JP6314560B2 - Water treatment method for steam generating equipment - Google Patents

Water treatment method for steam generating equipment Download PDF

Info

Publication number
JP6314560B2
JP6314560B2 JP2014052445A JP2014052445A JP6314560B2 JP 6314560 B2 JP6314560 B2 JP 6314560B2 JP 2014052445 A JP2014052445 A JP 2014052445A JP 2014052445 A JP2014052445 A JP 2014052445A JP 6314560 B2 JP6314560 B2 JP 6314560B2
Authority
JP
Japan
Prior art keywords
water
copper
acid
treatment method
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014052445A
Other languages
Japanese (ja)
Other versions
JP2015174040A (en
Inventor
瑞之 酒井
瑞之 酒井
幸祐 志村
幸祐 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014052445A priority Critical patent/JP6314560B2/en
Publication of JP2015174040A publication Critical patent/JP2015174040A/en
Application granted granted Critical
Publication of JP6314560B2 publication Critical patent/JP6314560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ボイラや蒸気発生器等の蒸気を発生する設備における水処理方法に関するものであり、詳しくは、銅を含む水を給水して運転する蒸気発生設備において、水が接触する内面に銅を含むスケールが付着することによる伝熱阻害や水の循環不良を抑制する水処理方法に関するものである。   The present invention relates to a water treatment method in a facility for generating steam, such as a boiler and a steam generator, and more specifically, in a steam generation facility that operates by supplying water containing copper, copper on the inner surface that comes into contact with water. The present invention relates to a water treatment method that suppresses heat transfer inhibition and poor water circulation due to adhesion of scales containing water.

ボイラや蒸気発生器等の給水を加熱して蒸気を発生する設備では、蒸気ラインにエアハンドリングユニットや吸収式冷凍機等の各種熱交換器に銅系の材料が使用されている。そのため、これらの熱交換器で蒸気が凝縮した凝縮水を復水として回収し、給水の一部として再利用する場合、給水中に銅が含まれることとなる。   In equipment that generates steam by heating feed water such as a boiler and a steam generator, copper-based materials are used for various heat exchangers such as an air handling unit and an absorption refrigerator in the steam line. Therefore, when the condensed water in which steam is condensed in these heat exchangers is recovered as condensate and reused as part of the water supply, copper is contained in the water supply.

銅を含む給水で蒸気発生設備を運転すると、銅が缶内でスケール化して、伝熱面での伝熱阻害や、水の循環不良を引き起こし、伝熱効率の低下や、過熱による伝熱面の割れや膨出、循環不良による部分過濃縮や空焚きに起因する噴破の原因となる。
特に、補給水がイオン交換水などの脱塩水の場合や、補給水の脱塩処理を行っていない場合でも復水回収率が高く給水の電気伝導率が低い場合は、ボイラのブロー率を低く設定して缶水の濃縮倍数を高くして運転しているケースでは、給水中の銅の濃度が微量であっても、系内で銅が濃縮されるため、缶内でスケール化しやすくなり、トラブルとして顕在化することが多い。
When operating steam generating equipment with water containing copper, copper scales in the can, causing heat transfer obstruction on the heat transfer surface and poor water circulation, reducing heat transfer efficiency, and heat transfer surface due to overheating. Causes blasting due to cracking, swelling, partial overconcentration due to poor circulation and air blowing.
In particular, if the makeup water is demineralized water such as ion-exchanged water, or when the makeup water recovery rate is high and the electrical conductivity of the feedwater is low even when the demineralization treatment is not performed, the boiler blow rate is reduced. In the case of setting and increasing the concentration factor of the can water, even if the copper concentration in the feed water is very small, copper is concentrated in the system, so it becomes easier to scale in the can, Often manifests as trouble.

この問題に対して、特許第5066972号公報(特許文献1)では、ブロー水の酸化還元電位をORPで0mV以上となるようにコハク酸又はその塩、ソルビン酸又はその塩のいずれか1つ以上を含有する防食剤を添加する処理方法が示されている。   With respect to this problem, in Japanese Patent No. 5066972 (Patent Document 1), any one or more of succinic acid or a salt thereof, sorbic acid or a salt thereof so that the redox potential of blow water is 0 mV or more in ORP. A treatment method in which an anticorrosive agent containing is added is shown.

特許第5066972号公報Japanese Patent No. 5066972

しかしながら、特許文献1の方法では、銅のスケール化抑制効果は必ずしも十分であるとは言えず、経年的な銅のスケール付着の進行が無視できないレベルとなる場合があるという問題点があった。
このような問題は、補給水として軟水を用いる場合の一部の設備で見られ、また、補給水としてイオン交換水等の脱塩水を用いる場合には多く認められることが判明した。
However, in the method of Patent Document 1, it cannot be said that the effect of suppressing copper scaling is sufficient, and there is a problem in that the progress of copper scale adhesion over time may not be negligible.
Such a problem has been found in some facilities when soft water is used as make-up water, and it has been found that many cases are observed when demineralized water such as ion exchange water is used as make-up water.

