JP6311503B2 - Cooling device for internal combustion engine and cooling method for internal combustion engine - Google Patents

Cooling device for internal combustion engine and cooling method for internal combustion engine Download PDF

Info

Publication number
JP6311503B2
JP6311503B2 JP2014140283A JP2014140283A JP6311503B2 JP 6311503 B2 JP6311503 B2 JP 6311503B2 JP 2014140283 A JP2014140283 A JP 2014140283A JP 2014140283 A JP2014140283 A JP 2014140283A JP 6311503 B2 JP6311503 B2 JP 6311503B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
internal combustion
combustion engine
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014140283A
Other languages
Japanese (ja)
Other versions
JP2016017452A (en
Inventor
市原 敬義
敬義 市原
入山 正浩
正浩 入山
鉄也 福家
鉄也 福家
尚吾 伊藤
尚吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014140283A priority Critical patent/JP6311503B2/en
Publication of JP2016017452A publication Critical patent/JP2016017452A/en
Application granted granted Critical
Publication of JP6311503B2 publication Critical patent/JP6311503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関の冷却装置及び内燃機関の冷却方法に係り、特に、周囲温度に影響されず、内燃機関の出口水温の変動を低減する技術に関する。   The present invention relates to a cooling device for an internal combustion engine and a cooling method for the internal combustion engine, and more particularly to a technique for reducing fluctuations in the outlet water temperature of the internal combustion engine without being affected by the ambient temperature.

車両に搭載される内燃機関は、冷却水が流れる冷却流路が設けられており、該冷却流路に冷却水を流すことにより、内燃機関の温度が所望の温度となるように制御している。また、内燃機関の温度を低下させたい場合には、冷却水を熱交換器(ラジエータ等)を通過させることにより、該冷却水の温度を低下させる。   An internal combustion engine mounted on a vehicle is provided with a cooling flow path through which cooling water flows, and is controlled so that the temperature of the internal combustion engine becomes a desired temperature by flowing cooling water through the cooling flow path. . When it is desired to lower the temperature of the internal combustion engine, the temperature of the cooling water is lowered by passing the cooling water through a heat exchanger (a radiator or the like).

内燃機関の始動時において、温度が上昇した冷却水が、常温の熱交換器に急激に導入されると、冷却水導入前後の温度差により熱交換器が熱衝撃(「サーマルショック」とも言う)を受けることになる。特許文献1には、熱衝撃を緩和するために、熱交換器を通過する冷却水の入口温度と出口温度を検出し、この温度差が大きくならないように熱交換器に供給する冷却水の流量を制御することが開示されている。   When the cooling water whose temperature has risen is suddenly introduced into the heat exchanger at room temperature when the internal combustion engine is started, the heat exchanger is subjected to a thermal shock (also called “thermal shock”) due to the temperature difference before and after the introduction of the cooling water. Will receive. In Patent Document 1, in order to mitigate thermal shock, the temperature of the cooling water that passes through the heat exchanger is detected and the temperature of the cooling water that is supplied to the heat exchanger so that the temperature difference does not increase. Is disclosed.

特開2008−37302号公報JP 2008-37302 A

しかしながら、上述した特許文献1に開示された従来例は、熱交換器に生じる熱衝撃を緩和するために、熱交換器に冷却水を流して温度を上昇させるので、内燃機関の温度を即時に上昇させたい場合においても、冷却水の一部を熱交換器に供給することになり、内燃機関の温度上昇が遅くなるという問題が生じる。   However, in the conventional example disclosed in Patent Document 1 described above, in order to reduce the thermal shock generated in the heat exchanger, the temperature is raised by flowing cooling water through the heat exchanger. Even when it is desired to raise the temperature, a part of the cooling water is supplied to the heat exchanger, which causes a problem that the temperature rise of the internal combustion engine is delayed.

また、内燃機関の出口水温が目標温度となるように制御するために、出口温度と周囲温度との温度偏差を求めている。この際、周囲温度は常温(例えば25℃)に設定されるので、例えば、周囲温度が10℃のように常温よりも低い場合、或いは周囲温度が40℃のように常温よりも高い場合には、熱交換器による放熱量が増大或いは減少する。このため、内燃機関の出口温度にオーバーシュートやアンダーシュート、ハンチング等が生じて、内燃機関の出口水温が目標温度となるように制御することが難しくなる。   Further, in order to control the outlet water temperature of the internal combustion engine to be the target temperature, the temperature deviation between the outlet temperature and the ambient temperature is obtained. At this time, since the ambient temperature is set to room temperature (for example, 25 ° C.), for example, when the ambient temperature is lower than room temperature such as 10 ° C., or when the ambient temperature is higher than room temperature such as 40 ° C. The amount of heat released by the heat exchanger increases or decreases. For this reason, overshoot, undershoot, hunting, etc. occur in the outlet temperature of the internal combustion engine, and it becomes difficult to control the outlet water temperature of the internal combustion engine to be the target temperature.

本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、内燃機関に供給される冷却水の水温を適切な温度に制御することが可能な内燃機関の冷却装置、及び内燃機関の冷却方法を提供することにある。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide an internal combustion engine capable of controlling the temperature of cooling water supplied to the internal combustion engine to an appropriate temperature. An object of the present invention is to provide an engine cooling apparatus and an internal combustion engine cooling method.

上記目的を達成するため、本願発明は、内燃機関を冷却するための冷却水が流れる冷却流路と、冷却流路の出口側に設けられ、冷却水冷却用の熱交換器が配置された熱交換流路、及び熱交換器が配置されないバイパス流路、の少なくとも一方に分岐させる切替部を有する。また、熱交換器の入口温度を検出する入口温度検出部と、出口温度を検出する出口温度検出部と、切替部における、熱交換流路及びバイパス流路への冷却水流量の分配を制御する制御部と、を備える。制御部は、入口温度と内燃機関出口の目標温度との差分から温度偏差を求め、且つ、入口温度と出口温度との差分を演算して差分温度を求め、温度偏差、及び差分温度に基づいて、切替部の開口率を求める。   In order to achieve the above-described object, the present invention provides a cooling channel through which cooling water for cooling an internal combustion engine flows, and a heat exchanger provided with a heat exchanger for cooling water cooling provided on the outlet side of the cooling channel. It has a switching part which branches into at least one of an exchange channel and a bypass channel where a heat exchanger is not arranged. Also, distribution of the cooling water flow rate to the heat exchange flow path and the bypass flow path in the inlet temperature detection section that detects the inlet temperature of the heat exchanger, the outlet temperature detection section that detects the outlet temperature, and the switching section is controlled. A control unit. The control unit obtains a temperature deviation from the difference between the inlet temperature and the target temperature of the internal combustion engine outlet, calculates a difference between the inlet temperature and the outlet temperature, obtains a difference temperature, and based on the temperature deviation and the difference temperature The aperture ratio of the switching unit is obtained.

本発明に係る内燃機関の冷却装置及び内燃機関の冷却方法では、熱交換器の入口温度と内燃機関出口の目標温度との差分から温度偏差を求め、且つ、熱交換器の入口温度と出口温度との差分温度を求め、温度偏差、及び差分温度に基づいて、切替部の開口率を求めるので、内燃機関に供給される冷却水の水温を適切な温度に制御することが可能となる。   In the internal combustion engine cooling apparatus and internal combustion engine cooling method according to the present invention, the temperature deviation is obtained from the difference between the inlet temperature of the heat exchanger and the target temperature of the outlet of the internal combustion engine, and the inlet temperature and the outlet temperature of the heat exchanger. And the opening ratio of the switching unit is obtained based on the temperature deviation and the difference temperature, so that the temperature of the cooling water supplied to the internal combustion engine can be controlled to an appropriate temperature.

本発明の一実施形態に係る内燃機関の冷却装置を含む、内燃機関の構成を示すブロック図である。1 is a block diagram showing a configuration of an internal combustion engine including a cooling device for an internal combustion engine according to an embodiment of the present invention. 図1に示した内燃機関の冷却装置に用いられる制御部の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the control part used for the cooling device of the internal combustion engine shown in FIG. 本発明の一実施形態に係る内燃機関の冷却装置で採用する、感度データと差分温度ΔT、及び開口率の関係を示す開口率算出マップを示す説明図である。It is explanatory drawing which shows the aperture ratio calculation map which shows the relationship between sensitivity data, differential temperature (DELTA) T, and an aperture ratio employ | adopted with the cooling device of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の冷却装置で採用する、三方弁の開口率と角度との関係を示す角度算出マップを示す説明図である。It is explanatory drawing which shows the angle calculation map which shows the relationship between the opening rate of a three-way valve, and an angle employ | adopted with the cooling device of the internal combustion engine which concerns on one Embodiment of this invention. 本発明の一実施形態に係る内燃機関の冷却装置による処理手順を示すフローチャートである。It is a flowchart which shows the process sequence by the cooling device of the internal combustion engine which concerns on one Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る冷却装置を含む内燃機関の構成を示すブロック図である。図1に示すように、本実施形態に係る冷却装置は、内燃機関11に冷却用の冷却水を供給する冷却流路L1と、該冷却流路L1に冷却水を循環させる循環ポンプ13と、冷却流路L1の出口端部に設けられ、内燃機関11を通過した冷却水を2系統に分岐させる三方弁12(切替部)と、を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an internal combustion engine including a cooling device according to an embodiment of the present invention. As shown in FIG. 1, the cooling device according to the present embodiment includes a cooling flow path L1 that supplies cooling water to the internal combustion engine 11, a circulation pump 13 that circulates the cooling water in the cooling flow path L1, And a three-way valve 12 (switching unit) that is provided at the outlet end of the cooling flow path L1 and branches the cooling water that has passed through the internal combustion engine 11 into two systems.

三方弁12は、冷却流路L1より供給される冷却水を、バイパス流路L2及び熱交換流路L3に分配して出力する。バイパス流路L2は、循環ポンプ13の入口側に接続され、熱交換流路L3は、冷却水を冷却するための熱交換器14(例えば、ラジエータ)を経由して、循環ポンプ13の入口側に接続されている。即ち、三方弁12(切替手段)は、冷却流路L1の出口側に設けられ、該冷却流路L1を、冷却水冷却用の熱交換器14が配置された熱交換流路L3、及び熱交換器14が配置されないバイパス流路L2の少なくとも一方に分岐させる機能を備える。   The three-way valve 12 distributes and outputs the cooling water supplied from the cooling flow path L1 to the bypass flow path L2 and the heat exchange flow path L3. The bypass channel L2 is connected to the inlet side of the circulation pump 13, and the heat exchange channel L3 is connected to the inlet side of the circulation pump 13 via a heat exchanger 14 (for example, a radiator) for cooling the cooling water. It is connected to the. That is, the three-way valve 12 (switching means) is provided on the outlet side of the cooling flow path L1, and the cooling flow path L1 is connected to the heat exchange flow path L3 in which the heat exchanger 14 for cooling water cooling is disposed, and the heat. A function of branching to at least one of the bypass flow paths L2 where the exchanger 14 is not disposed is provided.

また、内燃機関11の出口近傍の冷却流路L1には、該冷却流路L1を流れる冷却水の温度を検出する第1温度検出部21(入口温度検出部)が設けられている。なお、第1温度検出部21で検出される温度T1は、熱交換器14の入口側温度であるから、以下、入口温度T1と称する。そして、冷却流路L1の出口端部は、熱交換流路L3を経由して熱交換器14の入口に接続されるので、第1温度検出部21で検出される温度は、熱交換器14に供給される冷却水の入口温度T1と同等の温度となる。一方、熱交換器14の出口近傍の熱交換流路L3には、熱交換器14を通過した冷却水の温度である出口温度T2を検出する第2温度検出部22(出口温度検出部)が設けられている。なお、「温度を検出する」とは、センサにより直接測定することや、冷却水流量等の要因に基づいて推定することを含む概念である。   Further, in the cooling flow path L1 in the vicinity of the outlet of the internal combustion engine 11, a first temperature detection unit 21 (inlet temperature detection unit) that detects the temperature of the cooling water flowing through the cooling flow path L1 is provided. In addition, since temperature T1 detected by the 1st temperature detection part 21 is inlet side temperature of the heat exchanger 14, it is hereafter called inlet temperature T1. And since the exit edge part of the cooling flow path L1 is connected to the inlet_port | entrance of the heat exchanger 14 via the heat exchange flow path L3, the temperature detected by the 1st temperature detection part 21 is the heat exchanger 14. It becomes a temperature equivalent to the inlet temperature T1 of the cooling water supplied to. On the other hand, in the heat exchange flow path L3 near the outlet of the heat exchanger 14, a second temperature detection unit 22 (outlet temperature detection unit) that detects an outlet temperature T2 that is the temperature of the cooling water that has passed through the heat exchanger 14 is provided. Is provided. Note that “detecting temperature” is a concept including direct measurement by a sensor and estimation based on factors such as a cooling water flow rate.

更に、入口温度T1、及び出口温度T2を取得し、これらの温度データに基づいて、三方弁12の開度を制御する制御部23を備えている。   Furthermore, the control part 23 which acquires the inlet temperature T1 and the outlet temperature T2, and controls the opening degree of the three-way valve 12 based on these temperature data is provided.

以下、図2に示すブロック図を参照して、制御部23の詳細な構成について説明する。制御部23は、内燃機関11より出力される冷却水の温度(即ち、入口温度T1)と、該入口温度T1の目標温度T1refとの偏差(温度偏差)を演算する減算器31と、該減算器31に予め設定したゲインを乗じて感度データを出力する乗算器32を備えている。更に、入口温度T1と、熱交換器14の出口温度T2を入力し、これらの差分温度ΔTを演算する減算器33を備えている。   The detailed configuration of the control unit 23 will be described below with reference to the block diagram shown in FIG. The controller 23 calculates a deviation (temperature deviation) between the temperature of the cooling water output from the internal combustion engine 11 (that is, the inlet temperature T1) and the target temperature T1ref of the inlet temperature T1, and the subtraction. The multiplier 31 includes a multiplier 32 that multiplies a preset gain and outputs sensitivity data. Furthermore, a subtractor 33 is provided for inputting the inlet temperature T1 and the outlet temperature T2 of the heat exchanger 14 and calculating the difference temperature ΔT between them.

また、乗算器32より出力される感度データと差分温度ΔTに基づいて、三方弁12の開口率(熱交換流路L3への冷却水の供給量を決めるための開口率)を求める開口率算出部34と、該開口率算出部34で求められた開口率に基づいて、三方弁12の角度を求める角度算出部35と、メモリ36(マップ記憶部)と、を備えている。メモリ36には、開口率算出部34の演算に使用する、感度データと差分温度ΔTと開口率との対応関係を示す開口率算出マップ、及び、三方弁12の開口率と該三方弁12の角度との対応関係を示す角度算出マップが記憶されている。   Further, based on the sensitivity data output from the multiplier 32 and the difference temperature ΔT, the opening ratio calculation for obtaining the opening ratio of the three-way valve 12 (the opening ratio for determining the amount of cooling water supplied to the heat exchange flow path L3). Unit 34, an angle calculation unit 35 for obtaining an angle of the three-way valve 12 based on the opening ratio obtained by the opening ratio calculation unit 34, and a memory 36 (map storage unit). In the memory 36, an opening ratio calculation map showing the correspondence between the sensitivity data, the difference temperature ΔT, and the opening ratio, which is used for the calculation of the opening ratio calculation unit 34, and the opening ratio of the three-way valve 12 and the three-way valve 12 An angle calculation map indicating a correspondence relationship with the angle is stored.

図3は、開口率算出マップの具体的な内容を示す説明図であり、感度データと差分温度ΔTに対して、開口率が設定されている。従って、感度データ及び差分温度ΔTが入力されると、これに対応する開口率が求められる。より詳細には、感度データに基づいて開口率が求められ、更に、この開口率を差分温度ΔTにより補正することができる。図4は、角度算出マップの具体的な内容を示す説明図であり、三方弁12の開口率に対して、該三方弁の角度が設定されている。   FIG. 3 is an explanatory diagram showing the specific contents of the aperture ratio calculation map, in which the aperture ratio is set for the sensitivity data and the difference temperature ΔT. Therefore, when sensitivity data and differential temperature ΔT are input, an aperture ratio corresponding to the sensitivity data and differential temperature ΔT is obtained. More specifically, the aperture ratio is obtained based on the sensitivity data, and the aperture ratio can be corrected by the differential temperature ΔT. FIG. 4 is an explanatory diagram showing the specific contents of the angle calculation map, and the angle of the three-way valve is set with respect to the opening ratio of the three-way valve 12.

即ち、制御部23は、入口温度T1と、内燃機関出口の目標温度(T1ref)との差分から温度偏差を求め、且つ、入口温度T1と出口温度T2の差分を演算して差分温度ΔTを求め、温度偏差、及び差分温度ΔTに基づいて、三方弁12(切替部)の開口率を求める機能を備えている。   That is, the control unit 23 obtains a temperature deviation from the difference between the inlet temperature T1 and the target temperature (T1ref) of the internal combustion engine outlet, and calculates a difference between the inlet temperature T1 and the outlet temperature T2 to obtain a difference temperature ΔT. , A function of obtaining the opening ratio of the three-way valve 12 (switching unit) based on the temperature deviation and the difference temperature ΔT.

なお、制御部23は、例えば中央演算ユニット(CPU)や、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピュータとして構成することができる。   The control unit 23 can be configured as an integrated computer including a central processing unit (CPU), storage means such as a RAM, a ROM, and a hard disk.

次に、図3に示すフローチャートを参照して、本実施形態に係る内燃機関の冷却装置の処理手順について説明する。この処理は、予め設定した演算周期毎に繰り返して実行される。   Next, with reference to the flowchart shown in FIG. 3, the processing procedure of the cooling device for the internal combustion engine according to the present embodiment will be described. This process is repeatedly executed every preset calculation cycle.

初めに、図3のステップS11において、内燃機関11が始動する。この際、循環ポンプ13が駆動を開始するので、冷却流路L1に冷却水が流入し、内燃機関11が冷却される。また、三方弁12の出口は、バイパス流路L2側の開口部が開放され、熱交換流路L3側の開口部が閉鎖される。従って、冷却流路L1を流れる冷却水は、バイパス流路L2を経由して循環ポンプ13に戻される。その結果、冷却水の温度が上昇し、内燃機関11を通過した後の冷却水温度が、例えば100℃まで上昇する。その後、内燃機関、及び駆動機構に用いられる潤滑オイル(内燃機関オイルやトランスミッションオイル等)の温度が上昇するので、該潤滑オイルのフリクションが低下し、燃料消費率を向上させることができる。   First, in step S11 of FIG. 3, the internal combustion engine 11 is started. At this time, since the circulation pump 13 starts driving, the cooling water flows into the cooling flow path L1 and the internal combustion engine 11 is cooled. Further, the outlet of the three-way valve 12 is opened at the bypass flow path L2 side and closed at the heat exchange flow path L3 side. Accordingly, the cooling water flowing through the cooling flow path L1 is returned to the circulation pump 13 via the bypass flow path L2. As a result, the temperature of the cooling water rises, and the temperature of the cooling water after passing through the internal combustion engine 11 rises to 100 ° C., for example. Thereafter, the temperature of the lubricating oil (internal combustion engine oil, transmission oil, etc.) used for the internal combustion engine and the drive mechanism rises, so that the friction of the lubricating oil decreases and the fuel consumption rate can be improved.

その後、内燃機関11の回転数及びトルクが上昇すると、内燃機関11にノッキングが生じ、燃料消費率が悪くなる。従って、ノッキングを防止するために、内燃機関11の温度を低下させることが望まれる。従って、ステップS12において、制御部23は、三方弁12の、熱交換流路L3側を開放し、熱交換器14への冷却水の供給を開始する。このときの、三方弁12の開口率は、初期的に設定した開口率とされる。   Thereafter, when the rotational speed and torque of the internal combustion engine 11 increase, knocking occurs in the internal combustion engine 11 and the fuel consumption rate deteriorates. Therefore, it is desired to reduce the temperature of the internal combustion engine 11 in order to prevent knocking. Therefore, in step S <b> 12, the control unit 23 opens the heat exchange flow path L <b> 3 side of the three-way valve 12 and starts supplying cooling water to the heat exchanger 14. At this time, the opening ratio of the three-way valve 12 is set to an initially set opening ratio.

ステップS13において、制御部23は、第1温度検出部21にて測定される入口温度T1を取得する。入口温度T1が取得されると、この入口温度T1と目標温度T1refとの温度偏差が図2に示した減算器31にて演算され、この温度偏差は、乗算器32にてゲインが乗じられた後、感度データとして、開口率算出部34に供給される。ステップS14において、開口率算出部34は、感度データを図3に示した開口率算出マップに当てはめることにより、三方弁12の熱交換流路L3側の開口率を求める。   In step S <b> 13, the control unit 23 acquires the inlet temperature T <b> 1 measured by the first temperature detection unit 21. When the inlet temperature T1 is acquired, the temperature deviation between the inlet temperature T1 and the target temperature T1ref is calculated by the subtractor 31 shown in FIG. 2, and this temperature deviation is multiplied by the gain by the multiplier 32. After that, it is supplied to the aperture ratio calculation unit 34 as sensitivity data. In step S14, the opening ratio calculation unit 34 obtains the opening ratio of the three-way valve 12 on the heat exchange flow path L3 side by applying the sensitivity data to the opening ratio calculation map shown in FIG.

ステップS15において、制御部23は、第2温度検出部22にて測定される出口温度T2を取得する。出口温度T2が取得されると、この出口温度T2と入口温度T1との差分温度ΔTが図2に示した減算器33にて演算され、この差分温度ΔTは、開口率算出部34に供給される。   In step S <b> 15, the control unit 23 acquires the outlet temperature T <b> 2 measured by the second temperature detection unit 22. When the outlet temperature T2 is acquired, the difference temperature ΔT between the outlet temperature T2 and the inlet temperature T1 is calculated by the subtractor 33 shown in FIG. 2, and this difference temperature ΔT is supplied to the opening ratio calculation unit 34. The

ステップS16において、開口率算出部34は、差分温度ΔTに基づき、図3に示した開口率算出マップに当てはめることにより、ステップS14の処理で求められた開口率を補正する。   In step S16, the aperture ratio calculation unit 34 corrects the aperture ratio obtained in the process of step S14 by applying it to the aperture ratio calculation map shown in FIG. 3 based on the difference temperature ΔT.

補正された開口率は、三方弁12より供給される冷却水が熱交換器14を通過した後に、差分温度ΔTに応じた流量となるように制御される。即ち、周囲温度が低く(例えば、10℃)、熱交換器14による放熱量が大きいと判断される場合には、開口率を小さくして熱交換器14を通過する冷却水の流量を少なくする。これとは反対に、周囲温度が高く(例えば、40℃)、熱交換器14による放熱量が小さいと判断される場合には、開口率を大きくして熱交換器14を通過する冷却水の流量を多くする。こうすることにより、内燃機関11に供給される冷却水の温度をほぼ一定の温度に保持することができ、内燃機関11を安定に作動させることができることになる。そして、補正後の開口率データを角度算出部35に出力する。   The corrected opening rate is controlled so that the cooling water supplied from the three-way valve 12 has a flow rate corresponding to the differential temperature ΔT after passing through the heat exchanger 14. That is, when it is determined that the ambient temperature is low (for example, 10 ° C.) and the amount of heat released by the heat exchanger 14 is large, the opening ratio is decreased and the flow rate of the cooling water passing through the heat exchanger 14 is decreased. . On the contrary, when it is determined that the ambient temperature is high (for example, 40 ° C.) and the amount of heat released by the heat exchanger 14 is small, the cooling water passing through the heat exchanger 14 with an increased aperture ratio is used. Increase the flow rate. By doing so, the temperature of the cooling water supplied to the internal combustion engine 11 can be maintained at a substantially constant temperature, and the internal combustion engine 11 can be operated stably. Then, the corrected aperture ratio data is output to the angle calculator 35.

ステップS17において、角度算出部35は、ステップS16の処理で補正された開口率を角度算出マップに開口率を当てはめることにより、該三方弁12の弁の角度を求める。その後、ステップS18において、この角度データを図1に示す三方弁12に出力し、三方弁12の弁の角度を制御する。   In step S17, the angle calculation unit 35 obtains the valve angle of the three-way valve 12 by fitting the opening ratio corrected in the process of step S16 to the angle calculation map. Thereafter, in step S18, this angle data is output to the three-way valve 12 shown in FIG. 1, and the angle of the valve of the three-way valve 12 is controlled.

このようにして、本実施形態に係る内燃機関の冷却装置では、内燃機関11の出口側の冷却水の水温、即ち、熱交換器14の入口温度T1が、予め設定した目標温度T1refとなるように三方弁12の開口率を求めている。更に、熱交換器14の入口温度T1と出口温度T2との差分温度ΔTを演算し、この差分温度ΔTにより上記の開口率を補正している。そして、補正後の開口率となるように、三方弁12の角度を制御している。   Thus, in the cooling device for an internal combustion engine according to the present embodiment, the coolant temperature on the outlet side of the internal combustion engine 11, that is, the inlet temperature T1 of the heat exchanger 14 is set to the preset target temperature T1ref. The opening ratio of the three-way valve 12 is obtained. Further, a difference temperature ΔT between the inlet temperature T1 and the outlet temperature T2 of the heat exchanger 14 is calculated, and the opening ratio is corrected by the difference temperature ΔT. Then, the angle of the three-way valve 12 is controlled so that the corrected opening ratio is obtained.

従って、熱交換器14の入口温度T1と出口温度T2の差分温度ΔTに応じて、該熱交換器14に供給される冷却水の流量が制御されることになる。このため、例えば、周囲温度が低温であり、熱交換器14による放熱量が大きい場合には、該熱交換器14に供給される冷却水量が低減されることになる。その結果、内燃機関11に流入する冷却水の温度を安定した温度に保持することができ、冷却水温度が低下して、内燃機関の効率が低下する、といった問題の発生を回避することが可能となる。   Therefore, the flow rate of the cooling water supplied to the heat exchanger 14 is controlled according to the difference temperature ΔT between the inlet temperature T1 and the outlet temperature T2 of the heat exchanger 14. For this reason, for example, when the ambient temperature is low and the amount of heat released by the heat exchanger 14 is large, the amount of cooling water supplied to the heat exchanger 14 is reduced. As a result, the temperature of the cooling water flowing into the internal combustion engine 11 can be maintained at a stable temperature, and it is possible to avoid the occurrence of the problem that the cooling water temperature is lowered and the efficiency of the internal combustion engine is reduced. It becomes.

また、メモリ36に、開口率算出マップを記憶し、この開口率算出マップを参照して三方弁12の開口率を設定するので、多くの演算負荷をかけることなく開口率の算出が可能となる。   Further, since the opening ratio calculation map is stored in the memory 36 and the opening ratio of the three-way valve 12 is set with reference to the opening ratio calculation map, the opening ratio can be calculated without applying much calculation load. .

また、上述した実施形態では、入口温度T1と出口温度T2の差分温度ΔTを用いて、開口率を補正する例について説明したが、本発明はこれに限定されるものではなく、例えば、差分温度ΔTに基づいて、図2に示した乗算器32のゲインを変化させるようにしてもよい。このような構成においても、上述した実施形態と同様の効果を得ることができる。   In the above-described embodiment, the example in which the opening ratio is corrected using the difference temperature ΔT between the inlet temperature T1 and the outlet temperature T2 has been described. However, the present invention is not limited to this example. The gain of the multiplier 32 shown in FIG. 2 may be changed based on ΔT. Even in such a configuration, the same effects as those of the above-described embodiment can be obtained.

以上、本発明の内燃機関の冷却装置及び内燃機関の冷却方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。   The internal combustion engine cooling device and the internal combustion engine cooling method of the present invention have been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part has the same function. It can be replaced with any configuration.

11 内燃機関
12 三方弁(切替部)
13 循環ポンプ
14 熱交換器
21 第1温度検出部(入口温度検出部)
22 第2温度検出部(出口温度検出部)
23 制御部
31 減算器
32 乗算器
33 減算器
34 開口率算出部
35 角度算出部
36 メモリ(マップ記憶部)
L1 冷却流路
L2 バイパス流路
L3 熱交換流路
11 Internal combustion engine 12 Three-way valve (switching part)
13 Circulation Pump 14 Heat Exchanger 21 First Temperature Detection Unit (Inlet Temperature Detection Unit)
22 Second temperature detector (exit temperature detector)
23 Control Unit 31 Subtractor 32 Multiplier 33 Subtractor 34 Aperture Ratio Calculation Unit 35 Angle Calculation Unit 36 Memory (Map Storage Unit)
L1 Cooling channel L2 Bypass channel L3 Heat exchange channel

Claims (3)

内燃機関を冷却するための冷却水が流れる冷却流路と、
前記冷却流路の出口側に設けられ、該冷却流路を、冷却水冷却用の熱交換器が配置された熱交換流路、及び前記熱交換器が配置されないバイパス流路、の少なくとも一方に分岐させる切替部と、
前記熱交換流路、及びバイパス流路を通過した冷却水を前記冷却流路に送り出す循環ポンプと、
前記内燃機関から出力されて前記熱交換器に供給される冷却水の温度である入口温度を検出する入口温度検出部と、
前記熱交換器から出力される冷却水の温度である出口温度を検出する出口温度検出部と、
前記切替部における、前記熱交換流路及びバイパス流路への冷却水流量の分配を制御する制御部と、を備え、
前記制御部は、
前記入口温度と、前記内燃機関出口の目標温度との差分から温度偏差を求め、且つ、前記入口温度と出口温度との差分を演算して差分温度を求め、
前記温度偏差、及び差分温度に基づいて、前記切替部の開口率を求めること
を特徴とする内燃機関の冷却装置。
A cooling flow path through which cooling water for cooling the internal combustion engine flows;
Provided on the outlet side of the cooling flow path, the cooling flow path is at least one of a heat exchange flow path in which a heat exchanger for cooling water cooling is disposed and a bypass flow path in which the heat exchanger is not disposed. A switching unit for branching;
A circulation pump for sending the cooling water that has passed through the heat exchange channel and the bypass channel to the cooling channel;
An inlet temperature detector that detects an inlet temperature that is a temperature of cooling water that is output from the internal combustion engine and supplied to the heat exchanger;
An outlet temperature detector that detects an outlet temperature that is a temperature of cooling water output from the heat exchanger;
A control unit for controlling distribution of the cooling water flow rate to the heat exchange channel and the bypass channel in the switching unit,
The controller is
Find the temperature deviation from the difference between the inlet temperature and the target temperature of the internal combustion engine outlet, and calculate the difference between the inlet temperature and the outlet temperature to obtain the difference temperature,
A cooling device for an internal combustion engine, wherein an opening ratio of the switching unit is obtained based on the temperature deviation and the differential temperature.
前記温度偏差と、前記差分温度、及び前記切替部における前記熱交換流路への冷却水の流量を決定するための開口率、の対応を示す開口率算出マップを記憶するマップ記憶部を更に備え、
前記制御部は、前記温度偏差、及び前記差分温度を前記開口率算出マップに当てはめて、前記切替部の開口率を求めること
を特徴とする請求項1に記載の内燃機関の冷却装置。
A map storage unit that stores an opening ratio calculation map indicating correspondence between the temperature deviation, the difference temperature, and an opening ratio for determining a flow rate of cooling water to the heat exchange flow path in the switching unit; ,
2. The cooling device for an internal combustion engine according to claim 1, wherein the control unit applies the temperature deviation and the differential temperature to the opening rate calculation map to obtain an opening rate of the switching unit.
内燃機関を駆動する際に、該内燃機関を冷却するための冷却流路に冷却水を流す工程と、
前記内燃機関から出力されて熱交換器に供給される冷却水の温度である入口温度を検出し、検出した入口温度と前記内燃機関出口の目標温度との差分である温度偏差を求める工程と、
前記熱交換器から出力される冷却水の温度である出口温度を検出し、検出した出口温度と前記入口温度との差分温度を求める工程と、
前記冷却流路の出口側に設けられ、該冷却流路を、冷却水冷却用の熱交換器が配置された熱交換流路、及び前記熱交換器が配置されないバイパス流路、の少なくとも一方に分岐させる切替部の、前記熱交換器側への開口率を、前記温度偏差、及び差分温度に基づいて求める工程と、を備えたこと
を特徴とする内燃機関の冷却方法。
A step of flowing cooling water through a cooling flow path for cooling the internal combustion engine when driving the internal combustion engine;
Detecting an inlet temperature which is a temperature of cooling water output from the internal combustion engine and supplied to the heat exchanger, and obtaining a temperature deviation which is a difference between the detected inlet temperature and a target temperature of the internal combustion engine outlet;
Detecting an outlet temperature which is a temperature of cooling water output from the heat exchanger, and obtaining a difference temperature between the detected outlet temperature and the inlet temperature;
Provided on the outlet side of the cooling flow path, the cooling flow path is at least one of a heat exchange flow path in which a heat exchanger for cooling water cooling is disposed and a bypass flow path in which the heat exchanger is not disposed. A method for cooling an internal combustion engine, comprising: obtaining an opening ratio of the switching unit to be branched to the heat exchanger side based on the temperature deviation and the differential temperature.
JP2014140283A 2014-07-08 2014-07-08 Cooling device for internal combustion engine and cooling method for internal combustion engine Active JP6311503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014140283A JP6311503B2 (en) 2014-07-08 2014-07-08 Cooling device for internal combustion engine and cooling method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014140283A JP6311503B2 (en) 2014-07-08 2014-07-08 Cooling device for internal combustion engine and cooling method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2016017452A JP2016017452A (en) 2016-02-01
JP6311503B2 true JP6311503B2 (en) 2018-04-18

Family

ID=55232857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014140283A Active JP6311503B2 (en) 2014-07-08 2014-07-08 Cooling device for internal combustion engine and cooling method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6311503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664058B (en) * 2016-07-28 2020-09-04 长城汽车股份有限公司 Engine cooling system control method and system and vehicle
JP6915350B2 (en) * 2017-04-04 2021-08-04 いすゞ自動車株式会社 Oil cooling device
CN110805948A (en) * 2018-08-06 2020-02-18 成都安美科科技有限公司 Cogeneration control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172141A (en) * 2001-12-05 2003-06-20 Aisan Ind Co Ltd Engine cooling device
JP4009509B2 (en) * 2002-08-28 2007-11-14 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP4923832B2 (en) * 2006-08-08 2012-04-25 日産自動車株式会社 Vehicle cooling system

Also Published As

Publication number Publication date
JP2016017452A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6090443B2 (en) Cooling device for internal combustion engine and cooling method for internal combustion engine
JP5974619B2 (en) Control device and control method for engine cooling system
US9840962B2 (en) System and method for controlling inlet coolant temperature of an internal combustion engine
JP6311503B2 (en) Cooling device for internal combustion engine and cooling method for internal combustion engine
JP6806016B2 (en) Engine cooling device
US10677141B2 (en) Cooling system for internal combustion engine
DK2874039T3 (en) Method of controlling a heat transfer system as well as such a heat transfer system
US20190165394A1 (en) Equation based cooling system control strategy/method
CN109296440B (en) Control of internal combustion engine cooling system using feedback linearization
KR101755489B1 (en) Control method of engine circulating coolant and the control system thereof
US20150211753A1 (en) Heat source system and control method therefor
CN111005799A (en) Water temperature control method and device, thermal management system and storage medium
US20190165396A1 (en) COOLING SYSTEM dT/dt BASED CONTROL
JP4654752B2 (en) Control device for internal combustion engine
WO2017056944A1 (en) Cooling control device
US10669922B2 (en) System and method for adjusting the rate of coolant flow through an engine based on coolant pressure
JP6197408B2 (en) Cooling device for internal combustion engine and cooling method for internal combustion engine
JP2013205955A (en) Temperature control system and temperature control method
US9719408B2 (en) System and method for engine block cooling
JP5913942B2 (en) Temperature control device
JP2014102154A (en) Engine cooling water temperature control device and method
US10225950B2 (en) Aircraft heat exchange system including a thermoelectric device
KR101724958B1 (en) Control method of cooling system for vehicles
JP2019152358A (en) Ice making machine
KR101560511B1 (en) Warm water heating system, control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R151 Written notification of patent or utility model registration

Ref document number: 6311503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151