、例えば船舶、軌道車両、あるいは、製造ラインにおける部品運搬車両等であってもよい。 Moreover, in the said embodiment, the case where the transport apparatus was the vehicle 10 was demonstrated as an example. However, the transport device in the present invention may be a transport device other than the vehicle 10, for example, a ship, a rail vehicle, or a parts transport vehicle in a production line.
1…電力伝送管理装置、1a…第2接続部、1b…第1接続部、3…制御部、3a…記録部、10…車両(輸送機器)、12…蓄電器、30…電力系統。
DESCRIPTION OF SYMBOLS 1 ... Electric power transmission management apparatus, 1a ... 2nd connection part, 1b ... 1st connection part, 3 ... Control part, 3a ... Recording part, 10 ... Vehicle (transportation equipment), 12 ... Electric storage device, 30 ... Electric power system.
Claims (11)
該第1接続部との間で電力伝送可能な接続部であって、外部の電力系統に電気的に接続された第2接続部と、
前記複数の輸送機器のそれぞれの蓄電器が前記第1接続部に接続された状態で、前記第1接続部及び前記第2接続部の間の電力伝送と、前記複数の輸送機器のそれぞれの蓄電器の相互間の電力伝送とに関する制御処理を実行可能な制御部とを備えており、
前記制御部は、
前記複数の輸送機器のそれぞれの蓄電器の充電率を示す充電状態情報と、前記電力系統での電力の入出力の要求を示す電力系統要求情報とを取得する機能を有すると共に、
前記電力系統要求情報に応じて前記第1接続部及び前記第2接続部の間の電力伝送を制御する第1制御処理を実行する機能と、
前記複数の輸送機器のそれぞれの蓄電器の充電率の相互のばらつき度合が所定の閾値以上であることが前記充電状態情報に基づいて判断される場合に、前記第1制御処理に先行して該ばらつき度合を低減するように、前記複数の輸送機器のうちの2つ以上の輸送機器のそれぞれの蓄電器の相互間の電力伝送を制御する第2制御処理を実行する機能と
を有するように構成されていることを特徴とする電力伝送管理装置。 A first connection part to which a capacitor mounted in each of a plurality of transport devices is electrically connected;
A second connection portion that is capable of transmitting power to and from the first connection portion and is electrically connected to an external power system;
With each capacitor of the plurality of transport devices connected to the first connection portion, power transmission between the first connection portion and the second connection portion, and each capacitor of the plurality of transport devices A control unit capable of executing control processing related to power transmission between each other,
The controller is
While having a function of acquiring charging state information indicating a charging rate of each storage device of the plurality of transport devices, and power system request information indicating a request for input / output of power in the power system,
A function of executing a first control process for controlling power transmission between the first connection unit and the second connection unit according to the power system request information;
When it is determined based on the state of charge information that the degree of mutual variation of the charging rate of each of the plurality of transport devices is greater than or equal to a predetermined threshold value, the variation precedes the first control process. A function of executing a second control process for controlling power transmission between the respective capacitors of the two or more transport devices among the plurality of transport devices so as to reduce the degree. A power transmission management device characterized by comprising:
前記制御部は、前記第1制御処理を実行するとき、前記複数の輸送機器のそれぞれの蓄電器のうち、前記充電状態情報により示される充電率が所定の第1閾値よりも低い蓄電器の放電を行わない態様で前記第1制御処理を実行するように構成されていることを特徴とする電力伝送管理装置。 The power transmission management device according to claim 1,
When the control unit executes the first control process, among the capacitors of each of the plurality of transport devices, the controller discharges the capacitors whose charging rate indicated by the charge state information is lower than a predetermined first threshold value. It is comprised so that the said 1st control processing may be performed in the aspect which does not have, The electric power transmission management apparatus characterized by the above-mentioned.
前記制御部は、前記第1制御処理を実行するとき、前記複数の輸送機器のそれぞれの蓄電器のうち、前記充電状態情報により示される充電率が所定の第2閾値よりも高い蓄電器の充電を行わない態様で前記第1制御処理を実行するように構成されていることを特徴とする電力伝送管理装置。 In the power transmission management device according to claim 1 or 2,
When the control unit executes the first control process, among the capacitors of each of the plurality of transport devices, the controller charges a capacitor whose charging rate indicated by the charge state information is higher than a predetermined second threshold value. It is comprised so that the said 1st control processing may be performed in the aspect which does not have, The electric power transmission management apparatus characterized by the above-mentioned.
前記制御部は、前記第2制御処理を実行するとき、前記2つ以上の輸送機器のうち、蓄電器の放電を行う輸送機器に放電指令を送信し、蓄電器の充電を行う輸送機器に充電指令を送信する機能を有するように構成されていることを特徴とする電力伝送管理装置。 In the electric power transmission management apparatus of any one of Claims 1-3,
The control unit, when executing the second control process, transmits a discharge command to a transport device that discharges a capacitor among the two or more transport devices, and issues a charge command to a transport device that charges the capacitor. A power transmission management device configured to have a transmission function.
前記制御部は、前記第2制御処理を実行するとき、前記複数の輸送機器のそれぞれの蓄電器の充電率のうちの最大の充電率を有する蓄電器が搭載された輸送機器と、最小の充電率を有する蓄電器が搭載された輸送機器とが前記2つ以上の輸送機器に優先的に含まれるように、該2つ以上の輸送機器を選定するように構成されていることを特徴とする電力伝送管理装置。 In the electric power transmission management device according to any one of claims 1 to 4,
When the control unit executes the second control process, the transport unit on which the capacitor having the maximum charge rate among the charge rates of the respective capacitors of the plurality of transport devices is mounted, and the minimum charge rate is set. Power transmission management, wherein the two or more transportation devices are selected so that the two or more transportation devices are preferentially included in the two or more transportation devices. apparatus.
前記制御部は、前記第2制御処理を実行するとき、前記2つ以上の輸送機器のうち、蓄電器の放電を行う輸送機器の台数よりも、蓄電器の充電を行う輸送機器の台数の方が多くなるように前記2つ以上の輸送機器を選定するように構成されていることを特徴とする電力伝送管理装置。 In the electric power transmission management apparatus of any one of Claims 1-5,
When the control unit executes the second control process, among the two or more transport devices, the number of transport devices that charge the capacitors is larger than the number of transport devices that discharge the capacitors. The power transmission management device is configured to select the two or more transportation devices.
前記複数の輸送機器のそれぞれの蓄電器の放電又は充電に関する対価値を各輸送機器毎に累積的に記録する記録部をさらに備えており、
前記制御部は、前記複数の輸送機器のうち、前記第1制御処理により蓄電器の充電又は放電を行った各輸送機器に対応する前記対価値を増加させる機能をさらに有するように構成されていることを特徴とする電力伝送管理装置。 In the electric power transmission management device according to any one of claims 1 to 6,
Further comprising a recording unit that cumulatively records the value for each of the transport devices for the discharge or charge of each of the plurality of transport devices,
The said control part is comprised so that it may further have the function to increase the said value corresponding to each transport apparatus which charged or discharged the capacitor | condenser by the said 1st control process among these transport apparatuses. A power transmission management device characterized by the above.
前記制御部は、前記複数の輸送機器のうち、前記第2制御処理により蓄電器の放電を行った各輸送機器に対応する前記対価値を増加させる機能をさらに有するように構成されていることを特徴とする電力伝送管理装置。 The power transmission management device according to claim 7, wherein
The control unit is configured to further have a function of increasing the value corresponding to each transport device that has discharged a capacitor by the second control process among the plurality of transport devices. A power transmission management device.
前記制御部は、前記複数の輸送機器のうち、前記第2制御処理により蓄電器の充電を行った各輸送機器に対応する前記対価値を減少させる機能をさらに有するように構成されていることを特徴とする電力伝送管理装置。 The power transmission management device according to claim 8,
The control unit is configured to further have a function of reducing the value corresponding to each transport device that has charged a capacitor by the second control process among the plurality of transport devices. A power transmission management device.