従って、本発明は、銅を含む給水を用いて運転する蒸気発生設備において、いかなる設備でも銅のスケール化を安定的に抑制する水処理方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a water treatment method that stably suppresses the scaling of copper in any facility in a steam generation facility that operates using feed water containing copper.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、蒸気発生設備のブロー水を常温に冷却してORP計で測定した酸化還元電位を0mV未満にするような還元剤を添加することなく、かつ該蒸気発生設備の水系のpHが所定値以上となるようにアルカリ剤を添加することにより、銅のスケール化を安定的に抑制することができることを見出した。また、さらに特定のポリマーを併用することで、より高い銅スケール抑制効果が得られることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventors have added a reducing agent that cools the blow water of the steam generating facility to room temperature and sets the oxidation-reduction potential measured with an ORP meter to less than 0 mV. It was found that copper scaling can be stably suppressed by adding an alkaline agent so that the pH of the water system of the steam generating facility is not less than a predetermined value. Moreover, it discovered that the higher copper scale inhibitory effect was acquired by using a specific polymer together.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 銅を含む水が給水される蒸気発生設備における銅スケールの付着を抑制する水処理方法において、該蒸気発生設備の補給水が電気伝導率1mS/m以下の脱塩水であり、該蒸気発生設備のブロー水を常温に冷却してORP計で測定した酸化還元電位を0mV未満にする還元剤を添加することなく、かつ該蒸気発生設備の水系のpHが11.以上となるように該蒸気発生設備の水系にアルカリ剤を添加することを特徴とする蒸気発生設備の水処理方法。 [1] In a water treatment method for suppressing adhesion of copper scale in a steam generation facility to which water containing copper is supplied , makeup water in the steam generation facility is demineralized water having an electric conductivity of 1 mS / m or less, and the steam Without adding a reducing agent that cools the blown water of the generating facility to room temperature and makes the oxidation-reduction potential measured by an ORP meter less than 0 mV, and the pH of the water system of the steam generating facility is 11. A water treatment method for a steam generating facility, wherein an alkali agent is added to the water system of the steam generating facility so as to be 6 or more.

[2] [1]において、前記蒸気発生設備の水系に、水溶性のポリカルボン酸及び/又はその塩を添加することを特徴とする蒸気発生設備の水処理方法。 [2] The water treatment method for a steam generation facility according to [1], wherein a water-soluble polycarboxylic acid and / or a salt thereof is added to the water system of the steam generation facility.

[3] [2]において、前記水溶性のポリカルボン酸及び/又はその塩が、分子量1,000〜50,000の、ポリアクリル酸、ポリアクリル酸塩、ポリメタクリル酸、及びポリメタクリル酸塩から選ばれる1種以上であることを特徴とする蒸気発生設備の水処理方法。 [3] In [2], the water-soluble polycarboxylic acid and / or salt thereof is polyacrylic acid, polyacrylic acid salt, polymethacrylic acid, and polymethacrylic acid salt having a molecular weight of 1,000 to 50,000. A water treatment method for steam generating equipment, wherein the water treatment method is at least one selected from the group consisting of:

本発明によれば、銅を含む水を給水して運転するボイラや蒸気発生器等の蒸気発生設備において、銅のスケール化を安定的に抑制することができる。このため、蒸気発生設備のボイラ缶等の水が接触する内面への銅スケールの付着を抑制し、長期に亘り、伝熱阻害や水の循環不良といったスケール障害を引き起こすことなく、安定かつ効率的な運転を継続することができる。   ADVANTAGE OF THE INVENTION According to this invention, in steam generation facilities, such as a boiler and a steam generator which operate by supplying the water containing copper, scaling of copper can be suppressed stably. For this reason, it suppresses adhesion of copper scale to the inner surface where water comes in contact with water such as boiler cans of steam generation equipment, and it will be stable and efficient for a long time without causing scale failures such as heat transfer inhibition and poor water circulation. Driving can be continued.

以下に本発明の蒸気発生設備の水処理方法の実施の形態を詳細に説明する。   Embodiments of the water treatment method for steam generating equipment according to the present invention will be described in detail below.

本発明の蒸気発生設備の水処理方法は、銅を含む水が給水される蒸気発生設備における銅スケールの付着を抑制するために、該蒸気発生設備のブロー水を常温に冷却してORP計で測定した酸化還元電位を0mV未満にする還元剤(以下、「ORP低減還元剤」と称す場合がある。)を添加することなく、かつ該蒸気発生設備の水系のpHが11.3以上となるように該蒸気発生設備の水系にアルカリ剤を添加することを特徴とする。
なお、本発明において、常温とは20〜30℃の範囲内の温度をさす。
The water treatment method for steam generating equipment according to the present invention uses an ORP meter to cool the blow water of the steam generating equipment to room temperature in order to suppress adhesion of copper scale in the steam generating equipment to which water containing copper is supplied. Without adding a reducing agent for reducing the measured oxidation-reduction potential to less than 0 mV (hereinafter sometimes referred to as “ORP reducing reducing agent”), the pH of the water system of the steam generating facility is 11.3 or more. Thus, an alkali agent is added to the water system of the steam generating facility.
In addition, in this invention, normal temperature refers to the temperature within the range of 20-30 degreeC.

