JP6321062B2 - Ferritic stainless steel with excellent intergranular corrosion resistance - Google Patents

Ferritic stainless steel with excellent intergranular corrosion resistance Download PDF

Info

Publication number
JP6321062B2
JP6321062B2 JP2016034650A JP2016034650A JP6321062B2 JP 6321062 B2 JP6321062 B2 JP 6321062B2 JP 2016034650 A JP2016034650 A JP 2016034650A JP 2016034650 A JP2016034650 A JP 2016034650A JP 6321062 B2 JP6321062 B2 JP 6321062B2
Authority
JP
Japan
Prior art keywords
chromium
stainless steel
mass
intergranular corrosion
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016034650A
Other languages
Japanese (ja)
Other versions
JP2016164309A (en
Inventor
奎 泳 金
奎 泳 金
振 鎬 朴
振 鎬 朴
亨 錫 徐
亨 錫 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2016164309A publication Critical patent/JP2016164309A/en
Application granted granted Critical
Publication of JP6321062B2 publication Critical patent/JP6321062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Description

本発明は、耐粒界腐食性に優れたフェライト系ステンレス鋼に係り、より詳しくは、自動車排気系部品、火力発電設備部品、原子力発電設備部品、燃料電池部品など高温に長時間露出されるフェライト系ステンレス鋼の、粒界腐食防止に用いることができる、耐粒界腐食性に優れたフェライト系ステンレス鋼に関する。   The present invention relates to ferritic stainless steel having excellent intergranular corrosion resistance, and more specifically, ferrite that is exposed to high temperatures for a long time, such as automobile exhaust system parts, thermal power generation equipment parts, nuclear power generation equipment parts, fuel cell parts, etc. The present invention relates to a ferritic stainless steel excellent in intergranular corrosion resistance that can be used to prevent intergranular corrosion of a stainless steel.

ステンレス鋼の粒界腐食は、構造物の寿命を短縮させる主な原因であり、これを防止するための研究が長期間に亘り続けられてきた。 近年、ステンレス鋼の粒界腐食の主な原因として、ステンレス鋼中に含まれる炭素(C)とステンレス鋼の主要合金元素であるクロム(Cr)との反応によって、クロム(Cr)炭化物が結晶粒界に生成することにより、クロム(Cr)炭化物の周囲に形成されるクロム(Cr)欠乏部によって粒界腐食が発生することが明らかになってきた。   Intergranular corrosion in stainless steel is a major cause of shortening the lifetime of structures, and research to prevent this has been ongoing for a long time. In recent years, as a main cause of intergranular corrosion of stainless steel, chromium (Cr) carbides are caused by reaction of carbon (C) contained in stainless steel and chromium (Cr) which is a main alloy element of stainless steel. It has become clear that intergranular corrosion occurs due to the chromium (Cr) deficiency formed around the chromium (Cr) carbide due to the generation at the boundary.

よって、ステンレス鋼の粒界腐食を防止するために、クロム(Cr)炭化物の生成を抑制させる技術が多様に研究されてきた。クロム(Cr)炭化物の生成を防ぐ代表的な常用技術は、炭素との親和力がクロム(Cr)より大きいことから、クロム(Cr)より先に炭化物を生成することができるチタン(Ti)やニオブ(Nb)のような、いわゆる「炭化物安定化元素」をステンレス鋼に添加する方法である。   Therefore, in order to prevent intergranular corrosion of stainless steel, various techniques for suppressing the formation of chromium (Cr) carbide have been studied. Typical common techniques for preventing the formation of chromium (Cr) carbides are titanium (Ti) and niobium, which can produce carbides before chromium (Cr), because their affinity for carbon is greater than chromium (Cr). In this method, a so-called “carbide stabilizing element” such as (Nb) is added to stainless steel.

この方法は、ステンレス鋼に含有される炭素(C)と窒素(N)の含有量より約8〜20倍多い量のチタン(Ti)やニオブ(Nb)のような安定化元素(M)を添加し、約1000℃付近の温度で熱間圧延及び焼鈍(annealing)工程を経て、約800℃以上の温度で先に生成される安定化元素(M)−炭化物又は安定化元素(M)−炭窒化物を優先的に生成させることにより、約800℃以下の温度で主に生成するクロム(Cr)炭化物の生成を抑制するものであり、粒界腐食を防止する技術として広く用いられている。   This method uses a stabilizing element (M) such as titanium (Ti) or niobium (Nb) in an amount about 8 to 20 times greater than the content of carbon (C) and nitrogen (N) contained in stainless steel. Added, and through a hot rolling and annealing process at a temperature of about 1000 ° C., a stabilizing element (M) -carbide or a stabilizing element (M) —generated earlier at a temperature of about 800 ° C. or higher. By preferentially producing carbonitrides, it suppresses the production of chromium (Cr) carbides that are mainly produced at temperatures of about 800 ° C. or less, and is widely used as a technique for preventing intergranular corrosion. .

フェライト系ステンレス鋼材の溶接時、溶接部の周囲の熱影響部の温度は1300℃以上に上昇する。このとき、ステンレス鋼の製造時に生成された安定化元素(M)−炭化物又は、安定化元素(M)−炭窒化物が分解され、溶接後の冷却過程でステンレス鋼内に固溶した状態で存在するようになる。そして、溶接されたステンレス鋼部品や構造物が自動車用鋼板、火力発電設備部品、原子力発電設備部品、燃料電池部品などのように約400〜700℃の温度で用いられると、ステンレス鋼内に固溶していた炭素(C)とチタン(Ti)及び/又はニオブ(Nb)、クロム(Cr)が結晶粒界に拡散し、結晶粒界でチタン(Ti)とニオブ(Nb)が炭素と優先的に結合して再び安定化元素(M)−炭化物(例:TiC)又は安定化元素(M)−炭窒化物(例:Ti(C、N))を生成することによりクロム(Cr)炭化物の生成を抑制し、これにより、クロム(Cr)欠乏層が形成されないため粒界腐食が防止されるという原理である。   During the welding of the ferritic stainless steel material, the temperature of the heat-affected zone around the welded portion rises to 1300 ° C or higher. At this time, the stabilizing element (M) -carbide or the stabilizing element (M) -carbonitride generated during the production of stainless steel is decomposed and dissolved in the stainless steel in the cooling process after welding. It comes to exist. When welded stainless steel parts and structures are used at temperatures of about 400 to 700 ° C. such as automobile steel plates, thermal power generation equipment parts, nuclear power generation equipment parts, fuel cell parts, etc., they are fixed in the stainless steel. Dissolved carbon (C) and titanium (Ti) and / or niobium (Nb) and chromium (Cr) diffuse into the grain boundary, and titanium (Ti) and niobium (Nb) preferentially take carbon at the grain boundary. To form a stabilizing element (M) -carbide (e.g. TiC) or a stabilizing element (M) -carbonitride (e.g. Ti (C, N)) again to form chromium (Cr) carbide This is the principle that intergranular corrosion is prevented because a chromium (Cr) -deficient layer is not formed.

しかしながら、安定化元素が添加されたフェライト系ステンレス鋼の粒界腐食に関する最近の研究結果(非特許文献1及び2)によれば、従来の粒界腐食反応機構説とは異なり、粒界に形成されるクロム(Cr)欠乏層は、クロム(Cr)が粒界に拡散しながら、炭素(C)と反応せずにクロム(Cr)自体の粒界拡散によってクロム(Cr)欠乏層が形成されて、粒界腐食を誘発させることが明らかになった。また、安定化元素が添加されたフェライト系ステンレス鋼材の粒界に生成された安定化元素(M)−炭化物又は、安定化元素(M)−炭窒化物の周囲でも、クロム(Cr)偏析が発生することが報告されている(非特許文献3)。   However, according to the recent research results on the intergranular corrosion of ferritic stainless steel to which a stabilizing element is added (Non-patent Documents 1 and 2), unlike the conventional intergranular corrosion reaction mechanism theory, it is formed at the grain boundary. The chromium (Cr) -deficient layer is formed by the diffusion of chromium (Cr) itself into the grain boundary without reacting with carbon (C) while chromium (Cr) diffuses into the grain boundary. It was revealed that intergranular corrosion was induced. Further, chromium (Cr) segregation occurs around the stabilizing element (M) -carbide or the stabilizing element (M) -carbonitride generated at the grain boundary of the ferritic stainless steel material to which the stabilizing element is added. It has been reported that this occurs (Non-patent Document 3).

従って、チタン(Ti)やニオブ(Nb)のように炭素(C)との親和力が強い炭化物安定化元素を添加する従来の方法のみでは、溶接熱影響部や高温環境で用いられるステンレス鋼、より具体的には、低クロム(Cr)系ステンレス鋼の粒界腐食を防止するのには、限界がある。
これについて、従来の特許(特許文献1)には、安定化元素であるチタン(Ti)が添加されたステンレス鋼の溶接後の粒界腐食を防止するために、溶接をした後に600〜700℃で1〜5時間熱処理することにより、粒内から粒界のクロム(Cr)欠乏層にクロム(Cr)を拡散させて、クロム(Cr)欠乏層をなくす方法が開示されている。しかしながらこの方法は、溶接後に別途の熱処理を行わなければならないため、溶接工程が複雑であり、溶接構造物の製造コストが増加するだけでなく、大型構造物の場合においては、溶接後に600〜700℃で熱処理するのが困難な部分には適用することができないという問題がある。
Therefore, only the conventional method of adding a carbide stabilizing element having a strong affinity for carbon (C) such as titanium (Ti) or niobium (Nb) is more suitable for stainless steel used in welding heat affected zone and high temperature environment. Specifically, there is a limit in preventing intergranular corrosion of low chromium (Cr) stainless steel.
In this regard, in the conventional patent (Patent Document 1), in order to prevent intergranular corrosion after welding of stainless steel to which titanium (Ti) as a stabilizing element is added, 600 to 700 ° C. after welding. In which the chromium (Cr) -deficient layer is eliminated by diffusing chromium (Cr) from the inside of the grains to the chromium (Cr) -deficient layer at the grain boundary. However, since this method requires a separate heat treatment after welding, the welding process is complicated and not only increases the manufacturing cost of the welded structure, but in the case of a large structure, 600 to 700 after welding. There is a problem that it cannot be applied to a portion that is difficult to be heat-treated at ° C.

韓国公開特許第2003−50212号公報Korean Published Patent No. 2003-50212 特開2013−76153号公報JP 2013-76153 A

J.K.Kim、Y.H.Kim、S.H.Uhm、J.S.Lee、K.Y.Kim、Corros.Sci.51(2009)2716.J. et al. K. Kim, Y. et al. H. Kim, S.M. H. Uhm, J. et al. S. Lee, K.M. Y. Kim, Corros. Sci. 51 (2009) 2716. J.K.Kim、Y.H.Kim、B.H.Lee、K.Y.Kim、Electrochimica Acta.56(2011)1701.J. et al. K. Kim, Y. et al. H. Kim, B.I. H. Lee, K.M. Y. Kim, Electrochimica Acta. 56 (2011) 1701. J.H.Park、J.K.Kim、B.H.Lee、K.Y.Kim、Scripta Mater.68(2013)237.J. et al. H. Park, J. et al. K. Kim, B.I. H. Lee, K.M. Y. Kim, Scripter Mater. 68 (2013) 237.

本発明の目的は、クロム(Cr)より炭素との親和力が高い炭化物安定化元素を添加しなくても、フェライト系ステンレス鋼の粒界腐食を抑制する効果に優れたフェライト系ステンレス鋼を提供することである。   An object of the present invention is to provide a ferritic stainless steel excellent in the effect of suppressing intergranular corrosion of ferritic stainless steel without adding a carbide stabilizing element having a higher affinity for carbon than chromium (Cr). That is.

本発明は、クロム(Cr):10乃至14質量%、炭素(C):0.02質量%以下、窒素(N):0.02質量%以下、リン(P):0.04質量%以下、硫黄(S):0.01質量%以下、モリブデン(Mo):0.05乃至2.0質量%、ケイ素(Si):0.2乃至1.5質量%、マンガン(Mn):0.1乃至1.0質量%、さらに6{(Mo−0.05)×(Si−0.2)×(Mn−0.18)}/(C+N)の関係式の値が1以上であることを満たし、残り鉄(Fe)及び不可避不純物からなり、
フェライト系ステンレス鋼の粒界及びその周辺にモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)複合金属間化合物が生成されていることを特徴とする。
(但し、前記関係式のMo、Si、Mn、C及びNは各成分の質量%を意味する。)
In the present invention, chromium (Cr): 10 to 14% by mass, carbon (C): 0.02% by mass or less, nitrogen (N): 0.02% by mass or less, phosphorus (P): 0.04% by mass or less , Sulfur (S): 0.01% by mass or less, molybdenum (Mo): 0.05 to 2.0% by mass, silicon (Si): 0.2 to 1.5% by mass, manganese (Mn): 0. 1 to 1.0% by mass, and the value of the relational expression of 6 {(Mo−0.05) × (Si−0.2) × (Mn−0.18)} / (C + N) is 1 or more. Consisting of the remaining iron (Fe) and inevitable impurities,
Molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) composite intermetallic compounds are produced at and around the grain boundaries of ferritic stainless steel.
(However, Mo, Si, Mn, C and N in the above relational expression mean mass% of each component.)

本発明による耐粒界腐食性に優れたフェライト系ステンレス鋼は、チタン(Ti)及びニオブ(Nb)のような炭素との親和力が強い炭化物安定化元素を添加しなくても、クロム(Cr)よりも炭素との親和力が弱い元素であるモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)を少量添加して粒界及びその周辺に金属間化合物を生成させ、鋼材の内部に固溶した炭素を安定化させることによってクロム(Cr)が粒界に向かって拡散するのを防止し、クロム(Cr)炭化物の生成を防ぎ、クロム(Cr)欠乏層が発生の発生を防止することによって、粒界腐食を防止することができるという効果を有する。特に、本発明は、溶接熱影響部の粒界腐食を効果的に防止することができる。   The ferritic stainless steel having excellent intergranular corrosion resistance according to the present invention can be obtained without adding a carbide stabilizing element having a strong affinity for carbon such as titanium (Ti) and niobium (Nb). Add a small amount of molybdenum (Mo), silicon (Si), and manganese (Mn), which are elements with a weaker affinity with carbon, to generate intermetallic compounds at the grain boundaries and their surroundings, and form solid solutions inside the steel. By stabilizing the generated carbon, chromium (Cr) is prevented from diffusing toward the grain boundaries, the formation of chromium (Cr) carbide is prevented, and the generation of the chromium (Cr) -deficient layer is prevented by , It has the effect of preventing intergranular corrosion. In particular, the present invention can effectively prevent intergranular corrosion of the weld heat affected zone.

主要金属元素の炭化物生成エネルギーを示すグラフであって、各金属元素の各温度におけるギブス自由エネルギーを示すグラフである。It is a graph which shows the carbide | carbonized_material formation energy of a main metal element, Comprising: It is a graph which shows the Gibbs free energy in each temperature of each metal element. 本発明の実施例の表1の比較例及び実施例の成分組成で添加したステンレス鋼を500℃で熱処理した後、粒界腐食試験を行った結果を示す写真である。It is a photograph which shows the result of having performed the intergranular corrosion test, after heat-processing the stainless steel added with the component composition of the comparative example of Example 1 of the Example of this invention, and an Example at 500 degreeC. 比較例5及び6と実施例1及び2をmodified−Strauss評価した後の粒界腐食の程度を光学顕微鏡で観察した結果を示すものである。The result of having observed the degree of intergranular corrosion after carrying out modified-Strauss evaluation of Comparative Examples 5 and 6 and Examples 1 and 2 with the optical microscope is shown. チタン(Ti)などの安定化元素を炭素(C)+窒素(N)含量より20倍以上添加した比較例1のステンレス鋼の結晶粒界を3DAPで分析した結果を示すものである。The result of having analyzed the crystal grain boundary of the stainless steel of the comparative example 1 which added stabilization elements, such as titanium (Ti) 20 times or more than carbon (C) + nitrogen (N) content, by 3DAP is shown. 安定化元素を添加した比較例1の粒界における元素別分布を3DAPで分析して位置別濃度を示すグラフである。It is a graph which shows the density | concentration according to a position by analyzing the elemental distribution in the grain boundary of the comparative example 1 which added the stabilizing element by 3DAP. 本発明に係る実施例2の粒界に沿って生成された金属間化合物を走査電子顕微鏡で観察した結果を示すものである。The result of having observed the intermetallic compound produced | generated along the grain boundary of Example 2 which concerns on this invention with the scanning electron microscope is shown. 実施例2を1300℃で10分間溶体化処理した後、500℃で2時間鋭敏化熱処理し、炭素レプリカ分析技法で析出物を抽出して透過電子顕微鏡で観察した結果を示した写真である。It is the photograph which showed the result of having carried out the solution treatment of Example 2 for 10 minutes at 1300 degreeC, and then carrying out the sensitization heat processing at 500 degreeC for 2 hours, extracting the deposit by the carbon replica analysis technique, and observing with a transmission electron microscope. 比較例6の粒界における元素別分布を3DAPで分析したグラフである。It is the graph which analyzed distribution according to element in the grain boundary of comparative example 6 by 3DAP. 実施例2の粒界における元素別分布を3DAPで分析したグラフである。It is the graph which analyzed distribution according to the element in the grain boundary of Example 2 by 3DAP. 本発明の実施例の比較例及び実施例の粒界腐食実験後の鋼材の面積減少率と関係式の結果値の関係を示すグラフである。It is a graph which shows the relationship between the area reduction rate of the steel materials after the intergranular corrosion experiment of the comparative example of an Example of this invention, and an Example, and the result value of a relational expression.

本発明は、溶接熱影響部や高温に長時間露出するフェライト系ステンレス鋼の粒界腐食を防止することができる耐粒界腐食性に優れたフェライト系ステンレス鋼に関する。   The present invention relates to a ferritic stainless steel excellent in intergranular corrosion resistance that can prevent intergranular corrosion of a ferritic stainless steel exposed to a weld heat affected zone or a high temperature for a long time.

