JP6311098B2 - Method for reducing acid value and removing free fatty acids of edible oil using bentonite - Google Patents

Method for reducing acid value and removing free fatty acids of edible oil using bentonite Download PDF

Info

Publication number
JP6311098B2
JP6311098B2 JP2013215704A JP2013215704A JP6311098B2 JP 6311098 B2 JP6311098 B2 JP 6311098B2 JP 2013215704 A JP2013215704 A JP 2013215704A JP 2013215704 A JP2013215704 A JP 2013215704A JP 6311098 B2 JP6311098 B2 JP 6311098B2
Authority
JP
Japan
Prior art keywords
acid value
edible oil
bentonite
oil
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013215704A
Other languages
Japanese (ja)
Other versions
JP2015077092A (en
Inventor
鈴木 崇
崇 鈴木
紘樹 恩田
紘樹 恩田
秀和 小松
秀和 小松
慎 皆瀬
慎 皆瀬
崇之 早川
崇之 早川
充 大矢
充 大矢
藤田 健一
健一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma Prefecture
Original Assignee
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma Prefecture filed Critical Gunma Prefecture
Priority to JP2013215704A priority Critical patent/JP6311098B2/en
Publication of JP2015077092A publication Critical patent/JP2015077092A/en
Application granted granted Critical
Publication of JP6311098B2 publication Critical patent/JP6311098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Description

本発明は、食用油の酸価低減方法に関する。より具体的には、てんぷら、惣菜、即席麺、油菓子等の製造に供した後の食用油に含まれる遊離脂肪酸を、ベントナイトを用いて中和および除去する技術に関する。 The present invention relates to a method for reducing the acid value of an edible oil. More specifically, the present invention relates to a technique for neutralizing and removing free fatty acids contained in edible oil after being used for the production of tempura, sugar beet, instant noodles, oil confectionery, etc. using bentonite.

(廃食用油とバイオマスエネルギー利用について)
近年、実質的に二酸化炭素の増加を伴わないカーボンニュートラルなバイオマス由来エネルギー源が注目されている。しかし、その多くはエネルギー密度が必ずしも高くないこと、エネルギー消費地域とバイオマス生産地が離れていること、既に普及している石油系燃料を利用したエンジンや燃焼器などのエネルギー利用機器に適合させるのが困難であること、食糧供給目的の農作物生産とエネルギー生産目的の農作物生産とが競合する場合がある等の課題があり、普及が進みにくいのが現状である。
(About waste cooking oil and biomass energy use)
In recent years, carbon-neutral biomass-derived energy sources that do not substantially increase carbon dioxide have attracted attention. However, many of them are not necessarily high in energy density, are separated from energy consumption areas and biomass production areas, and are adapted to energy-using equipment such as engines and combustors that already use petroleum-based fuels. However, the current situation is that it is difficult to disseminate due to problems such as difficulty in the production of agricultural products for the purpose of supplying food and production of agricultural products for the purpose of energy production.

一方、廃食用油の多くは液状で高カロリーを示すためエネルギー密度が高く、エネルギーの利用需要が高い人口集中地域において多く得られることから、比較的利用しやすいバイオマス由来エネルギー源である。この廃食用油とメタノールとをエステル交換反応させることで得られる軽油留分に似た炭素数の脂肪酸メチルエステル(バイオディーゼル燃料)は、軽油と任意組成で均一に混合できることもあり、各地方において塵芥車、路線バス等のディーゼル車燃料として利用されている。 On the other hand, many waste edible oils are liquid and high in calories, so they have high energy density and are often obtained in population-intensive areas where energy use demand is high. Fatty acid methyl ester (biodiesel fuel) with a carbon number similar to the light oil fraction obtained by transesterification of this waste edible oil and methanol may be uniformly mixed with light oil in any composition. It is used as fuel for diesel vehicles such as garbage trucks and route buses.

食用油は、食品製造工程において水分共存下で加熱調理されると、加水分解によって遊離脂肪酸が生成する。バイオディーゼル燃料の多くは水酸化ナトリウム、水酸化カリウムなどの強塩基を反応促進剤として利用するが、遊離脂肪酸量が多い場合には、エステル交換反応の効率が低下するほか、化学式1に示すように遊離脂肪酸と強塩基による中和反応が進行し、バイオディーゼル燃料の品質が低下する懸念がある。また、中和されずに残留した脂肪酸がバイオディーゼル燃料に混入した場合には、燃料配管などに腐食などの不具合を起こす可能性も考えられる。このような理由から、バイオディーゼル燃料の原料となる食用油の酸価の上限値は5mg KOH/gに制限されている。 When cooking oil is cooked in the presence of moisture in the food production process, free fatty acids are produced by hydrolysis. Many biodiesel fuels use strong bases such as sodium hydroxide and potassium hydroxide as reaction accelerators. However, when the amount of free fatty acids is large, the transesterification reaction efficiency decreases, as shown in Chemical Formula 1. In addition, there is a concern that the neutralization reaction with free fatty acid and strong base proceeds and the quality of biodiesel fuel is degraded. In addition, when the fatty acid remaining without being neutralized is mixed into the biodiesel fuel, there is a possibility of causing problems such as corrosion in the fuel piping. For these reasons, the upper limit of the acid value of edible oil that is a raw material for biodiesel fuel is limited to 5 mg KOH / g.

以上のことから、酸価の高い食用油がバイオディーゼル燃料の製造に使用することができれば、再利用可能な食用油量が増加し、収集コストや燃料製造コストが低減されるため、環境負荷の低い低炭素社会に適する燃料の普及が促進される。 From the above, if edible oil with a high acid value can be used for the production of biodiesel fuel, the amount of edible oil that can be reused will increase, and the collection cost and fuel production cost will be reduced. The spread of fuel suitable for a low-carbon society is promoted.

(食用油の酸価上昇抑制技術の現状について)
これまでの食用油の酸価上昇抑制技術としては、例えば酸化マグネシウム(特許文献1)を酸価の高い食用油に添加し、酸価を低減させるというものがある。
(Regarding the current state of acid value rise suppression technology for cooking oil)
As a conventional technique for suppressing an increase in acid value of edible oil, for example, magnesium oxide (Patent Document 1) is added to an edible oil having a high acid value to reduce the acid value.

しかしながら、酸化マグネシウムを酸価の高い食用油に添加した場合、遊離脂肪酸との中和反応によって石鹸成分が生成するという課題がある。このことから、バイオディーゼル燃料製造のように大量の廃食用油に関し、石鹸成分などの副生成物を伴わず、分離が容易であり、かつ、効果的な酸価低減技術は見当たらない現状がある。 However, when magnesium oxide is added to an edible oil having a high acid value, there is a problem that a soap component is generated by a neutralization reaction with free fatty acids. For this reason, there is a current situation in which a large amount of waste edible oil, such as biodiesel fuel production, does not involve by-products such as soap components, is easy to separate, and no effective acid value reduction technology is found. .

特開2001-335793号JP 2001-335793 A

(課題解決に向けた本発明の目的と本発明で解決しようとする具体的な技術課題)
そこで、処理方法が簡便で、高い酸価低減効果があり、かつ石鹸成分の生成を抑制する技術の確立を目的として鋭意研究開発に取り組んだ結果、本発明者らは、粘土鉱物の層間に4級アンモニウム塩がインターカレートされた構造を有する有機ベントナイトを酸価の高い食用油中に添加、分散させることにより、食用油に含有される遊離脂肪酸量そのものを減少させる新しい酸価低減技術を見出した。また、層間にナトリウムやカルシウムがインターカレートされた水系ベントナイトに関しては食用油中に水系ベントナイトと共に両親媒性溶媒を添加することにより、食用油の酸価を低減できる技術を確立し、発明を完成するに至った。
(Objective of the present invention for solving the problem and specific technical problem to be solved by the present invention)
Therefore, as a result of earnest research and development for the purpose of establishing a technique with a simple treatment method, a high acid value reduction effect, and a suppression of the formation of soap components, the present inventors have developed 4 layers between clay mineral layers. We have discovered a new acid value reduction technology that reduces the amount of free fatty acids contained in edible oils by adding and dispersing organic bentonite with a structure intercalated with quaternary ammonium salts in edible oils with high acid values. It was. In addition, for water-based bentonite with intercalated sodium and calcium between layers, we established a technology that can reduce the acid value of edible oil by adding an amphiphilic solvent together with water-based bentonite into the edible oil, and completed the invention. It came to do.

また、本発明による酸価低減処理方法によれば、廃食用油にベントナイトを添加、分散させる工程に次いでろ過または遠心処理等の工程を経るという簡単な工程でベントナイト、食用油および両親媒性溶媒を分離できる。 In addition, according to the acid value reduction treatment method of the present invention, bentonite, edible oil, and amphiphilic solvent can be obtained by a simple process of adding or dispersing bentonite to waste edible oil followed by a process such as filtration or centrifugation. Can be separated.

すなわち本発明は、(1)酸価が10mgKOH/g以下の食用油100重量部に対して4級アンモニウム塩がインターカレートされた有機ベントナイトを0.1〜50重量部添加することにより該食用油の酸価を5mgKOH/g以下にせしめることを特徴とする酸価低減処理方法であり、(2)食用油に対して添加する有機ベントナイトがベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルジメチルドデシルアンモニウム、ベンジルジメチルオクタデシルアンモニウム、ベンサルコニウムなどのベンジルトリアルキルアンモニウムイオンやトリメチルオクチルアンモニウム、トリメチルドデシルアンモニウム、トリメチルオクタデシルアンモニウム、ジメチルジオクチルアンモニウム、ジメチルジドデシルアンモニウム、ジメチルジオクタデシルアンモニウム、トリオクチルメチルアンモニウム、トリドデシルメチルアンモニウム、トリメチルステアリルアンモニウムからなる群のうち、いずれか1種類以上がインターカレートされた有機ベントナイトであることを特徴とする(1)に記載の酸価低減処理方法であり、(3)酸価が10mgKOH/g以下の食用油100重量部に対して添加する有機ベントナイトの添加量を1〜20重量部とすることを特徴とする(1)乃至(2)に記載の酸価低減処理方法であり、(4)酸価が10mgKOH/g以下の食用油100重量部に対して添加する有機ベントナイトの添加量を8〜12重量部とすることを特徴とする(1)乃至(2)に記載の酸価低減処理方法であることを特徴とするものである。 That is, the present invention provides: (1) 0.1 to 50 parts by weight of organic bentonite intercalated with a quaternary ammonium salt is added to 100 parts by weight of an edible oil having an acid value of 10 mgKOH / g or less. It is an acid value reduction treatment method characterized by setting the acid value to 5 mgKOH / g or less. (2) Organic bentonite added to edible oil is benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, benzyldimethyldodecyl Benzyltrialkylammonium ions such as ammonium, benzyldimethyloctadecylammonium, benzalkonium, trimethyloctylammonium, trimethyldodecylammonium, trimethyloctadecylammonium, dimethyldioctylammonium, dimethyldidodecylammonium (1) characterized in that any one or more of the group consisting of monium, dimethyldioctadecylammonium, trioctylmethylammonium, tridodecylmethylammonium, and trimethylstearylammonium are intercalated organic bentonites. (3) The addition amount of organic bentonite added to 100 parts by weight of edible oil having an acid value of 10 mgKOH / g or less is 1 to 20 parts by weight ( 1) to the acid value reduction treatment method according to (2), and (4) the amount of organic bentonite added to 100 parts by weight of edible oil having an acid value of 10 mg KOH / g or less is 8 to 12 parts by weight. (1) It is characterized by being the acid value reduction processing method as described in (2) characterized by the above-mentioned.

ベントナイトおよび必要に応じて両親媒性溶媒を、酸価の高い食用油に添加することにより、食用油中に含有されている遊離脂肪酸がベントナイトによって除去され、その結果、食用油の酸価が低減する。また、従来の酸価上昇抑制剤とは異なり、処理の過程で石鹸成分が生成しにくい。さらに、食用油中に含まれるベントナイトは、ろ過や遠心処理等によって容易に分離・除去することができる。 By adding bentonite and, if necessary, an amphiphilic solvent to edible oils with a high acid value, the free fatty acids contained in the edible oil are removed by bentonite, resulting in a reduction in the acid value of the edible oil. To do. Also, unlike conventional acid value increase inhibitors, soap components are less likely to be produced during the process. Furthermore, bentonite contained in edible oil can be easily separated and removed by filtration, centrifugation, or the like.

本発明における好適な実施の形態について説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。 A preferred embodiment of the present invention will be described. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.

(食用油の種類)
本発明にかかる食用油の種類は、特に限定されず、一般に入手できる食用油を用いることができる。より具体的には、キャノーラ油、大豆油、パーム油、パーム核油、ひまわり油、米油、ゴマ油、トウモロコシ油、ココナッツ油、サフラワー油、紅花油、ピーナッツ油、綿実油、アマニ油、マスタード油などの植物性油脂類、牛脂、豚脂、鯨油、魚油などの動物性油脂類が挙げられる。これら単独でも、2種以上の混合物でも好ましく用いることができる。特に植物性油脂が好ましく、その中でも不飽和脂肪酸のトリグリセリドからなる植物性油脂がより好ましい。この理由はバイオディーゼル燃料の製造を考えた場合、常温で固体である油脂は、ベントナイトによる酸価低減処理を行う際には加熱処理等によって液化させる必要があること、およびバイオディーゼル燃料の低温流動性を確保する観点によるものである。
(Type of cooking oil)
The kind of edible oil according to the present invention is not particularly limited, and generally available edible oil can be used. More specifically, canola oil, soybean oil, palm oil, palm kernel oil, sunflower oil, rice oil, sesame oil, corn oil, coconut oil, safflower oil, safflower oil, peanut oil, cottonseed oil, linseed oil, mustard oil And vegetable oils such as beef tallow, pork tallow, whale oil, fish oil and the like. These may be used alone or in a mixture of two or more. Vegetable oils and fats are particularly preferable, and among these, vegetable oils and fats composed of triglycerides of unsaturated fatty acids are more preferable. The reason for this is that when considering the production of biodiesel fuel, the fat that is solid at room temperature must be liquefied by heat treatment etc. when performing acid number reduction treatment with bentonite, and the low temperature flow of biodiesel fuel This is based on the viewpoint of securing the property.

(バイオディーゼル油を製造するための好ましい食用油について)
本発明の主目的であるバイオディーゼル燃料の原料油としては、上述の観点からキャノーラ油、大豆油、ひまわり油、米油、ゴマ油、トウモロコシ油、ココナッツ油、サフラワー油、紅花油、ピーナッツ油、綿実油、アマニ油、マスタード油などの植物性油脂類が最も好ましい。これらの植物油は単独でも、多種類の混合物でも好ましく用いることが出来る。なお、バイオディーゼル燃料に低温流動性向上剤などを併用する場合には、パーム油などの植物性の飽和脂肪酸グリセリドが一部混入していても好ましく用いることが出来る。
(Preferred edible oil for producing biodiesel oil)
As a raw material oil of biodiesel fuel which is the main object of the present invention, canola oil, soybean oil, sunflower oil, rice oil, sesame oil, corn oil, coconut oil, safflower oil, safflower oil, peanut oil, Most preferred are vegetable oils such as cottonseed oil, linseed oil and mustard oil. These vegetable oils can be used preferably alone or in various kinds of mixtures. In addition, when using a low temperature fluidity improver etc. together with biodiesel fuel, even if vegetable saturated fatty acid glycerides, such as palm oil, are partially mixed, it can use preferably.

(バイオディーゼル燃料原料として好ましい食用油の酸価)
本発明にかかる食用油の酸価は10mg KOH/g以下が好ましく、8mg KOH/g以下がより好ましく、7mg KOH/g以下が最も好ましい。食用油の酸価は10mg KOH/g以上では、ベントナイトの添加量が著しく増加し、発明の実用的な意義が希薄になる傾向があるためである。
(Acid value of edible oil preferred as biodiesel fuel raw material)
The acid value of the edible oil according to the present invention is preferably 10 mg KOH / g or less, more preferably 8 mg KOH / g or less, and most preferably 7 mg KOH / g or less. This is because when the acid value of the edible oil is 10 mg KOH / g or more, the amount of bentonite added increases remarkably, and the practical significance of the invention tends to be dilute.

(食用油に対するベントナイトの添加割合)
食用油に対するベントナイトの添加割合は、食用油100重量部に対してベントナイトを0.1〜50重量部となるように添加よることが望まく、1〜20重量部となるように添加よることがより望まく、8〜12重量部となるように添加よることが最も好ましい。これは、0.1重量部未満の場合には、本発明による酸価低減処理方法では、食用油の酸価低減効果がほとんど確認できず、また、50重量部以上では、本発明による酸価低減処理後に食用油を回収するのが困難になり、発明の実用的な意義が希薄になるためである。
(Addition ratio of bentonite to cooking oil)
The ratio of bentonite to edible oil is desirably 0.1 to 50 parts by weight of bentonite with respect to 100 parts by weight of edible oil, and more preferably 1 to 20 parts by weight. It is most preferable to add 8 to 12 parts by weight. This is because when the amount is less than 0.1 parts by weight, the acid value reduction treatment method according to the present invention hardly confirms the acid value reduction effect of the edible oil. This is because it becomes difficult to recover the edible oil later, and the practical significance of the invention is diminished.

(ベントナイトの種類)
本発明にかかるベントナイトとして、層間にカルシウム、ナトリウムからなる群のうち、いずれか1種類以上がインターカレートされた水系ベントナイトおよび、層間にベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルジメチルドデシルアンモニウム、ベンジルジメチルオクタデシルアンモニウム、ベンサルコニウムなどのベンジルトリアルキルアンモニウムイオンやトリメチルオクチルアンモニウム、トリメチルドデシルアンモニウム、トリメチルオクタデシルアンモニウム、ジメチルジオクチルアンモニウム、ジメチルジドデシルアンモニウム、ジメチルジオクタデシルアンモニウム、トリオクチルメチルアンモニウム、トリドデシルメチルアンモニウム、トリメチルステアリルアンモニウムからなる群のうち、いずれか1種類以上がインターカレートされた有機ベントナイトが好ましい。また、これらの中で、食用油の脂肪酸部位と構造が類似するジメチルオクタデシルアンモニウム、ジメチルオクタデシルアンモニウム、トリメチルステアリルアンモニウム、ジメチルステアリルベンジルアンモニウムが層間にインターカレートされた有機ベントナイトは特に酸価低減効果が高く、より好ましい。
(Bentonite type)
As the bentonite according to the present invention, an aqueous bentonite in which at least one of the group consisting of calcium and sodium is intercalated between layers, and benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, benzyldimethyldodecyl between layers are intercalated. Benzyltrialkylammonium ions such as ammonium, benzyldimethyloctadecylammonium, benzalkonium, trimethyloctylammonium, trimethyldodecylammonium, trimethyloctadecylammonium, dimethyldioctylammonium, dimethyldidodecylammonium, dimethyldioctadecylammonium, trioctylmethylammonium, tri Dodecylmethylammonium, trimethyls Of the group consisting of allyl ammonium, organic bentonite is preferably one or more one has been intercalated. Among these, organic bentonite in which dimethyloctadecylammonium, dimethyloctadecylammonium, trimethylstearylammonium, and dimethylstearylbenzylammonium whose structure is similar to the fatty acid part of the edible oil is intercalated between the layers is particularly effective in reducing the acid value. Higher and more preferable.

(ベントナイトの含有率)
食用油にベントナイトを添加する際、ベントナイト以外の成分が含まれていても良いが、ベントナイトを97重量%以上、特に99重量%含むことが好ましい。これにより、ベントナイトのもつ酸価低減効果をより効果的に発揮させることができる。ベントナイト以外の成分としては、例えば公知の廃食用油再生剤として使用されている化合物が含有されていても良い。例えば、二酸化ケイ素、酸化マグネシウムおよび水酸化マグネシウムの少なくとも1種以上を含んでいても良い。
(Bentonite content)
When bentonite is added to the edible oil, components other than bentonite may be contained, but it is preferable to contain bentonite in an amount of 97% by weight or more, particularly 99% by weight. Thereby, the acid value reduction effect which bentonite has can be exhibited more effectively. As a component other than bentonite, for example, a compound used as a known waste edible oil regenerator may be contained. For example, it may contain at least one of silicon dioxide, magnesium oxide, and magnesium hydroxide.

(有機ベントナイトを用いた酸価の低減方法)
有機ベントナイトを用いた酸価の低減方法は、以下に記載するように所定量の有機ベントナイトを、酸価を低減させようとする食用油に撹拌しながら添加し、所定時間撹拌し続けることによってスラリーを形成する工程と、これについて公知の分離方法によりベントナイト分と食用油分を分離する分離工程からなる。
(Method of reducing acid value using organic bentonite)
The method for reducing the acid value using organic bentonite is a slurry by adding a predetermined amount of organic bentonite to edible oil whose acid value is to be reduced while stirring and stirring for a predetermined time as described below. And a separation step of separating the bentonite component and the edible oil component by a known separation method.

(有機ベントナイトスラリー生成工程)
所定量秤量した有機ベントナイトを、酸価を低減させようとする食用油を攪拌機により十分に撹拌しながら、温度5℃以上60℃以下の温度条件下で添加する。この時に好適な温度範囲は10℃以上50℃以下が好ましく、15℃以上45℃以下がより好ましく、20℃以上30℃以下が最も好ましい。これは、5℃以下ではスラリーの流動性が著しく低いため、十分な撹拌ができなくなり、一方、60℃以上の温度では加熱にかかるコストが増大し、発明の実用的な意義が希薄になるためである。添加後、5分以上90分以下、より好ましくは20分以上80分以下、より好ましくは40分以上70分以下の間撹拌し続けスラリー状液体を得る。この時、撹拌時間が5分より短い場合には、十分な酸価低減効果が得られず、また、90分より長い時間撹拌しても有機ベントナイトの酸価低減効果に違いは見られないためである。
(Organic bentonite slurry production process)
A predetermined amount of organic bentonite is added under a temperature condition of 5 ° C. or more and 60 ° C. or less while sufficiently stirring the edible oil for reducing the acid value with a stirrer. A suitable temperature range at this time is preferably 10 ° C. or more and 50 ° C. or less, more preferably 15 ° C. or more and 45 ° C. or less, and most preferably 20 ° C. or more and 30 ° C. or less. This is because the fluidity of the slurry is remarkably low at 5 ° C. or lower, so that sufficient stirring cannot be performed. On the other hand, at a temperature of 60 ° C. or higher, the heating cost increases, and the practical significance of the invention becomes dilute. It is. After the addition, stirring is continued for 5 minutes to 90 minutes, more preferably 20 minutes to 80 minutes, more preferably 40 minutes to 70 minutes to obtain a slurry liquid. At this time, if the stirring time is shorter than 5 minutes, a sufficient acid value reducing effect cannot be obtained, and even if the stirring time is longer than 90 minutes, there is no difference in the acid value reducing effect of organic bentonite. It is.