ここで、ORP低減還元剤とは、これを蒸気発生設備の水系に添加した場合において、該蒸気発生設備のブロー水を常温に冷却してORP計で測定した酸化還元電位が0mV未満となるような還元剤であり、例えば、ヒドラジン、亜硫酸ナトリウム、エリソルビン酸及びその塩、アスコルビン酸及びその塩、タンニン酸及びその塩、没食子酸、糖類等の各種の脱酸素剤や、グルコン酸及びその塩、グルコヘプトン酸及びその塩等の防食剤などが挙げられるが、何らこれらに限定されるものではない。   Here, the ORP reducing reducing agent is such that when it is added to the water system of the steam generating facility, the redox potential measured by the ORP meter after cooling the blow water of the steam generating facility to room temperature is less than 0 mV. Various reducing agents such as hydrazine, sodium sulfite, erythorbic acid and salts thereof, ascorbic acid and salts thereof, tannic acid and salts thereof, gallic acid and sugars, gluconic acid and salts thereof, Although anticorrosive agents, such as glucoheptonic acid and its salt, are mentioned, it is not limited to these at all.

本発明においては、上記のようなORP低減還元剤を一切添加せずに、かつ、蒸気発生設備の水系(以下、「ボイラ水」と称す場合がある。)のpHが11.3以上、好ましくは11.6以上となるようにアルカリ剤を添加する。   In the present invention, the above-described ORP reducing reducing agent is not added at all, and the pH of the water system of the steam generating facility (hereinafter sometimes referred to as “boiler water”) is 11.3 or more, preferably Is added with an alkaline agent so as to be 11.6 or more.

添加するアルカリ剤としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなど、ボイラ水が上記のpHに上昇するものであればいずれでもよいが、炭酸ナトリウム及び炭酸カリウムなどの炭酸塩は蒸気発生器内部において熱分解により炭酸ガスを発生し、蒸気凝縮水のpHを低下させて銅の溶出を増加させる可能性もあるため、水酸化ナトリウム、水酸化カリウムを用いることが好ましい。   The alkali agent to be added may be any sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate or the like as long as the boiler water rises to the above pH, but carbonates such as sodium carbonate and potassium carbonate are It is preferable to use sodium hydroxide or potassium hydroxide because carbon dioxide gas is generated by pyrolysis inside the steam generator and the pH of steam condensed water may be lowered to increase the elution of copper.

なお、JIS B 8223「ボイラの給水及びボイラ水の水質」では、ボイラ水の水質について、軟水給水の低圧ボイラではpHを11.0〜11.8、イオン交換水を補給水とする場合の低圧ボイラではpHをpH10.5〜11.5と定めているが、本発明では、ボイラ水のpHが11.3以上、好ましくは11.6以上となるようにアルカリ剤を添加する。pHの上限は12.5以下、望ましくは12.2以下、更に好ましくは12.0以下とする。この上限を超えると、ボイラ水のキャリオーバやアルカリ腐食の発生が懸念される。   In JIS B 8223 “Boiler Feed Water and Boiler Water Quality”, the water quality of the boiler water is low in the case of using a soft water feed low pressure boiler with a pH of 11.0 to 11.8 and ion exchange water as make-up water. In the boiler, the pH is set to 10.5 to 11.5, but in the present invention, an alkaline agent is added so that the pH of the boiler water is 11.3 or more, preferably 11.6 or more. The upper limit of the pH is 12.5 or less, desirably 12.2 or less, more preferably 12.0 or less. If this upper limit is exceeded, there is concern about the carryover of boiler water and the occurrence of alkaline corrosion.

本発明においては、前述のようなORP低減還元剤を添加せずにアルカリ剤の添加で所定のpHに調整することにより、銅のスケール化を抑制するが、このようにORP低減還元剤を添加しないことで、通常、本発明で処理対象とする蒸気発生設備のブロー水を常温に冷却してORP計で測定した酸化還元電位は5〜80mV程度となる。   In the present invention, copper is prevented from being scaled by adjusting to a predetermined pH by adding an alkaline agent without adding the ORP reducing reducing agent as described above, but the ORP reducing reducing agent is added in this way. By not doing, normally, the redox potential measured by the ORP meter after cooling the blow water of the steam generating equipment to be treated in the present invention to room temperature is about 5 to 80 mV.

本発明では、ボイラ水のpHを上記のように調整すると共に、水溶性のポリカルボン酸及び/又は塩を添加することにより、銅のスケール化をより一層顕著に抑制することができる。ここで、水溶性のポリカルボン酸及び/又はその塩としては、ポリアクリル酸及びその塩、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合物及びその塩、アクリル酸と2−ヒドロシキシ−3−アリロキシ−1−プロパンスルホン酸との共重合物及びその塩、ポリメタクリル酸及びその塩、ポリマレイン酸及びその塩などが挙げられる。なお、ポリカルボン酸塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられる。   In this invention, while adjusting pH of boiler water as mentioned above, addition of water-soluble polycarboxylic acid and / or salt can suppress copper scaling further more significantly. Here, as the water-soluble polycarboxylic acid and / or its salt, polyacrylic acid and its salt, copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid and its salt, acrylic acid and 2 -Hydroxy-3-allyloxy-1-propanesulfonic acid copolymer and salts thereof, polymethacrylic acid and salts thereof, polymaleic acid and salts thereof, and the like. Examples of the polycarboxylate include sodium salt, potassium salt, ammonium salt and the like.

水溶性のポリカルボン酸及び/又は塩としては、特に分子量1,000〜50,000のポリアクリル酸及びその塩、もしくは分子量1,000〜50,000のポリメタクリル酸及びその塩が適しており、中でも分子量1,000〜50,000のポリメタクリル酸及びその塩が最適である。
これらの水溶性のポリカルボン酸及び/又は塩は、1種を単独で用いてもよく、2種以上を併用してもよい。
As the water-soluble polycarboxylic acid and / or salt, polyacrylic acid having a molecular weight of 1,000 to 50,000 and a salt thereof, or polymethacrylic acid having a molecular weight of 1,000 to 50,000 and a salt thereof are particularly suitable. Of these, polymethacrylic acid having a molecular weight of 1,000 to 50,000 and a salt thereof are optimal.
These water-soluble polycarboxylic acids and / or salts may be used alone or in combination of two or more.

水溶性のポリカルボン酸及び/又は塩の添加量としては、添加効果を有効に得る上で、給水中の銅の濃度に対して、1.0重量倍以上、好ましくは3.0重量倍以上が好ましい。その上限としては、缶水中の濃度として500mg/L以下であれば問題ない。缶水中の水溶性のポリカルボン酸及び/又は塩の濃度が500mg/Lを超えるとキャリオーバの発生が懸念される。   The addition amount of the water-soluble polycarboxylic acid and / or salt is 1.0 weight times or more, preferably 3.0 weight times or more with respect to the copper concentration in the feed water, in order to effectively obtain the addition effect. Is preferred. As the upper limit, there is no problem as long as the concentration in the can water is 500 mg / L or less. If the concentration of the water-soluble polycarboxylic acid and / or salt in the can water exceeds 500 mg / L, the occurrence of carryover is a concern.

このような本発明の蒸気発生設備の水処理方法は、銅(イオン)が持ち込まれる特殊循環ボイラ、水管ボイラ、丸ボイラ、排熱回収ボイラなどのあらゆる蒸気発生設備に適用することが可能であるが、特に、電気伝導率1mS/m以下、例えば0.01〜1mS/mの脱塩水を補給水とする蒸気発生設備に有効に適用される。ここで、脱塩水としてはイオン交換水、逆浸透膜処理水、電気脱塩処理水等が挙げられるが、特に製造方式は問わない。脱塩水を補給水とする場合は、重炭酸塩濃度が低くなるため、給水中のMアルカリ度が低下し、缶水中で熱分解によって生じる苛性アルカリの濃度が低くなることから、缶水のpHが低くなりやすいため、本発明に従って、アルカリ剤添加によるpH調整が特に必要となる。   Such a water treatment method for steam generating equipment according to the present invention can be applied to any steam generating equipment such as special circulation boilers, water pipe boilers, round boilers, exhaust heat recovery boilers and the like into which copper (ions) is brought. However, it is effectively applied to a steam generation facility using demineralized water having an electric conductivity of 1 mS / m or less, for example, 0.01 to 1 mS / m as makeup water. Here, examples of the desalted water include ion-exchanged water, reverse osmosis membrane treated water, and electrodesalted treated water, but the production method is not particularly limited. When demineralized water is used as make-up water, the bicarbonate concentration decreases, so the M alkalinity in the feed water decreases, and the concentration of caustic alkali generated by thermal decomposition in the can water decreases. Therefore, it is particularly necessary to adjust the pH by adding an alkali agent according to the present invention.

また、本発明が適用される蒸気発生設備の運転圧力としてはボイラ水のpHを高く保つことによるアルカリ腐食防止の観点から、通常3MPa以下、特に2.5MPa以下、例えば0.4〜2.5MPaである。   The operating pressure of the steam generating equipment to which the present invention is applied is usually 3 MPa or less, particularly 2.5 MPa or less, for example 0.4 to 2.5 MPa, from the viewpoint of preventing alkaline corrosion by keeping the pH of boiler water high. It is.

本発明においては、前記のORP低減還元剤以外の薬剤であれば、上記のアルカリ剤、水溶性のポリカルボン酸及び/又は塩の他、一般的な水処理剤(腐食抑制剤、スケール防止剤等)を併用してもよい。   In the present invention, as long as it is a chemical other than the ORP reducing agent, a general water treatment agent (corrosion inhibitor, scale inhibitor) in addition to the above alkaline agent, water-soluble polycarboxylic acid and / or salt. Etc.) may be used in combination.

腐食抑制剤としては、給水配管、排ガスと給水を熱交換するエコノマイザ、蒸気発生設備の缶内については、缶水のORPを上昇させないものとして、例えばコハク酸及びその塩、クエン酸及びその塩、ソルビン酸及びその塩、ケイ酸及びその塩等が挙げられる。蒸気復水系の腐食抑制剤としては、例えば2−アミノ−2−メチル−1−プロパノール、モルホリン、モノイソプロパノールアミン、モノエタノールアミン、ジエタノールアミン、メトキシプロピルアミン、モノグリコールアミン、ジグリコールアミン、シクロヘキシルアミン等の揮発性を有する中和性アミン、オクタデシルアミン等の長鎖脂肪族アミン等が挙げられる。これらの薬剤は1種を単独で用いてもよく、2種以上を併用してもよい。これらの蒸気復水系の腐食抑制剤は、銅の溶出を低減するため、缶内での銅スケールの抑制には効果的である。   Corrosion inhibitors include water supply pipes, economizers that exchange heat between exhaust gas and water, and steam generators that do not raise the ORP of the cans, such as succinic acid and its salts, citric acid and its salts, Examples include sorbic acid and its salt, silicic acid and its salt, and the like. Examples of the steam condensate corrosion inhibitor include 2-amino-2-methyl-1-propanol, morpholine, monoisopropanolamine, monoethanolamine, diethanolamine, methoxypropylamine, monoglycolamine, diglycolamine, cyclohexylamine and the like. And long-chain aliphatic amines such as octadecylamine and the like. These drugs may be used alone or in combination of two or more. Since these steam condensate corrosion inhibitors reduce copper elution, they are effective in suppressing copper scale in the can.

スケール防止剤としては、例えば第三リン酸ソーダや第三リン酸カリウム等の各種リン酸及びその塩、トリポリリン酸及びその塩、ヘキサメタリン酸、ホスホン酸及びその塩等のポリリン酸及びその塩、1−ヒドロキシエチリデン−1,1−ジホスホン酸及びその塩、2−ホスホノブタン−1,2,4−トリカルボン酸及びその塩等のホスホン酸及びその塩が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the scale inhibitor include various phosphoric acids and salts thereof such as trisodium phosphate and tribasic potassium phosphate, polyphosphoric acid and salts thereof such as tripolyphosphoric acid and salts thereof, hexametaphosphoric acid and phosphonic acid and salts thereof, and the like. Examples include phosphonic acids and salts thereof such as -hydroxyethylidene-1,1-diphosphonic acid and salts thereof, and 2-phosphonobutane-1,2,4-tricarboxylic acid and salts thereof. These may be used alone or in combination of two or more.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[比較例1]
40℃の純水(電気伝導率0.06mS/m)に塩化銅(II)を5mg−Cu/Lとなるように添加し、さらにブロー水のpHが11.0〜11.1となるように水酸化ナトリウム水溶液を添加し、これをテストボイラに給水して下記の運転条件で120時間運転を行った。
[Comparative Example 1]
Copper chloride (II) is added to pure water (electric conductivity 0.06 mS / m) at 40 ° C. so as to be 5 mg-Cu / L, and the pH of the blow water is 11.0 to 11.1. A sodium hydroxide aqueous solution was added to the test boiler, which was supplied to a test boiler and operated for 120 hours under the following operating conditions.

<テストボイラ運転条件>
給水量 :10L/hr
缶内圧力:1.0MPa
ブロー率:10%
この運転試験後、伝熱面への銅の付着量を測定した。また、この試験期間中、ブロー水中の銅の濃度を測定してブロー水からの銅の排出量をブロー水の平均銅濃度として求め、また、給水から添加した銅の量に対するブロー水からの銅の排出率を求めた。なお、試験期間中、ブロー水のpHと酸化還元電位を測定した。
各項目の測定方法及び試験条件は以下に示す通りである。
試験結果を表1に示す。
<Test boiler operating conditions>
Water supply amount: 10L / hr
In-can pressure: 1.0 MPa
Blow rate: 10%
After this operation test, the amount of copper adhering to the heat transfer surface was measured. Also, during this test period, the copper concentration in the blow water was measured to determine the copper discharge from the blow water as the average copper concentration of the blow water, and the copper from the blow water relative to the amount of copper added from the feed water. The emission rate was calculated. During the test period, the pH and redox potential of blow water were measured.
The measurement method and test conditions for each item are as shown below.
The test results are shown in Table 1.

<伝熱面の銅付着量>
試験後、テストボイラの伝熱部であるテストチューブ(表面積:972cm)を50℃に加熱した1重量%アンモニア水で2回洗浄し、この洗浄水中の銅イオン濃度を原子吸光分析によって測定した。この銅イオン濃度と洗浄水総量とからテストチューブ表面に付着した銅の量を求めた。
<Copper adhesion amount on heat transfer surface>
After the test, the test tube (surface area: 972 cm 2 ), which is the heat transfer section of the test boiler, was washed twice with 1 wt% ammonia water heated to 50 ° C., and the copper ion concentration in the wash water was measured by atomic absorption spectrometry. . The amount of copper adhering to the test tube surface was determined from the copper ion concentration and the total amount of washing water.

<銅の排出量及び排出率>
試験期間中、ブロー水を6回採取し、このブロー水にアンモニア水を添加して加熱することでブロー水中の銅を溶解し、原子吸光分析により銅の濃度を測定し、この6回のブロー水の銅濃度の平均値を算出した。また、ブロー水の平均銅濃度とブロー水量を乗算することで、ブロー水による銅の排出量を求め、給水に添加してテストボイラに持ち込まれた銅の量と、ブロー水による銅の排出量とから下記式より銅の排出率を算出した。
銅の排出率(%)=(ブロー水による銅の排出量/給水に添加してテストボイラに持ち込まれた銅の量)×100
<Copper emissions and rate>
During the test period, the blow water was sampled six times, the ammonia water was added to the blow water and heated to dissolve the copper in the blow water, and the copper concentration was measured by atomic absorption analysis. The average value of the copper concentration of water was calculated. In addition, by multiplying the average copper concentration of blow water and the amount of blow water, the amount of copper discharged by blow water is obtained, the amount of copper added to the feed water and brought into the test boiler, and the amount of copper discharged by blow water The copper discharge rate was calculated from the following formula.
Copper emission rate (%) = (Copper discharge by blow water / Amount of copper added to the feed water and brought into the test boiler) x 100

<ブロー水のpH及び酸化還元電位>
試験期間中、ブロー水を熱交換して常温(25℃)まで冷却し、pH及び酸化還元電位を、それぞれpH計及びORP計(いずれも東亜DKK製)で測定して求めた。
<Blow water pH and redox potential>
During the test period, the blow water was heat-exchanged and cooled to room temperature (25 ° C.), and the pH and oxidation-reduction potential were determined by measuring with a pH meter and an ORP meter (both manufactured by Toa DKK), respectively.

[比較例2〜6]
給水に対してヒドラジンを8mg/L添加(比較例2)、タンニン酸の水酸化カリウム塩を15mg/L添加(比較例3)、クエン酸3ナトリウムを20mg/L添加(比較例4)、分子量4,000のポリアクリル酸ソーダを15mg/L添加(比較例5)、クエン酸3ナトリウムを20mg/L及び分子量4,000のポリアクリル酸ソーダを15mg/L添加(比較例6)した以外は、それぞれ比較例1と同様に試験を行った。その結果を表1に示す。
[Comparative Examples 2 to 6]
Hydrazine added to feed water at 8 mg / L (Comparative Example 2), potassium tannic acid potassium hydroxide added at 15 mg / L (Comparative Example 3), trisodium citrate added at 20 mg / L (Comparative Example 4), molecular weight Except for the addition of 15 mg / L of 4,000 sodium polyacrylate (Comparative Example 5), 20 mg / L of trisodium citrate and 15 mg / L of polysodium polyacrylate having a molecular weight of 4,000 (Comparative Example 6) In the same manner as in Comparative Example 1, the test was performed. The results are shown in Table 1.

[比較例7]
給水に対してタンニン酸を15mg/L添加し、ブロー水のpHが11.6になるように水酸化ナトリウムを添加した以外は比較例1と同様に試験を行った。その結果を表1に示す。
[Comparative Example 7]
The test was conducted in the same manner as in Comparative Example 1 except that 15 mg / L of tannic acid was added to the feed water, and sodium hydroxide was added so that the pH of the blow water was 11.6. The results are shown in Table 1.

[実施例1]
給水のpHが11.3になるように水酸化ナトリウムを添加した以外は、比較例1と同様に試験を行った。その結果を表1に示す。
[Example 1]
The test was performed in the same manner as in Comparative Example 1 except that sodium hydroxide was added so that the pH of the feed water was 11.3. The results are shown in Table 1.

[実施例2〜3]
ブロー水のpHが11.3になるように水酸化ナトリウムを添加し、給水に対して分子量4,000のポリアクリル酸ソーダを15mg/L添加(実施例2)、分子量30,000のポリメタクリル酸ソーダを15mg/L添加(実施例3)した以外は、それぞれ比較例1と同様に試験を行った。その結果を表1に示す。
[Examples 2-3]
Sodium hydroxide was added so that the pH of the blow water was 11.3, 15 mg / L of polyacrylic acid soda having a molecular weight of 4,000 was added to the feed water (Example 2), and polymethacryl having a molecular weight of 30,000. The test was conducted in the same manner as in Comparative Example 1 except that 15 mg / L of sodium acid was added (Example 3). The results are shown in Table 1.

[実施例4〜6]
ブロー水のpHが11.6になるように水酸化ナトリウムを添加し、給水に対して分子量52,000のポリアクリル酸ソーダを15mg/L添加(実施例4)、分子量4,000のポリアクリル酸ソーダを15mg/L添加(実施例5)、分子量30,000のポリメタクリル酸ソーダを15mg/L添加(実施例6)した以外は、それぞれ比較例1と同様に試験を行った。その結果を表1に示す。
[Examples 4 to 6]
Sodium hydroxide was added so that the pH of the blow water was 11.6, 15 mg / L of sodium polyacrylate having a molecular weight of 52,000 was added to the feed water (Example 4), and a polyacryl having a molecular weight of 4,000. The test was conducted in the same manner as in Comparative Example 1 except that 15 mg / L of sodium acid was added (Example 5) and 15 mg / L of polysodium methacrylate having a molecular weight of 30,000 was added (Example 6). The results are shown in Table 1.

[実施例7]
ブロー水のpHが12.0になるように水酸化ナトリウムを添加し、給水に対して分子量30,000のポリメタクリル酸ソーダを15mg/L添加(実施例7)した以外は比較例1と同様に試験を行った。その結果を表1に示す。
[Example 7]
Comparative Example 1 except that sodium hydroxide was added so that the pH of the blow water was 12.0, and 15 mg / L of poly (sodium methacrylate) having a molecular weight of 30,000 was added to the feed water (Example 7). The test was conducted. The results are shown in Table 1.

なお、以下の表1において、添加薬剤は下記略号で記載した。
TA・KOH:タンニン酸の水酸化カリウム塩
クエン酸Na:クエン酸3ナトリウム
PANa(4000):分子量4,000のポリアクリル酸ソーダ
PMNa(30000):分子量30,000のポリメタクリル酸ソーダ
PANa(52000):分子量52,000のポリアクリル酸ソーダ
In addition, in the following Table 1, an additive chemical | medical agent was described with the following symbol.
TA · KOH: Potassium hydroxide salt of tannic acid Na citrate 3 : Trisodium citrate PANa (4000): Sodium polyacrylate with a molecular weight of 4,000 PMNa (30000): Polysodium methacrylate with a molecular weight of 30,000 PANa 52000): Sodium polyacrylate having a molecular weight of 52,000

Figure 0006314560
Figure 0006314560

表1の結果から次のことが分かる。
ブロー水のpHを11.0〜11.1とした比較例1〜6では、いずれも伝熱面への銅付着量が多い。このうち、脱酸素機能を有するヒドラジン、タンニン酸の水酸化カリウム塩を添加した比較例2,3では、鋼材の腐食を低減できるがブロー水の酸化還元電位が0mV未満と低く、伝熱面への銅付着量が特に多い。
ブロー水のpHを11.6とし、タンニン酸を添加した比較例7では、pHを上げたことにより、伝熱面への銅付着量は比較例1〜6の場合よりも少ないものの、酸化還元電位が0mV未満と低く、やはり伝熱面への銅付着量は多い。
これに対して、ブロー水のpHを11.3〜12.0とし、ORP低減還元剤を添加しなかった実施例1〜7では、酸化還元電位が30〜70mV程度であり、ブロー水の酸化還元電位が0mV以上と高く、鋼材の腐食を低減できるだけでなく、伝熱面への銅の付着量も比較例1〜7に比べて格段に少ない。特に、好適な分子量の(メタ)アクリル酸系ポリマーを添加した実施例2,3,5〜7、とりわけ好適な分子量のメタクリル酸系ポリマーを添加した実施例3,6,7では伝熱面への銅付着量を著しく低減することができた。
The following can be seen from the results in Table 1.
In Comparative Examples 1 to 6 in which the pH of the blow water is 11.0 to 11.1, the copper adhesion amount on the heat transfer surface is large. Among these, in Comparative Examples 2 and 3 to which hydrazine having a deoxygenation function and potassium hydroxide salt of tannic acid were added, corrosion of the steel material can be reduced, but the redox potential of blow water is less than 0 mV, and the heat transfer surface is reduced. The amount of copper adhesion is particularly large.
In Comparative Example 7 in which the pH of the blow water was 11.6 and tannic acid was added, the amount of copper adhering to the heat transfer surface was less than that in Comparative Examples 1 to 6 due to the increase in pH. The potential is as low as less than 0 mV, and the amount of copper adhering to the heat transfer surface is large.
In contrast, in Examples 1 to 7 in which the pH of the blow water was 11.3 to 12.0 and no ORP reducing reducing agent was added, the redox potential was about 30 to 70 mV, and the blow water was oxidized. The reduction potential is as high as 0 mV or more, and not only can the corrosion of the steel material be reduced, but also the amount of copper adhering to the heat transfer surface is much smaller than in Comparative Examples 1-7. In particular, in Examples 2, 3, and 5 to which a (meth) acrylic acid polymer having a suitable molecular weight was added, particularly in Examples 3, 6, and 7 to which a methacrylic acid polymer having a suitable molecular weight was added, to the heat transfer surface It was possible to significantly reduce the amount of copper deposited.

Claims (3)

銅を含む水が給水される蒸気発生設備における銅スケールの付着を抑制する水処理方法において、該蒸気発生設備の補給水が電気伝導率1mS/m以下の脱塩水であり、該蒸気発生設備のブロー水を常温に冷却してORP計で測定した酸化還元電位を0mV未満にする還元剤を添加することなく、かつ該蒸気発生設備の水系のpHが11.以上となるように該蒸気発生設備の水系にアルカリ剤を添加することを特徴とする蒸気発生設備の水処理方法。 In a water treatment method for suppressing adhesion of copper scale in a steam generation facility to which water containing copper is supplied, the makeup water of the steam generation facility is demineralized water having an electric conductivity of 1 mS / m or less, and the steam generation facility Without adding a reducing agent that cools the blow water to room temperature and makes the redox potential measured with an ORP meter less than 0 mV, and the pH of the water system of the steam generating facility is 11. A water treatment method for a steam generating facility, wherein an alkali agent is added to the water system of the steam generating facility so as to be 6 or more. 請求項1において、前記蒸気発生設備の水系に、水溶性のポリカルボン酸及び/又はその塩を添加することを特徴とする蒸気発生設備の水処理方法。   The water treatment method for a steam generation facility according to claim 1, wherein a water-soluble polycarboxylic acid and / or a salt thereof is added to the water system of the steam generation facility. 請求項2において、前記水溶性のポリカルボン酸及び/又はその塩が、分子量1,000〜50,000の、ポリアクリル酸、ポリアクリル酸塩、ポリメタクリル酸、及びポリメタクリル酸塩から選ばれる1種以上であることを特徴とする蒸気発生設備の水処理方法。   3. The water-soluble polycarboxylic acid and / or salt thereof according to claim 2, selected from polyacrylic acid, polyacrylic acid salt, polymethacrylic acid, and polymethacrylic acid salt having a molecular weight of 1,000 to 50,000. A water treatment method for a steam generating facility, wherein the water treatment method is one or more.
JP2014052445A 2014-03-14 2014-03-14 Water treatment method for steam generating equipment Active JP6314560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014052445A JP6314560B2 (en) 2014-03-14 2014-03-14 Water treatment method for steam generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014052445A JP6314560B2 (en) 2014-03-14 2014-03-14 Water treatment method for steam generating equipment

Publications (2)

Publication Number Publication Date
JP2015174040A JP2015174040A (en) 2015-10-05
JP6314560B2 true JP6314560B2 (en) 2018-04-25

Family

ID=54253759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014052445A Active JP6314560B2 (en) 2014-03-14 2014-03-14 Water treatment method for steam generating equipment

Country Status (1)

Country Link
JP (1) JP6314560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249123B1 (en) * 2017-04-12 2017-12-20 栗田工業株式会社 Scale inhibitor and scale prevention method
JP6735717B2 (en) * 2017-09-21 2020-08-19 栗田工業株式会社 Steam heating efficiency improvement method and papermaking method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324664A (en) * 1981-04-16 1982-04-13 Betz Laboratories, Inc. Method and composition for treating aqueous mediums
JPH0762266B2 (en) * 1990-03-07 1995-07-05 伯東株式会社 Ion blocking agent for boiler water system and method for preventing scale formation in boiler water system using the same
JP2001070986A (en) * 1999-09-09 2001-03-21 Fujisawa Pharmaceut Co Ltd Scale inhibitor and water treatment agent for high temperature and high pressure aqueous system
JP2003147556A (en) * 2001-11-02 2003-05-21 Miura Co Ltd Method of suppressing corrosion in nonpassivated metallic body, and method of suppressing corrosion in boiler
JP4711902B2 (en) * 2006-03-03 2011-06-29 伯東株式会社 Boiler corrosion control method
JP5066972B2 (en) * 2007-03-27 2012-11-07 栗田工業株式会社 Boiler anticorrosion method

Also Published As

Publication number Publication date
JP2015174040A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP5773091B2 (en) Descale method for steam generating equipment
JP5800044B2 (en) Descaling method and descaling agent for steam generating equipment
JP6215511B2 (en) Anticorrosive for boiler
JP6314560B2 (en) Water treatment method for steam generating equipment
JP6181350B2 (en) Scale prevention method in steam generating equipment
JP5066972B2 (en) Boiler anticorrosion method
JP5970884B2 (en) Anticorrosion method
JP5891630B2 (en) Boiler water scale removal method
JP5862193B2 (en) Method for preventing iron scale in water side can of steam generator
JP5900064B2 (en) Water treatment method for a boiler having an economizer
JP5909956B2 (en) Method for inhibiting economizer corrosion in boilers
JP6156494B2 (en) Water treatment method for steam generating equipment
JP5691697B2 (en) Water treatment method for steam generating equipment
JP2015196857A (en) chemical cleaning method
JP2013068341A (en) Method for preventing corrosion of economizer in boiler
JP5826622B2 (en) Metal anticorrosive
JP2018145488A (en) Water treatment agent, scale removal method and scale suppression method
JP2002275664A (en) Corrosion inhibitor of high-temperature water system or steam generation system
JP2012184466A (en) Method for preventing corrosion in boiler water supply system and boiler
JP2012184465A (en) Method for preventing corrosion in boiler water supply system and boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250