図1は、主要金属元素の炭化物生成エネルギーを示すグラフであって、各金属元素の各温度におけるギブズ自由エネルギーを示すグラフである。
図1に示すように、炭化物を生成する元素の炭素親和度(carbon affinity)は、各種炭化物の生成エネルギーの程度によって決定され、炭化物生成エネルギーが低いほど炭素との親和度が高くなる。
従来は、粒界腐食の防止のために、チタン(Ti)又はニオブ(Nb)のような炭素親和度がクロム(Cr)より高い強い炭化物生成元素(strong carbide former)を添加することによって、クロム(Cr)が炭化物を生成することを防止しようとしたが、フェライト系ステンレス鋼の粒界腐食は、チタン(Ti)又はニオブ(Nb)のような強い炭化物生成元素の添加によって防止することができなかった。本発明は、従来技術のメカニズムとは全く異なるものであり、炭素親和度がクロム(Cr)より低い弱炭化物生成元素(weak carbide former)であるモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)を複合添加し、粒界及びその周辺に金属間化合物を生成することにより、ステンレス鋼の粒界腐食を防止するものである。
FIG. 1 is a graph showing the carbide formation energy of the main metal element, and shows the Gibbs free energy of each metal element at each temperature.
As shown in FIG. 1, the carbon affinity of an element that generates carbide is determined by the degree of generation energy of various carbides, and the lower the carbide generation energy, the higher the affinity with carbon.
Conventionally, in order to prevent intergranular corrosion, by adding a strong carbide forming element having a higher carbon affinity than chromium (Cr), such as titanium (Ti) or niobium (Nb), chromium is added. (Cr) tried to prevent the formation of carbides, but intergranular corrosion of ferritic stainless steel can be prevented by the addition of strong carbide forming elements such as titanium (Ti) or niobium (Nb). There wasn't. The present invention is completely different from the mechanism of the prior art, and molybdenum (Mo), silicon (Si), and manganese (weak carbide formers) having a carbon affinity lower than that of chromium (Cr). Mn) is added in combination to produce intermetallic compounds at and around the grain boundaries, thereby preventing intergranular corrosion of stainless steel.

本発明において、「炭化物安定化元素」とは、チタン(Ti)とニオブ(Nb)のように、炭素との親和力がクロム(Cr)より高い元素であって、ステンレス鋼に添加されたときに、この元素が炭素と反応して炭化物を優先的に生成することからクロム(Cr)炭化物の生成を防止することができる元素を意味する。   In the present invention, the “carbide stabilizing element” is an element having a higher affinity for carbon than chromium (Cr), such as titanium (Ti) and niobium (Nb), and is added to stainless steel. This means that the element can prevent the formation of chromium (Cr) carbide since this element reacts with carbon to produce carbide preferentially.

また、本発明において、「炭化物安定化元素を含まない」とは、ステンレス鋼中に、従来、安定化元素として用いられていたクロム(Cr)より炭素との親和力が強いチタン(Ti)、ニオブ(Nb)のような元素を含まないという意味であり、また、クロム(Cr)より炭素との親和力が弱いモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)は、実質的には炭化物安定化元素として作用しないという意味である。   Further, in the present invention, “not containing a carbide stabilizing element” means that titanium (Ti) or niobium having a stronger affinity for carbon than chromium (Cr), which has been conventionally used as a stabilizing element, in stainless steel. This means that no element such as (Nb) is contained, and molybdenum (Mo), silicon (Si), and manganese (Mn), which have a lower affinity for carbon than chromium (Cr), are substantially carbides. It means that it does not act as a stabilizing element.

本発明の発明者らは、ステンレス鋼にチタン(Ti)、ニオブ(Nb)のようにクロム(Cr)より先に炭化物を生成する元素を添加する場合よりも、モリブデン(Mo)、ケイ素(Si)及びマンガン(Mn)を複合添加した場合に、溶接熱影響部の粒界腐食を、より効果的に防止することができることを見出した。   The inventors of the present invention have made molybdenum (Mo), silicon (Si) more than the case of adding an element that forms carbide prior to chromium (Cr), such as titanium (Ti) and niobium (Nb), to stainless steel. ) And manganese (Mn) were found to be able to more effectively prevent intergranular corrosion of the weld heat affected zone.

以下、本発明の耐粒界腐食性に優れたフェライト系ステンレス鋼について詳細に説明する。   Hereinafter, the ferritic stainless steel excellent in intergranular corrosion resistance of the present invention will be described in detail.

本発明の、耐粒界腐食性に優れたフェライト系ステンレス鋼は、クロム(Cr):10〜14質量%、炭素(C):0.02質量%以下、窒素(N):0.02質量%以下、リン(P):0.04質量%以下、硫黄(S):0.01質量%以下、モリブデン(Mo):0.05〜2.0質量%、ケイ素(Si):0.2〜1.5質量%、マンガン(Mn):0.1〜1.0質量%、及び残部の鉄(Fe)及び不可避不純物を含み、6{(Mo−0.05)×(Si−0.2)×(Mn−0.18)}/(C+N)の関係式の値が1以上であることを満たす(ここで、上記関係式のMo、Si、Mn、C及びNは各成分の質量%を意味する)。   The ferritic stainless steel of the present invention having excellent intergranular corrosion resistance is chromium (Cr): 10 to 14% by mass, carbon (C): 0.02% by mass or less, and nitrogen (N): 0.02% by mass. % Or less, phosphorus (P): 0.04 mass% or less, sulfur (S): 0.01 mass% or less, molybdenum (Mo): 0.05 to 2.0 mass%, silicon (Si): 0.2 -1.5 mass%, manganese (Mn): 0.1-1.0 mass%, and the balance of iron (Fe) and inevitable impurities, 6 {(Mo-0.05) × (Si-0. 2) satisfying that the value of the relational expression of × (Mn−0.18)} / (C + N) is 1 or more (where, Mo, Si, Mn, C and N in the relational expression are the mass of each component) % Means).

以下、本発明の成分及び組成範囲の限定理由を詳細に説明する。   Hereinafter, the reasons for limiting the components and the composition range of the present invention will be described in detail.

クロム(Cr):10〜14質量%
クロム(Cr)は、ステンレス鋼に耐食性を付与する基本成分であり、耐食性の向上のためには多く添加する必要がある。ここで、10質量%未満の場合は、耐食性が非常に悪化するため、10質量%以上に限定し、また、14質量%を超える場合は、金属状態のクロム(Cr)濃縮による粒界腐食現象が、鋼材の耐食性に及ぼす影響が低く、従来の安定化元素の添加だけで粒界腐食の防止が可能であるため、本特許で提案しようとする耐粒界腐食性に優れたフェライト系ステンレス鋼におけるクロム(Cr)含量の範囲は、14質量%以下であることが好ましい。
Chromium (Cr): 10-14% by mass
Chromium (Cr) is a basic component that imparts corrosion resistance to stainless steel, and it is necessary to add a large amount in order to improve corrosion resistance. Here, when it is less than 10% by mass, the corrosion resistance is very deteriorated, so it is limited to 10% by mass or more, and when it exceeds 14% by mass, intergranular corrosion phenomenon due to chromium (Cr) concentration in the metal state. However, it has a low influence on the corrosion resistance of steel, and it is possible to prevent intergranular corrosion only by adding a conventional stabilizing element. Therefore, the ferritic stainless steel excellent in intergranular corrosion resistance proposed in this patent is proposed. The range of the chromium (Cr) content in is preferably 14% by mass or less.

炭素(C):0.02質量%以下
炭素(C)は、溶接性及び加工性を悪化させる成分であり、0.02質量%を超えて添加すると、溶接性及び加工性が非常に悪くなるため、0.02質量%以下に限定する。
Carbon (C): 0.02% by mass or less Carbon (C) is a component that deteriorates weldability and workability, and when added in excess of 0.02% by mass, weldability and workability become very poor. Therefore, it is limited to 0.02% by mass or less.

窒素(N):0.02質量%以下
窒素(N)は、溶接性及び加工性を悪化させる成分であり、0.02質量%を超えて添加すると、溶接性及び加工性が非常に悪くなるため、0.02質量%以下に限定する。
Nitrogen (N): 0.02% by mass or less Nitrogen (N) is a component that deteriorates weldability and workability, and if added over 0.02% by mass, weldability and workability become very poor. Therefore, it is limited to 0.02% by mass or less.

リン(P):0.04質量%以下
リン(P)は、不可避不純物として鋼中に含有される成分であり、その量が少ないほど鋼の靭性及び加工性がよくなる。一方、0.04質量%を超えて添加されると、靭性及び加工性が非常に悪化するため、0.04質量%以下に限定する。
Phosphorus (P): 0.04% by mass or less Phosphorus (P) is a component contained in steel as an inevitable impurity, and the smaller the amount, the better the toughness and workability of the steel. On the other hand, if added over 0.04% by mass, the toughness and workability are very deteriorated, so the amount is limited to 0.04% by mass or less.

硫黄(S):0.01質量%以下
硫黄(S)は不可避不純物として鋼中に含有される成分であり、その量が少ないほど鋼の熱間加工性がよくなる。一方、0.01質量%を超えて添加されると、熱間圧延工程で熱間加工性を大きく落とすため、0.01質量%以下に限定する。
Sulfur (S): 0.01% by mass or less Sulfur (S) is a component contained in steel as an inevitable impurity, and the smaller the amount, the better the hot workability of the steel. On the other hand, if added over 0.01% by mass, the hot workability is greatly reduced in the hot rolling step, so the content is limited to 0.01% by mass or less.

モリブデン(Mo):0.05〜2.0質量%
モリブデン(Mo)は、フェライト系ステンレス鋼の腐食を抑制するのに有効な元素である。特に、モリブデン(Mo)は、フェライトステンレス鋼材の粒界に濃縮されて二次相を生成しやすいため、本発明で提案する粒界腐食防止元素として適している。しかしながら、モリブデン(Mo)を、2.0質量%を超えて添加すると、650℃以上の温度でs相を析出して耐衝撃値及び耐食性を低下させるため、2.0質量%以下で添加することが好ましい。また、0.05質量%未満の場合は、粒界及びその周辺に粒界腐食の防止のためのモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物を生成しにくいため、好ましくは0.05〜2.0質量%の範囲で添加する。
Molybdenum (Mo): 0.05 to 2.0 mass%
Molybdenum (Mo) is an element effective in suppressing the corrosion of ferritic stainless steel. Molybdenum (Mo) is particularly suitable as an intergranular corrosion preventing element proposed in the present invention because it is concentrated at the grain boundaries of the ferritic stainless steel material and easily generates secondary phases. However, when molybdenum (Mo) is added in an amount exceeding 2.0% by mass, the s phase is precipitated at a temperature of 650 ° C. or more to reduce the impact resistance and corrosion resistance. It is preferable. Moreover, when it is less than 0.05% by mass, molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) -based intermetallic compound for preventing intergranular corrosion at the grain boundary and its surroundings. Since it is hard to produce | generate, Preferably it adds in 0.05-2.0 mass%.

ケイ素(Si):0.2〜1.5質量%
ケイ素(Si)は、有効な脱酸剤であり、強力なフェライト生成元素である。また、鋼材の粒界に濃縮されやすいため、粒界腐食の防止のために0.2質量%以上添加することが好ましく、また、ケイ素(Si)を多量添加する場合には製鋼及び酸洗工程で問題を起こす可能性があるため、1.5質量%以下で添加することが好ましい。
Silicon (Si): 0.2 to 1.5% by mass
Silicon (Si) is an effective deoxidizer and a powerful ferrite-forming element. Further, since it is easily concentrated at the grain boundaries of the steel material, it is preferably added in an amount of 0.2% by mass or more to prevent intergranular corrosion. When a large amount of silicon (Si) is added, the steelmaking and pickling steps Therefore, it is preferable to add at 1.5% by mass or less.

マンガン(Mn):0.1〜1.0質量%
マンガン(Mn)は、脱酸及び脱硫剤として作用すると共にオーステナイト安定化に有効に用いられ、ステンレス鋼に固溶(solid solution)する硫黄(S)を低減して硫黄(S)の粒界偏析(segregation)を抑制するため、熱間圧延時の硫黄(S)による亀裂発生を防止する役割をので、このような効果のために0.1質量%以上添加することが好ましい。また、マンガン(Mn)は、フェライト鋼に多量添加されたときに靭性と耐食性及び耐酸化性を劣化させる可能性があり、1.0質量%以下に限定することが好ましい。従って、マンガン(Mn)は、0.1〜1.0質量%の範囲で添加することが好ましい。
Manganese (Mn): 0.1 to 1.0% by mass
Manganese (Mn) acts as a deoxidation and desulfurization agent and is used effectively for austenite stabilization, and reduces sulfur (S) that dissolves in stainless steel to reduce grain boundary segregation of sulfur (S). In order to suppress (segregation), since it plays the role which prevents the crack generation by sulfur (S) at the time of hot rolling, it is preferable to add 0.1 mass% or more for such an effect. Further, manganese (Mn) may deteriorate toughness, corrosion resistance and oxidation resistance when added in a large amount to ferritic steel, and is preferably limited to 1.0% by mass or less. Therefore, it is preferable to add manganese (Mn) in the range of 0.1 to 1.0% by mass.

チタン(Ti)及びニオブ(Nb)
本発明では、チタン(Ti)及びニオブ(Nb)などを含有させることができ、これらのチタン(Ti)及びニオブ(Nb)などは耐粒界腐食性の改善には影響を及ぼさない。
Titanium (Ti) and niobium (Nb)
In the present invention, titanium (Ti), niobium (Nb) and the like can be contained, and these titanium (Ti) and niobium (Nb) do not affect the improvement of intergranular corrosion resistance.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料又は周囲環境から意図しない不純物が不可避的に混入される可能性があるため、これを排除することはできない。これらの不純物は通常の製造過程を用いる技術者であれば誰でも分かるものであるため、その全ての内容を本明細書では特に説明しない。   The remaining component of the present invention is iron (Fe). However, in a normal manufacturing process, an unintended impurity may be inevitably mixed from the raw material or the surrounding environment, so this cannot be excluded. Since these impurities can be understood by any engineer using a normal manufacturing process, the entire contents thereof are not particularly described in this specification.

本発明は、上記の成分範囲を満たすと共に下記の関係式1を満たすことにより、鋼材の粒界及びその周辺にモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物を生成して粒界腐食を防止することができる。   The present invention satisfies the above component range and satisfies the following relational expression 1 so that molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) -based metal is present at and around the grain boundaries of the steel material. Intergranular corrosion can be prevented by generating intermetallic compounds.

[関係式1]
6{(Mo−0.05)×(Si−0.2)×(Mn−0.18)}/(C+N)≧1
[Relational expression 1]
6 {(Mo−0.05) × (Si−0.2) × (Mn−0.18)} / (C + N) ≧ 1

鋼材の粒界及びその周辺にモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物を生成するためには、モリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)が鋼材にそれぞれ一定量以上添加されなければならず、他の二つの元素の含量が十分に高くても、一つの元素の含量が欠乏する場合には、モリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物を十分に生成することができない。関係式1は、鋼材の内部の炭素(C)、窒素(N)含量による粒界腐食の防止のためのモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物の生成に必要なモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)含量の必要条件を導き出したものである。下記の実施例を参照しても、上記関係式1を満たす実施例の場合には、表2及び図10に示すように、粒界腐食を示さないことが確認でき、上記関係式1を満たさない比較例の場合には、モリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物の生成とそれによる耐粒界腐食性の向上の効果が現われないため、耐粒界腐食性を向上させるためには、鋼材に添加する合金元素の含量が関係式1を満たす必要があることが分かる。   In order to produce molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) -based intermetallic compounds at the grain boundaries of steel materials and in the vicinity thereof, molybdenum (Mo), silicon (Si), and manganese (Mn) must be added to the steel material in a certain amount or more, and if the content of one element is deficient even if the content of the other two elements is sufficiently high, molybdenum (Mo) -silicon ( Si) -manganese (Mn) -carbon (C) -based intermetallic compounds cannot be produced sufficiently. Relational expression 1 is between molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) metal for preventing intergranular corrosion due to the content of carbon (C) and nitrogen (N) in the steel. The necessary conditions for the molybdenum (Mo), silicon (Si), and manganese (Mn) contents necessary for the formation of the compound are derived. Even in the case of the example satisfying the relational expression 1 as shown in the following example, it can be confirmed that no intergranular corrosion is exhibited as shown in Table 2 and FIG. 10, and the relational expression 1 is satisfied. In the case of no comparative example, the effect of the generation of molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) intermetallic compound and the resulting improvement in intergranular corrosion resistance does not appear, It can be seen that in order to improve the intergranular corrosion resistance, the content of the alloy element added to the steel material must satisfy the relational expression 1.

本発明では、上記の弱炭化物生成元素(weak carbide former)であるモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)を複合添加することにより、鋼材の微細組織の粒界及びその周辺にモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物を生成して粒界腐食を防止しようとする。上記金属間化合物の生成は、炭素を金属間化合物内に拘束することにより鋼材内に固溶した炭素を安定化させる役割をする。   In the present invention, molybdenum (Mo), silicon (Si), and manganese (Mn), which are the weak carbide forming elements described above, are added in combination to the grain boundary of the microstructure of the steel material and the periphery thereof. An attempt is made to prevent intergranular corrosion by producing a molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) intermetallic compound. The production of the intermetallic compound serves to stabilize carbon dissolved in the steel material by restraining carbon in the intermetallic compound.

ここで、上記モリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物はCMnMoSiであることが好ましい。鋼材の内部においてモリブデン(Mo)、ケイ素(Si)、マンガン(Mn)及び炭素(C)は熱力学的に粒界に濃縮されやすいため、各元素の含量が一定量以上の場合は粒界及びその周辺に沿ってモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物が生成されることができ、下記実施例でも、鋼材の内部の粒界及びその周辺に生成されるモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)系金属間化合物は主にCMnMoSiの形で析出されることが示された。 Here, it is preferable that the molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) -based intermetallic compound is CMn 4 MoSi. Molybdenum (Mo), silicon (Si), manganese (Mn), and carbon (C) are easily concentrated thermodynamically at the grain boundaries inside the steel material. When the content of each element is a certain amount or more, the grain boundaries and Molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) -based intermetallic compounds can be generated along the periphery, and in the following examples, the grain boundary inside the steel material and its periphery It was shown that the molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) -based intermetallic compound produced in (1) was precipitated mainly in the form of CMn 4 MoSi.

また、本発明のフェライトステンレス鋼の粒界において、クロム(Cr)濃縮の最大含量とクロム(Cr)欠乏層の最小含量の偏差は10原子%以下であることが好ましい。フェライト系ステンレス鋼材に粒界腐食が起こる原因は、粒界におけるクロム(Cr)濃縮と欠乏層のクロム(Cr)濃度差によって電気化学的分極が起こることにある。従って、フェライト系ステンレス鋼の粒界におけるクロム(Cr)の濃縮の最大含量と欠乏層の最小含量の偏差を10原子%以下に抑制することにより、耐粒界腐食性に優れたフェライト系ステンレス鋼を提供することができる。   Further, in the grain boundary of the ferritic stainless steel of the present invention, the deviation between the maximum content of chromium (Cr) concentration and the minimum content of chromium (Cr) -deficient layer is preferably 10 atomic% or less. The cause of intergranular corrosion in ferritic stainless steel materials is that electrochemical polarization occurs due to the difference in chromium (Cr) concentration at the grain boundary and chromium (Cr) concentration in the depleted layer. Therefore, the ferritic stainless steel with excellent intergranular corrosion resistance is controlled by suppressing the deviation between the maximum concentration of chromium (Cr) at the grain boundary of the ferritic stainless steel and the minimum content of the deficient layer to 10 atomic% or less. Can be provided.

ここで、上記クロム(Cr)濃縮の最大含量は20原子%以下であり、上記クロム(Cr)欠乏層の最小含量は9.5原子%以上であることがより好ましく、このような最大含量及び最小含量を維持すると、フェライト系ステンレス鋼の粒界腐食をより効果的に抑制することができる。   Here, the maximum content of the chromium (Cr) concentration is 20 atomic% or less, and the minimum content of the chromium (Cr) -deficient layer is more preferably 9.5 atomic% or more. If the minimum content is maintained, intergranular corrosion of ferritic stainless steel can be more effectively suppressed.

以下に、添付の図面を参照して、本発明の好ましい実施例を基に本発明を詳細に説明する。なお、以下の実施例と図面に示した構成は、本発明の好ましい実施例に過ぎず、本発明の技術的思想を全て示すものではないため、本出願時点にこれらを代替できる多様な均等物と変形例があり得、本発明の範囲が後述の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on preferred embodiments of the present invention with reference to the accompanying drawings. Note that the configurations shown in the following embodiments and drawings are only preferred embodiments of the present invention and do not show all the technical ideas of the present invention, and therefore various equivalents which can be substituted at the time of the present application. There may be modified examples, and the scope of the present invention is not limited to the examples described later.

下記表1は、本発明の比較例と実施例の組成を示している。   Table 1 below shows the compositions of Comparative Examples and Examples of the present invention.

下記表1の成分含量を有し、不純物であるリン(P)及び硫黄(S)を0.001質量%以下含有するフェライト系ステンレス鋼材を、1300℃で10分間溶体化処理した後、500℃で2時間鋭敏化熱処理した。このような熱処理は、市販鋼材の溶接後の処理環境を再現するためのものである。   A ferritic stainless steel material having the component contents shown in Table 1 below and containing 0.001% by mass or less of phosphorus (P) and sulfur (S) as impurities is subjected to solution treatment at 1300 ° C. for 10 minutes, and then 500 ° C. For 2 hours. Such heat treatment is for reproducing the processing environment after welding of a commercial steel material.

フェライト系ステンレス鋼を溶接するとき、ステンレス鋼の溶融温度付近(約1300℃以上)まで加熱し、このような溶接部を含むステンレス鋼構造物を400〜700℃の温度区間で用いると、炭化物安定化元素であるチタン(Ti)とニオブ(Nb)を添加したステンレス鋼材の場合は鋭敏化が進行し、粒界腐食を誘発する原因となる。   When ferritic stainless steel is welded, it is heated to near the melting temperature of stainless steel (about 1300 ° C or higher), and when a stainless steel structure including such a weld is used in a temperature range of 400 to 700 ° C, carbide stabilization is achieved. In the case of a stainless steel material to which titanium (Ti) and niobium (Nb), which are chemical elements, are added, sensitization progresses, causing intergranular corrosion.

Figure 0006321062
Figure 0006321062

上記それぞれの比較例と実施例の成分含量を有するフェライト系ステンレス鋼材を、上記溶体化処理及び鋭敏化熱処理した後、「modified−Strauss試験方法で鋭敏化の程度を評価した。
上記「modified−Strauss試験方法」は、蒸留水に6質量%の硫酸銅(CuSO4)及び0.5質量%の硫酸(HSO4)を含む体積300mlの溶液を、105℃の温度に維持し、銅球(copper ball)を試験片と電気化学的に連結し、20時間浸漬した後に鋼材の面積減少率及び粒界腐食性を測定する方法で評価する方法である。
The ferritic stainless steel materials having the component contents of the respective comparative examples and examples were subjected to the solution treatment and the sensitization heat treatment, and then the degree of sensitization was evaluated by the “modified-Strauss test method”.
The above-mentioned “Modified-Strauss test method” is a method in which a solution having a volume of 300 ml containing 6% by mass of copper sulfate (CuSO 4) and 0.5% by mass of sulfuric acid (H 2 SO 4) in distilled water is brought to a temperature of 105 ° C. This is a method of evaluating by measuring the area reduction rate and intergranular corrosion of the steel material after maintaining and electrochemically connecting a copper ball with a test piece and dipping for 20 hours.

また、上記それぞれの比較例と実施例の成分含量を有するフェライト系ステンレス鋼材を上記溶体化処理及び鋭敏化熱処理した後、鋼材の微細構造に対して走査電子顕微鏡(SEM)、透過電子顕微鏡(TEM)及び三次元原子顕微鏡(3DAP)で粒界付近における金属元素の濃縮、欠乏現象と、炭化物、窒化物、及び金属間化合物の析出挙動を観察した。   In addition, after subjecting the ferritic stainless steel materials having the component contents of the respective comparative examples and examples to the solution treatment and the sensitizing heat treatment, the microstructure of the steel materials is subjected to a scanning electron microscope (SEM), a transmission electron microscope (TEM). ) And three-dimensional atomic microscope (3DAP), the concentration and depletion of metal elements in the vicinity of grain boundaries and the precipitation behavior of carbides, nitrides and intermetallic compounds were observed.

下記の表2に上記測定の結果をまとめて示した。表2における関係式の値は、「6{(Mo−0.05)×(Si−0.2)×(Mn−0.18)}/(C+N)」の関係式にそれぞれの成分の質量%値を代入した結果を意味する。   The results of the above measurements are summarized in Table 2 below. The value of the relational expression in Table 2 is the mass of each component in the relational expression of “6 {(Mo−0.05) × (Si−0.2) × (Mn−0.18)} / (C + N)”. It means the result of substituting% value.

Figure 0006321062
Figure 0006321062

図2は、上記のような方法でmodified−Strauss評価した後、それぞれの比較例と実施例の鋼材の表面を示している。
図2に示すように、炭化物安定化元素であるTiを添加した比較例1と比較例2の場合は粒界腐食が進行したことが確認できる。また、弱炭化物生成元素(weak carbide former)の含量が、粒界腐食の程度に及ぼす影響を観察した結果、モリブデン(Mo)が添加されていない比較例3及び4の試験片に粒界腐食が大きく発生し、ケイ素(Si)含量が不足する比較例5とマンガン(Mn)が不足する比較例6及びマンガン(Mn)とモリブデン(Mo)が不足する比較例7にも粒界腐食が大きく発生した。
しかしながら、弱炭化物生成元素(weak carbide former)が適正量添加された試験片である実施例1及び2には粒界腐食が全く発生しなかった。また、弱炭化物生成元素であるモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)を適正量添加しチタン(Ti)を同時添加した試験片である実施例3及び4にも粒界腐食が発生しなかった。上記結果から、本発明の成分組成にチタン(Ti)を添加した場合は、粒界腐食の向上に何の影響も与えず、チタン(Ti)の添加にかかわらず同一の効果を有することが確認できた。
FIG. 2 shows the surfaces of the steel materials of the comparative examples and the examples after the modified-Strauss evaluation by the method as described above.
As shown in FIG. 2, it can be confirmed that the intergranular corrosion has progressed in the case of Comparative Example 1 and Comparative Example 2 in which Ti which is a carbide stabilizing element is added. In addition, as a result of observing the influence of the content of weak carbide forming elements on the degree of intergranular corrosion, intergranular corrosion was observed in the test pieces of Comparative Examples 3 and 4 to which molybdenum (Mo) was not added. Large intergranular corrosion also occurs in Comparative Example 5 where the silicon (Si) content is insufficient, Comparative Example 6 where the manganese (Mn) is insufficient, and Comparative Example 7 where the manganese (Mn) and molybdenum (Mo) are insufficient. did.
However, no intergranular corrosion occurred in Examples 1 and 2, which are test pieces to which a proper amount of weak carbide forming element was added. In addition, intergranular corrosion was also applied to Examples 3 and 4, which are test pieces in which appropriate amounts of molybdenum (Mo), silicon (Si), and manganese (Mn), which are weak carbide forming elements, were added and titanium (Ti) was added simultaneously. Did not occur. From the above results, it is confirmed that when titanium (Ti) is added to the component composition of the present invention, it has no effect on the improvement of intergranular corrosion and has the same effect regardless of the addition of titanium (Ti). did it.

図3は、比較例5及び6と実施例1及び2をmodified−Strauss評価した後の粒界腐食の程度を光学顕微鏡で観察した結果を示す写真である。
図3に示すように、比較例5及び6は、粒界腐食による粒子脱落(grain drop−out)現象を明確に示す。しかしながら、実施例1及び2の写真では粒界腐食が全く発生しなかった。このような実験から、チタン(Ti)を添加しなくても、弱炭化物生成元素であるモリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)を適正量添加した場合は、フェライト系ステンレス鋼の粒界腐食を完全に防止することができることが確認できた。
FIG. 3 is a photograph showing the result of observing the degree of intergranular corrosion with a light microscope after Comparative-Strauss evaluation of Comparative Examples 5 and 6 and Examples 1 and 2.
As shown in FIG. 3, Comparative Examples 5 and 6 clearly show the grain drop-out phenomenon due to intergranular corrosion. However, no intergranular corrosion occurred in the photographs of Examples 1 and 2. From these experiments, even when titanium (Ti) is not added, when appropriate amounts of molybdenum (Mo), silicon (Si), and manganese (Mn), which are weak carbide generating elements, are added, ferritic stainless steel It was confirmed that the intergranular corrosion of the steel can be completely prevented.

ASTM規格の A 240/A 240M−08によれば、一般的な環境における低クロムフェライト系ステンレス鋼はチタン(Ti)の含量が炭素(C)+窒素(N)含量より8倍以上多い場合に粒界腐食が防止されると記載している。しかしながら、最近の研究結果によれば、400℃〜700℃で用いられる鋼材の溶接熱影響部では、チタン(Ti)、ニオブ(Nb)などの安定化元素を炭素(C)+窒素(N)含量より20倍以上添加したにもかかわらずクロム(C)rが該当温度範囲で粒界に拡散し、クロム(C)rの偏析によってクロム(Cr)欠乏層が生じ、これによる粒界腐食が進行した。   According to ASTM standard A 240 / A 240M-08, low chromium ferritic stainless steels in general environments have a titanium (Ti) content that is more than eight times greater than the carbon (C) + nitrogen (N) content. It describes that intergranular corrosion is prevented. However, according to recent research results, in the heat affected zone of steel used at 400 ° C. to 700 ° C., stabilizing elements such as titanium (Ti) and niobium (Nb) are carbon (C) + nitrogen (N). Despite the addition of more than 20 times the content, chromium (C) r diffuses to the grain boundaries in the temperature range, and chromium (Cr) deficient layers are formed due to segregation of chromium (C) r, resulting in intergranular corrosion. Progressed.

上記比較例1及び2の粒界腐食実験結果は、安定化元素の添加が低クロムステンレス鋼の粒界腐食を完全に防止することができないということを示す。   The intergranular corrosion test results of Comparative Examples 1 and 2 above show that the addition of a stabilizing element cannot completely prevent intergranular corrosion of low chromium stainless steel.

図4は、チタン(Ti)などの安定化元素を炭素(C)+窒素(N)含量より20倍以上添加した比較例1のステンレス鋼の結晶粒界を3DAPで分析した結果を示すものである。
図4に示すように、上記の条件で安定化元素とCの反応によって、クロム(Cr)が粒界に析出物を生成することができなくても粒界析出物の周辺と粒界に濃縮される現象が起こることが確認できた。
FIG. 4 shows the result of 3DAP analysis of the grain boundary of stainless steel of Comparative Example 1 in which a stabilizing element such as titanium (Ti) is added 20 times or more than the carbon (C) + nitrogen (N) content. is there.
As shown in FIG. 4, even if chromium (Cr) cannot generate precipitates at the grain boundaries due to the reaction between the stabilizing element and C under the above conditions, it concentrates around the grain boundary precipitates and at the grain boundaries. It has been confirmed that this phenomenon occurs.

図5は、安定化元素を添加した比較例1の粒界における元素別分布を3DAPで分析して位置別濃度を示すグラフであるり、比較例1の粒界におけるクロム(Cr)の分布を示すものである。
図5に示すように、図4から確認できるクロム(Cr)の濃縮現象によって粒界におけるクロム(Cr)濃度が35原子%以上増加し、濃縮されたクロム(Cr)の周辺部ではクロム(Cr)欠乏が起こり、クロム(Cr)濃度が5.3原子%以下に減少したことが確認できる。これは、低クロムステンレス鋼材においては安定化元素を添加してクロム(Cr)析出物の生成を抑制しても、粒界におけるクロム(Cr)濃縮と粒界の周辺におけるクロム(Cr)欠乏及びそれによる粒界腐食を防ぐことができないということを意味する。
FIG. 5 is a graph showing the concentration by position by analyzing the distribution by element at the grain boundary of Comparative Example 1 to which a stabilizing element is added by 3DAP, or the distribution of chromium (Cr) at the grain boundary of Comparative Example 1 It is shown.
As shown in FIG. 5, the chromium (Cr) concentration phenomenon that can be confirmed from FIG. 4 increases the chromium (Cr) concentration at the grain boundary by 35 atomic% or more, and in the peripheral portion of the concentrated chromium (Cr), chromium (Cr It can be confirmed that deficiency occurred and the chromium (Cr) concentration was reduced to 5.3 atomic% or less. This is because even in the low chromium stainless steel material, even if a stabilizing element is added to suppress the formation of chromium (Cr) precipitates, chromium (Cr) concentration at the grain boundary and chromium (Cr) deficiency around the grain boundary and This means that intergranular corrosion due to this cannot be prevented.

図2を参照すると、それぞれ0.6質量%及び0.7質量%のケイ素(Si)が添加された比較例3及び4、及び0.1質量%のモリブデン(Mo)が添加された比較例5の場合には、粒界腐食が起こったが、比較例1及び2に比べて粒界腐食速度が顕著に減少したことが確認できる。比較例3〜5に比べてモリブデン(Mo)及びケイ素(Si)の含量は高いが、マンガン(Mn)含量が低い比較例6及び7の場合には、むしろ耐粒界腐食性が比較例3〜5より低いことが確認できた。   Referring to FIG. 2, Comparative Examples 3 and 4 to which 0.6% by mass and 0.7% by mass of silicon (Si) are added, respectively, and Comparative Example to which 0.1% by mass of molybdenum (Mo) is added. In the case of 5, intergranular corrosion occurred, but it can be confirmed that the intergranular corrosion rate was significantly reduced as compared with Comparative Examples 1 and 2. In the case of Comparative Examples 6 and 7 in which the contents of molybdenum (Mo) and silicon (Si) are higher than those of Comparative Examples 3 to 5, but the manganese (Mn) content is low, the intergranular corrosion resistance is rather comparative Example 3. It was confirmed that it was lower than ˜5.

これに対し、モリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)が複合添加された実施例1〜4の場合には、粒界腐食が全く起こらなかったことが確認できる。上記の結果から、炭素親和度がクロム(Cr)より高い炭化物安定化元素であるチタン(Ti)の添加では防止することができないステンレス鋼の粒界腐食を、本発明で提案するクロム(Cr)より炭素親和度が低い元素を複合添加した方法により防止することができるということが確認できた。   On the other hand, in Examples 1-4 in which molybdenum (Mo), silicon (Si), and manganese (Mn) were added in combination, it can be confirmed that no intergranular corrosion occurred. From the above results, the intergranular corrosion of stainless steel that cannot be prevented by the addition of titanium (Ti), which is a carbide stabilizing element having a higher carbon affinity than chromium (Cr), is proposed in the present invention. It was confirmed that this can be prevented by a method in which elements having lower carbon affinity are added in combination.

上記の結果は、モリブデン(Mo)、ケイ素(Si)、及びマンガン(Mn)を複合添加するときにそれぞれの濃度が一定質量以上の場合にフェライト系ステンレス鋼材の鋭敏化及び粒界腐食を完全に防止することができることを意味する。   The above results indicate that when molybdenum (Mo), silicon (Si), and manganese (Mn) are added in combination, the sensitization and intergranular corrosion of ferritic stainless steel materials are completely eliminated when the respective concentrations are above a certain mass. It means that it can be prevented.

図6は、粒界腐食が起こらなかった代表的な鋼種である実施例2を1300℃で10分間溶体化処理した後、500℃で2時間鋭敏化熱処理し、粒界をSEM分析により観察した結果を示すものである。観察結果、金属間化合物が均一に生成されて粒界に沿って位置していることが確認できた。   FIG. 6 shows a typical steel grade in which intergranular corrosion did not occur. Example 2 was subjected to solution treatment at 1300 ° C. for 10 minutes, followed by sensitizing heat treatment at 500 ° C. for 2 hours, and the grain boundaries were observed by SEM analysis. The result is shown. As a result of the observation, it was confirmed that the intermetallic compound was uniformly generated and located along the grain boundary.

図7は、実施例2を1300℃で10分間溶体化処理した後、500℃で2時間鋭敏化熱処理し、炭素レプリカ分析技法で析出物を抽出して透過電子顕微鏡で観察した結果を示した写真である。実施例2の場合、粒界に沿ってモリブデン(Mo)、ケイ素(Si)、マンガン(Mn)系金属間化合物が生成され、解析パターン(Diffraction pattern)分析により、金属間化合物であるCMnMoSiが生成されることが観察された。特に注目すべき現象は、CMnMoSi金属間化合物にCが固溶することにより炭化物の生成の可能性を低めるということである。 FIG. 7 shows the results obtained by subjecting Example 2 to solution treatment at 1300 ° C. for 10 minutes, followed by sensitizing heat treatment at 500 ° C. for 2 hours, extracting precipitates by a carbon replica analysis technique, and observing with a transmission electron microscope. It is a photograph. In the case of Example 2, molybdenum (Mo), silicon (Si), and manganese (Mn) -based intermetallic compounds are generated along the grain boundaries, and CMn 4 MoSi, which is an intermetallic compound, is analyzed by an analysis pattern (Diffraction pattern) analysis. Was observed to be produced. A particularly noteworthy phenomenon is that the possibility of carbide formation is reduced by the solid solution of C in the CMn 4 MoSi intermetallic compound.

図8は、比較例6の粒界における元素別分布を3DAPで分析したグラフを示している。比較例6は、マンガン(Mn)が適正量より低い0.22質量%に調節された試験片であって、粒界腐食が大きく起こったものであり、この試験片の粒界を3DAPで観察した結果、粒界に沿ってクロム(Cr)濃度が23原子%に増加し、濃縮されたクロム(Cr)の周辺部ではクロム(Cr)欠乏が起こり、クロム(Cr)濃度が7.8原子%に減少したことが確認できる。これは、比較例6の場合には、添加されたモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)の含量が十分ではないことからクロム(Cr)の濃縮及び欠乏現象が起こったため、粒界腐食を防ぐことができないということを意味する。   FIG. 8 shows a graph obtained by analyzing the elemental distribution in the grain boundary of Comparative Example 6 by 3DAP. Comparative Example 6 is a test piece in which manganese (Mn) is adjusted to 0.22% by mass, which is lower than the proper amount, and the intergranular corrosion has occurred greatly. The grain boundary of this test piece is observed with 3DAP. As a result, the chromium (Cr) concentration increased to 23 atomic% along the grain boundary, chromium (Cr) deficiency occurred at the periphery of the concentrated chromium (Cr), and the chromium (Cr) concentration was 7.8 atoms. % Can be confirmed. This is because, in the case of Comparative Example 6, since the content of added molybdenum (Mo) -silicon (Si) -manganese (Mn) is not sufficient, the concentration and depletion phenomenon of chromium (Cr) occurred. It means that the field corrosion cannot be prevented.

図9は、実施例2の粒界における元素別分布を3DAPで分析したグラフである。
図9を観察した結果、粒界に沿ってクロム(Cr)濃度が18.2原子%に増加したが、この数値は図5の比較例1、図8の比較例6より顕著に低く、濃縮部付近のCrの最低含量は9.9原子%で粒内のクロム(Cr)含量と類似する。従って、実施例2の場合、粒界に沿ってクロム(Cr)欠乏が起こらず、粒界腐食が効果的に防止された。
FIG. 9 is a graph obtained by analyzing the elemental distribution at the grain boundaries in Example 2 by 3DAP.
As a result of observing FIG. 9, the chromium (Cr) concentration increased to 18.2 atomic% along the grain boundary, but this value was significantly lower than Comparative Example 1 in FIG. 5 and Comparative Example 6 in FIG. The minimum content of Cr in the vicinity of the part is 9.9 atomic%, which is similar to the chromium (Cr) content in the grains. Therefore, in the case of Example 2, chromium (Cr) deficiency did not occur along the grain boundaries, and intergranular corrosion was effectively prevented.

Figure 0006321062
Figure 0006321062

上記表3は、比較例1、比較例6及び実施例2の3DAP分析結果のうち粒界腐食に最も重要な影響を及ぼすクロム(Cr)と炭素(C)の濃度を粒界腐食試験結果と共に表した実施例を示している。上述したように、安定化フェライト系ステンレス鋼の粒界腐食は、溶体化処理後、固溶していた炭素原子が粒界に濃縮され、それにより、クロム(Cr)の粒界濃縮及び欠乏現象が起こることにより発生する。表3の炭素濃縮量を比較すると、比較例1の炭素濃縮量に比べて比較例6の炭素濃縮量が半分以下に減り、それにより、クロム(Cr)の粒界濃縮及び欠乏現象が減ったが、依然として粒界腐食による損傷は発生する。実施例2の場合、比較例1及び6に比べて炭素濃縮量が顕著に減少し、それにより、粒界のクロム(Cr)濃縮現象も顕著に減り、クロム(Cr)欠乏現象は起こらなかった。従って、実施例2の炭素濃縮量が減少した結果、粒界腐食が防止された。   Table 3 shows the concentrations of chromium (Cr) and carbon (C) that have the most significant effect on the intergranular corrosion among the 3DAP analysis results of Comparative Example 1, Comparative Example 6 and Example 2, along with the intergranular corrosion test results. The illustrated embodiment is shown. As described above, the intergranular corrosion of stabilized ferritic stainless steel is caused by the concentration of carbon atoms dissolved in the grain boundary after solution treatment, thereby concentrating and depleting the chromium (Cr) grain boundary. Occurs when Comparing the carbon enrichment amounts in Table 3, the carbon enrichment amount in Comparative Example 6 was reduced to less than half compared to the carbon enrichment amount in Comparative Example 1, thereby reducing the grain boundary enrichment and deficiency phenomenon of chromium (Cr). However, damage due to intergranular corrosion still occurs. In the case of Example 2, the amount of carbon enrichment was significantly reduced as compared with Comparative Examples 1 and 6, thereby reducing the chromium (Cr) enrichment phenomenon at the grain boundary, and no chromium (Cr) deficiency phenomenon occurred. . Therefore, as a result of the reduction of the carbon concentration in Example 2, intergranular corrosion was prevented.

より詳細には、モリブデン(Mo)−ケイ素(Si)−マンガン(Mn)が十分な含量で複合添加されたフェライト系ステンレス鋼に粒界腐食が起こらない理由は、次の二つの現象によるものである。   More specifically, the reason why intergranular corrosion does not occur in ferritic stainless steel to which molybdenum (Mo) -silicon (Si) -manganese (Mn) is added in a sufficient amount is due to the following two phenomena. is there.

1)弱炭化物生成元素(weak carbide former)であるモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)が添加された合金にCMnMoSi金属間化合物が生成しながら、鋼材の内部に固溶した炭素を金属間化合物の内部に固着化させて炭素の安定性を高めることにより、炭素の粒界濃縮によるクロム(Cr)の拡散を防止する。 1) While a CMn 4 MoSi intermetallic compound is formed in an alloy in which molybdenum (Mo) -silicon (Si) -manganese (Mn), which is a weak carbide forming element, is added, a solid solution is formed inside the steel material. Chromium (Cr) is prevented from diffusing due to carbon grain boundary concentration by fixing the carbon inside the intermetallic compound to enhance the stability of the carbon.

2)粒界の周辺部に粗大な金属間化合物が形成されてクロム(Cr)が粒界に拡散することを防ぐ。また、粒界の周辺にクロム(Cr)を含まない金属間化合物が形成されることにより、金属間化合物が形成された位置に分布していたクロム(Cr)が粒界付近のクロム(Cr)欠乏層に拡散してクロム(Cr)の欠乏を緩和させる。   2) A coarse intermetallic compound is formed in the periphery of the grain boundary to prevent chromium (Cr) from diffusing into the grain boundary. Further, by forming an intermetallic compound that does not contain chromium (Cr) around the grain boundary, chromium (Cr) distributed at the position where the intermetallic compound is formed becomes chromium (Cr) near the grain boundary. It diffuses in the deficient layer to alleviate the chromium (Cr) deficiency.

即ち、本発明によるステンレス鋼は、その製造及び溶接後の高温環境で、固溶した炭素がモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)金属間化合物に捕捉された状態で安定化されるため、固溶した炭素とクロム(Cr)の反応によって生成されるクロム炭化物の生成を遮断し、これによるクロム(Cr)欠乏層の誘発を防ぐことができるため、高温環境に用いられるステンレス鋼、特に、溶接熱影響部の粒界腐食を効果的に防止することができる。   That is, the stainless steel according to the present invention is stabilized in a state where the solid solution carbon is trapped by the molybdenum (Mo) -silicon (Si) -manganese (Mn) intermetallic compound in a high-temperature environment after production and welding. Therefore, it is possible to block the production of chromium carbide produced by the reaction between solid solution carbon and chromium (Cr), thereby preventing the induction of a chromium (Cr) deficient layer, so that stainless steel used in high temperature environments In particular, intergranular corrosion in the weld heat affected zone can be effectively prevented.

これに対し、クロム(Cr)より炭素親和力に優れ、クロム(Cr)より優先的に炭化物を生成する安定化元素を添加する従来の粒界腐食防止技術は、生成したチタン(Ti)炭化物又はニオブ(Nb)炭化物のような金属炭化物が、溶接過程で高温に加熱される溶接熱影響部で分解され、炭素が溶接熱影響部内に再固溶し、再固溶した炭素は高温環境で用いられるときにクロム(Cr)欠乏層を形成するため、高温環境用ステンレス鋼部品の溶接熱影響部における粒界腐食を防ぐのが困難である。   On the other hand, conventional intergranular corrosion prevention technology, which has a carbon affinity better than chromium (Cr) and preferentially produces carbides over chromium (Cr), adds titanium (Ti) carbide or niobium produced. Metal carbide such as (Nb) carbide is decomposed in the welding heat-affected zone heated to a high temperature during the welding process, carbon is re-dissolved in the welding heat-affected zone, and the re-dissolved carbon is used in a high-temperature environment. Occasionally, a chromium (Cr) -deficient layer is formed, making it difficult to prevent intergranular corrosion at the weld heat affected zone of the high temperature environment stainless steel part.

図10は、本発明の比較例及び実施例の粒界腐食実験後の鋼材の面積減少率を関係式の結果値によって示すグラフである。粗大なモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)系金属間化合物が析出される関係式の値が1以上の鋼材は粒界腐食損失率が0であり、粒界腐食が起こらない。   FIG. 10 is a graph showing the area reduction rate of the steel material after the intergranular corrosion experiment of the comparative example and the example of the present invention by the result value of the relational expression. A steel material having a relational expression value of 1 or more on which coarse molybdenum (Mo) -silicon (Si) -manganese (Mn) -based intermetallic compound is deposited has a grain boundary corrosion loss rate of 0, and intergranular corrosion does not occur. .

上記の実施例に示したように、クロム(Cr):10〜14質量%、炭素(C):0.02質量%以下、窒素(N):0.02質量%以下、リン(P):0.04質量%以下、硫黄(S):0.01質量%以下、モリブデン(Mo):0.05〜2.0質量%、ケイ素(Si):0.2〜1.5質量%、マンガン(Mn):0.1〜1.0質量%、及び残部の鉄(Fe)及び不可避不純物を含み、関係式「6{(Mo−0.05)×(Si−0.2)×(Mn−0.18)}/(C+N)」の結果値が1以上を満たすフェライト系ステンレス鋼は粒界腐食を効果的に抑制することが確認できた。   As shown in the above examples, chromium (Cr): 10 to 14% by mass, carbon (C): 0.02% by mass or less, nitrogen (N): 0.02% by mass or less, phosphorus (P): 0.04 mass% or less, sulfur (S): 0.01 mass% or less, molybdenum (Mo): 0.05 to 2.0 mass%, silicon (Si): 0.2 to 1.5 mass%, manganese (Mn): 0.1 to 1.0% by mass, and the balance of iron (Fe) and inevitable impurities, and the relational expression “6 {(Mo−0.05) × (Si−0.2) × (Mn) It was confirmed that the ferritic stainless steel satisfying a result value of −0.18)} / (C + N) ”of 1 or more effectively suppresses intergranular corrosion.

以上のように本発明の例示的な実施例を、図面を参照して説明したが、多様な変形と他の実施例は本分野における熟練した技術者らによって実施することができる。このような変形と他の実施例は、添付の特許請求の範囲に全て含まれ、本発明の真の趣旨及び範囲を外れない。
As described above, the exemplary embodiments of the present invention have been described with reference to the drawings. However, various modifications and other embodiments can be implemented by skilled engineers in the field. Such modifications and other embodiments are all within the scope of the appended claims and do not depart from the true spirit and scope of the present invention.

Claims (5)

クロム(Cr):10乃至14質量%、炭素(C):0.02質量%以下、窒素(N):0.02質量%以下、リン(P):0.04質量%以下、硫黄(S):0.01質量%以下、モリブデン(Mo):0.05乃至2.0質量%、ケイ素(Si):0.2乃至1.5質量%、マンガン(Mn):0.1乃至1.0質量%、さらに6{(Mo−0.05)×(Si−0.2)×(Mn−0.18)}/(C+N)の関係式の値が1以上であることを満たし、残り鉄(Fe)及び不可避不純物からなり、
フェライト系ステンレス鋼の粒界及びその周辺にモリブデン(Mo)−ケイ素(Si)−マンガン(Mn)−炭素(C)複合金属間化合物が生成されていることを特徴とする耐粒界腐食性に優れたフェライト系ステンレス鋼。
(但し、前記関係式のMo、Si、Mn、C及びNは各成分の質量%を意味する。)
Chromium (Cr): 10 to 14% by mass, carbon (C): 0.02% by mass or less, nitrogen (N): 0.02% by mass or less, phosphorus (P): 0.04% by mass or less, sulfur (S ): 0.01 mass% or less, molybdenum (Mo): 0.05 to 2.0 mass%, silicon (Si): 0.2 to 1.5 mass%, manganese (Mn): 0.1 to 1. 0% by mass, and further satisfying that the value of the relational expression of 6 {(Mo−0.05) × (Si−0.2) × (Mn−0.18)} / (C + N) is 1 or more, and the rest Consisting of iron (Fe) and inevitable impurities,
Intergranular corrosion resistance, characterized in that molybdenum (Mo) -silicon (Si) -manganese (Mn) -carbon (C) composite intermetallic compound is formed at and around the grain boundaries of ferritic stainless steel Excellent ferritic stainless steel.
(However, Mo, Si, Mn, C and N in the above relational expression mean mass% of each component.)
前記金属間化合物はCMnMoSiであることを特徴とする請求項1に記載の耐粒界腐食性に優れたフェライト系ステンレス鋼。 The ferritic stainless steel excellent in intergranular corrosion resistance according to claim 1 , wherein the intermetallic compound is CMn 4 MoSi. 前記フェライトステンレス鋼の粒界において、クロム(Cr)濃縮の最大含量とクロム(Cr)欠乏層の最小含量の偏差は10原子%以下であることを特徴とする請求項1または2に記載の耐粒界腐食性に優れたフェライト系ステンレス鋼。 3. The resistance against resistance according to claim 1 , wherein a deviation between a maximum content of chromium (Cr) concentration and a minimum content of chromium (Cr) -deficient layer is 10 atomic% or less at the grain boundary of the ferritic stainless steel. Ferritic stainless steel with excellent intergranular corrosion. 前記クロム(Cr)濃縮の最大含量は20原子%以下であることを特徴とする請求項3に記載の耐粒界腐食性に優れたフェライト系ステンレス鋼。 The ferritic stainless steel excellent in intergranular corrosion resistance according to claim 3 , wherein the maximum content of the chromium (Cr) concentration is 20 atomic% or less. 前記クロム(Cr)欠乏層の最小含量は9.5原子%以上であることを特徴とする請求項3に記載の耐粒界腐食性に優れたフェライト系ステンレス鋼。 The ferritic stainless steel excellent in intergranular corrosion resistance according to claim 3 , wherein the minimum content of the chromium (Cr) -deficient layer is 9.5 atomic% or more.
JP2016034650A 2015-02-27 2016-02-25 Ferritic stainless steel with excellent intergranular corrosion resistance Active JP6321062B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0027990 2015-02-27
KR1020150027990A KR101631018B1 (en) 2015-02-27 2015-02-27 Ferritic Stainless Steel Having High Resistance to Intergranular Corrosion

Publications (2)

Publication Number Publication Date
JP2016164309A JP2016164309A (en) 2016-09-08
JP6321062B2 true JP6321062B2 (en) 2018-05-09

Family

ID=56355004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034650A Active JP6321062B2 (en) 2015-02-27 2016-02-25 Ferritic stainless steel with excellent intergranular corrosion resistance

Country Status (3)

Country Link
JP (1) JP6321062B2 (en)
KR (1) KR101631018B1 (en)
CN (1) CN105925913A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876211B (en) * 2017-11-28 2023-08-29 嘉峪关天源新材料有限责任公司 Composite magnetic focusing medium rod with high magnetic field strength and preparation method thereof
KR20220146884A (en) 2021-04-26 2022-11-02 김재휘 Motorhome variable toilet with folding partition structure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184637A (en) * 1992-12-22 1994-07-05 Nippon Steel Corp Production of steel tube for automotive exhaust system
JPH07150301A (en) * 1993-11-29 1995-06-13 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in corrosion resistance and workability
JPH07268554A (en) * 1994-03-28 1995-10-17 Nippon Steel Corp Ferritic stainless steel for automobile exhaust system excellent in formability and heat resistance
JPH07268468A (en) * 1994-03-28 1995-10-17 Nippon Steel Corp Production of stainless steel tube excellent in formability
JPH08170155A (en) * 1994-10-19 1996-07-02 Nippon Steel Corp Heat resistant ferritic stainless steel small in amount of internal intergranular oxidation
JPH09291342A (en) * 1996-04-26 1997-11-11 Kawasaki Steel Corp Iron-chrome alloy small in sensitizing degree
JPH10280035A (en) * 1997-04-11 1998-10-20 Nippon Steel Corp Production of high purity ferritic stainless hot rolled steel strip excellent in workability and heat resistance
KR20020051269A (en) * 2000-12-22 2002-06-28 이구택 annealing and pickling method for uniform surface quality of high Cr ferritic stainless steel
KR100570895B1 (en) 2001-12-18 2006-04-12 주식회사 포스코 method of prevention of intergranular corrosion of ferritic stainless steels
JP4259151B2 (en) * 2003-03-20 2009-04-30 Jfeスチール株式会社 Heat resistant material
JP4519505B2 (en) * 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent formability and method for producing the same
JP5093984B2 (en) * 2005-01-12 2012-12-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel welded pipe excellent in pipe expansion workability and manufacturing method thereof
CN101397638A (en) * 2007-09-25 2009-04-01 宝山钢铁股份有限公司 Ferritic stainless steel for automobile exhaust emission system
CN101748339B (en) * 2008-12-11 2012-03-28 宝山钢铁股份有限公司 High-strength ferritic stainless steel band and manufacturing method thereof
CN102021480B (en) * 2009-09-22 2013-05-15 宝山钢铁股份有限公司 Manufacturing method of low-chromium ferritic stainless steel
JP5414769B2 (en) * 2011-11-09 2014-02-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel welded pipe excellent in pipe expansion workability and manufacturing method thereof
JP6159775B2 (en) * 2014-10-31 2017-07-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent resistance to exhaust gas condensate corrosion and brazing, and method for producing the same

Also Published As

Publication number Publication date
JP2016164309A (en) 2016-09-08
CN105925913A (en) 2016-09-07
KR101631018B1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
KR101643099B1 (en) Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same
KR102349888B1 (en) Two-phase stainless steel and its manufacturing method
US20060191600A1 (en) Steel and component of structural equipment for use in a hydrogen gas environment, and a method for the manufacture thereof
EP3437791B1 (en) Welded structural member
KR102444640B1 (en) Ferritic stainless steel and manufacturing method thereof, ferritic stainless steel sheet and manufacturing method thereof, and member for fuel cell
WO2013122191A1 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
JP6783342B2 (en) Austenitic stainless steel and its manufacturing method
EP3249067B1 (en) Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating
JP6321062B2 (en) Ferritic stainless steel with excellent intergranular corrosion resistance
KR101787282B1 (en) Steel having excellent corrosion resistance and method of manufacturing the same
CA3085589C (en) Ferritic stainless steel having excellent salt corrosion resistance
TWI526547B (en) And the corrosion resistance of the welded portion is excellent
JP4184869B2 (en) High corrosion resistance duplex stainless steel
EP3156169A1 (en) Buildup welded metal and machine structure
JP6771963B2 (en) Duplex stainless steel
WO2019059095A1 (en) Steel plate and method for manufacturing same
JP5971281B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent workability and toughness
JP6783343B2 (en) Austenitic stainless steel and its manufacturing method
JP7076258B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6937717B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
KR20210107657A (en) Ferritic stainless steel
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe
RU2703318C1 (en) Radiation-resistant austenitic steel for the wwpr in-vessel partition
JP2018103242A (en) Production method of hot rolled steel sheet
KR101787283B1 (en) Steel having excellent corrosion resistance and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6321062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250