酸価を押し上げる原因となる油中の遊離脂肪酸はこのスラリー生成工程で、有機ベントナイトへの吸着もしくは有機ベントナイト層間にインターカレートされることにより除去されるため、本発明の中でも最も重要な工程である。スラリーの分散、遊離脂肪酸の除去を効率的に進めるために上記温度範囲および回転持続時間が好適である。 The free fatty acid in the oil that causes the acid value to be pushed up is removed by adsorption to the organic bentonite or intercalation between the organic bentonite layers in this slurry generation step, so it is the most important step in the present invention. is there. The above temperature range and rotation duration are preferred in order to efficiently disperse the slurry and remove free fatty acids.

(有機ベントナイトと食用油分の分離工程)
スラリー生成工程に続いて食用油分分離工程を経る。この工程はスラリー状の液体を濾過、吸引濾過、遠心分離などの公知分離方法によりベントナイト分と食用油分に分離する工程で、分離された食用油の酸価を5mgKOH/g以下に低減できる。分離方法は公知分離方法を好ましく使用することができるが、吸引濾過法、遠心分離法がより好ましく、遠心分離法がさらに好ましい。
(Separation process of organic bentonite and cooking oil)
The edible oil separation step is followed by the slurry generation step. This step is a step of separating the slurry-like liquid into bentonite and edible oil by a known separation method such as filtration, suction filtration, and centrifugation, and the acid value of the separated edible oil can be reduced to 5 mgKOH / g or less. A known separation method can be preferably used as the separation method, but a suction filtration method and a centrifugal method are more preferable, and a centrifugal method is more preferable.

(品質管理について)
スラリー生成工程と食用油分分離工程を経て得られた食用油中のオレイン酸、ステアリン酸、リノール酸等の遊離脂肪酸は、赤外吸収スペクトルにより簡易的に定量分析できる。所定量の油をマイクロピペットで採取し、四塩化炭素(CCl4)で10倍以上500倍以下、好ましくは50倍以上250倍以下、より好ましくは80倍以上120倍以下に希釈する。この溶液について、装置の性能にも依存するが、フーリエ変換赤外吸収装置で4回以上256回以下の回数、より好ましくは8回以上128回以下の回数、より好ましくは16回以上64回以下の回数で積算して得られた波数1650cm-1〜1800cm-1の間にみられる遊離脂肪酸に帰属されるピークと試料中のトリグリセリドに帰属されるピーク強度を予め作成した検量線に照合することで簡易的に定量分析できる。
(About quality control)
Free fatty acids such as oleic acid, stearic acid, and linoleic acid in the edible oil obtained through the slurry generation step and the edible oil separation step can be easily quantitatively analyzed by an infrared absorption spectrum. A predetermined amount of oil is collected with a micropipette and diluted with carbon tetrachloride (CCl 4 ) 10 times to 500 times, preferably 50 times to 250 times, more preferably 80 times to 120 times. For this solution, depending on the performance of the apparatus, the Fourier transform infrared absorption apparatus 4 to 256 times, more preferably 8 to 128 times, more preferably 16 to 64 times collating peak intensity assigned to the triglyceride peaks and the sample attributed to free fatty acids found in previously prepared calibration line between the integrated number of times of the obtained wavenumber 1650cm -1 ~1800cm -1 Quantitative analysis can be performed easily.

(水系ベントナイトと両親媒性溶媒を用いた食用油の酸価低減方法)
水系ベントナイトを用いた酸価の低減方法は、以下に記載するように所定量の水系ベントナイトおよび両親媒性溶媒を、酸価を低減させようとする食用油に撹拌しながら加え、所定時間撹拌し続けることによるスラリーを生む工程とこれについて公知の分離方法によりベントナイト分、食用油分、および両親媒性溶媒分を分離する分離工程からなる。
(Method for reducing acid value of edible oil using water-based bentonite and amphiphilic solvent)
The method for reducing the acid value using aqueous bentonite is to add a predetermined amount of aqueous bentonite and an amphiphilic solvent to the edible oil whose acid value is to be reduced while stirring for a predetermined time as described below. It comprises a step of producing a slurry by continuing and a separation step of separating the bentonite component, the edible oil component, and the amphiphilic solvent component by a known separation method.

(両親媒性溶媒の種類)
食用油に水系ベントナイトと共に両親媒性溶媒を添加する場合には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノールといったアルコール類を単独または2種類以上を含むものが好ましく、親水性が他のアルコール類よりも大きいメタノールおよびエタノールがより好ましく、さらに、メタノールが最も好ましい。
(Type of amphiphilic solvent)
When adding an amphiphilic solvent together with aqueous bentonite to edible oil, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2 Those containing alcohols such as -propanol alone or containing two or more types are preferred, methanol and ethanol having a higher hydrophilicity than other alcohols are more preferred, and methanol is most preferred.

(食用油に対する両親媒性溶媒の添加割合)
食用油に水系ベントナイトと共に両親媒性溶媒を添加する割合は、食用油100体積部に対して、両親媒性溶媒を150体積部以下の割合で添加することが望ましく、30体積部〜120体積部の割合で添加することがより好ましく、50体積部〜100体積部の割合で添加することが最も好ましい。これは、両親媒性溶媒の添加割合が150体積部よりも多い場合には両親媒性溶媒と食用油との分離が困難になるためである。
(Addition ratio of amphiphilic solvent to cooking oil)
The ratio of adding the amphiphilic solvent together with the aqueous bentonite to the edible oil is preferably 100 parts by volume of the edible oil, and the amphiphilic solvent is preferably added at a ratio of 150 parts by volume or less, 30 parts by volume to 120 parts by volume. It is more preferable to add at a ratio of 50 parts by volume, and it is most preferable to add at a ratio of 50 to 100 parts by volume. This is because it becomes difficult to separate the amphiphilic solvent from the edible oil when the addition ratio of the amphiphilic solvent is more than 150 parts by volume.

(水系ベントナイトスラリー生成工程)
所定量秤量した水系ベントナイトおよび請求項5に記載した両親媒性溶媒を、酸価を低減させようとする食用油を攪拌機により十分に撹拌しながら、温度5℃以上60℃以下の温度条件下で添加する。この時に好適な温度範囲は10℃以上50℃以下が好ましく、15℃以上45℃以下がより好ましく、20℃以上30℃以下が最も好ましい。これは、5℃以下ではスラリーの流動性が著しく低いため、十分な撹拌ができなくなり、一方、60℃以上の温度では加熱にかかるコストが増大し、発明の実用的な意義が希薄になるためである。添加後、5分以上90分以下、より好ましくは20分以上80分以下、より好ましくは40分以上70分以下の間撹拌し続けスラリー状液体を得る。この時、撹拌時間が5分より短い場合には、十分な酸価低減効果が得られず、また、90分より長い時間撹拌しても水系ベントナイトおよび両親媒性溶媒による酸価低減効果に違いは見られないためである。
(Water-based bentonite slurry production process)
The water-based bentonite weighed in a predetermined amount and the amphiphilic solvent according to claim 5 are sufficiently stirred at a temperature of 5 ° C. to 60 ° C. while sufficiently stirring the edible oil for reducing the acid value with a stirrer. Added. A suitable temperature range at this time is preferably 10 ° C. or more and 50 ° C. or less, more preferably 15 ° C. or more and 45 ° C. or less, and most preferably 20 ° C. or more and 30 ° C. or less. This is because the fluidity of the slurry is remarkably low at 5 ° C. or lower, so that sufficient stirring cannot be performed. On the other hand, at a temperature of 60 ° C. or higher, the heating cost increases, and the practical significance of the invention becomes dilute. It is. After the addition, stirring is continued for 5 minutes to 90 minutes, more preferably 20 minutes to 80 minutes, more preferably 40 minutes to 70 minutes to obtain a slurry liquid. At this time, if the stirring time is shorter than 5 minutes, a sufficient acid value reduction effect cannot be obtained, and even if the stirring time is longer than 90 minutes, there is a difference in the acid value reduction effect by the aqueous bentonite and the amphiphilic solvent. Is not seen.

(水系ベントナイト、食用油分および両親媒性溶媒分の分離工程)
スラリー生成工程に続いて水系ベントナイト、食用油分および両親媒性溶媒分の分離工程を経る。この工程はスラリー状の液体を濾過、吸引濾過、遠心分離などの公知分離方法により水系ベントナイト分、食用油分および両親媒性溶媒分に分離する工程で、分離された食用油の酸価を5mgKOH/g以下に低減できる。分離方法は公知分離方法を好ましく使用することができるが、吸引濾過法、遠心分離法がより好ましく、遠心分離法が最も好ましい。
(Separation process of water-based bentonite, edible oil and amphiphilic solvent)
Subsequent to the slurry generation step, a water-based bentonite, an edible oil component and an amphiphilic solvent component are separated. In this process, the slurry liquid is separated into water-based bentonite, edible oil, and amphiphilic solvent by a known separation method such as filtration, suction filtration, and centrifugation. The acid value of the separated edible oil is 5 mgKOH. / g or less. A known separation method can be preferably used as the separation method, but a suction filtration method and a centrifugal method are more preferable, and a centrifugal method is most preferable.

以下に、詳細な実施例を開示する。これは本発明の主旨を正確に示すことを目的とするものであり、本発明を限定的に捉えることがあってはならない。 Detailed examples are disclosed below. This is for the purpose of accurately showing the gist of the present invention, and the present invention should not be limited.

(酸価低減性能の評価)
キャノーラ油(理研農産)に代表的な遊離脂肪酸の一つであるオレイン酸(CH3(CH2)7CH=CH(CH2)7COOH、和光純薬、試薬1級)を混合し、酸価を5.2mg KOH/gとしたもの(以下、模擬廃食用油)25mlに寸法25mm×φ8mmの撹拌子を入れ、マグネチックスターラーを用いて回転数500rpmで撹拌しながら、層間にジメチルオクタデシルアンモニウムが総重量に対して41.8%の割合でインターカレートされた有機ベントナイト(以下、有機ベントナイト1)2.5gを25℃の温度条件下にて添加した。同撹拌回転数で60分間撹拌を持続した後、容量50mlのコニカルチューブ(BD Falcon)に入れ、遠心分離機を用いて3500rpmの回転速度で30分間遠心処理し、その上清5gを精密に量りとった。その後、エタノール/ジエチルエーテル混合液(容積比1:1)100mlとフェノールフタレイン液数滴を加え、0.1mol/l水酸化カリウム-エタノール溶液で滴定し、数式1により酸価を求めた。
(Evaluation of acid value reduction performance)
Canola oil (RIKEN agricultural product) is mixed with oleic acid (CH 3 (CH 2 ) 7 CH = CH (CH 2 ) 7 COOH, Wako Pure Chemicals, reagent grade 1), which is one of the typical free fatty acids. Put a stirrer with dimensions of 25mm x φ8mm into 25ml with a value of 5.2mg KOH / g (hereinafter simulated waste cooking oil), and stir at 500rpm with a magnetic stirrer. 2.5 g of organic bentonite (hereinafter, organic bentonite 1) intercalated at a rate of 41.8% with respect to the total weight was added under a temperature condition of 25 ° C. Stirring is continued for 60 minutes at the same rotational speed, then placed in a 50 ml conical tube (BD Falcon), centrifuged at a rotational speed of 3500 rpm for 30 minutes using a centrifuge, and 5 g of the supernatant is accurately weighed. I took it. Thereafter, 100 ml of ethanol / diethyl ether mixed solution (volume ratio 1: 1) and several drops of phenolphthalein solution were added, titrated with 0.1 mol / l potassium hydroxide-ethanol solution, and the acid value was determined by Equation 1.

その結果、有機ベントナイト1を添加した模擬廃食用油の酸価は2.8mg KOH / g に低下した。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を充分に満たしており、有機ベントナイト1の酸価低減性能は適(酸価5.0mg KOH/g以下に低減)であった。 As a result, the acid value of the simulated waste cooking oil added with organic bentonite 1 was reduced to 2.8 mg KOH / g. Therefore, it satisfies the acid value of 5.0 mg KOH / g or less, which is the standard for raw materials used in the production of biodiesel fuel, and the acid value reduction performance of organic bentonite 1 is appropriate (acid value of 5.0 mg KOH / g or less). Reduced).

(遊離脂肪酸吸着能の評価)
次に、有機ベントナイト1による遊離脂肪酸の除去効果について検討するため、以下のような実験を行った。まず、キャノーラ油とオレイン酸を体積比4:1で混合したもの(以下、オレイン酸添加食用油)を調製した。なお、オレイン酸添加食用油調製時の遊離脂肪酸濃度は0.674mol/l であった。このオレイン酸添加食用油25mlに寸法25mm×φ8mmの撹拌子を入れ、マグネチックスターラーを用いて回転数500rpmで撹拌しながら、25℃の温度条件下で有機ベントナイト1を2.5g添加した。同撹拌回転数で60分間撹拌を持続した後、容量50mlのコニカルチューブ(BD Falcon)に入れ、遠心分離機を用いて3500rpmで30分間遠心処理し、その上清100mlを10mlの四塩化炭素(和光純薬製 試薬特級)で希釈し、分析試料とした。この試料について、フーリエ変換型赤外分光光度計(JASCO、FT-IR4100)を用いて、1650-1800cm-1の範囲でスペクトルを測定し、食用油およびオレイン酸に帰属するピークから、試料中に含まれる食用油および遊離脂肪酸量を検量線から算出した。
(Evaluation of free fatty acid adsorption capacity)
Next, in order to examine the removal effect of free fatty acid by the organic bentonite 1, the following experiment was conducted. First, a mixture of canola oil and oleic acid in a volume ratio of 4: 1 (hereinafter referred to as oleic acid-added edible oil) was prepared. The free fatty acid concentration at the time of preparation of the oleic acid-added edible oil was 0.674 mol / l. A stirrer having a size of 25 mm × φ8 mm was placed in 25 ml of this oleic acid-added edible oil, and 2.5 g of organic bentonite 1 was added under a temperature condition of 25 ° C. while stirring at a rotational speed of 500 rpm using a magnetic stirrer. Stirring is continued for 60 minutes at the same rotation speed, then placed in a 50 ml conical tube (BD Falcon), centrifuged at 3500 rpm for 30 minutes using a centrifuge, and 100 ml of the supernatant is treated with 10 ml of carbon tetrachloride ( The sample was diluted with Wako Pure Chemicals reagent grade) and used as an analysis sample. For this sample, a spectrum was measured in the range of 1650-1800 cm -1 using a Fourier transform infrared spectrophotometer (JASCO, FT-IR4100), and from the peak attributed to edible oil and oleic acid, The amount of edible oil and free fatty acid contained was calculated from a calibration curve.

その結果、有機ベントナイト1を用いて上記処理を行ったオレイン酸添加食用油中に含まれる遊離脂肪酸濃度は0.594mol/lであったことから、オレイン酸添加食用油1lにつき80mmolの遊離脂肪酸が除去されたことになる。 As a result, the concentration of free fatty acid contained in the oleic acid-added edible oil treated with organic bentonite 1 was 0.594 mol / l, so 80 mmol of free fatty acid was removed per liter of oleic acid-added edible oil. It will be done.

(酸価低減性能の評価)
添加する有機ベントナイトに層間にジメチルオクタデシルアンモニウムが総重量に対して39.3%の割合でインターカレートされたもの(以下、有機ベントナイト2)を使用した以外は、実施例1と同様の方法で酸価低減効果評価を行った。
(Evaluation of acid value reduction performance)
The acid value was determined in the same manner as in Example 1 except that the organic bentonite used was intercalated with dimethyloctadecylammonium at a ratio of 39.3% to the total weight (hereinafter referred to as organic bentonite 2). The reduction effect was evaluated.

その結果、有機ベントナイト2を添加した模擬廃食用油の酸価は3.0mg KOH / g に低下した。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を充分に満たしており、有機ベントナイト2の酸価低減性能は適であった。 As a result, the acid value of the simulated waste cooking oil to which the organic bentonite 2 was added was lowered to 3.0 mg KOH / g. Therefore, the acid value of 5.0 mg KOH / g or less, which is the standard to be provided for the raw materials used for the production of biodiesel fuel, is sufficiently satisfied, and the acid value reduction performance of the organic bentonite 2 was suitable.

(遊離脂肪酸吸着能の評価)
次に、添加する有機ベントナイトとして有機ベントナイト2を使用する以外は実施例1と同様の方法で、有機ベントナイト2の遊離脂肪酸吸着能評価を行った。
(Evaluation of free fatty acid adsorption capacity)
Next, the free fatty acid adsorption ability of the organic bentonite 2 was evaluated in the same manner as in Example 1 except that the organic bentonite 2 was used as the organic bentonite to be added.

その結果、有機ベントナイト2を用いて上記処理を行ったオレイン酸添加食用油中に含まれる遊離脂肪酸濃度は0.571mol/lであったことから、オレイン酸添加食用油1lにつき103mmolの遊離脂肪酸が除去されたことになる。 As a result, the concentration of free fatty acid contained in the oleic acid-added edible oil treated with organic bentonite 2 was 0.571 mol / l, so 103 mmol of free fatty acid was removed per liter of oleic acid-added edible oil. It will be done.

(酸価低減性能の評価)
添加する有機ベントナイトに層間にトリメチルステアリルアンモニウムが総重量に対して25.6%の割合でインターカレートされたもの(以下、有機ベントナイト3)を使用した以外は、実施例1と同様の方法で酸価低減効果評価を行った。
(Evaluation of acid value reduction performance)
The acid value was determined in the same manner as in Example 1 except that the organic bentonite to be added was an intercalated trimethylstearylammonium layer at a ratio of 25.6% with respect to the total weight (hereinafter, organic bentonite 3). The reduction effect was evaluated.

その結果、有機ベントナイト3を添加した模擬廃食用油の酸価は3.3mg KOH / g に低下した。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を充分に満たしており、有機ベントナイト3の酸価低減性能は適であった。 As a result, the acid value of the simulated waste edible oil to which the organic bentonite 3 was added decreased to 3.3 mg KOH / g. Therefore, the acid value reduction performance of the organic bentonite 3 was adequate because the raw material used for the production of biodiesel fuel sufficiently satisfied the acid value of 5.0 mg KOH / g or less.

(遊離脂肪酸吸着能の評価)
次に、添加する有機ベントナイトとして有機ベントナイト3を使用する以外は実施例1と同様の方法で、有機ベントナイト3の遊離脂肪酸吸着能評価を行った。
(Evaluation of free fatty acid adsorption capacity)
Next, the free fatty acid adsorption ability of the organic bentonite 3 was evaluated in the same manner as in Example 1 except that the organic bentonite 3 was used as the organic bentonite to be added.

その結果、有機ベントナイト3を用いて上記処理を行ったオレイン酸添加食用油中に含まれる遊離脂肪酸濃度は0.554mol/lであったことから、オレイン酸添加食用油1lにつき120mmolの遊離脂肪酸が除去されたことになる。 As a result, since the concentration of free fatty acid contained in the oleic acid-added edible oil treated with the organic bentonite 3 was 0.554 mol / l, 120 mmol of free fatty acid was removed per liter of oleic acid-added edible oil. It will be done.

(酸価低減性能の評価)
添加する有機ベントナイトに層間にジメチルステアリルベンジルアンモニウムが総重量に対して29.9%の割合でインターカレートされたもの(以下、有機ベントナイト4)を使用した以外は、実施例1と同様の方法で酸価低減効果評価を行った。
(Evaluation of acid value reduction performance)
The acid was obtained in the same manner as in Example 1 except that the organic bentonite used was intercalated with 29.9% of the total weight of dimethylstearylbenzylammonium between layers (hereinafter referred to as organic bentonite 4). Evaluation of the effect of reducing the value was performed.

その結果、有機ベントナイト4を添加した模擬廃食用油の酸価は4.0mg KOH / g に低下した。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を充分に満たしており、有機ベントナイト4の酸価低減性能は適であった。 As a result, the acid value of the simulated waste edible oil to which the organic bentonite 4 was added was lowered to 4.0 mg KOH / g. Accordingly, the acid value reduction performance of the organic bentonite 4 was suitable because the raw material used for the production of biodiesel fuel sufficiently satisfied the acid value of 5.0 mg KOH / g or less, which is a standard to be provided.

(遊離脂肪酸吸着能の評価)
次に、添加する有機ベントナイトとして有機ベントナイト4を使用する以外は実施例1と同様の方法で、有機ベントナイト4の遊離脂肪酸吸着能評価を行った。
(Evaluation of free fatty acid adsorption capacity)
Next, the free fatty acid adsorption ability of the organic bentonite 4 was evaluated in the same manner as in Example 1 except that the organic bentonite 4 was used as the organic bentonite to be added.

その結果、有機ベントナイト4を用いて上記処理を行ったオレイン酸添加食用油中に含まれる遊離脂肪酸濃度は0.644mol/lであったことから、オレイン酸添加食用油1lにつき30mmolの遊離脂肪酸が除去されたことになる。 As a result, the concentration of free fatty acid contained in the oleic acid-added edible oil subjected to the above treatment using organic bentonite 4 was 0.644 mol / l, so 30 mmol of free fatty acid was removed per liter of oleic acid-added edible oil. It will be done.

比較例1Comparative Example 1

(酸価低減性能の評価)
模擬廃食用油に有機ベントナイトを添加しなかった以外は、実施例1と同様の方法で酸価の測定を行った。その結果、模擬廃食用油の酸価は5.2mg KOH / g で変化は見られなかった。従って、本比較例1のように有機ベントナイトを模擬廃食用油に添加しない場合には、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を満たすことができず、酸価低減性能は不適となった。
(Evaluation of acid value reduction performance)
The acid value was measured in the same manner as in Example 1 except that organic bentonite was not added to the simulated waste cooking oil. As a result, the acid value of the simulated waste cooking oil was 5.2 mg KOH / g, and no change was observed. Therefore, when organic bentonite is not added to the simulated waste cooking oil as in Comparative Example 1, the acid value of 5.0 mg KOH / g or less, which is the standard that the raw material used for the production of biodiesel fuel should have, can be satisfied. Therefore, the acid value reduction performance was unsuitable.

(遊離脂肪酸吸着能の評価)
次に、オレイン酸添加食用油に有機ベントナイトを添加しなかった以外は、実施例1と同様の方法で、オレイン酸添加食用油の遊離脂肪酸濃度を測定した。その結果、オレイン酸添加食用油の遊離脂肪酸濃度は0.674mol/l で変化は見られなかった。従って、本比較例1のように有機ベントナイトをオレイン酸添加油に添加しない場合には、オレイン酸添加食用油の遊離脂肪酸濃度は低減しなかった。
(Evaluation of free fatty acid adsorption capacity)
Next, the free fatty acid concentration of the oleic acid-added edible oil was measured in the same manner as in Example 1 except that the organic bentonite was not added to the oleic acid-added edible oil. As a result, the free fatty acid concentration of the oleic acid-added edible oil was 0.674 mol / l and no change was observed. Therefore, when organic bentonite was not added to the oleic acid-added oil as in Comparative Example 1, the free fatty acid concentration of the oleic acid-added edible oil was not reduced.

実施例1〜実施例4で行った酸価測定結果および、オレイン酸添加食用油に含まれる食用油および遊離脂肪酸の定量結果を表1にまとめて示す。また、有機ベントナイトを添加しなかった場合における模擬廃食用油の酸価測定結果および、オレイン酸添加食用油に含まれる遊離脂肪酸濃度の定量結果を表2に示す。 The acid value measurement results performed in Examples 1 to 4 and the quantification results of edible oils and free fatty acids contained in the oleic acid-added edible oil are summarized in Table 1. Table 2 shows the acid value measurement result of the simulated waste edible oil and the quantification result of the free fatty acid concentration contained in the oleic acid-added edible oil when no organic bentonite was added.

(酸価低減性能の評価)
次に、水系ベントナイトと両親媒性溶媒を用いた模擬廃食用油の酸価低減方法に関する実施例を示す。実施例1で用いた模擬廃食用油25mlに寸法25mm×φ8mmの撹拌子を入れ、マグネチックスターラーを用いて回転数500rpmで撹拌しながら、Na型ベントナイト(商品名:「ベンゲルフレーク」株式会社ホージュン製、以下、水系ベントナイト1)2.5gおよびメタノール25mlを25℃の温度条件下で添加した。同撹拌回転数で60分間撹拌を持続した後、容量50mlのコニカルチューブ(BD Falcon)に入れ、遠心分離機を用いて3500rpmで30分間遠心分離した後、模擬廃食用油およびメタノールの画分をそれぞれ5gずつ精密に量りとった。その後、それぞれの画分についてエタノール/ジエチルエーテル混合液(容積比1:1)100mlを加え、フェノールフタレイン試液数滴を加え、0.1mol/lエタノール/水酸化カリウム溶液で滴定し、数式1により酸価を求めた。
(Evaluation of acid value reduction performance)
Next, the Example regarding the acid value reduction method of the simulation waste cooking oil using water-based bentonite and an amphiphilic solvent is shown. Stirring bar with dimensions of 25mm x φ8mm was placed in 25ml of simulated waste cooking oil used in Example 1, and stirred with a magnetic stirrer at 500rpm, Na-type bentonite (trade name: "Bengel Flakes" Hojun Co., Ltd.) In the following, 2.5 g of aqueous bentonite 1) and 25 ml of methanol were added under a temperature condition of 25 ° C. Stirring is continued for 60 minutes at the same rotational speed, then placed in a 50 ml conical tube (BD Falcon), centrifuged at 3500 rpm for 30 minutes using a centrifuge, and then the fractions of simulated waste cooking oil and methanol are separated. Each 5g was weighed precisely. Then, add 100 ml of ethanol / diethyl ether mixture (volume ratio 1: 1) to each fraction, add a few drops of phenolphthalein test solution, and titrate with 0.1 mol / l ethanol / potassium hydroxide solution. The acid value was determined.

その結果、食用油画分およびメタノール画分の酸価はそれぞれ2.8 mg KOH/ g、および2.3 mg KOH/ gであった。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を充分に満たしており、水系ベントナイト1の酸価低減性能は適であった。 As a result, the acid values of the edible oil fraction and the methanol fraction were 2.8 mg KOH / g and 2.3 mg KOH / g, respectively. Accordingly, the acid value reduction performance of the water-based bentonite 1 was suitable because the raw material used for the production of biodiesel fuel sufficiently satisfied the acid value of 5.0 mg KOH / g or less.

(酸価低減性能の評価)
添加する水系ベントナイトとして、Ca型ベントナイト(商品名「ベンゲルブライト11K」、株式会社ホージュン製、以下、水系ベントナイト2)を使用した以外は、実施例5と同様の方法で酸価低減効果評価を行った。
(Evaluation of acid value reduction performance)
The acid value reduction effect was evaluated in the same manner as in Example 5 except that Ca-type bentonite (trade name “Bengel Bright 11K”, manufactured by Hojun Co., Ltd., hereinafter, aqueous bentonite 2) was used as the aqueous bentonite to be added. It was.

その結果、食用油画分およびメタノール画分の酸価はそれぞれ2.9 mg KOH/ g、および2.4mg KOH/ gであった。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を充分に満たしており、水系ベントナイト2の酸価低減性能は適であった。 As a result, the acid values of the edible oil fraction and the methanol fraction were 2.9 mg KOH / g and 2.4 mg KOH / g, respectively. Accordingly, the acid value reduction performance of the water-based bentonite 2 was adequate because the raw material used for the production of biodiesel fuel sufficiently satisfied the acid value of 5.0 mg KOH / g or less.

比較例2Comparative Example 2

(酸価低減性能の評価)
実施例1で用いた模擬廃食用油に水系ベントナイトを添加せず、両親媒性溶媒のみを添加した以外は、実施例5と同様の方法で酸価低減効果評価を行った。
(Evaluation of acid value reduction performance)
The acid value reduction effect was evaluated in the same manner as in Example 5 except that the aqueous bentonite was not added to the simulated waste edible oil used in Example 1 and only the amphiphilic solvent was added.

その結果、食用油画分およびメタノール画分の酸価はそれぞれ3.6 mg KOH/ g、および2.8 mg KOH/ gであった。従って、バイオディーゼル燃料の製造に用いる原料が備えるべき基準である酸価5.0mg KOH/g以下を満たしているものの、水系ベントナイトを添加した場合と比較して酸価低減効果は小さかった。 As a result, the acid values of the edible oil fraction and the methanol fraction were 3.6 mg KOH / g and 2.8 mg KOH / g, respectively. Therefore, although the acid value of 5.0 mg KOH / g or less, which is the standard to be provided for the raw materials used for the production of biodiesel fuel, is satisfied, the acid value reducing effect was small compared to the case where water-based bentonite was added.

実施例5〜実施例6および比較例2で行った酸価測定結果を表3および4にまとめて示す。 The acid value measurement results performed in Examples 5 to 6 and Comparative Example 2 are summarized in Tables 3 and 4.

以上の実験結果から、水系ベントナイト1および水系ベントナイト2を両親媒性溶媒であるメタノールと共に食用油に添加することにより、メタノールのみを食用油に添加した場合と比較して、より酸価が低減することが示された。 From the above experimental results, by adding water-based bentonite 1 and water-based bentonite 2 to edible oil together with methanol, which is an amphiphilic solvent, the acid value is further reduced as compared with the case where only methanol is added to edible oil. It was shown that.

本発明の酸価低減処理を行うことにより、これまでバイオディーゼル燃料の調製原料として利用できなかった酸価の高い食用油も再利用できるようになる。



































By performing the acid value reduction treatment of the present invention, edible oils having a high acid value that could not be used as preparation raw materials for biodiesel fuel can be reused.



































Claims (4)

酸価が10mgKOH/g以下の食用油100重量部に対して4級アンモニウム塩がインターカレートされた有機ベントナイトを0.1〜50重量部添加することにより該食用油の酸価を5mgKOH/g以下にせしめることを特徴とする酸価低減処理方法。By adding 0.1 to 50 parts by weight of organic bentonite intercalated with a quaternary ammonium salt to 100 parts by weight of edible oil having an acid value of 10 mgKOH / g or less, the acid value of the edible oil is reduced to 5 mgKOH / g or less. A method for reducing acid value, characterized in that: 食用油に対して添加する有機ベントナイトがベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ベンジルジメチルドデシルアンモニウム、ベンジルジメチルオクタデシルアンモニウム、ベンサルコニウムなどのベンジルトリアルキルアンモニウムイオンやトリメチルオクチルアンモニウム、トリメチルドデシルアンモニウム、トリメチルオクタデシルアンモニウム、ジメチルジオクチルアンモニウム、ジメチルジドデシルアンモニウム、ジメチルジオクタデシルアンモニウム、トリオクチルメチルアンモニウム、トリドデシルメチルアンモニウム、トリメチルステアリルアンモニウムからなる群のうち、いずれか1種類以上がインターカレートされた有機ベントナイトであることを特徴とする請求項1に記載の酸価低減処理方法。Organic bentonite added to cooking oil is benzyltrialkylammonium ion such as benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, benzyldimethyldodecylammonium, benzyldimethyloctadecylammonium, benzalkonium, trimethyloctylammonium, trimethyldodecylammonium , Trimethyloctadecylammonium, dimethyldioctylammonium, dimethyldidodecylammonium, dimethyldioctadecylammonium, trioctylmethylammonium, tridodecylmethylammonium, trimethylstearylammonium intercalated organic Characterized by bentonite Acid value reduction processing method according to claim 1. 酸価が10mgKOH/g以下の食用油100重量部に対して添加する有機ベントナイトの添加量を1〜20重量部とすることを特徴とする請求項1乃至請求項2に記載の酸価低減処理方法。The acid value reduction treatment according to claim 1 or 2, wherein the amount of organic bentonite added to 100 parts by weight of edible oil having an acid value of 10 mgKOH / g or less is 1 to 20 parts by weight. Method. 酸価が10mgKOH/g以下の食用油100重量部に対して添加する有機ベントナイトの添加量を8〜12重量部とすることを特徴とする請求項1乃至請求項2に記載の酸価低減処理方法。The acid value reduction treatment according to claim 1 or 2, wherein the amount of organic bentonite added to 100 parts by weight of edible oil having an acid value of 10 mgKOH / g or less is 8 to 12 parts by weight. Method.
JP2013215704A 2013-10-16 2013-10-16 Method for reducing acid value and removing free fatty acids of edible oil using bentonite Active JP6311098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215704A JP6311098B2 (en) 2013-10-16 2013-10-16 Method for reducing acid value and removing free fatty acids of edible oil using bentonite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215704A JP6311098B2 (en) 2013-10-16 2013-10-16 Method for reducing acid value and removing free fatty acids of edible oil using bentonite

Publications (2)

Publication Number Publication Date
JP2015077092A JP2015077092A (en) 2015-04-23
JP6311098B2 true JP6311098B2 (en) 2018-04-18

Family

ID=53009147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215704A Active JP6311098B2 (en) 2013-10-16 2013-10-16 Method for reducing acid value and removing free fatty acids of edible oil using bentonite

Country Status (1)

Country Link
JP (1) JP6311098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342069A (en) * 2020-11-30 2021-02-09 新乡市恒星科技有限责任公司 High-temperature anti-sticking sealing lubricating grease and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129297A (en) * 1983-01-14 1984-07-25 松下電器産業株式会社 Oil regeneration bag
JPS6197393A (en) * 1984-10-18 1986-05-15 松下電器産業株式会社 Purification of edible oil
JP2004115711A (en) * 2002-09-27 2004-04-15 Miyoshi Oil & Fat Co Ltd Method for refining waste edible oil

Also Published As

Publication number Publication date
JP2015077092A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
Sander et al. The influence of animal fat type and purification conditions on biodiesel quality
Silitonga et al. Schleichera oleosa L oil as feedstock for biodiesel production
Leung et al. A review on biodiesel production using catalyzed transesterification
Chakraborty et al. Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment
de Jesus et al. Biodiesel purification by column chromatography and liquid-liquid extraction using green solvents
El-Shimi et al. Biodiesel production from Spirulina-platensis microalgae by in-situ transesterification process
Sivakumar et al. Bio-diesel production by alkali catalyzed transesterification of dairy waste scum
Trinh et al. Optimization and kinetic study of ultrasonic assisted esterification process from rubber seed oil
Kumar Ultrasonic-assisted reactive-extraction is a fast and easy method for biodiesel production from Jatropha curcas oilseeds
AU2015227367A1 (en) Method for degumming and esterification of an oil
Huynh et al. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition
Costa et al. Effect of Crambe abyssinica oil degumming in phosphorus concentration of refined oil and derived biodiesel
Yang et al. A comparative study on the effect of unsaturation degree of camelina and canola oils on the optimization of bio-diesel production
Fadhil et al. Biodiesel production from spent fish frying oil through acidbase catalyzed transesterification
Brito et al. Ultrasound-assisted synthesis of ethyl esters from soybean oil via homogeneous catalysis
DE102006062417A1 (en) Producing biodiesel from waste oil by basic transesterification, comprises activating free fatty acids in oil by adding carboxylic acid chloride to give mixed anhydrides and reacting anhydrides with alcohol to fatty acid methyl ester
Dubey et al. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process
Nguyen et al. Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis
Panchal et al. Production of DMC-BioD from Pongamia pinnata seed oil using dimethyl carbonate
Tuntiwiwattanapun et al. Development and scale-up of aqueous surfactant-assisted extraction of canola oil for use as biodiesel feedstock
JP6311098B2 (en) Method for reducing acid value and removing free fatty acids of edible oil using bentonite
Uliana et al. Acidity reduction of enzymatic biodiesel using alkaline washing
Wong et al. Biodiesel production from used cooking oil
Borges et al. Homogeneous catalysis of soybean oil transesterification via methylic and ethylic routes: Multivariate comparison
Yustianingsih et al. Ultrasound assisted in situ production of biodiesel from rice bran

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6311098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250