前記制御部は、前記第2制御処理により蓄電器の放電を行った各輸送機器に対応する単位放電量当たりの前記対価値の増加分を、前記第1制御処理により蓄電器の放電を行った各輸送機器に関する単位放電量当たりの前記対価値の増加分よりも大きくするように構成されていることを特徴とする電力伝送管理装置。 The power transmission management device according to claim 8 or 9,
The controller controls the increment of the value per unit discharge amount corresponding to each transport device that has discharged the capacitor by the second control process, and each transport that has discharged the capacitor by the first control process. A power transmission management device configured to be larger than the increase in value per unit discharge amount related to a device.
前記電力系統での電力の入出力の要求に応じて、前記複数の輸送機器のうちの1つ以上の輸送機器の蓄電器と前記電力系統との間で電力伝送を行う第1ステップと、
前記複数の輸送機器のそれぞれの蓄電器の充電率の相互のばらつき度合が所定の閾値以上である場合に、前記第1ステップに先行して、該ばらつき度合を低減するように該複数の輸送機器のうちの2つ以上の輸送機器のそれぞれの蓄電器の相互間の電力伝送を行う第2ステップとを備えることを特徴とする電力伝送方法。 A power transmission method in a power transmission management device in which a battery mounted in each of a plurality of transportation devices and an external power system are electrically connected,
A first step of performing power transmission between a storage device of one or more transport devices of the plurality of transport devices and the power system in response to a request for input / output of power in the power system;
When the mutual variation degree of the charging rate of each of the storage devices of the plurality of transportation devices is equal to or greater than a predetermined threshold value, prior to the first step, the plurality of transportation devices are configured to reduce the variation degree. And a second step of performing power transmission between the respective capacitors of two or more of the transportation devices.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016234691A JP6321762B1 (en) | 2016-12-02 | 2016-12-02 | Power transmission management apparatus and power transmission method |
US15/820,431 US10814741B2 (en) | 2016-12-02 | 2017-11-22 | Power transmission management apparatus and power transmission method |
CN201711212848.0A CN108155656A (en) | 2016-12-02 | 2017-11-28 | Power transmission managing device and power transmission method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016234691A JP6321762B1 (en) | 2016-12-02 | 2016-12-02 | Power transmission management apparatus and power transmission method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6321762B1 true JP6321762B1 (en) | 2018-05-09 |
JP2018093613A JP2018093613A (en) | 2018-06-14 |
Family
ID=62107342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016234691A Active JP6321762B1 (en) | 2016-12-02 | 2016-12-02 | Power transmission management apparatus and power transmission method |
Country Status (3)
Country | Link |
---|---|
US (1) | US10814741B2 (en) |
JP (1) | JP6321762B1 (en) |
CN (1) | CN108155656A (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110167788B (en) * | 2017-01-05 | 2023-07-11 | 通用电气公司 | DC quick charging station for electric vehicle |
JP2019092279A (en) * | 2017-11-14 | 2019-06-13 | トヨタ自動車株式会社 | Vehicle and power facility |
US11843271B2 (en) * | 2019-03-22 | 2023-12-12 | Nissan Motor Co., Ltd. | Power reception control method for power storage element and power reception control device |
US11186198B2 (en) * | 2019-05-31 | 2021-11-30 | Ford Global Technologies, Llc | Methods and systems for vehicle battery cell failure detection and overcharge protection |
US20220340034A1 (en) * | 2019-09-03 | 2022-10-27 | Vestas Wind Systems A/S | A method for controlling charging of electrical storage devices |
US10981464B1 (en) * | 2020-01-13 | 2021-04-20 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles |
US10836274B1 (en) | 2020-01-13 | 2020-11-17 | NAD Grid Corp. | Methods and systems for facilitating charging sessions for electric vehicles |
US10953765B1 (en) | 2020-01-13 | 2021-03-23 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles |
US11673483B2 (en) | 2020-01-13 | 2023-06-13 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles |
US11724616B2 (en) | 2020-01-13 | 2023-08-15 | NAD Grid Corp | Methods and systems for facilitating charging sessions for electric vehicles, with improved user interface operation modes |
US11999247B2 (en) | 2020-07-01 | 2024-06-04 | Toyota Motor North America, Inc. | Providing transport to transport energy transfer |
US11180048B1 (en) | 2020-07-01 | 2021-11-23 | Toyota Motor North America, Inc. | Transport-based exchange of electrical charge and services |
CN112688308A (en) * | 2020-12-11 | 2021-04-20 | 珠海格力电器股份有限公司 | Electric energy scheduling system, method, device and controller |
CN113240332B (en) * | 2021-06-07 | 2022-12-02 | 宁夏力成电气集团有限公司 | Operation management method and device for power distribution system |
US20220410755A1 (en) * | 2021-06-25 | 2022-12-29 | Zoox, Inc. | Fleet charging station architecture |
JP7463338B2 (en) * | 2021-12-14 | 2024-04-08 | プライムプラネットエナジー&ソリューションズ株式会社 | Power Demand Adjustment Device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5162383A (en) * | 1974-11-28 | 1976-05-29 | Sumitomo Electric Industries | KANGEKIGATAKOSHINARUMYORISENNO KINSENHOHO |
JP5440158B2 (en) | 2009-12-25 | 2014-03-12 | マツダ株式会社 | Battery charging method and charging system |
WO2011161758A1 (en) * | 2010-06-22 | 2011-12-29 | 日立オートモティブシステムズ株式会社 | Power supplying system |
CN103190052B (en) * | 2010-08-05 | 2016-06-08 | 三菱自动车工业株式会社 | Power supply and demand leveling system |
US9209630B2 (en) * | 2011-05-20 | 2015-12-08 | Ford Global Technologies, Llc | Active battery cell balancing methods with variable duration discharge |
US9722443B2 (en) * | 2011-09-16 | 2017-08-01 | Hitachi, Ltd. | Power distribution device |
JP6099990B2 (en) * | 2013-01-21 | 2017-03-22 | 三菱重工業株式会社 | Power storage system and control method thereof |
JP2015100203A (en) * | 2013-11-19 | 2015-05-28 | 本田技研工業株式会社 | Power quality assurance auxiliary system and electric vehicle |
CN105356459A (en) * | 2015-11-23 | 2016-02-24 | 东南大学 | A control method for allowing electric automobiles to participate in power system frequency modulation in a scattered grid-access manner |
-
2016
- 2016-12-02 JP JP2016234691A patent/JP6321762B1/en active Active
-
2017
- 2017-11-22 US US15/820,431 patent/US10814741B2/en active Active
- 2017-11-28 CN CN201711212848.0A patent/CN108155656A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20180154791A1 (en) | 2018-06-07 |
US10814741B2 (en) | 2020-10-27 |
CN108155656A (en) | 2018-06-12 |
JP2018093613A (en) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6321762B1 (en) | Power transmission management apparatus and power transmission method | |
JP6321763B1 (en) | Power storage system, transportation device, and control method of power storage system | |
CN109890651B (en) | Power storage device, transport apparatus, and control method | |
JP6402256B2 (en) | V2G system | |
JP7251503B2 (en) | Power management device and power management method | |
CN110062988B (en) | Server device and control method | |
JP6402255B2 (en) | Charge / discharge devices and transport equipment | |
JP6393834B2 (en) | Server device | |
JP6037013B2 (en) | CHARGE STATE MANAGEMENT METHOD, CHARGE STATE MANAGEMENT DEVICE, AND PROGRAM | |
JP2013009539A (en) | Electric power supply controller | |
JP2015100203A (en) | Power quality assurance auxiliary system and electric vehicle | |
US11491890B2 (en) | Vehicle management apparatus, vehicle, and vehicle management method | |
CN115622027A (en) | Power supply and demand management device and power supply and demand adjustment method | |
JP2015195664A (en) | Vehicle Management System | |
CN115632422A (en) | Power supply and demand adjustment method and power supply and demand management device | |
US20230231387A1 (en) | Server and power management system | |
US20230281731A1 (en) | Power management system | |
CN116890682A (en) | Power system, power control device, and power control method | |
CN114759661A (en) | Method and device for establishing battery charging and swapping model and computer equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6321762 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |