WO2017056944A1 - Cooling control device - Google Patents

Cooling control device Download PDF

Info

Publication number
WO2017056944A1
WO2017056944A1 PCT/JP2016/076811 JP2016076811W WO2017056944A1 WO 2017056944 A1 WO2017056944 A1 WO 2017056944A1 JP 2016076811 W JP2016076811 W JP 2016076811W WO 2017056944 A1 WO2017056944 A1 WO 2017056944A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
amount
target
coolant
control
Prior art date
Application number
PCT/JP2016/076811
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉寛隆
豊田泰延
吉田昌弘
島谷和良
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201680050116.3A priority Critical patent/CN107923303A/en
Priority to US15/756,644 priority patent/US20180252147A1/en
Priority to EP16851118.6A priority patent/EP3358163B1/en
Publication of WO2017056944A1 publication Critical patent/WO2017056944A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage

Definitions

  • the present invention relates to a cooling control device that performs temperature management of an internal combustion engine using a coolant.
  • Patent Document 1 sets the target temperature of cooling water based on the operating state of the internal combustion engine, and in order to achieve the target heat dissipation efficiency, the amount of cooling by the electric cooling device is determined from the heat dissipation model. A technique for acquiring and controlling an electric cooling device based on the acquired cooling amount is shown.
  • This Patent Document 1 also shows a processing mode in which target heat dissipation efficiency is set by feedback control based on a deviation between a target temperature and an actual temperature and feedforward control based on an engine heat quantity.
  • a radiator fan, a water pump, and a thermostat are shown, and these are controlled in order to realize cooling of the cooling amount.
  • the total heat quantity of the cooling system is calculated from the cooling system heat quantity stored in the cooling system of the internal combustion engine (drive source) according to the coolant temperature and the vehicle power source heat radiation quantity radiated by the internal combustion engine in the operating state.
  • a control mode for estimating and determining the target total heat amount of the radiator and the flow rate of the radiator based on this is shown.
  • thermo valve is provided at a joint portion between the cooling water outlet of the internal combustion engine and a radiator lower hose, and a bypass passage is provided between the thermo valve and the electric water pump. And the mixing ratio of the cooling water from the outlet of the internal combustion engine and the cooling water from the radiator hose is adjusted by the opening of the thermo valve.
  • Patent Document 1 and Patent Document 2 described above are configured so that the temperature of the cooling water can be managed by feedforward control.
  • the present invention is characterized in that a radiator to which a coolant of an internal combustion engine is supplied, a first heat exchanger that performs heat exchange with the coolant separately from the radiator, and the internal combustion engine for circulating the coolant.
  • a target heat dissipation amount setting unit for setting a target heat dissipation amount based on a value obtained by adding the third heat amount
  • the control unit sets a target flow rate of the coolant to be supplied to the radiator based on the target heat dissipation amount set by the target heat dissipation amount setting unit and the heat exchange efficiency in the radiator, and feedforward control is used to set the target flow rate. It is in the point provided with the opening setting part which sets the target opening of a flow control valve.
  • the target heat release amount setting unit sets the target heat release amount based on a value obtained by adding the first heat amount, the second heat amount, and the third heat amount per unit time.
  • the opening degree setting unit sets a target flow rate to be supplied to the radiator based on the target heat dissipation amount and the heat exchange efficiency of the radiator, and performs feedforward control in which the opening degree of the flow control valve is set to the target opening degree. Is called.
  • a cooling control device is constructed that performs a temperature control of an internal combustion engine having a mechanical pump and a heat exchanger such as an EGR cooler with high accuracy.
  • the amount of heat acquired by the heat amount acquisition unit is provided separately from the fourth amount of heat exchanged between the coolant and the block portion of the internal combustion engine, and the radiator and the first heat exchanger.
  • the second heat exchanger may include a temperature difference between the coolant flowing inside and the heat exchange target and a fifth heat quantity obtained from the flow rate.
  • the fourth heat amount and the fifth heat amount are not as large as the first heat amount and the second heat amount, but affect the liquid temperature of the coolant. Therefore, accurate and highly accurate temperature management is realized by reflecting the fourth heat amount and the fifth heat amount in the target flow rate of the coolant.
  • the second heat exchanger may be an oil cooler.
  • the deviation between the target heat dissipation amount and the amount of heat acquired by the heat amount acquisition unit falls below a predetermined threshold
  • the deviation is reduced by feedback control while performing feedforward control. May be executed.
  • the target heat quantity is radiated from the coolant, and the liquid temperature deviation of the coolant can be reduced.
  • the control is based on the amount of heat, the control is difficult to converge, and the accuracy of the temperature control is improved by switching to the feedback control that further reduces the deviation of the coolant temperature while performing the feedforward control. To do.
  • a target response time for managing the temperature of the internal combustion engine may be set, and the opening setting unit may set a target opening of the flow control valve based on the target response time.
  • a water pump WP (an example of a cooling liquid pump) that sends cooling water (an example of a cooling liquid) of an engine E as an internal combustion engine, and a plurality of flow paths F (first flow) formed in parallel.
  • a cooling circuit including the control valve V and a control unit 10 (an example of a control unit) are included to constitute a cooling control device.
  • This cooling control device detects the water temperature of the cooling water (cooling liquid) with a water temperature sensor S (an example of a liquid temperature sensor), and the control unit 10 controls the flow rate control valve V based on the detection result, which will be described later.
  • the heat exchange between the first supply mode M1 and the second supply mode M2 is managed.
  • an EGR cooler 1 (specific example of the first heat exchanger), an oil cooler 2 (specific example of the second heat exchanger), and a radiator 3 are provided. I have. Further, the water pump WP (coolant pump) is driven by the crankshaft of the engine E and is disposed between the flow control valve V and the engine E.
  • the cooling control device is configured to perform temperature management of an engine E (internal combustion engine) of a vehicle such as a passenger car.
  • the engine E is assumed to have a water jacket formed in an area extending from the cylinder block to the cylinder head, for example, like a reciprocating engine.
  • the cooling control device is configured to send the cooling water in the water jacket to the flow path F, supply the cooling water to the heat exchanger to exchange heat, and then return the water jacket to the water jacket by the water pump WP.
  • the engine E is configured to transmit a driving force from a crankshaft as an output shaft to the transmission.
  • the engine E is not limited to a reciprocating engine. Further, the engine E is not limited to the configuration in which the driving force is directly applied to the transmission, but may be one that transmits the driving force to the electric motor, for example, like a hybrid vehicle.
  • the water temperature sensor S is provided in the engine E, and a plurality of flow paths F are formed in a form branched from a main flow path FM through which cooling water is sent from the engine E.
  • a first channel F1, a second channel F2, and a third channel F3 are formed as the plurality of channels F.
  • the EGR cooler 1 is provided in the first flow path F1
  • the oil cooler 2 is provided in the second flow path F2
  • the radiator 3 is provided in the third flow path F3.
  • EGR exhaust Gas Recirculation
  • the EGR cooler 1 Part of the exhaust gas taken out from the chamber is heat exchanged (cooled) with cooling water.
  • the oil cooler 2 has a configuration in which the lubricating oil stored in the oil pan 5 of the engine E is supplied by the oil pump 6, and performs heat exchange with the cooling water.
  • the lubricating oil that has been subjected to heat exchange in the oil cooler 2 is supplied to hydraulic operating devices such as a valve opening / closing timing control device or lubricating portions of various parts of the engine.
  • the oil pump 6 is a variable hydraulic mechanical oil pump that can control the hydraulic pressure level in two or more stages, and is driven by the engine E.
  • the radiator 3 has a function of managing the temperature of the engine E by radiating the cooling water, and the cooling air is supplied from the radiator fan 7.
  • the radiator fan 7 is driven by a fan motor 7M configured by an electric motor.
  • the flow control valve V is a rotary type in which a valve body is rotatably accommodated in a valve case, and a valve motor VM that is an electric motor so as to rotate the valve body, and a valve that detects a rotation angle of the valve body. And a sensor VS.
  • the valve sensor VS is composed of a hall element, a potentiometer, and the like, and by detecting the rotation angle of the valve body of the flow control valve V, it is possible to detect the opening of the valve portion in each supply mode in the flow control valve V. To do.
  • the flow control valve V may adopt a slide operation type in which a valve body that slides is accommodated inside the valve case.
  • the flow control valve V includes a first valve portion V1 that opens and closes the first flow path F1, a second valve portion V2 that opens and closes the second flow path F2, and a third valve portion V3 that opens and closes the third flow path F3.
  • FIG. 2 shows the opening degrees of the first valve portion V1, the second valve portion V2, and the third valve portion V3 with respect to the operation amount of the valve body in the flow rate control valve V having this configuration.
  • the first valve portion V1, the second valve portion V2, and the third valve portion V3 are collectively referred to as valve portions.
  • the vertical axis indicates the opening degree of the first valve part V1, the second valve part V2, and the third valve part V3 (the opening degree is expressed as a percentage), and the horizontal axis indicates the valve operating amount. (Rotation amount) is shown.
  • the opening degree of the first valve portion V1 is adjusted while the second valve portion V2 and the third valve portion V3 are maintained in the closed state by operating the valve body in the opening direction from the fully closed mode M0. Shifts to the first supply mode M1 in which
  • the opening degree of the first valve unit V1 is maintained in the fully opened state (third valve The part V3 is maintained in the closed state), and the process proceeds to the second supply mode M2 in which the opening degree of the second valve part V2 can be adjusted.
  • the process proceeds to the third supply mode M3 in which the opening degree of the third valve portion V3 can be adjusted.
  • the cooling water is not supplied by the second valve portion V2 before the opening degree of the first valve portion V1 reaches full open.
  • the cooling water is not supplied by the third valve portion V3 before the opening degree of the second valve portion V2 reaches the fully open position.
  • Control unit / control type The control unit 10 manages the entire engine, and also manages the amount of heat exchanged by the heat exchanger by controlling the amount of cooling water flowing through the flow path F with the flow rate control valve V when the engine E is in operation. In particular, when temperature management of the engine E is performed, the flow rate of the cooling water supplied to the radiator 3 can be set optimally by the control of the flow rate control valve V.
  • the control unit 10 includes a throttle sensor 21, an engine speed sensor 22, an outside air temperature sensor 23, an oil temperature sensor 24, a water temperature sensor S (an example of a liquid temperature sensor), and a valve sensor.
  • a detection signal from VS is input.
  • the control unit 10 also outputs control signals to the valve motor VM that controls the opening degree of the flow control valve V and the fan motor 7M that drives the radiator fan 7.
  • the throttle sensor 21 includes a potentiometer that detects the throttle position (opening) of the engine E.
  • the engine speed sensor 22 is a non-contact type sensor that measures the speed of the crankshaft of the engine E.
  • the outside air temperature sensor 23 is composed of a thermistor or the like that detects the outside air temperature of the vehicle.
  • the oil temperature sensor 24 includes a thermistor that detects the oil temperature of the lubricating oil supplied to the oil cooler 2.
  • the water temperature sensor S is provided in the engine E and is composed of a thermistor or the like.
  • the control unit 10 includes a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), etc., and a warm-up control unit 11 configured as software, a heat quantity acquisition unit 12, A target heat release amount setting unit 13, an opening degree setting unit 14, an opening degree correction unit 15, an air volume estimation unit 16, and a target water temperature setting unit 17 are provided.
  • the control form by these is demonstrated based on the flowchart of FIG. 4, the block diagram of FIG. 5, and the chart of FIG.
  • FIG. 5 is a block diagram showing the relationship between the amount of heat stored in the cooling water and the amount of heat to be radiated by the radiator 3.
  • the first heat quantity Q1 is a heat quantity given to the cooling water from the engine E to the cooling water during operation of the engine E (hereinafter referred to as engine heat quantity), and is proportional to the rotational speed of the engine E and the load acting on the engine E.
  • the second heat quantity Q2 is a heat quantity given to the cooling water per unit time from the EGR cooler 1 during operation of the engine E (hereinafter referred to as EGR heat quantity), and is applied to the rotational speed of the engine E and the load acting on the engine E.
  • EGR heat quantity heat quantity
  • the intake air amount can be acquired based on the throttle position (opening degree) of the throttle sensor 21.
  • the second heat quantity Q2 increases as the EGR rate increases, and decreases as the EGR rate decreases.
  • the third heat quantity Q3 is the total heat quantity of the cooling water that is transferred to change the current water temperature of the cooling water to the target water temperature (hereinafter referred to as the cooling water heat quantity), and basically the actual water temperature and the target water temperature.
  • the difference value is a value calculated by multiplying the total amount of cooling water and specific heat.
  • the fourth heat quantity Q4 is a heat quantity (hereinafter referred to as engine block heat quantity) that acts on the cooling water in the engine E through the engine block part constituting the outer wall part including the cylinder block from the cylinder head in the engine E. It is obtained based on the engine wall temperature and the actual water temperature.
  • This engine block heat amount takes heat from the cooling water when the engine E is at a low temperature, and gives heat to the cooling water when the temperature of the engine E rises above a predetermined temperature. Since it is difficult to grasp the relationship between the engine wall temperature and the actual water temperature, the amount of heat must be set by calculation based on data obtained in advance from the relationship between the operating time of the engine E or the actual water temperature, or table data. become. Even when the engine E is not a reciprocating engine, the portion where the heat quantity of the cooling water acts is the engine outer wall portion.
  • the fifth heat quantity Q5 is a heat quantity (hereinafter referred to as oil heat quantity) given to the oil cooler 2 and the cooling water during operation of the engine E after warm-up (hereinafter referred to as oil heat quantity). Is an example of a heat exchange object), the amount of lubricating oil flowing through the oil cooler 2, the actual water temperature, and the cooling water amount.
  • a value obtained by dividing the third heat amount Q3 by the target response time T is defined as a third heat amount Q3 ′ per unit time, and the first heat amount Q1, the second heat amount Q2, the third heat amount Q3 ′ per unit time, the fourth heat amount Q4, By obtaining the sum (added value) of the fifth heat quantity Q5, the heat quantity to be radiated is obtained.
  • the target flow rate of cooling water to be supplied to the radiator 3 is set by considering the outside air temperature, the target response time T (see FIG. 6), etc. in the radiator model.
  • the target opening degree of the flow control valve V is set.
  • the target response time T is set to two types, one for promptly radiating heat (rapid heat dissipation) and one for allowing sufficient time to radiate heat (suppressed heat dissipation). That is, the target response time T for quick heat dissipation is a value indicating the time that must not be exceeded before completing the heat dissipation of the amount of heat to be dissipated when the flow rate control valve V is used to increase the flow rate of the cooling water. In addition, the target response time T for suppressing heat dissipation is a value indicating a time that must not be decreased until the heat dissipation of the heat amount to be radiated is completed in the control for reducing the flow rate of the cooling water by the flow rate control valve V. The target response time T is set based on the accelerator operation, the engine speed, the opening degree of the flow control valve V, and the like.
  • the reason why the target response time T is set is as follows. For example, in a situation where the temperature of the engine E rises for a short time, such as when the accelerator pedal is depressed suddenly, it is appropriate to perform control based on the temperature of the engine E due to insufficient heat conduction of the engine E. Temperature control is difficult. Therefore, it is necessary to radiate a heat amount necessary for suppressing boiling by assuming the timing of boiling of the coolant. For this reason, a target response time T for quick heat dissipation is set. Similarly, the target response time T for suppressing the temperature rise of the engine E is set even in a situation where excessive cooling shortage is caused when the accelerator pedal depression operation is released.
  • the target opening degree of the flow control valve V is set to be larger as the target response time T for quick heat dissipation is shorter.
  • the opening degree setting unit 14 sets the rotation speed of the engine E (the rotation per unit time) during the control in any of the first supply mode M1, the second supply mode M2, and the third supply mode M3. Number) and the target response time T (see FIG. 6), the opening degree of the flow control valve V is set. That is, since the water pump WP is driven by the engine E, the rotational speed of the engine E is taken into consideration. Note that the target response time T shown in FIG. 6 is used as a switching timing from the feedforward control FF to the control that executes the feedforward control FF and the feedback control FB in parallel.
  • cooling control is executed as the engine E is started, and the water temperature (actual water temperature) detected by the water temperature sensor S is lower than a specified value.
  • the warm-up operation is performed by maintaining the flow control valve V in the fully closed mode M0 (steps # 01 to # 03).
  • This warm-up operation is realized by the control of the warm-up control unit 11.
  • the first valve portion V1 is opened after the actual water temperature rises to a value suitable for heat exchange in the EGR cooler 1.
  • the flow rate of the cooling water supplied to the first flow path F1 is increased by increasing the opening of the first valve portion V1 as the actual water temperature rises.
  • the second valve portion V2 is opened.
  • the In the second supply mode M2 the flow rate of the cooling water supplied to the second flow path F2 is increased by increasing the opening of the second valve portion V2 as the actual water temperature rises.
  • the third supply mode M3 is started, and the opening of the third valve unit V3 is started.
  • the fan motor 7M is driven and cooling air is supplied to the radiator 3.
  • the fan motor 7M is not driven.
  • feedforward control FF is started as shown in FIG. 6 in order to obtain an appropriate flow rate without causing hunting.
  • the first heat amount Q1 per unit time as the engine heat amount, the second heat amount Q2 per unit time as the EGR cooler heat amount, and the third heat amount Q3 per unit time The values of ', the fourth heat amount Q4 per unit time as the engine block heat amount, and the fifth heat amount Q5 per unit time as the oil heat amount are acquired.
  • the target heat dissipation amount setting unit 13 obtains the target heat dissipation amount to be radiated from the sum of these heat values (the sum of Q1, Q2, Q3 ', Q4, and Q5) (steps # 04 and # 05).
  • the second heat quantity Q2 given to the cooling water in the EGR cooler 1 is proportional to the first heat quantity Q1, it is acquired by a calculation that multiplies the first heat quantity Q1 by a coefficient set in advance as the EGR rate.
  • the first heat quantity Q1 and the second heat quantity Q2 are acquired based on the detection result of the throttle sensor 21.
  • the fifth heat quantity Q5 is the lubricating oil temperature of the lubricating oil and the oil cooler.
  • the amount of lubricating oil supplied to 2 is obtained from the discharge pressure of the oil pump 6, the temperature of the lubricating oil is detected by the oil temperature sensor 24, and the fifth heat quantity Q5 is obtained by calculation using these. Is done.
  • the fourth heat quantity Q4 is acquired from the calculation or table data as described above.
  • the third heat quantity Q3 'per unit time is the cooling water heat quantity per unit time obtained by dividing the third heat quantity Q3 by the target response time T.
  • the amount of heat determined by the sum of the first amount of heat Q1, the second amount of heat Q2, the third amount of heat Q3 ', the fourth amount of heat Q4, and the fifth amount of heat Q5 acquired in this way is the amount of heat to be radiated.
  • the target heat release amount setting unit 13 sets the total heat amount obtained by the calculation as the target heat release amount
  • the opening degree setting unit 14 sets the flow rate of the cooling water supplied to the radiator 3, and the opening degree setting unit 14 sets the flow rate.
  • the target opening degree of the third valve part V3 of the control valve V is set, and based on this setting, the opening degree of the third valve part V3 of the flow rate control valve V is set, and the flow rate control valve V is controlled (# 06). , # 07 step).
  • the discharge amount varies depending on the rotation speed of the engine E (rotation speed per unit time).
  • the amount of heat exchanged by the radiator 3 is affected by the outside air temperature, the cooling water temperature, the amount of air supplied to the radiator 3, the heat radiation efficiency in the radiator 3, and the like described as a radiator model.
  • the opening degree of the flow rate control valve V is controlled by the opening degree setting unit 14, the outside air temperature detected by the outside air temperature sensor 23 and the air volume of the cooling air for the radiator 3 estimated by the air volume estimating unit 16
  • the target opening is set based on a radiator model that takes into account the amount of cooling water supplied by the water pump WP and the target water temperature.
  • FIG. An example of the concept of the radiator model is shown in FIG. “Radiator heat dissipation” is determined from a three-dimensional map of “air flow”, “flow rate”, and “difference between water temperature and outside temperature”. Proportional relationship. In other words, by standardizing “the difference between the water temperature and the outside air temperature per 1 ° C.”, the “radiator heat dissipation per 1 ° C. between the water temperature and the outside air temperature” can be determined from the “air volume” and the “flow rate”. . Therefore, the “flow rate” to be controlled can be obtained by a two-dimensional map of “radiation amount of radiator per 1 ° C. difference between water temperature and outside air temperature” and “air volume” obtained from the relationship between heat reception and radiation. In FIG.
  • the horizontal axis (X axis) is the air volume.
  • the air volume estimation unit 16 estimates the air volume Fx when the vehicle is traveling and the air volume Fx when the vehicle is stopped based on the traveling speed of the vehicle and the driving speed of the fan motor 7M.
  • the target heat release amount setting unit 13 the target heat release amount Ex is set based on the outside air temperature, the target water temperature, and the required heat release amount.
  • the calculation for setting the target opening degree is performed based on the air volume Fx and the target heat release amount Ex. Further, as means for setting the target opening, it is conceivable to refer to table data obtained in advance for the opening of the flow control valve V for a plurality of target flow rates.
  • the feedforward control FF is executed, and at the timing when the target response time T has elapsed from the start of the execution, the feedforward control FF is executed and the feedback control FB is executed (two types of control).
  • the above-described feedback control FB is assumed to generate a correction coefficient for correcting the opening degree of the flow control valve V and reflect it in the valve control in the control for executing the feedforward control FF. Even in a situation where the feedforward control FF and the feedback control FB are executed in parallel, for example, when the target water temperature changes, the control shifts to the control of only the feedforward control FF.
  • the feedforward control FF is executed until the target response time T elapses from the start of execution, and when the target response time T elapses, the feedforward control FF and the feedback control FB are performed in parallel. (A region indicated by FF + FB in the figure).
  • a value obtained by adding the opening set by the feedforward control FF shown as the FF component in the figure and the opening set by the feedback control FB shown as the FB component in the figure is The opening degree of the flow control valve V is set.
  • the feedforward control FF is executed again, and after the target response time T has elapsed from the re-execution of the feedforward control FF, the feedforward control FF and the feedback are similarly performed as described above.
  • the opening degree set by the feedforward control FF shown as the FF component and the excuse degree set by the feedback control FB shown as the FB component are added.
  • the value is set to the opening degree of the flow control valve V.
  • This control is repeatedly performed until the engine is reset (basically, the engine E is stopped) (Step # 010).
  • the third heat quantity Q3 can be acquired from the current water temperature (actual water temperature), the total amount of cooling water set as a constant, the specific heat of the cooling water, and the target water temperature.
  • the fourth heat quantity Q4 radiated from the engine E can be easily variable based on the actual measurement value based on the outside air temperature.
  • the fifth heat quantity Q5 can be obtained from the lubricating oil temperature, the amount of lubricating oil flowing through the oil cooler 2, the actual water temperature, and the cooling water amount.
  • the feedforward control FF that sets the amount of heat to be radiated and sets the opening degree of the flow control valve V can be realized simply by obtaining the above.
  • the target heat amount is radiated from the cooling water, and the deviation of the water temperature becomes small.
  • the control is based on the amount of heat, the control is difficult to converge.
  • the feedforward control FF is executed in parallel at the timing when the target response time T has elapsed from the start of execution of the feedforward control FF, and the detection result of the water temperature sensor S is based on the reduction in the coolant temperature deviation.
  • the present invention may be configured as follows (the components having the same functions as those of the embodiments are denoted by the same numbers and symbols as those of the embodiments).
  • the first flow path F1, the second flow path F2, and the third flow path F3 are formed in parallel. However, instead of this, a part of them may be arranged in series. good. Moreover, you may form the flow path F other than this, and may provide a heat exchanger like a heater core, for example.
  • the heater core is provided in this way, it is only necessary to set the control form of the heat quantity acquisition unit 12 so that the heat quantity taken from the cooling water by heat exchange in the heater core is reduced from the total heat quantity described in the embodiment. Basically, the temperature management is realized by the control common to the embodiment.
  • the flow control valve V includes the first valve portion V1, the second valve portion V2, and the third valve portion V3.
  • the flow control valve V is supplied to the radiator 3. Since it is only necessary to be able to control the amount of cooling water, a configuration that can control the flow rate of cooling water only in the first flow path F1 may be used.
  • the first heat exchanger may be a turbocharger
  • the second heat exchanger may be an ATF cooler or a heater
  • the outside air temperature sensor may use an intake air temperature sensor.
  • the present invention can be used in a cooling control device that manages the temperature of an internal combustion engine using a coolant.

Abstract

A cooling control device is equipped with: a first heat exchanger to which a coolant for an internal combustion engine is supplied; a radiator to which the coolant is supplied; a coolant pump that supplies the coolant; a flow volume control valve that controls the flow volume of the coolant; and a control unit that controls the flow volume control valve. The control unit obtains a first heat quantity stored in the coolant, a second heat quantity stored in the coolant by means of a heat exchange with the first heat exchanger, and a third heat quantity for changing the coolant to a target temperature. The control unit sets a target heat radiation amount from these heat quantities, and sets the degree of opening of the flow volume control valve by feed-forward control.

Description

冷却制御装置Cooling control device
 本発明は、冷却液を用いて内燃機関の温度管理を行う冷却制御装置に関する。 The present invention relates to a cooling control device that performs temperature management of an internal combustion engine using a coolant.
 上記構成の冷却制御装置として特許文献1には、内燃機関の運転状態に基づいて冷却水の目標温度を設定し、目標放熱効率を達成するために、電動の冷却装置による冷却量を放熱モデルから取得し、取得した冷却量に基づいて電動の冷却装置を制御する技術が示されている。 As a cooling control device having the above-described configuration, Patent Document 1 sets the target temperature of cooling water based on the operating state of the internal combustion engine, and in order to achieve the target heat dissipation efficiency, the amount of cooling by the electric cooling device is determined from the heat dissipation model. A technique for acquiring and controlling an electric cooling device based on the acquired cooling amount is shown.
 この特許文献1では、目標温度と実温度との偏差に基づいたフィードバック制御と、エンジン熱量に基づいたフィードフォワード制御とにより目標放熱効率を設定する処理形態も示されている。電動の冷却装置としては、ラジエータファンと、ウォータポンプと、サーモスタットとが示され、冷却量の冷却を実現するために、これらが制御される。 This Patent Document 1 also shows a processing mode in which target heat dissipation efficiency is set by feedback control based on a deviation between a target temperature and an actual temperature and feedforward control based on an engine heat quantity. As an electric cooling device, a radiator fan, a water pump, and a thermostat are shown, and these are controlled in order to realize cooling of the cooling amount.
 特許文献2には、冷却水の水温に応じて内燃機関(駆動源)の冷却系が蓄える冷却系熱量と、運転状態において内燃機関が放熱する車両動力源放熱量とから冷却系の総熱量を推測し、これに基づいてラジエータの目標総熱量とラジエータ流量とを決める制御形態が示されている。 In Patent Document 2, the total heat quantity of the cooling system is calculated from the cooling system heat quantity stored in the cooling system of the internal combustion engine (drive source) according to the coolant temperature and the vehicle power source heat radiation quantity radiated by the internal combustion engine in the operating state. A control mode for estimating and determining the target total heat amount of the radiator and the flow rate of the radiator based on this is shown.
 この特許文献2では、冷却水の水量を設定する電動ウォータポンプを備え、内燃機関の冷却水出口とラジエータロアホースとの合流部分にサーモ弁を備え、サーモ弁と電動ウォータポンプとの間にバイパス通路を備え、サーモ弁の開度により内燃機関の出口からの冷却水とラジエータホースからの冷却水との混合比を調節するように構成されている。 In this patent document 2, an electric water pump for setting the amount of cooling water is provided, a thermo valve is provided at a joint portion between the cooling water outlet of the internal combustion engine and a radiator lower hose, and a bypass passage is provided between the thermo valve and the electric water pump. And the mixing ratio of the cooling water from the outlet of the internal combustion engine and the cooling water from the radiator hose is adjusted by the opening of the thermo valve.
特開2014‐218938号公報JP 2014-218938 A 特開2005‐248903号公報JP 2005-248903 A
 ラジエータに冷却液を供給して内燃機関の温度上昇を抑制する制御を考えると、ラジエータで放熱を行っても、この放熱が冷却液の温度低下として即座に現れるものではない。従って、例えば、冷却液の液温を温度センサで検知して冷却液の流量を調節するフィードバック制御では、過剰な放熱が行われることや、放熱のタイミングが遅れることも考えられ、ハンチングを招き、冷却液の温度を一定に維持し難いものとなる。 Considering the control that suppresses the temperature increase of the internal combustion engine by supplying the coolant to the radiator, even if heat is radiated by the radiator, this radiant heat does not immediately appear as a temperature drop of the coolant. Therefore, for example, feedback control that detects the coolant temperature with a temperature sensor and adjusts the coolant flow rate may cause excessive heat dissipation or delay the timing of heat dissipation, leading to hunting, It becomes difficult to keep the temperature of the coolant constant.
 このような理由から、前述した特許文献1、特許文献2の技術ではフィードフォワード制御により、冷却水の温度の管理を行えるように構成されている。 For these reasons, the techniques of Patent Document 1 and Patent Document 2 described above are configured so that the temperature of the cooling water can be managed by feedforward control.
 ここで、EGRクーラを備えた車両の場合、排気ガスとともに排出される熱の一部がEGRクーラにおける冷却液で除去される。また、オイルクーラを備えた車両では、潤滑油の熱がオイルクーラにおける冷却液によって除去されたり、逆に冷却液の熱で潤滑油が加熱されることになる。特に、EGRクーラには高温の排気ガスが供給されるため、EGRクーラから冷却液に伝達される熱量は大きく無視できないものである。 Here, in the case of a vehicle equipped with an EGR cooler, part of the heat discharged together with the exhaust gas is removed by the coolant in the EGR cooler. Further, in a vehicle equipped with an oil cooler, the heat of the lubricating oil is removed by the cooling liquid in the oil cooler, or conversely, the lubricating oil is heated by the heat of the cooling liquid. In particular, since high-temperature exhaust gas is supplied to the EGR cooler, the amount of heat transferred from the EGR cooler to the coolant cannot be ignored.
 また、これらの冷却液が循環される冷却回路がエンジンで駆動される機械式のウォータポンプを用いるものでは、構成が単純で安価である。しかし、エンジン回転数の変動に伴って冷却水の水量が変動するため、温度管理が困難であった。 In addition, if a cooling circuit in which these coolants are circulated uses a mechanical water pump driven by an engine, the configuration is simple and inexpensive. However, the temperature control is difficult because the amount of cooling water varies as the engine speed varies.
 即ち、機械式ポンプを有し、EGRクーラ等の熱交換器を有する内燃機関の温度管理を、高精度に行う冷却制御装置が求められる。 That is, there is a need for a cooling control device that has a mechanical pump and performs temperature management of an internal combustion engine having a heat exchanger such as an EGR cooler with high accuracy.
 本発明の特徴は、内燃機関の冷却液が供給されるラジエータと、前記ラジエータとは別に冷却液との間で熱交換を行う第1熱交換器と、冷却液を循環させるため前記内燃機関で駆動される冷却液ポンプと、冷却液の流量を設定する流量制御バルブと、前記流量制御バルブの開度を設定する制御部とを備え、
 前記制御部が、前記内燃機関の回転数及び前記内燃機関に作用する負荷に応じて前記内燃機関が冷却液に与える第1熱量と、前記第1熱交換器が冷却液に与える第2熱量と、冷却液を目標温度に変化させるために授受される第3熱量と、を取得する熱量取得部を備えると共に、前記熱量取得部で取得した前記第1熱量と前記第2熱量と単位時間あたりの第3熱量とを加算した値に基づいて目標放熱量を設定する目標放熱量設定部を備え、
 前記制御部が、前記目標放熱量設定部で設定される前記目標放熱量と、前記ラジエータにおける熱交換効率とに基づいて前記ラジエータに供給すべき冷却液の目標流量を設定しフィードフォワード制御により前記流量制御バルブの目標開度を設定する開度設定部を備えている点にある。
The present invention is characterized in that a radiator to which a coolant of an internal combustion engine is supplied, a first heat exchanger that performs heat exchange with the coolant separately from the radiator, and the internal combustion engine for circulating the coolant. A driven coolant pump, a flow rate control valve for setting the flow rate of the coolant, and a control unit for setting the opening of the flow rate control valve;
A first heat amount that the internal combustion engine gives to the coolant according to a rotational speed of the internal combustion engine and a load acting on the internal combustion engine; and a second heat amount that the first heat exchanger gives to the coolant. And a third heat quantity that is transferred to change the coolant to the target temperature, and a heat quantity acquisition unit that acquires the third heat quantity, and the first heat quantity, the second heat quantity, and a unit time obtained by the heat quantity acquisition part. A target heat dissipation amount setting unit for setting a target heat dissipation amount based on a value obtained by adding the third heat amount,
The control unit sets a target flow rate of the coolant to be supplied to the radiator based on the target heat dissipation amount set by the target heat dissipation amount setting unit and the heat exchange efficiency in the radiator, and feedforward control is used to set the target flow rate. It is in the point provided with the opening setting part which sets the target opening of a flow control valve.
 例えば、アクセルペダルを踏み込み操作した場合には、前記内燃機関の回転数及び前記内燃機関に作用する負荷の増大に伴い内燃機関での燃料の消費量が増大し、内燃機関で発生する第1熱量も増大する。内燃機関の負荷が増大する場合に、第1熱交換器は、冷却液に第2熱量を与える。また、第1熱量と第2熱量と、冷却液を目標温度に変化させるために授受される第3熱量とは熱量取得部で取得される。この取得の後には、目標放熱量設定部が、第1熱量と第2熱量と単位時間あたりの第3熱量とを加算した値に基づいて目標放熱量を設定する。更に、開度設定部が、目標放熱量とラジエータの熱交換効率とに基づいてラジエータに供給すべき目標流量を設定し、流量制御バルブの開度を目標開度に設定するフィードフォワード制御が行われる。 For example, when the accelerator pedal is depressed, the amount of fuel consumed in the internal combustion engine increases as the rotational speed of the internal combustion engine and the load acting on the internal combustion engine increase, and the first amount of heat generated in the internal combustion engine Will also increase. When the load of the internal combustion engine increases, the first heat exchanger gives the second amount of heat to the coolant. Further, the first heat amount, the second heat amount, and the third heat amount transferred to change the coolant to the target temperature are acquired by the heat amount acquisition unit. After this acquisition, the target heat release amount setting unit sets the target heat release amount based on a value obtained by adding the first heat amount, the second heat amount, and the third heat amount per unit time. Further, the opening degree setting unit sets a target flow rate to be supplied to the radiator based on the target heat dissipation amount and the heat exchange efficiency of the radiator, and performs feedforward control in which the opening degree of the flow control valve is set to the target opening degree. Is called.
 つまり、この制御では、アクセルペダルを踏み込んだ直後のように、冷却液の温度が即座に上昇せず、この後に冷却液の温度が上昇する状況でも、冷却液の温度が上昇する以前にラジエータに供給すべき冷却液の供給量の増大が可能になる。そのため第1熱交換器から冷却液に作用する熱量を反映したフィードフォワード制御により放熱のタイミングが遅れることがなく、適正な放熱量を設定することができる。また、冷却液の流量を流量制御バルブの開度によって設定するため、内燃機関で駆動される冷却液ポンプを用いるものでありながら、適正な放熱量を設定することも可能となる。
 従って、機械式ポンプを有し、EGRクーラ等の熱交換器を有する内燃機関の温度管理を、高精度に行う冷却制御装置が構成された。
In other words, in this control, even when the coolant temperature does not increase immediately, such as immediately after the accelerator pedal is depressed, and the coolant temperature rises thereafter, the radiator is set before the coolant temperature rises. The supply amount of the coolant to be supplied can be increased. Therefore, the heat radiation timing is not delayed by feedforward control reflecting the amount of heat acting on the coolant from the first heat exchanger, and an appropriate heat radiation amount can be set. In addition, since the flow rate of the coolant is set by the opening degree of the flow control valve, it is possible to set an appropriate heat radiation amount while using a coolant pump driven by the internal combustion engine.
Therefore, a cooling control device is constructed that performs a temperature control of an internal combustion engine having a mechanical pump and a heat exchanger such as an EGR cooler with high accuracy.
 本発明は、前記熱量取得部で取得される熱量が、冷却液と前記内燃機関のブロック部分との間で交換される第4熱量と、前記ラジエータ及び前記第1熱交換器とは別に設けられた第2熱交換器において内部に流れる冷却液と熱交換対象との温度差とその流量により求められる第5熱量とを含んでも良い。 In the present invention, the amount of heat acquired by the heat amount acquisition unit is provided separately from the fourth amount of heat exchanged between the coolant and the block portion of the internal combustion engine, and the radiator and the first heat exchanger. The second heat exchanger may include a temperature difference between the coolant flowing inside and the heat exchange target and a fifth heat quantity obtained from the flow rate.
 第4熱量と第5熱量とは、第1熱量や第2熱量ほど大きい値ではないが、冷却液の液温に影響を与えるものである。従って、第4熱量と第5熱量とを冷却液の目標流量に反映させることにより、正確で高精度の温度管理が実現する。 The fourth heat amount and the fifth heat amount are not as large as the first heat amount and the second heat amount, but affect the liquid temperature of the coolant. Therefore, accurate and highly accurate temperature management is realized by reflecting the fourth heat amount and the fifth heat amount in the target flow rate of the coolant.
 本発明は、前記第2熱交換器が、オイルクーラであっても良い。 In the present invention, the second heat exchanger may be an oil cooler.
 これによると、オイルクーラの内部に流れる冷却液と、潤滑油との間で熱交換が可能となる。 This makes it possible to exchange heat between the coolant flowing inside the oil cooler and the lubricating oil.
 本発明は、前記目標放熱量と、前記熱量取得部で取得する熱量と、の偏差が所定の閾値未満に低下した場合に、フィードフォワード制御を実行しつつ、フィードバック制御により前記偏差を小さくする制御を実行しても良い。 In the present invention, when the deviation between the target heat dissipation amount and the amount of heat acquired by the heat amount acquisition unit falls below a predetermined threshold, the deviation is reduced by feedback control while performing feedforward control. May be executed.
 フィードフォワード制御を実行することにより、冷却液から目標熱量が放熱され、冷却液の液温の偏差を小さくできる。しかしながら、熱量に基づく制御であるため、制御が収束し難い面もあり、フィードフォワード制御を実行しつつ、更に冷却液の液温の偏差を小さくするフィードバック制御に切り換えることにより温度制御の精度が向上する。 実 行 By executing the feedforward control, the target heat quantity is radiated from the coolant, and the liquid temperature deviation of the coolant can be reduced. However, since the control is based on the amount of heat, the control is difficult to converge, and the accuracy of the temperature control is improved by switching to the feedback control that further reduces the deviation of the coolant temperature while performing the feedforward control. To do.
 本発明は、前記内燃機関の温度を管理する目標応答時間が設定されると共に、前記開度設定部は、前記目標応答時間に基づいて前記流量制御バルブの目標開度を設定しても良い。 In the present invention, a target response time for managing the temperature of the internal combustion engine may be set, and the opening setting unit may set a target opening of the flow control valve based on the target response time.
 例えば、アクセルペダルを急激に踏み込み操作した場合のように、内燃機関の温度が短時間のうち上昇する状況では、内燃機関の熱伝導の不足から内燃機関の温度に基づいた制御を行っても適正な温度管理が困難であり、冷却液の沸騰が想定されるタイミングまでに必要な熱量の放熱を行うための目標応答時間の設定を必要とする。また、アクセルペダルの踏み込み操作を解除した場合に過剰な冷却不足を招く状況においても内燃機関の温度上昇を抑制する場合には、想定されるタイミングを超えるまで充分な時間を掛けて放熱を行わせるための目標応答時間が必要となる。
 この構成では、目標応答時間が設定された場合には、目標応答時間に基づいて流量制御バルブの開度を設定することで内燃機関の温度管理を適正に行える。
For example, in a situation where the temperature of the internal combustion engine rises for a short time, such as when the accelerator pedal is depressed suddenly, it is appropriate to perform control based on the temperature of the internal combustion engine due to insufficient heat conduction of the internal combustion engine. Temperature control is difficult, and it is necessary to set a target response time for radiating a necessary amount of heat by the timing when boiling of the coolant is assumed. Further, when the temperature increase of the internal combustion engine is suppressed even in a situation where excessive cooling shortage is caused when the accelerator pedal depression operation is released, heat is released by taking a sufficient time until the expected timing is exceeded. Target response time is required.
In this configuration, when the target response time is set, the temperature management of the internal combustion engine can be appropriately performed by setting the opening degree of the flow control valve based on the target response time.
冷却制御装置の構成を示す図である。It is a figure which shows the structure of a cooling control apparatus. 弁体の作動量に対する各バルブ部の開度を示すチャートである。It is a chart which shows the opening degree of each valve part with respect to the operation amount of a valve body. 冷却制御装置のブロック回路図である。It is a block circuit diagram of a cooling control device. 冷却制御のフローチャートである。It is a flowchart of cooling control. 冷却水の熱量の関係を示すブロック図である。It is a block diagram which shows the relationship of the calorie | heat amount of a cooling water. 制御時の弁開度と水温との関係を示すチャートである。It is a chart which shows the relationship between the valve opening degree at the time of control, and water temperature. ラジエータでの風量と放熱量との関係を示す図である。It is a figure which shows the relationship between the air volume and heat dissipation in a radiator.
 以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
 図1に示すように、内燃機関としてのエンジンEの冷却水(冷却液の一例)を送るウォータポンプWP(冷却液ポンプの一例)と、並列に形成された複数の流路F(第1流路F1と第2流路F2と第3流路F3との上位概念)と、複数の流路Fの各々に備えた熱交換器と、冷却水(冷却液の一例)の流れを制御する流量制御バルブVとで成る冷却回路を備えると共に、制御ユニット10(制御部の一例)を備えて冷却制御装置が構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Basic configuration]
As shown in FIG. 1, a water pump WP (an example of a cooling liquid pump) that sends cooling water (an example of a cooling liquid) of an engine E as an internal combustion engine, and a plurality of flow paths F (first flow) formed in parallel. The flow rate for controlling the flow of the cooling water (an example of the cooling liquid), the heat exchanger provided in each of the plurality of flow paths F, and the superordinate concept of the path F1, the second flow path F2, and the third flow path F3). A cooling circuit including the control valve V and a control unit 10 (an example of a control unit) are included to constitute a cooling control device.
 この冷却制御装置は、冷却水(冷却液)の水温を水温センサS(液温センサの一例)で検知し、この検知結果に基づいて制御ユニット10が流量制御バルブVを制御することにより、後述する第1供給モードM1と第2供給モードM2とでの熱交換が管理される。 This cooling control device detects the water temperature of the cooling water (cooling liquid) with a water temperature sensor S (an example of a liquid temperature sensor), and the control unit 10 controls the flow rate control valve V based on the detection result, which will be described later. The heat exchange between the first supply mode M1 and the second supply mode M2 is managed.
 流量制御バルブVで冷却水が制御される熱交換器として、EGRクーラ1(第1熱交換器の具体例)と、オイルクーラ2(第2熱交換器の具体例)と、ラジエータ3とを備えている。また、ウォータポンプWP(冷却液ポンプ)は、エンジンEのクランクシャフトで駆動されるものであり、流量制御バルブVとエンジンEとの間に配置されている。 As a heat exchanger whose cooling water is controlled by the flow rate control valve V, an EGR cooler 1 (specific example of the first heat exchanger), an oil cooler 2 (specific example of the second heat exchanger), and a radiator 3 are provided. I have. Further, the water pump WP (coolant pump) is driven by the crankshaft of the engine E and is disposed between the flow control valve V and the engine E.
 冷却制御装置は、乗用車等の車両のエンジンE(内燃機関)の温度管理を行うように構成されている。エンジンEは、例えば、レシプロエンジンのようにシリンダブロックからシリンダヘッドに亘る領域に形成されたウォータジャケットを有した構成が想定されている。冷却制御装置は、ウォータジャケットの冷却水を流路Fに送り出し、この冷却水を熱交換器に供給して熱交換した後にウォータポンプWPによりウォータジャケットに戻すように構成されている。また、エンジンEは、出力軸としてのクランクシャフトからの駆動力を変速装置に伝えるように構成されている。尚、エンジンEはレシプロエンジンに限るものではない。また、エンジンEは、変速装置に対して直接的に駆動力を作用させる構成に限らず、例えば、ハイブリッド型の車両のように電動モータに駆動力を伝えるものでも良い。 The cooling control device is configured to perform temperature management of an engine E (internal combustion engine) of a vehicle such as a passenger car. The engine E is assumed to have a water jacket formed in an area extending from the cylinder block to the cylinder head, for example, like a reciprocating engine. The cooling control device is configured to send the cooling water in the water jacket to the flow path F, supply the cooling water to the heat exchanger to exchange heat, and then return the water jacket to the water jacket by the water pump WP. The engine E is configured to transmit a driving force from a crankshaft as an output shaft to the transmission. The engine E is not limited to a reciprocating engine. Further, the engine E is not limited to the configuration in which the driving force is directly applied to the transmission, but may be one that transmits the driving force to the electric motor, for example, like a hybrid vehicle.
〔流路・熱交換器〕
 水温センサSはエンジンEに設けられ、エンジンEから冷却水が送られる主流路FMから分岐する形態で複数の流路Fが形成されている。本実施形態では、複数の流路Fとして、第1流路F1と第2流路F2と第3流路F3とが形成されている。熱交換器としては、第1流路F1にEGRクーラ1を備え、第2流路F2にオイルクーラ2を備え、第3流路F3にラジエータ3を備えている。
[Flow path / Heat exchanger]
The water temperature sensor S is provided in the engine E, and a plurality of flow paths F are formed in a form branched from a main flow path FM through which cooling water is sent from the engine E. In the present embodiment, a first channel F1, a second channel F2, and a third channel F3 are formed as the plurality of channels F. As a heat exchanger, the EGR cooler 1 is provided in the first flow path F1, the oil cooler 2 is provided in the second flow path F2, and the radiator 3 is provided in the third flow path F3.
 エンジンEの排気ガスの一部を取り出し、吸気系に戻すことで排気ガス中の成分の改善や、燃費向上を図る技術をEGR(Exhaust Gas Recirculation )と称しており、EGRクーラ1は、エンジンEから取り出した排気ガスの一部を冷却水で熱交換(冷却)する。 The technology that improves the components in the exhaust gas and improves the fuel efficiency by taking out part of the exhaust gas of the engine E and returning it to the intake system is called EGR (Exhaust Gas Recirculation). The EGR cooler 1 Part of the exhaust gas taken out from the chamber is heat exchanged (cooled) with cooling water.
 オイルクーラ2は、エンジンEのオイルパン5に貯留される潤滑油がオイルポンプ6により供給される構成を有し、冷却水との間で熱交換を行う。このオイルクーラ2で熱交換が行われた潤滑油は、弁開閉時期制御装置等の油圧作動機器、あるいは、エンジン各部の潤滑部分に供給される。オイルポンプ6は、2段階以上に油圧レベルを制御可能な可変油圧機械式オイルポンプであり、エンジンEで駆動される。 The oil cooler 2 has a configuration in which the lubricating oil stored in the oil pan 5 of the engine E is supplied by the oil pump 6, and performs heat exchange with the cooling water. The lubricating oil that has been subjected to heat exchange in the oil cooler 2 is supplied to hydraulic operating devices such as a valve opening / closing timing control device or lubricating portions of various parts of the engine. The oil pump 6 is a variable hydraulic mechanical oil pump that can control the hydraulic pressure level in two or more stages, and is driven by the engine E.
 ラジエータ3は、冷却水の放熱を行うことによりエンジンEの温度管理を行う機能を有し、ラジエータファン7により冷却風が供給される。ラジエータファン7は電動モータで構成されるファンモータ7Mで駆動される。 The radiator 3 has a function of managing the temperature of the engine E by radiating the cooling water, and the cooling air is supplied from the radiator fan 7. The radiator fan 7 is driven by a fan motor 7M configured by an electric motor.
〔流量制御バルブ〕
 流量制御バルブVは、バルブケースの内部に回転自在に弁体を収容したロータリ型であり、弁体を回転操作するように電動モータで成るバルブモータVMと、弁体の回転角を検知するバルブセンサVSとを備えている。バルブセンサVSは、ホール素子やポテンショメータ等で構成され、流量制御バルブVの弁体の回転角を検知することにより、流量制御バルブVにおいて各供給モードでのバルブ部の開度の検知を可能にする。尚、流量制御バルブVは、バルブケースの内部にスライド作動する弁体を収容したスライド作動型を採用しても良い。
(Flow control valve)
The flow control valve V is a rotary type in which a valve body is rotatably accommodated in a valve case, and a valve motor VM that is an electric motor so as to rotate the valve body, and a valve that detects a rotation angle of the valve body. And a sensor VS. The valve sensor VS is composed of a hall element, a potentiometer, and the like, and by detecting the rotation angle of the valve body of the flow control valve V, it is possible to detect the opening of the valve portion in each supply mode in the flow control valve V. To do. The flow control valve V may adopt a slide operation type in which a valve body that slides is accommodated inside the valve case.
 流量制御バルブVは、第1流路F1を開閉する第1バルブ部V1と、第2流路F2を開閉する第2バルブ部V2と、第3流路F3を開閉する第3バルブ部V3とを有している。この構成の流量制御バルブVで弁体の作動量に対する第1バルブ部V1と、第2バルブ部V2と、第3バルブ部V3とにおける開度を図2に示している。尚、第1バルブ部V1と第2バルブ部V2と第3バルブ部V3とをバルブ部と総称する。 The flow control valve V includes a first valve portion V1 that opens and closes the first flow path F1, a second valve portion V2 that opens and closes the second flow path F2, and a third valve portion V3 that opens and closes the third flow path F3. have. FIG. 2 shows the opening degrees of the first valve portion V1, the second valve portion V2, and the third valve portion V3 with respect to the operation amount of the valve body in the flow rate control valve V having this configuration. The first valve portion V1, the second valve portion V2, and the third valve portion V3 are collectively referred to as valve portions.
 図2には、縦軸に第1バルブ部V1と第2バルブ部V2と第3バルブ部V3との開度を示し(開度はパーセンテージで表している)、横軸に弁体の作動量(回動量)を示している。同図から理解できるように弁体が初期位置にある場合には、第1バルブ部V1と、第2バルブ部V2と、第3バルブ部V3とが閉じ状態となる全閉モードM0となり、第1流路F1と第2流路F2と第3流路F3とに冷却水は流れない。 In FIG. 2, the vertical axis indicates the opening degree of the first valve part V1, the second valve part V2, and the third valve part V3 (the opening degree is expressed as a percentage), and the horizontal axis indicates the valve operating amount. (Rotation amount) is shown. As can be understood from the figure, when the valve body is in the initial position, the first valve portion V1, the second valve portion V2, and the third valve portion V3 are in the fully closed mode M0 in which they are closed, Cooling water does not flow through the first flow path F1, the second flow path F2, and the third flow path F3.
 次に、全閉モードM0から弁体を開放方向に作動させることにより、第2バルブ部V2と第3バルブ部V3とを閉じ状態に維持した状態で、第1バルブ部V1の開度の調節が可能な第1供給モードM1に移行する。 Next, the opening degree of the first valve portion V1 is adjusted while the second valve portion V2 and the third valve portion V3 are maintained in the closed state by operating the valve body in the opening direction from the fully closed mode M0. Shifts to the first supply mode M1 in which
 更に、第1供給モードM1から弁体を、第1供給モードM1の全開状態を超えて開放方向に作動させることにより、第1バルブ部V1の開度を全開に維持した状態で(第3バルブ部V3は閉じ状態に維持される)、第2バルブ部V2の開度の調節が可能な第2供給モードM2に移行する。 Further, by operating the valve body in the opening direction beyond the fully opened state of the first supply mode M1 from the first supply mode M1, the opening degree of the first valve unit V1 is maintained in the fully opened state (third valve The part V3 is maintained in the closed state), and the process proceeds to the second supply mode M2 in which the opening degree of the second valve part V2 can be adjusted.
 そして、第2供給モードM2から弁体を、第2供給モードM2の全開状態を超えて開放方向に作動させることにより、第1バルブ部V1の開度と第2バルブ部V2部の開度とを全開に維持した状態で、第3バルブ部V3の開度の調節が可能な第3供給モードM3に移行する。 Then, by operating the valve body from the second supply mode M2 in the opening direction beyond the fully opened state of the second supply mode M2, the opening degree of the first valve part V1 and the opening degree of the second valve part V2 part In a state where the valve is fully opened, the process proceeds to the third supply mode M3 in which the opening degree of the third valve portion V3 can be adjusted.
 特に、この流量制御バルブVでは、第1バルブ部V1の開度が全開に達する以前に第2バルブ部V2で冷却水の供給を行うことはない。これと同様に、第2バルブ部V2の開度が全開に達する以前に第3バルブ部V3で冷却水の供給を行うことはない。 In particular, in this flow control valve V, the cooling water is not supplied by the second valve portion V2 before the opening degree of the first valve portion V1 reaches full open. Similarly, the cooling water is not supplied by the third valve portion V3 before the opening degree of the second valve portion V2 reaches the fully open position.
〔制御ユニット・制御形態〕
 制御ユニット10は、エンジン全体の管理を行うと共に、エンジンEの稼動時には流量制御バルブVで流路Fに流れる冷却水の水量を制御して熱交換器で交換される熱量の管理を行う。特に、エンジンEの温度管理を行う場合には、流量制御バルブVの制御によりラジエータ3に供給される冷却水の流量を最適に設定できるように構成されている。
[Control unit / control type]
The control unit 10 manages the entire engine, and also manages the amount of heat exchanged by the heat exchanger by controlling the amount of cooling water flowing through the flow path F with the flow rate control valve V when the engine E is in operation. In particular, when temperature management of the engine E is performed, the flow rate of the cooling water supplied to the radiator 3 can be set optimally by the control of the flow rate control valve V.
 図3に示すように、制御ユニット10は、スロットルセンサ21と、エンジン回転数センサ22と、外気温センサ23と、油温センサ24と、水温センサS(液温センサの一例)と、バルブセンサVSとからの検知信号が入力する。また、制御ユニット10は、流量制御バルブVの開度を制御するバルブモータVMと、ラジエータファン7を駆動するファンモータ7Mに制御信号を出力する。 As shown in FIG. 3, the control unit 10 includes a throttle sensor 21, an engine speed sensor 22, an outside air temperature sensor 23, an oil temperature sensor 24, a water temperature sensor S (an example of a liquid temperature sensor), and a valve sensor. A detection signal from VS is input. The control unit 10 also outputs control signals to the valve motor VM that controls the opening degree of the flow control valve V and the fan motor 7M that drives the radiator fan 7.
 スロットルセンサ21はエンジンEのスロットルのポジション(開度)を検知するポテンショメータ等で構成されている。エンジン回転数センサ22はエンジンEのクランクシャフトの回転数を計測する非接触型等のセンサで構成されている。外気温センサ23は車両の外気温を検知するサーミスタ等で構成される。油温センサ24はオイルクーラ2に供給される潤滑油の油温を検知するサーミスタ等で構成される。水温センサSは、エンジンEに設けられ、サーミスタ等で構成されている。 The throttle sensor 21 includes a potentiometer that detects the throttle position (opening) of the engine E. The engine speed sensor 22 is a non-contact type sensor that measures the speed of the crankshaft of the engine E. The outside air temperature sensor 23 is composed of a thermistor or the like that detects the outside air temperature of the vehicle. The oil temperature sensor 24 includes a thermistor that detects the oil temperature of the lubricating oil supplied to the oil cooler 2. The water temperature sensor S is provided in the engine E and is composed of a thermistor or the like.
 制御ユニット10は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)等を備えると共に、ソフトウエアとして構成される暖機制御部11と、熱量取得部12と、目標放熱量設定部13と、開度設定部14と、開度補正部15と、風量推定部16と、目標水温設定部17とを備えている。これらによる制御形態を図4のフローチャートと、図5のブロック図と、図6のチャートとに基づいて説明する。 The control unit 10 includes a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), etc., and a warm-up control unit 11 configured as software, a heat quantity acquisition unit 12, A target heat release amount setting unit 13, an opening degree setting unit 14, an opening degree correction unit 15, an air volume estimation unit 16, and a target water temperature setting unit 17 are provided. The control form by these is demonstrated based on the flowchart of FIG. 4, the block diagram of FIG. 5, and the chart of FIG.
 図5には、冷却水に蓄えられる熱量と、ラジエータ3により放熱すべき熱量との関係をブロック図として示している。第1熱量Q1は、エンジンEの稼動時にエンジンEから冷却水に対して単位時間に与えられる熱量(以下、エンジン熱量と称する)であり、エンジンEの回転数及びエンジンEに作用する負荷と比例する関係にある。第2熱量Q2は、エンジンEの稼動時にEGRクーラ1から冷却水に対して単位時間に与えられる熱量(以下、EGR熱量と称する)であり、エンジンEの回転数及びエンジンEに作用する負荷に対し所定のEGR率により求められる。ここで、吸入空気量は、スロットルセンサ21のスロットルのポジション(開度)に基づいて取得可能である。また、第2熱量Q2はEGR率が上昇すれば増加し、EGR率が低下すれば減少する。 FIG. 5 is a block diagram showing the relationship between the amount of heat stored in the cooling water and the amount of heat to be radiated by the radiator 3. The first heat quantity Q1 is a heat quantity given to the cooling water from the engine E to the cooling water during operation of the engine E (hereinafter referred to as engine heat quantity), and is proportional to the rotational speed of the engine E and the load acting on the engine E. Have a relationship. The second heat quantity Q2 is a heat quantity given to the cooling water per unit time from the EGR cooler 1 during operation of the engine E (hereinafter referred to as EGR heat quantity), and is applied to the rotational speed of the engine E and the load acting on the engine E. On the other hand, it is determined by a predetermined EGR rate. Here, the intake air amount can be acquired based on the throttle position (opening degree) of the throttle sensor 21. The second heat quantity Q2 increases as the EGR rate increases, and decreases as the EGR rate decreases.
 第3熱量Q3は、冷却水の現在の水温を目標水温に変化させるために授受する冷却水の総熱量(以下、冷却水熱量と称する)であり、基本的には、実水温と目標水温の差の値に対して、冷却水の全水量と比熱を乗ずることで算出される値となる。 The third heat quantity Q3 is the total heat quantity of the cooling water that is transferred to change the current water temperature of the cooling water to the target water temperature (hereinafter referred to as the cooling water heat quantity), and basically the actual water temperature and the target water temperature. The difference value is a value calculated by multiplying the total amount of cooling water and specific heat.
 第4熱量Q4は、エンジンEのうちシリンダヘッドからシリンダブロックを含む外壁部分を構成するエンジンブロック部分を介して冷却水に対して単位時間に作用する熱量(以下、エンジンブロック熱量と称する)であり、エンジン壁温と、実水温とに基づいて求められる。このエンジンブロック熱量は、エンジンEが低温である場合に冷却水から熱量を奪い、エンジンEの温度が所定の温度より上昇した場合には冷却水に熱量を与える。エンジン壁温と実水温との関係は把握困難であるため、その熱量は、エンジンEの稼動時間、あるいは、実水温等の関係から予め取得したデータに基づく演算や、テーブルデータにより設定されることになる。尚、エンジンEがレシプロエンジンでない場合でも、冷却水の熱量を作用させる部位がエンジン外壁部分となる。 The fourth heat quantity Q4 is a heat quantity (hereinafter referred to as engine block heat quantity) that acts on the cooling water in the engine E through the engine block part constituting the outer wall part including the cylinder block from the cylinder head in the engine E. It is obtained based on the engine wall temperature and the actual water temperature. This engine block heat amount takes heat from the cooling water when the engine E is at a low temperature, and gives heat to the cooling water when the temperature of the engine E rises above a predetermined temperature. Since it is difficult to grasp the relationship between the engine wall temperature and the actual water temperature, the amount of heat must be set by calculation based on data obtained in advance from the relationship between the operating time of the engine E or the actual water temperature, or table data. become. Even when the engine E is not a reciprocating engine, the portion where the heat quantity of the cooling water acts is the engine outer wall portion.
 第5熱量Q5は、暖機後のエンジンEの稼動時にオイルクーラ2と冷却水との間で対して単位時間に授受する熱量(以下、オイル熱量と称する)であり、潤滑油温(潤滑油が熱交換対象の一例)と、オイルクーラ2に流れる潤滑油量と、実水温と、冷却水量とによって求められる。 The fifth heat quantity Q5 is a heat quantity (hereinafter referred to as oil heat quantity) given to the oil cooler 2 and the cooling water during operation of the engine E after warm-up (hereinafter referred to as oil heat quantity). Is an example of a heat exchange object), the amount of lubricating oil flowing through the oil cooler 2, the actual water temperature, and the cooling water amount.
 第3熱量Q3を目標応答時間Tで割った値を単位時間あたりの第3熱量Q3’とし、第1熱量Q1、第2熱量Q2、単位時間あたりの第3熱量Q3’、第4熱量Q4、第5熱量Q5の総和(加算した値)を求めることにより、放熱されるべき熱量が求められる。求められた熱量を放熱するために、ラジエータモデルにおいて外気温と、目標応答時間T(図6を参照)等を考慮することによりラジエータ3に供給すべき冷却水の目標流量が設定され、これに対応して流量制御バルブVの目標開度が設定される。 A value obtained by dividing the third heat amount Q3 by the target response time T is defined as a third heat amount Q3 ′ per unit time, and the first heat amount Q1, the second heat amount Q2, the third heat amount Q3 ′ per unit time, the fourth heat amount Q4, By obtaining the sum (added value) of the fifth heat quantity Q5, the heat quantity to be radiated is obtained. In order to dissipate the obtained amount of heat, the target flow rate of cooling water to be supplied to the radiator 3 is set by considering the outside air temperature, the target response time T (see FIG. 6), etc. in the radiator model. Correspondingly, the target opening degree of the flow control valve V is set.
 目標応答時間Tは迅速に放熱を行わせる(迅速放熱)ためのものと、充分な時間を掛けて放熱を行わせる(抑制放熱)ためのものとの2種が設定される。つまり、迅速放熱のための目標応答時間Tは、流量制御バルブVにより冷却水の流量を増大する制御時に、放熱すべき熱量の放熱を完了するまでに超えてはならない時間を示す値となる。また、抑制放熱のための目標応答時間Tは、流量制御バルブVにより冷却水の流量を低減する制御時に、放熱すべき熱量の放熱を完了するまでに下回ってはいけない時間を示す値となる。この目標応答時間Tは、アクセル操作、エンジンの回転数、流量制御バルブVの開度等に基づいて設定される。 The target response time T is set to two types, one for promptly radiating heat (rapid heat dissipation) and one for allowing sufficient time to radiate heat (suppressed heat dissipation). That is, the target response time T for quick heat dissipation is a value indicating the time that must not be exceeded before completing the heat dissipation of the amount of heat to be dissipated when the flow rate control valve V is used to increase the flow rate of the cooling water. In addition, the target response time T for suppressing heat dissipation is a value indicating a time that must not be decreased until the heat dissipation of the heat amount to be radiated is completed in the control for reducing the flow rate of the cooling water by the flow rate control valve V. The target response time T is set based on the accelerator operation, the engine speed, the opening degree of the flow control valve V, and the like.
 目標応答時間Tが設定される理由は次の通りである。例えば、アクセルペダルを急激に踏み込み操作した場合のように、エンジンEの温度が短時間のうち上昇する状況では、エンジンEの熱伝導の不足からエンジンEの温度に基づいた制御を行っても適正な温度管理が困難である。従って、冷却液の沸騰のタイミングを想定し、想定されるタイミングまでに沸騰を抑制するに必要な熱量の放熱を行う必要がある。このような理由から迅速放熱のための目標応答時間Tが設定される。これと同様に、アクセルペダルの踏み込み操作を解除した場合に過剰な冷却不足を招く状況においてもエンジンEの温度上昇を抑制するための目標応答時間Tが設定される。 The reason why the target response time T is set is as follows. For example, in a situation where the temperature of the engine E rises for a short time, such as when the accelerator pedal is depressed suddenly, it is appropriate to perform control based on the temperature of the engine E due to insufficient heat conduction of the engine E. Temperature control is difficult. Therefore, it is necessary to radiate a heat amount necessary for suppressing boiling by assuming the timing of boiling of the coolant. For this reason, a target response time T for quick heat dissipation is set. Similarly, the target response time T for suppressing the temperature rise of the engine E is set even in a situation where excessive cooling shortage is caused when the accelerator pedal depression operation is released.
 これにより、例えば、冷却水の流量を増大する場合に、迅速放熱のための目標応答時間Tが短いほど流量制御バルブVの目標開度は大きく設定される。 Thus, for example, when the flow rate of the cooling water is increased, the target opening degree of the flow control valve V is set to be larger as the target response time T for quick heat dissipation is shorter.
 冷却制御装置では、第1供給モードM1と第2供給モードM2と第3供給モードM3との何れのモードでの制御時にも、開度設定部14がエンジンEの回転数(単位時間あたりの回転数)と、目標応答時間T(図6を参照)とに基づいて流量制御バルブVの開度を設定する。つまり、ウォータポンプWPがエンジンEで駆動されるためエンジンEの回転数が考慮される。尚、図6に示す目標応答時間Tは、フィードフォワード制御FFから、このフィードフォワード制御FFとフィードバック制御FBとを並行して実行する制御への切り換えタイミングとして利用されている。 In the cooling control device, the opening degree setting unit 14 sets the rotation speed of the engine E (the rotation per unit time) during the control in any of the first supply mode M1, the second supply mode M2, and the third supply mode M3. Number) and the target response time T (see FIG. 6), the opening degree of the flow control valve V is set. That is, since the water pump WP is driven by the engine E, the rotational speed of the engine E is taken into consideration. Note that the target response time T shown in FIG. 6 is used as a switching timing from the feedforward control FF to the control that executes the feedforward control FF and the feedback control FB in parallel.
 具体的な制御形態は、図4のフローチャートに示すように、エンジンEの起動に伴って冷却制御が実行され、水温センサSで検知される水温(実水温)が規定値より低温であり、暖機運転が必要である場合には流量制御バルブVを全閉モードM0に維持して暖機運転が行われる(#01~#03ステップ)。 As a specific control mode, as shown in the flowchart of FIG. 4, cooling control is executed as the engine E is started, and the water temperature (actual water temperature) detected by the water temperature sensor S is lower than a specified value. When the machine operation is necessary, the warm-up operation is performed by maintaining the flow control valve V in the fully closed mode M0 (steps # 01 to # 03).
 この暖機運転は、暖機制御部11の制御により実現するものである。この暖機運転において、実水温がEGRクーラ1での熱交換に適した値まで上昇した後に第1バルブ部V1が開放される。この第1供給モードM1では、実水温の上昇に伴い第1バルブ部V1の開度を拡大して第1流路F1に供給される冷却水の流量の増大が図られる。 This warm-up operation is realized by the control of the warm-up control unit 11. In this warm-up operation, the first valve portion V1 is opened after the actual water temperature rises to a value suitable for heat exchange in the EGR cooler 1. In the first supply mode M1, the flow rate of the cooling water supplied to the first flow path F1 is increased by increasing the opening of the first valve portion V1 as the actual water temperature rises.
 これに続いて、実水温が更に上昇し、第1バルブ部V1の開度が100%を超えた後(実水温が所定値以上に達した後)には、第2バルブ部V2が開放される。この第2供給モードM2では、実水温の上昇に伴い第2バルブ部V2の開度を拡大して第2流路F2に供給される冷却水の流量の増大が図られる。 Following this, after the actual water temperature further rises and the opening degree of the first valve portion V1 exceeds 100% (after the actual water temperature reaches a predetermined value or more), the second valve portion V2 is opened. The In the second supply mode M2, the flow rate of the cooling water supplied to the second flow path F2 is increased by increasing the opening of the second valve portion V2 as the actual water temperature rises.
 次に、実水温が更に上昇し、実水温が所定値を超えることで第3供給モードM3に移行し、第3バルブ部V3の開放が開始される。このようにラジエータ3に冷却水を供給する場合には、ファンモータ7Mを駆動してラジエータ3に冷却風が供給される。また、車速が十分にありラジエータ3に冷却風が十分に当たる場合には、または水温が十分に低い場合には、ファンモータ7Mを駆動しない。 Next, when the actual water temperature further rises and the actual water temperature exceeds a predetermined value, the third supply mode M3 is started, and the opening of the third valve unit V3 is started. Thus, when supplying cooling water to the radiator 3, the fan motor 7M is driven and cooling air is supplied to the radiator 3. FIG. Further, when the vehicle speed is sufficient and the cooling air sufficiently hits the radiator 3, or when the water temperature is sufficiently low, the fan motor 7M is not driven.
 特に、第3供給モードM3では、ハンチングを招くことなく適正な流量を得るために図6に示す如くフィードフォワード制御FFが開始される。このフィードフォワード制御FFを実現するために、前述した如く、エンジン熱量として単位時間あたりの第1熱量Q1と、EGRクーラ熱量として単位時間あたりの第2熱量Q2と、単位時間あたりの第3熱量Q3’と、エンジンブロック熱量として単位時間あたりの第4熱量Q4と、オイル熱量として単位時間あたりの第5熱量Q5との値が取得される。 In particular, in the third supply mode M3, feedforward control FF is started as shown in FIG. 6 in order to obtain an appropriate flow rate without causing hunting. In order to realize this feedforward control FF, as described above, the first heat amount Q1 per unit time as the engine heat amount, the second heat amount Q2 per unit time as the EGR cooler heat amount, and the third heat amount Q3 per unit time The values of ', the fourth heat amount Q4 per unit time as the engine block heat amount, and the fifth heat amount Q5 per unit time as the oil heat amount are acquired.
 第1熱量Q1、第2熱量Q2、第4熱量Q4、第5熱量Q5では、冷却水に熱量を与えるものには正(プラス)の符号が付され、冷却数から熱量を奪うものには、負(マイナス)の符号が付される。また、第3熱量Q3は目標温度に変化させるために放熱したときは正(プラス)、受熱したときは負(マイナス)の符号が付される。更に、目標放熱量設定部13において、これらの熱量の値の総和(Q1、Q2、Q3’、Q4、Q5の総和)から放熱すべき目標放熱量が求められる(#04、#05ステップ)。 In the first heat quantity Q1, the second heat quantity Q2, the fourth heat quantity Q4, and the fifth heat quantity Q5, those that give heat quantity to the cooling water are given a positive (plus) sign, and those that take the heat quantity from the cooling number, A negative sign is attached. Further, the third heat quantity Q3 is given a positive (plus) sign when it is dissipated to change it to the target temperature, and a negative (minus) sign when it receives heat. Further, the target heat dissipation amount setting unit 13 obtains the target heat dissipation amount to be radiated from the sum of these heat values (the sum of Q1, Q2, Q3 ', Q4, and Q5) (steps # 04 and # 05).
 例えば、アクセルペダルを踏み込み操作し、エンジンEの回転数及びエンジンEに作用する負荷が増大したり、EGR率が上昇した場合には、エンジンEでの燃料の消費量が増大し、この増大に伴い、エンジンEで発生する熱量は増大し、冷却水に与えられる(蓄えられる)第1熱量Q1は増大する。また、EGRクーラ1にはエンジンEの排気ガスの一部が供給されるため、エンジンEの回転数及びエンジンEに作用する負荷が増大した場合にはEGRクーラ1において、冷却水に与えられる第2熱量Q2も増大する。 For example, when the accelerator pedal is depressed and the engine E rotation speed and the load acting on the engine E increase or the EGR rate rises, the fuel consumption in the engine E increases. Along with this, the amount of heat generated in the engine E increases, and the first amount of heat Q1 given (stored) to the cooling water increases. Further, since a part of the exhaust gas of the engine E is supplied to the EGR cooler 1, the EGR cooler 1 gives the cooling water to the cooling water when the rotational speed of the engine E and the load acting on the engine E increase. 2 Heat quantity Q2 also increases.
 つまり、EGRクーラ1において冷却水に与えられる第2熱量Q2は、第1熱量Q1に比例する関係となるため、EGR率として予め設定された係数を第1熱量Q1に乗ずる演算により取得される。この第1熱量Q1と第2熱量Q2とは、スロットルセンサ21の検知結果に基づいて取得される。 That is, since the second heat quantity Q2 given to the cooling water in the EGR cooler 1 is proportional to the first heat quantity Q1, it is acquired by a calculation that multiplies the first heat quantity Q1 by a coefficient set in advance as the EGR rate. The first heat quantity Q1 and the second heat quantity Q2 are acquired based on the detection result of the throttle sensor 21.
 例えば、エンジンEの温度が上昇し、オイルクーラ2から冷却水に熱量を与える場合(潤滑油温が実水温より上昇した場合)、第5熱量Q5は、潤滑油の潤滑油温と、オイルクーラ2に供給される潤滑油量と、冷却水の水温と、冷却水の水量と、に応じた関係になる。従って、オイルポンプ6の吐出圧からオイルクーラ2に供給される潤滑油の油量を取得し、油温センサ24で潤滑油の温度を検知し、これらを用いた演算により第5熱量Q5が取得される。 For example, when the temperature of the engine E rises and heat is given from the oil cooler 2 to the cooling water (when the lubricating oil temperature rises above the actual water temperature), the fifth heat quantity Q5 is the lubricating oil temperature of the lubricating oil and the oil cooler. The amount of lubricating oil supplied to 2, the temperature of the cooling water, and the amount of cooling water are in a relationship. Accordingly, the amount of lubricating oil supplied to the oil cooler 2 is obtained from the discharge pressure of the oil pump 6, the temperature of the lubricating oil is detected by the oil temperature sensor 24, and the fifth heat quantity Q5 is obtained by calculation using these. Is done.
 また、第4熱量Q4は、前述したように演算や、テーブルデータから取得される。 Further, the fourth heat quantity Q4 is acquired from the calculation or table data as described above.
 単位時間あたりの第3熱量Q3’は、第3熱量Q3を目標応答時間Tで割ることにより求められる単位時間あたりの冷却水熱量である。 The third heat quantity Q3 'per unit time is the cooling water heat quantity per unit time obtained by dividing the third heat quantity Q3 by the target response time T.
 このように取得された第1熱量Q1、第2熱量Q2、単位時間あたりの第3熱量Q3’、第4熱量Q4、第5熱量Q5の総和により求められた熱量が放熱すべき熱量となる。目標放熱量設定部13は、演算によって求められた総熱量を目標放熱量として設定し、開度設定部14がラジエータ3に供給される冷却水の流量を設定し、開度設定部14が流量制御バルブVの第3バルブ部V3の目標開度を設定し、この設定に基づいて流量制御バルブVの第3バルブ部V3の開度が設定され、流量制御バルブVが制御される(#06、#07ステップ)。 The amount of heat determined by the sum of the first amount of heat Q1, the second amount of heat Q2, the third amount of heat Q3 ', the fourth amount of heat Q4, and the fifth amount of heat Q5 acquired in this way is the amount of heat to be radiated. The target heat release amount setting unit 13 sets the total heat amount obtained by the calculation as the target heat release amount, the opening degree setting unit 14 sets the flow rate of the cooling water supplied to the radiator 3, and the opening degree setting unit 14 sets the flow rate. The target opening degree of the third valve part V3 of the control valve V is set, and based on this setting, the opening degree of the third valve part V3 of the flow rate control valve V is set, and the flow rate control valve V is controlled (# 06). , # 07 step).
 前述したようにウォータポンプWPはエンジンEで駆動されるため、エンジンEの回転数(単位時間あたりの回転数)により吐出量が変動する。また、ラジエータ3で交換される熱量は、ラジエータモデルとして説明される外気温、冷却水温、ラジエータ3に供給される風量、ラジエータ3における放熱効率等に影響される。 As described above, since the water pump WP is driven by the engine E, the discharge amount varies depending on the rotation speed of the engine E (rotation speed per unit time). The amount of heat exchanged by the radiator 3 is affected by the outside air temperature, the cooling water temperature, the amount of air supplied to the radiator 3, the heat radiation efficiency in the radiator 3, and the like described as a radiator model.
 従って、開度設定部14で流量制御バルブVの開度を制御する場合には、外気温センサ23で検知される外気温と、風量推定部16で推定されるラジエータ3に対する冷却風の風量とウォータポンプWPで供給される冷却水の水量と目標水温とを考慮したラジエータモデルに基づいて目標開度が設定される。 Therefore, when the opening degree of the flow rate control valve V is controlled by the opening degree setting unit 14, the outside air temperature detected by the outside air temperature sensor 23 and the air volume of the cooling air for the radiator 3 estimated by the air volume estimating unit 16 The target opening is set based on a radiator model that takes into account the amount of cooling water supplied by the water pump WP and the target water temperature.
 また、ラジエータモデルの概念の一例を図7に示している。「ラジエータの放熱量」は、「風量」と「流量」と「水温と外気温の差」の3次元マップから決まるが、その中でも「ラジエータの放熱量」は「水温と外気温の差」と比例関係にある。
 つまり、「水温と外気温の差1℃当たりの」と規格化することにより、「水温と外気温の差1℃当たりのラジエータの放熱量」は「風量」と「流量」から決めることができる。よって、制御対象である「流量」は受放熱の関係から求められた「水温と外気温の差1℃当たりのラジエータの放熱量」と「風量」の2次元マップで求めることが可能である。また、図7には、縦軸(Y軸)をΔT(目標水温-外気温)=1℃当たりの放熱量とし、横軸(X軸)を風量としている。目標放熱量Exは、ΔT=1℃当たりの目標放熱量となり、Ex=(Q1+Q2+Q3’+Q4+Q5)/(目標水温-外気温)の式で求められる。
An example of the concept of the radiator model is shown in FIG. “Radiator heat dissipation” is determined from a three-dimensional map of “air flow”, “flow rate”, and “difference between water temperature and outside temperature”. Proportional relationship.
In other words, by standardizing “the difference between the water temperature and the outside air temperature per 1 ° C.”, the “radiator heat dissipation per 1 ° C. between the water temperature and the outside air temperature” can be determined from the “air volume” and the “flow rate”. . Therefore, the “flow rate” to be controlled can be obtained by a two-dimensional map of “radiation amount of radiator per 1 ° C. difference between water temperature and outside air temperature” and “air volume” obtained from the relationship between heat reception and radiation. In FIG. 7, the vertical axis (Y axis) is ΔT (target water temperature−outside air temperature) = 1 ° C., and the horizontal axis (X axis) is the air volume. The target heat dissipation amount Ex is the target heat dissipation amount per ΔT = 1 ° C., and is obtained by the equation Ex = (Q1 + Q2 + Q3 ′ + Q4 + Q5) / (target water temperature−outside air temperature).
 風量推定部16では、車両の走行速度と、ファンモータ7Mの駆動速度により、車両が走行する際の風量Fxと、停車時の風量Fxとが推定される。目標放熱量設定部13では、目標放熱量Exは、外気温と、目標水温と、必要放熱量とに基づいて設定される。 The air volume estimation unit 16 estimates the air volume Fx when the vehicle is traveling and the air volume Fx when the vehicle is stopped based on the traveling speed of the vehicle and the driving speed of the fan motor 7M. In the target heat release amount setting unit 13, the target heat release amount Ex is set based on the outside air temperature, the target water temperature, and the required heat release amount.
 このように目標開度を設定する演算としては、風量Fxと、目標放熱量Exとに基づいて演算されることになる。また、目標開度を設定する手段として、複数の目標流量に対する流量制御バルブVの開度を予め求めたテーブルデータを参照することも考えられる。 In this way, the calculation for setting the target opening degree is performed based on the air volume Fx and the target heat release amount Ex. Further, as means for setting the target opening, it is conceivable to refer to table data obtained in advance for the opening of the flow control valve V for a plurality of target flow rates.
 そして、図6に示すように、フィードフォワード制御FFを実行し、この実行開始から目標応答時間Tが経過したタイミングで、フィードフォワード制御FFを実行しつつ、フィードバック制御FBを行う制御(2種の制御を並行して行う制御)に移行する(#08、#09ステップ)。 Then, as shown in FIG. 6, the feedforward control FF is executed, and at the timing when the target response time T has elapsed from the start of the execution, the feedforward control FF is executed and the feedback control FB is executed (two types of control). The control shifts to (control in which control is performed in parallel) (steps # 08 and # 09).
 前述したフィードバック制御FBは、フィードフォワード制御FFを実行する制御において、流量制御バルブVの開度を補正するための補正係数等を生成してバルブ制御に反映させることを想定している。また、フィードフォワード制御FFとフィードバック制御FBとを並行して実行する状況であっても、例えば、目標水温が変化した場合には、フィードフォワード制御FFのみの制御に移行することになる。 The above-described feedback control FB is assumed to generate a correction coefficient for correcting the opening degree of the flow control valve V and reflect it in the valve control in the control for executing the feedforward control FF. Even in a situation where the feedforward control FF and the feedback control FB are executed in parallel, for example, when the target water temperature changes, the control shifts to the control of only the feedforward control FF.
 つまり、図6に示す如く、実行開始から目標応答時間Tが経過するまではフィードフォワード制御FFを実行し、目標応答時間Tが経過した場合には、フィードフォワード制御FFとフィードバック制御FBとを並行して実行する(同図にFF+FBで示す領域)。この制御を実行することにより、図中にFF成分として示すフィードフォワード制御FFで設定される開度と、図中にFB成分として示すフィードバック制御FBで設定される開度とを加算した値が、流量制御バルブVの開度に設定される。 That is, as shown in FIG. 6, the feedforward control FF is executed until the target response time T elapses from the start of execution, and when the target response time T elapses, the feedforward control FF and the feedback control FB are performed in parallel. (A region indicated by FF + FB in the figure). By executing this control, a value obtained by adding the opening set by the feedforward control FF shown as the FF component in the figure and the opening set by the feedback control FB shown as the FB component in the figure is The opening degree of the flow control valve V is set.
 更に、目標水温が変化した場合には、再び、フィードフォワード制御FFを実行すると共に、このフィードフォワード制御FFの再実行から目標応答時間Tが経過した後に、前述と同様にフィードフォワード制御FFとフィードバック制御FBとを並行して実行する制御に移行することにより、FF成分として示したフィードフォワード制御FFで設定される開度と、FB成分として示すフィードバック制御FBで設定される弁解度とを加算した値が、流量制御バルブVの開度に設定される。 Further, when the target water temperature changes, the feedforward control FF is executed again, and after the target response time T has elapsed from the re-execution of the feedforward control FF, the feedforward control FF and the feedback are similarly performed as described above. By shifting to the control that executes the control FB in parallel, the opening degree set by the feedforward control FF shown as the FF component and the excuse degree set by the feedback control FB shown as the FB component are added. The value is set to the opening degree of the flow control valve V.
 この制御はリセットされる(基本的にはエンジンEが停止する)まで反復して行われることになる(#010ステップ)。 This control is repeatedly performed until the engine is reset (basically, the engine E is stopped) (Step # 010).
 図6から明らかなように、フィードバック制御FBを並行して実行することにより実水温が目標水温に収束することが理解できる。 As can be seen from FIG. 6, it can be understood that the actual water temperature converges to the target water temperature by executing the feedback control FB in parallel.
〔実施形態の作用・効果〕
 このように、ラジエータ3に冷却水を供給してエンジンEの温度管理を行う場合には、スロットルセンサ21によりエンジンEに作用する負荷を求めることでエンジンEの稼動に伴って発生する第1熱量Q1と、EGRクーラ1から冷却水に与えられる第2熱量Q2とが求められるため、これらの熱量は比較的容易に取得できる。
[Operation / Effect of Embodiment]
As described above, when the cooling water is supplied to the radiator 3 to control the temperature of the engine E, the first heat amount generated with the operation of the engine E is obtained by obtaining the load acting on the engine E by the throttle sensor 21. Since Q1 and the second heat quantity Q2 given to the cooling water from the EGR cooler 1 are required, these heat quantities can be acquired relatively easily.
 また、第3熱量Q3は、現在の水温(実水温)と、定数として設定される冷却水の全水量と、冷却水の比熱と、目標水温とから取得できる。 The third heat quantity Q3 can be acquired from the current water temperature (actual water temperature), the total amount of cooling water set as a constant, the specific heat of the cooling water, and the target water temperature.
 更に、エンジンEから放熱される第4熱量Q4は、外気温に基づいた実測値に基づいて容易に変数化することも可能である。第5熱量Q5は、潤滑油温と、オイルクーラ2に流れる潤滑油量と、実水温と、冷却水量とによって求めることが可能である。 Furthermore, the fourth heat quantity Q4 radiated from the engine E can be easily variable based on the actual measurement value based on the outside air temperature. The fifth heat quantity Q5 can be obtained from the lubricating oil temperature, the amount of lubricating oil flowing through the oil cooler 2, the actual water temperature, and the cooling water amount.
 このことから、これら第1熱量Q1と、第2熱量Q2と、単位時間あたりの第3熱量Q3’と、第3熱量Q3と、第4熱量Q4と、第5熱量Q5を求め、これらの総和を求めるだけで、放熱すべき熱量を設定し、流量制御バルブVの開度を設定するフィードフォワード制御FFを実現できるのである。 From this, the first calorie Q1, the second calorie Q2, the third calorie Q3 ′, the third calorie Q3, the fourth calorie Q4, and the fifth calorie Q5 per unit time are obtained and summed up. The feedforward control FF that sets the amount of heat to be radiated and sets the opening degree of the flow control valve V can be realized simply by obtaining the above.
 また、このフィードフォワード制御FFでは、冷却水から目標熱量が放熱され、水温の偏差が小さくなる。しかしながら、熱量に基づく制御であるため、制御が収束し難い面もある。このため、フィードフォワード制御FFの実行開始から目標応答時間Tが経過したタイミングでフィードフォワード制御FFを並行して実行しつつ、冷却水の水温の偏差の縮小に基づいて水温センサSの検知結果に基づくフィードバック制御FBで流量制御バルブVの目標開度を補正することで冷却水の変動幅内での温度制御により、定常偏差分を収束させることも可能となり、温度制御の精度が向上しハンチングを招くこともない。 Also, in this feedforward control FF, the target heat amount is radiated from the cooling water, and the deviation of the water temperature becomes small. However, since the control is based on the amount of heat, the control is difficult to converge. For this reason, the feedforward control FF is executed in parallel at the timing when the target response time T has elapsed from the start of execution of the feedforward control FF, and the detection result of the water temperature sensor S is based on the reduction in the coolant temperature deviation. By correcting the target opening of the flow rate control valve V with the feedback control FB based on the temperature control within the fluctuation range of the cooling water, it is possible to converge the steady deviation, improving the temperature control accuracy and hunting. There is no invitation.
 また、エンジンEの温度管理を行うため電動モータで駆動されるウォータポンプを用いることで冷却水の供給量を高精度で制御することも考えられるが、本構成のように、流量制御バルブVの開度の設定により冷却水の流量を設定するものでは、エンジンEで駆動されるウォータポンプWPを用いることが可能となり低廉化にも繋がる。 In addition, it is conceivable to control the amount of cooling water supplied with high accuracy by using a water pump driven by an electric motor in order to manage the temperature of the engine E. In the case of setting the flow rate of the cooling water by setting the opening, it is possible to use the water pump WP driven by the engine E, which leads to a reduction in cost.
〔別実施形態〕
 本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、前記実施形態と共通の番号、符号を付している)。
[Another embodiment]
In addition to the above-described embodiments, the present invention may be configured as follows (the components having the same functions as those of the embodiments are denoted by the same numbers and symbols as those of the embodiments).
(a)実施形態では、第1流路F1と、第2流路F2と、第3流路F3とを並列に形成していたが、これに代えて一部が直列に配置されるものでも良い。また、これ以外の流路Fを形成し、例えば、ヒータコアのような熱交換器を設けても良い。このようにヒータコアを設けた場合には、ヒータコアでの熱交換により冷却水から奪われる熱量が、実施形態で説明した総熱量から減じられるように熱量取得部12の制御形態を設定するだけで、基本的に実施形態と共通する制御により温度管理が実現する。 (A) In the embodiment, the first flow path F1, the second flow path F2, and the third flow path F3 are formed in parallel. However, instead of this, a part of them may be arranged in series. good. Moreover, you may form the flow path F other than this, and may provide a heat exchanger like a heater core, for example. When the heater core is provided in this way, it is only necessary to set the control form of the heat quantity acquisition unit 12 so that the heat quantity taken from the cooling water by heat exchange in the heater core is reduced from the total heat quantity described in the embodiment. Basically, the temperature management is realized by the control common to the embodiment.
(b)実施形態では、流量制御バルブVとして、第1バルブ部V1と第2バルブ部V2と第3バルブ部V3とを備えた構成であったが、本発明では、ラジエータ3に供給される冷却水の水量の制御が可能であれば良いため、第1流路F1のみの冷却水の流量を制御できる構成のものを用いても良い。 (B) In the embodiment, the flow control valve V includes the first valve portion V1, the second valve portion V2, and the third valve portion V3. However, in the present invention, the flow control valve V is supplied to the radiator 3. Since it is only necessary to be able to control the amount of cooling water, a configuration that can control the flow rate of cooling water only in the first flow path F1 may be used.
(c)第1熱交換器は、ターボチャージャであって良く、第2熱交換器はATFクーラや、ヒータであっても良く、外気温センサは吸気温センサを用いても良い。 (C) The first heat exchanger may be a turbocharger, the second heat exchanger may be an ATF cooler or a heater, and the outside air temperature sensor may use an intake air temperature sensor.
 本発明は、冷却液を用いて内燃機関の温度管理を行う冷却制御装置に利用できる。 The present invention can be used in a cooling control device that manages the temperature of an internal combustion engine using a coolant.
1     第1熱交換器(EGRクーラ)
2     第2熱交換器(オイルクーラ)
3     ラジエータ
10    制御部(制御ユニット)
12    熱量取得部
13    目標放熱量設定部
14    開度設定部
15    開度補正部
E     内燃機関(エンジン)
F     流路(第1流路)
V     流量制御バルブ
WP    冷却液ポンプ(ウォータポンプ)
Q1    第1熱量
Q2    第2熱量
Q3    第3熱量
Q4    第4熱量
Q5    第5熱量
1 First heat exchanger (EGR cooler)
2 Second heat exchanger (oil cooler)
3 Radiator 10 Control unit (control unit)
12 heat quantity acquisition unit 13 target heat release setting unit 14 opening setting unit 15 opening correction unit E internal combustion engine (engine)
F channel (first channel)
V Flow control valve WP Coolant pump (water pump)
Q1 1st heat quantity Q2 2nd heat quantity Q3 3rd heat quantity Q4 4th heat quantity Q5 5th heat quantity

Claims (5)

  1.  内燃機関の冷却液が供給されるラジエータと、前記ラジエータとは別に冷却液との間で熱交換を行う第1熱交換器と、冷却液を循環させるため前記内燃機関で駆動される冷却液ポンプと、冷却液の流量を設定する流量制御バルブと、前記流量制御バルブの開度を設定する制御部とを備え、
     前記制御部が、前記内燃機関の回転数及び前記内燃機関に作用する負荷に応じて前記内燃機関が冷却液に与える第1熱量と、前記第1熱交換器が冷却液に与える第2熱量と、冷却液を目標温度に変化させるために授受される第3熱量と、を取得する熱量取得部を備えると共に、前記熱量取得部で取得した前記第1熱量と前記第2熱量と単位時間あたりの第3熱量とを加算した値に基づいて目標放熱量を設定する目標放熱量設定部を備え、
     前記制御部が、前記目標放熱量設定部で設定される前記目標放熱量と、前記ラジエータにおける熱交換効率とに基づいて前記ラジエータに供給すべき冷却液の目標流量を設定しフィードフォワード制御により前記流量制御バルブの目標開度を設定する開度設定部を備えている冷却制御装置。
    A radiator to which the coolant of the internal combustion engine is supplied, a first heat exchanger that exchanges heat with the coolant separately from the radiator, and a coolant pump that is driven by the internal combustion engine to circulate the coolant And a flow rate control valve for setting the flow rate of the coolant, and a control unit for setting the opening degree of the flow rate control valve,
    A first heat amount that the internal combustion engine gives to the coolant according to a rotational speed of the internal combustion engine and a load acting on the internal combustion engine; and a second heat amount that the first heat exchanger gives to the coolant. And a third heat quantity that is transferred to change the coolant to the target temperature, and a heat quantity acquisition unit that acquires the third heat quantity, and the first heat quantity, the second heat quantity, and a unit time obtained by the heat quantity acquisition part. A target heat dissipation amount setting unit for setting a target heat dissipation amount based on a value obtained by adding the third heat amount,
    The control unit sets a target flow rate of the coolant to be supplied to the radiator based on the target heat dissipation amount set by the target heat dissipation amount setting unit and the heat exchange efficiency in the radiator, and feedforward control is used to set the target flow rate. A cooling control device comprising an opening setting unit for setting a target opening of the flow control valve.
  2.  前記熱量取得部で取得される熱量が、冷却液と前記内燃機関のブロック部分との間で交換される第4熱量と、前記ラジエータ及び前記第1熱交換器とは別に設けられた第2熱交換器において内部に流れる冷却液と熱交換対象との温度差とその流量により求められる第5熱量とを含んでいる請求項1に記載の冷却制御装置。 The amount of heat acquired by the heat amount acquisition unit is the fourth heat amount exchanged between the coolant and the block portion of the internal combustion engine, and the second heat provided separately from the radiator and the first heat exchanger. The cooling control device according to claim 1, comprising a temperature difference between a coolant flowing in the exchanger and a heat exchange target, and a fifth heat quantity obtained from the flow rate.
  3.  前記第2熱交換器が、オイルクーラである請求項2に記載の冷却制御装置。 The cooling control device according to claim 2, wherein the second heat exchanger is an oil cooler.
  4.  前記目標放熱量と、前記熱量取得部で取得する熱量と、の偏差が所定の閾値未満に低下した場合に、フィードフォワード制御を実行しつつ、フィードバック制御により前記偏差を小さくする制御を実行する請求項1~3のいずれか一項に記載の冷却制御装置。 When the deviation between the target heat release amount and the amount of heat acquired by the heat amount acquisition unit falls below a predetermined threshold value, a control is performed to reduce the deviation by feedback control while executing feedforward control. Item 4. The cooling control device according to any one of Items 1 to 3.
  5.  前記内燃機関の温度を管理する目標応答時間が設定されると共に、前記開度設定部は、前記目標応答時間に基づいて前記流量制御バルブの目標開度を設定する請求項1~4のいずれか一項に記載の冷却制御装置。 5. The target response time for managing the temperature of the internal combustion engine is set, and the opening setting unit sets the target opening of the flow control valve based on the target response time. The cooling control device according to one item.
PCT/JP2016/076811 2015-09-30 2016-09-12 Cooling control device WO2017056944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680050116.3A CN107923303A (en) 2015-09-30 2016-09-12 Cooling controller
US15/756,644 US20180252147A1 (en) 2015-09-30 2016-09-12 Cooling control device
EP16851118.6A EP3358163B1 (en) 2015-09-30 2016-09-12 Cooling control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194810A JP6488970B2 (en) 2015-09-30 2015-09-30 Cooling control device
JP2015-194810 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017056944A1 true WO2017056944A1 (en) 2017-04-06

Family

ID=58423616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076811 WO2017056944A1 (en) 2015-09-30 2016-09-12 Cooling control device

Country Status (5)

Country Link
US (1) US20180252147A1 (en)
EP (1) EP3358163B1 (en)
JP (1) JP6488970B2 (en)
CN (1) CN107923303A (en)
WO (1) WO2017056944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278172A (en) * 2017-12-21 2018-07-13 重庆长安汽车股份有限公司 A kind of car engine cooling system and cooling means

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112576361B (en) * 2019-09-30 2022-10-04 广州汽车集团股份有限公司 Rapid warming method and rapid warming device based on temperature control module
CN112177755A (en) * 2020-09-30 2021-01-05 东风汽车集团有限公司 Gasoline engine double-ball thermal management optimization method capable of controlling EGR cooling flow
CN113738493B (en) * 2021-10-09 2022-11-04 中国第一汽车股份有限公司 Method and device for controlling water temperature of engine, vehicle controller and medium
CN115234355B (en) * 2022-08-02 2023-10-20 广州汽车集团股份有限公司 Water temperature control method and water temperature control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108960A (en) * 1996-06-27 1998-01-13 Mitsubishi Motors Corp Cooling fan device for vehicle
JP2003239742A (en) * 2002-02-13 2003-08-27 Toyota Motor Corp Cooling device for internal combustion engine
US20060288967A1 (en) * 2005-03-22 2006-12-28 Steven Joyce Method of engine cooling
JP2012102639A (en) * 2010-11-09 2012-05-31 Daihatsu Motor Co Ltd Engine cooling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112330A (en) * 2004-10-15 2006-04-27 Aisan Ind Co Ltd Engine cooling system
US7267086B2 (en) * 2005-02-23 2007-09-11 Emp Advanced Development, Llc Thermal management system and method for a heat producing system
JP5045847B2 (en) * 2009-04-16 2012-10-10 トヨタ自動車株式会社 Control device for internal combustion engine
JP5121899B2 (en) * 2010-08-27 2013-01-16 三菱電機株式会社 Electric water pump control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108960A (en) * 1996-06-27 1998-01-13 Mitsubishi Motors Corp Cooling fan device for vehicle
JP2003239742A (en) * 2002-02-13 2003-08-27 Toyota Motor Corp Cooling device for internal combustion engine
US20060288967A1 (en) * 2005-03-22 2006-12-28 Steven Joyce Method of engine cooling
JP2012102639A (en) * 2010-11-09 2012-05-31 Daihatsu Motor Co Ltd Engine cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278172A (en) * 2017-12-21 2018-07-13 重庆长安汽车股份有限公司 A kind of car engine cooling system and cooling means

Also Published As

Publication number Publication date
US20180252147A1 (en) 2018-09-06
JP2017067018A (en) 2017-04-06
EP3358163B1 (en) 2019-08-14
EP3358163A1 (en) 2018-08-08
JP6488970B2 (en) 2019-03-27
EP3358163A4 (en) 2018-08-08
CN107923303A (en) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017056944A1 (en) Cooling control device
JP5945306B2 (en) Thermal management system for vehicles
CN104420970B (en) Device for controlling a coolant pump of a vehicle
JP6378055B2 (en) Cooling control device for internal combustion engine
EP3150822A1 (en) Cooling control device
US20180252144A1 (en) Cooling control device
JP2017002787A (en) Vehicular heat exchange device
US11905875B2 (en) Vehicle heat exchange system
CN107939546B (en) Method of flowing coolant through exhaust heat recovery system after engine shutdown
US11287783B2 (en) Thermal management system and method for a vehicle
JP2014156849A (en) Control device of internal combustion engine
JP5121899B2 (en) Electric water pump control device
JP6557271B2 (en) Cooling device for internal combustion engine
CN109306896B (en) Combining flow requests to control coolant fluid in a cooling system of an internal combustion engine
JP6375599B2 (en) Engine cooling system
CN106640328B (en) Coolant temperature corrective system and method
US20190032539A1 (en) Controlling the flow of a coolant fluid through a cooling system of an internal combustion engine
JP2017067014A (en) Cooling control device
JP6394476B2 (en) Cooling device for internal combustion engine
JP2017133456A (en) Oil supply device
JP2017128293A (en) Cooling system
JP2016210298A (en) Cooling device of internal combustion engine
Junnuri et al. Engine coolant temperature modeling for control and diagnostics
JP2010209818A (en) Cooling device for internal combustion engine
JP2017067017A (en) Cooling control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756644

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE