JP6310578B2 - Pre-preg capable of deep drawing and manufacturing method thereof - Google Patents

Pre-preg capable of deep drawing and manufacturing method thereof Download PDF

Info

Publication number
JP6310578B2
JP6310578B2 JP2016570907A JP2016570907A JP6310578B2 JP 6310578 B2 JP6310578 B2 JP 6310578B2 JP 2016570907 A JP2016570907 A JP 2016570907A JP 2016570907 A JP2016570907 A JP 2016570907A JP 6310578 B2 JP6310578 B2 JP 6310578B2
Authority
JP
Japan
Prior art keywords
fiber
resin
prepreg
fibers
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016570907A
Other languages
Japanese (ja)
Other versions
JPWO2016208450A1 (en
Inventor
健二 久保村
健二 久保村
Original Assignee
健二 久保村
健二 久保村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健二 久保村, 健二 久保村 filed Critical 健二 久保村
Publication of JPWO2016208450A1 publication Critical patent/JPWO2016208450A1/en
Application granted granted Critical
Publication of JP6310578B2 publication Critical patent/JP6310578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres

Description

本発明は、樹脂を含浸した連続強化繊維のプリプレグシート、その製造方法、及びそれを利用した複合材料に関するものである。
さらに詳しくは、連続強化繊維からなるプリプレグシートを一枚乃至複数枚積層して、加熱軟化して圧力を加えることにより三次元曲面に沿った変形が可能であり、変形後に繊維の連続性を維持し、プリプレグシート中の繊維含有量を一般的に市販される一方向に引き揃えられた長繊維に樹脂を含浸させたプリプレグシートと同等の繊維含有量60%程度とすることが出来る、プリプレグシート、成形体及びその製造方法である。
The present invention relates to a prepreg sheet of continuous reinforcing fibers impregnated with a resin, a method for producing the same, and a composite material using the prepreg sheet.
More specifically, one or more prepreg sheets made of continuous reinforcing fibers can be laminated, softened by heating and deformed along a three-dimensional curved surface by applying pressure, and fiber continuity is maintained after deformation. In addition, the fiber content in the prepreg sheet can be approximately 60% of the fiber content equivalent to the prepreg sheet obtained by impregnating the resin with the long fibers generally aligned in one direction. , A molded body and a production method thereof.

強化繊維と樹脂により製造される繊維強化樹脂複合材料構造物は、強化繊維に樹脂が含浸された中間素材であるプリプレグシートを利用して製造されることが一般的である。この理由として、プリプレグシートの樹脂が柔らかい状態で適切なシートの繊維方向に合わせた適切なシート枚数を三次元曲面状の成形型に沿って積層して成形し、その後樹脂を固化することで剛性と強度等の要求特性を満たす三次元曲面形状の複合材料構造物が得られるからである。
成形に際しては、繊維を成形方向に沿って配列させて後、粘度の比較的高い樹脂を繊維に含浸させるなどの煩雑さを避けるために、あらかじめ繊維が引き揃えられ、樹脂の含浸されたプリプレグが適しているからである
In general, a fiber reinforced resin composite material structure manufactured using a reinforced fiber and a resin is manufactured using a prepreg sheet that is an intermediate material in which a reinforced fiber is impregnated with a resin. The reason for this is that the prepreg sheet resin is soft and the appropriate number of sheets that match the fiber direction of the appropriate sheet is laminated and molded along a three-dimensional curved mold, and then the resin is solidified to provide rigidity. This is because a composite material structure having a three-dimensional curved surface shape satisfying the required properties such as strength and the like can be obtained.
In molding, in order to avoid the trouble of impregnating the fiber with a resin having a relatively high viscosity after arranging the fibers along the molding direction, the fibers are aligned in advance, and the prepreg impregnated with the resin is formed. Because it is suitable

プリプレグシートには含有する繊維の揃え方などによって、一方向樹脂プリプレグシート、織物プリプレグシート、短繊維プリプレグがあるが、一方向樹脂プリプレグシートは、多数の繊維束(繊維ストランド)を平行に一方向に引き揃えて樹脂を含浸させてシート状に製造される。この一方向プリプレグシートを複数枚、その繊維方向を変えて積層し、加熱して樹脂を溶融させた後に加圧して複合材料が製造される。一方向に引き揃える事により繊維の三次元的交差が少なくなるとともに繊維間隔も狭くすることが可能となり、単位体積当たりの含有繊維体積の高いプリプレグシートが得られる。市販の一方向プリプレグシートは繊維体積含有率65%前後で製造されている。
繊維方向の異なるプリプレグシートを複数枚積層することにより複合材料に発生する面内多軸応力に対応させる。
繊維が一方向に引き揃えられた平面形状のプリプレグシートは伸びが殆どなく、三次元曲面に沿っての成型は困難である。三次元形状に沿った積層をするためには、平面形状の一方向プリプレグシートを小片に切断し、一枚一枚適切な繊維方向で三次元形状曲面に沿って積層し、樹脂を固化して成型するので、成形時間が長くなりコストも増加する。
There are unidirectional resin prepreg sheets, woven prepreg sheets, and short fiber prepregs depending on how to arrange the fibers contained in the prepreg sheet, but the unidirectional resin prepreg sheet is unidirectional with a number of fiber bundles (fiber strands) in parallel. And is impregnated with resin to produce a sheet. A plurality of the unidirectional prepreg sheets are laminated while changing their fiber directions, heated to melt the resin, and then pressurized to produce a composite material. By aligning in one direction, the three-dimensional intersection of fibers can be reduced and the fiber spacing can be narrowed, so that a prepreg sheet having a high contained fiber volume per unit volume can be obtained. Commercial unidirectional prepreg sheets are manufactured with a fiber volume content of around 65%.
By laminating a plurality of prepreg sheets having different fiber directions, it is possible to cope with in-plane multiaxial stress generated in the composite material.
A planar prepreg sheet in which fibers are aligned in one direction hardly stretches and is difficult to be molded along a three-dimensional curved surface. In order to laminate along the three-dimensional shape, cut the planar unidirectional prepreg sheet into small pieces, and laminate them one by one along the curved surface of the three-dimensional shape with the appropriate fiber direction, and solidify the resin Since molding is performed, the molding time becomes longer and the cost also increases.

織物状にした繊維に樹脂を含浸させて製造した織物プリプレグシートも、一方向プリプレグシートと同様に三次元曲面に沿っての積層は困難であり、プリプレグシートを小片に切断して一枚一枚積層して固化し、複合材料を製造する。織物には90度に交差したもののみならず、三軸織物など多軸に繊維を交差させたものが製造されているが、三次元曲面を有する複合材料の製造には同様な困難さがある。
平面が三次元形状に変形するに必要なシートの面内伸びに対して、ほぼ伸び切った繊維が抵抗し、更に、面内せん断変形は繊維交差部での抵抗により阻害される。
Fabric prepreg sheets manufactured by impregnating resin into woven fibers are also difficult to stack along a three-dimensional curved surface, as with unidirectional prepreg sheets. Cut prepreg sheets into small pieces one by one Laminate and solidify to produce a composite material. In addition to fabrics that intersect 90 degrees, fabrics such as triaxial fabrics that have fibers intersected in multiple axes are manufactured, but there are similar difficulties in manufacturing composite materials having a three-dimensional curved surface. .
The stretched fiber resists the in-plane elongation of the sheet necessary for the plane to deform into a three-dimensional shape, and the in-plane shear deformation is hindered by the resistance at the fiber intersection.

また、短繊維プリプレグは、長繊維を短く切断して面状に配置するが、樹脂を含浸したプリプレグシートでは、実際の切断は1000本、3000本、6000本等の多数の単繊維で構成された繊維ストランド(束)を切断することになるので、切断された繊維束間の繊維方向の力の伝達が不十分となり、繊維の引張強度を十分に利用することが困難となる。切断されたストランドを平面上に任意の方向に配置し、面内等方性に近い特性を有するプリプレグでも、ストランドの重なり、ストランド切断面近傍における樹脂だまりにより平均的な繊維体積含有量が低くなることと単繊維断面と比較して遥かに大きな樹脂だまりにより、繊維の強度・剛性を十分に利用できない。
短繊維ストランド状態ではストランドの断面積が大きくなるので、短く切断した繊維ストランドを単繊維にばらして面内に分散させることにより、短い繊維長で平面を三次元曲面へ変化させる際の繊維の軸方向の伸びを他の単繊維との軸方向滑りにより繊維方向の引っ張り歪に代替させる紙漉き等の手法による繊維の分散がある。しかしながら、切断された単繊維長と単繊維断面積比が大きいと繊維が絡み曲線を構成し、平面の三次元形状への変形に必要な繊維方向の歪(繊維の移動)が絡みにより阻害され、三次元曲面への変化が困難になるとともに、繊維の交差重なりにより体積当たりの繊維含有量が少なくなる。(特許文献1:特開2014−28510号公報)
切断された炭素繊維長を単繊維断面直径の数倍程度に短くすると三次元平面の変化は容易になる(押出成型された短繊維含有樹脂ペレットが良い例である)が、切断するストランド長さをストランド直径に比較し短くする、或いは単繊維長さを繊維直径と比較して短くすると、繊維方向がより面外を向くことと単位体積当たりの繊維の切断点が増加することにより、単位体積当たりの繊維量が著しく低下し、単位体積当たりの繊維が寄与する剛性と強度が著しく低下する。
Short fiber prepregs are cut into long fibers and arranged in a planar shape. However, in a prepreg sheet impregnated with resin, the actual cutting is composed of a large number of single fibers such as 1000, 3000, 6000, etc. Since the fiber strands (bundles) are cut, the transmission of force in the fiber direction between the cut fiber bundles is insufficient, and it is difficult to fully utilize the tensile strength of the fibers. Even in the case of a prepreg having cut-strands arranged in an arbitrary direction on a plane and having characteristics close to in-plane isotropic properties, the average fiber volume content is lowered due to the overlap of strands and the accumulation of resin near the strand cut surfaces. However, the strength and rigidity of the fiber cannot be fully utilized due to the much larger resin pool than the single fiber cross section.
Since the cross-sectional area of the strand increases in the short fiber strand state, the fiber axis when changing the plane to a three-dimensional curved surface with a short fiber length by dispersing the short cut fiber strands into single fibers and dispersing them in the plane There is a dispersion of fibers by a method such as a paper-making method in which the elongation in the direction is replaced with the tensile strain in the fiber direction by axial sliding with other single fibers. However, if the cut single fiber length and the single fiber cross-sectional area ratio are large, the fibers form an entangled curve, and the distortion in the fiber direction (fiber movement) necessary for deformation into a three-dimensional shape of the plane is hindered by the entanglement. Further, it becomes difficult to change to a three-dimensional curved surface, and the fiber content per volume decreases due to the cross overlap of the fibers. (Patent Document 1: JP 2014-28510 A)
If the cut carbon fiber length is shortened to about several times the single fiber cross-sectional diameter, the change in the three-dimensional plane is facilitated (extruded short fiber-containing resin pellets are a good example), but the strand length to be cut If the fiber length is shorter than the strand diameter, or the single fiber length is shorter than the fiber diameter, the fiber direction is more out-of-plane and the fiber cut point per unit volume is increased. The amount of fibers per unit is significantly reduced, and the rigidity and strength contributed by the fibers per unit volume are significantly reduced.

また、三次元形状面に沿ってのプリプレグシート積層による成形の困難さを解消する目的で、連続繊維に樹脂を含浸せずに、三次元形状を有する成形型の上に繊維を並べるプリフォームによる方法も試みられている。繊維に樹脂が含浸されていない状態では単繊維間と繊維束間の両方の拘束が殆どなくしなやかであり、三次元曲面に沿っての配置は比較的容易である。しかし、繊維束を一方向に引き揃えたプリプレグシートの製造では熱可塑性樹脂の含浸は容易ではなく、高圧と比較的長い樹脂含浸時間が必要であり、これに対して様々な工夫がなされている(特許文献2:特開平11−269285)ものの、プリフォームへの分子量の高い熱可塑性樹脂等の粘度の高い樹脂による含浸には大きな困難を伴う。
一方、分子量の低いエポキシ樹脂等のモノマーに架橋剤を混入した樹脂で含浸し、加熱して架橋し、三次元曲面形状を有する複合材料とする方法もあるが、衝撃強度、リサイクル性に難点があるとともに、樹脂含浸、硬化時間に更なる改良が求められる(特許文献3:特開2012−77127)。
Also, for the purpose of eliminating the difficulty of molding by prepreg sheet lamination along the three-dimensional shape surface, by a preform in which fibers are arranged on a molding die having a three-dimensional shape without impregnating the continuous fibers with resin. Methods are also being tried. When the fiber is not impregnated with resin, there is almost no restriction between the single fibers and between the fiber bundles, and the arrangement along the three-dimensional curved surface is relatively easy. However, in the production of a prepreg sheet in which fiber bundles are aligned in one direction, impregnation with a thermoplastic resin is not easy, and high pressure and a relatively long resin impregnation time are required. (Patent Document 2: Japanese Patent Application Laid-Open No. 11-269285) However, impregnation of a preform with a resin having a high viscosity such as a thermoplastic resin having a high molecular weight is accompanied by great difficulty.
On the other hand, there is a method of impregnating a monomer such as an epoxy resin having a low molecular weight with a resin mixed with a crosslinking agent, followed by crosslinking by heating to form a composite material having a three-dimensional curved shape, but there are difficulties in impact strength and recyclability. In addition, there is a need for further improvements in resin impregnation and curing time (Patent Document 3: JP 2012-77127 A).

このように平面を三次元曲面へ変化させる際には、大きな面内せん断歪ないし面内引張歪を生じさせる事が必要であるが、連続繊維が伸張している一方向プリプレグないし殆ど伸張している織物では、平面を三次元曲面へ変形させるのに必要とされる大きなせん断歪と引張歪に対応する繊維方向の引張り歪を発生させる事がほとんど不可能である。織物ないし一方向プリプレグシートは単位体積当たりの繊維含有量を50%以上と大量の繊維を含ませる事が可能であるが、三次元曲面に沿っての成形は困難であるか比較的長い成形時間が必要である。
三次元曲面に沿っての変形が比較的容易な樹脂が含浸されてないプリフォームは、成形後長時間の含浸作業が必要である。また、含浸時間が比較的短い低粘度の樹脂は分子量が小さく、高分子にする際の反応に時間を有する。
短繊維を使用したシートは、比較的容易に三次元平面に沿った変形を得る事が可能ではあるが、繊維交差、面外方向を向いた繊維が生じる、広い繊維間隔もある間隔の不均一さ、繊維破断点での繊維体積と比較しての大きな空間等により体積当たりの繊維含有量が少なくなり、構造物とした際に繊維の有する高い剛性・強度の構造物への反映が少なくなる。
Thus, when changing a plane to a three-dimensional curved surface, it is necessary to generate a large in-plane shear strain or in-plane tensile strain, but a unidirectional prepreg in which continuous fibers are stretched or almost stretched. In a woven fabric, it is almost impossible to generate a tensile strain in the fiber direction corresponding to the large shear strain and tensile strain required to transform a plane into a three-dimensional curved surface. Woven fabrics or unidirectional prepreg sheets can contain a large amount of fibers with a fiber content of 50% or more per unit volume. However, forming along a three-dimensional curved surface is difficult or has a relatively long forming time. is necessary.
A preform not impregnated with a resin that is relatively easy to deform along a three-dimensional curved surface requires a long impregnation operation after molding. In addition, a low-viscosity resin having a relatively short impregnation time has a small molecular weight, and has a long reaction time for making a polymer.
Sheets using short fibers can be deformed along a three-dimensional plane with relative ease, but fibers that cross and cross out of the plane are generated. In addition, the fiber content per volume is reduced due to the large space compared to the fiber volume at the fiber breaking point, and when reflected in the structure of high rigidity and strength that the fiber has when it is made a structure. .

特開2014−28510号公報JP 2014-28510 A 特開平11−269285号公報JP-A-11-269285 特開2012−77127号公報JP 2012-77127 A

連続強化繊維をまっすぐにひき揃えて樹脂を含浸した一方向プリプレグ、繊維が比較的伸ばされた織物プリプレグ、樹脂を含浸して短繊維ストランドを面上に分散したプリプレグ、紙漉きのように比較的長い繊維を面上に分散したプリプレグは、いずれも加熱により樹脂を軟化させた状態でも、三次元形状に沿った深絞り加工などの曲面への成形は困難である。三次元形状に沿った変形をする際には、繊維方向に繊維破断歪より大きな歪が発生し、プリプレグの破損に至るからである。
平面を三次元曲面へ変化させる際には、大きな面内せん断歪、面内引張歪を生じさせる事が必要であるが、強化繊維が伸張している一方向プリプレグないし殆ど伸張している織物、比較的長い繊維を面上に分散した絡み合ったプリプレグは、平面を三次元曲面へ変形させるのに必要とされる大きなせん断歪と引張歪に対応する繊維方向の引張歪を繊維の破断なしに発生させる事がほとんど不可能である。
そこで、本発明の目的は、上記実情に鑑み創案されたものであって、三次元曲面に沿った成型品を製造可能な樹脂含浸連続強化繊維プリプレグ、該プリプレグの製造方法、及び該プリプレグから成形された複合材料を提供する事である。
Unidirectional prepregs in which continuous reinforcing fibers are straightly arranged and impregnated with resin, woven prepregs in which fibers are relatively stretched, prepregs in which resin is impregnated and short fiber strands are dispersed on the surface, relatively long like papermaking In any prepreg in which fibers are dispersed on the surface, it is difficult to form a curved surface such as deep drawing along a three-dimensional shape even when the resin is softened by heating. This is because when the deformation is performed along the three-dimensional shape, a strain larger than the fiber breaking strain is generated in the fiber direction, and the prepreg is damaged.
When changing a plane to a three-dimensional curved surface, it is necessary to generate a large in-plane shear strain and in-plane tensile strain, but a unidirectional prepreg in which reinforcing fibers are stretched or a fabric that is almost stretched, Intertwined prepregs with relatively long fibers dispersed on the surface generate the tensile strain in the fiber direction corresponding to the large shear strain and tensile strain required to deform the plane into a three-dimensional curved surface without breaking the fiber. Almost impossible to do.
Accordingly, an object of the present invention was devised in view of the above circumstances, and is a resin-impregnated continuous reinforcing fiber prepreg capable of producing a molded product along a three-dimensional curved surface, a method for producing the prepreg, and molding from the prepreg. To provide a composite material.

本発明者は、強化繊維を一方向に引き揃え、その長手方向に周期をもち適切な振幅で屈曲させ、樹脂を含浸ないし半含侵した状態で屈曲を維持した屈曲強化繊維プリプレグで三次元曲面を有する成形が可能である事を見出した(図1参照。)。
これらの屈曲強化繊維プリプレグにより三次元曲面形状に成形するには、屈曲強化繊維プリプレグシート複数枚をシートの繊維の長手方向5と屈曲の周期の山谷位置を適切に定めて積層し、積層された平面状のシートの樹脂を軟化させてシートの面内での伸縮を容易にし、平面状のシートを三次元曲面に沿った形状に成形する。成形後、熱硬化性樹脂を含浸した場合は適切な温度に維持して硬化後冷却し、熱可塑性樹脂の場合は速やかに冷却して三次元曲面形状を固定する。プリプレグシートの屈曲の周期1と振幅2を適切に決めることにより、長手方向に沿った大きな伸縮、及び長手方向と垂直方向の伸縮効果が得られる。
The present inventor has arranged a reinforcing fiber in one direction, bent it with an appropriate amplitude with a period in its longitudinal direction, and a bent reinforcing fiber prepreg in which the resin is impregnated or semi-impregnated and kept bent in a three-dimensional curved surface. It was found that the molding having the above can be performed (see FIG. 1).
In order to form a three-dimensional curved surface shape by using these bending reinforcing fiber prepregs, a plurality of bending reinforcing fiber prepreg sheets were laminated with the longitudinal direction 5 of the fiber of the sheet and the peak and valley positions of the bending period being appropriately determined and laminated. The planar sheet resin is softened to facilitate expansion and contraction in the plane of the sheet, and the planar sheet is formed into a shape along a three-dimensional curved surface. After molding, when the thermosetting resin is impregnated, it is maintained at an appropriate temperature and cooled after curing, and in the case of a thermoplastic resin, it is quickly cooled to fix the three-dimensional curved surface shape. By appropriately determining the bending period 1 and the amplitude 2 of the prepreg sheet, large expansion / contraction along the longitudinal direction and expansion / contraction effect in the longitudinal direction and the vertical direction can be obtained.

屈曲強化繊維プリプレグとして、成形する三次元曲面の大小、曲率に応じて繊維束の屈曲の周期や振幅、屈曲の形状を調整するほか、成形する三次元曲面の位置、形状或いは複数であればそれらの分布などに応じてこれらの繊維束の屈曲の周期や振幅、屈曲の形状を調整することにより、一枚のシートないし複数のシートを積層したプリプレグによって、どのような三次元曲面に対してもその成形された面内で繊維強化材の繊維束の伸張度を適切な値に維持することができる。   In addition to adjusting the bending period and amplitude of the fiber bundle according to the curvature and the curvature of the bending reinforcing fiber prepreg, the bending shape and shape of the three-dimensional curved surface to be molded are adjusted. By adjusting the bending period, amplitude, and bending shape of these fiber bundles according to the distribution of the fiber bundle, etc., it can be applied to any three-dimensional curved surface by a prepreg in which one sheet or a plurality of sheets are laminated. The elongation of the fiber bundle of the fiber reinforcing material can be maintained at an appropriate value within the formed surface.

これらの屈曲強化繊維プリプレグにおいては、屈曲強化繊維プリプレグに含浸した樹脂を軟化させて粘度を低下させた状態で長手方向に引張ると、屈曲して長手方向と角度を有する部分の繊維が屈曲形状から展開するようにしてずれて全体として伸びる。長手方向と角度を有する部分が剪断変形し、その結果長手方向に伸びる。
長手方向と繊維方向が±45°である屈曲度45°の場合、繊維が屈曲して隣り合った領域は互いに繊維の屈曲範囲の直径に相当する長さずれることでその平面内で45°回転し、長手方向の長さが約1.414倍となる。
炭素繊維の直径は7μm前後であり、その細さに応じて屈曲の振幅と周期を小さくできるので非常に少ない隣接繊維の相対滑りで大きな伸びを生ずる。
この伸びは、屈曲繊維強化プリプレグの繊維の屈曲角を37.5度にした場合、長手方向は約1.26倍になり、長手方向に90度方向は屈曲角度を50度まで変化させるとすると約1.26倍になり、長手方向とその直角方向の伸びの大きさが同じになる。
圧縮に関しても同様である。
鋼板を深絞りする際には鋼板の引き込みを考慮すると等方的に1.2倍程度の伸びがあればよいとされているので、屈曲プリプレグで鋼板の深絞りを再現することが可能である。
In these bending reinforcing fiber prepregs, when the resin impregnated in the bending reinforcing fiber prepregs is softened and pulled in the longitudinal direction in a state where the viscosity is lowered, the fibers of the bent portion having an angle with the longitudinal direction are bent. As it expands, it shifts and grows as a whole. A portion having an angle with the longitudinal direction undergoes shear deformation, and as a result, extends in the longitudinal direction.
When the bending direction is 45 ° with the longitudinal direction and the fiber direction being ± 45 °, the regions where the fibers are bent and adjacent to each other are shifted by 45 ° within the plane by shifting the length corresponding to the diameter of the bending range of the fibers. However, the length in the longitudinal direction is about 1.414 times.
The diameter of the carbon fiber is around 7 μm, and the bending amplitude and period can be reduced according to the fineness of the carbon fiber.
This elongation is about 1.26 times in the longitudinal direction when the bending angle of the fiber of the bent fiber reinforced prepreg is 37.5 degrees, and the bending angle is changed to 50 degrees in the 90 degree direction in the longitudinal direction. It becomes about 1.26 times, and the size of elongation in the longitudinal direction and the direction perpendicular thereto is the same.
The same applies to compression.
When drawing a steel sheet, it is considered to be about 1.2 times as long as isotropic drawing, so it is possible to reproduce the deep drawing of the steel sheet with a bent prepreg. .

屈曲繊維強化プリプレグからなる一枚のシートでは部分的な異方性は大きいが、例えば長手方向の周期と半分の長さの振幅の屈曲プリプレグの長手方向の相対位置を半周期ずらして重ねてシートを作り、重ね合わせたシート4枚を、それぞれ0°、90°、±45°の4方向で積層すると、疑似等方性ができる。
すなわち、8枚のシートで疑似等方性ができる。各シートで繊維は屈曲していて面内特性は一様ではないが、平均的な弾性常数は一方向プリプレグで成形した疑似等方の特性とほぼ同じものが期待できる。疑似等方性を構成する8枚のシート二枚を中心面を挟んで厚さ方向で積層構造が対称になるように重ね合わせた16枚で構成する疑似等方性シートは、曲げに対しても疑似等方性を有する。
A sheet made of a bent fiber reinforced prepreg has a large partial anisotropy, but for example, a sheet in which the relative position in the longitudinal direction of the bent prepreg having a half-length amplitude and a half-length is shifted by a half cycle and stacked. When the four stacked sheets are laminated in four directions of 0 °, 90 °, and ± 45 °, respectively, pseudo isotropic property can be obtained.
That is, pseudo-isotropic property can be achieved with eight sheets. The fibers are bent in each sheet and the in-plane characteristics are not uniform, but the average elastic constant can be expected to be almost the same as the pseudo-isotropic characteristics formed by the unidirectional prepreg. The pseudo-isotropic sheet composed of 16 sheets that are laminated so that the laminated structure is symmetric in the thickness direction with the center plane sandwiched between two sheets of 8 sheets that constitute pseudo-isotropic Also has pseudo-isotropic properties.

屈曲角度を15°以下にすると、長手方向の弾性常数は一方向プリプレグと大きく異ならないので、成形時にプリプレグシートに大きな伸びを必要としない部分には屈曲角度の小さいプリプレグシートを積層することも可能である。
あるいは、成形する立体形状が非対称であったり、部分的に局面の曲率が大きく異なる場合など、強化繊維に求められる成形時の歪の大きさが異なる場合、或いは曲面とならない平面のままの状態に維持される部分等について、予めそれらの領域において求められる歪の大きさに応じた強化繊維の屈曲の振幅、屈曲の度合いを定めてこれらの屈曲を付与することにより、最終的な三次元成形体において、その面内の強化繊維に付加される応力の方向に応じて整列させてほぼ伸展した状態とすることが出来る。
このようにして、三次元成形体として強化繊維による最大の強度を発揮することが可能であるが、一方、これとは逆に含浸した樹脂の特性に合わせて、三次元成形体中の強化繊維に一定程度の屈曲を残存させることによって成形体としての伸び、弾性変形性を持たせることも可能である。
When the bending angle is 15 ° or less, the elastic constant in the longitudinal direction is not significantly different from that of the unidirectional prepreg, so it is possible to stack a prepreg sheet with a small bending angle on the portion where the prepreg sheet does not require large elongation during molding. It is.
Alternatively, when the three-dimensional shape to be molded is asymmetrical, or when the curvature of the phase is partly different, the strain required at the time of molding is different, or the surface remains flat. The final three-dimensional molded body is obtained by determining the amplitude of the bending and the degree of bending of the reinforcing fiber according to the magnitude of strain required in those regions in advance for the portions to be maintained. In this case, the stretched fiber can be aligned and stretched according to the direction of the stress applied to the reinforcing fiber in the plane.
In this way, it is possible to exert the maximum strength of the reinforcing fiber as a three-dimensional molded body, but on the other hand, in accordance with the characteristics of the impregnated resin, the reinforcing fiber in the three-dimensional molded body It is also possible to give the molded body elongation and elastic deformation by leaving a certain degree of bending.

炭素繊維強化樹脂複合材は外力が負荷された時に、弱い単繊維が破断し、破断部の繊維樹脂界面が剥離するが、破断した繊維にかかる荷重は近傍の樹脂を介して他の繊維に伝達され材料の破断には至らない。負荷が増加するに従い次第に損傷が増え、複合材料の層間剥離と大規模な繊維破断により破壊する。
強化繊維が炭素繊維の場合、屈曲繊維強化プリプレグ内で単繊維の屈曲部の最小半径(R)は0.5mm〜1mm程度にすることが可能である。その際発生する繊維の引張歪みは、単繊維半径(r)を3.5μmとすると、弾性梁の理論より、
0.7%〜0.35%(r/R)となり、繊維破断ひずみ(1.5%程度)の20%〜45%となり複合材料としての強度を減少させる可能性があるので、屈曲プリプレグ内での単繊維の曲げ半径は2mm以上にし、強度低下を避ける必要がある。破断伸びは、繊維の屈曲部が疑似等方性内で局在し、繊維が屈曲していることにより増加する。
When an external force is applied to a carbon fiber reinforced resin composite material, a weak single fiber breaks and the fiber resin interface at the fractured part peels off, but the load applied to the broken fiber is transmitted to other fibers via nearby resin. The material will not break. As the load increases, damage gradually increases and breaks due to delamination of the composite material and extensive fiber breakage.
When the reinforcing fiber is a carbon fiber, the minimum radius (R) of the bent portion of the single fiber in the bent fiber reinforced prepreg can be about 0.5 mm to 1 mm. The tensile strain of the fiber generated at that time is as follows. The single fiber radius (r) is 3.5 μm.
0.7% to 0.35% (r / R) and 20% to 45% of the fiber breaking strain (about 1.5%), which may reduce the strength of the composite material. It is necessary to make the bending radius of the single fiber at 2 mm or more to avoid a decrease in strength. The elongation at break increases when the bent part of the fiber is localized in the pseudo-isotropic state and the fiber is bent.

本発明の屈曲繊維強化プリプレグの具体的な形態として、
連続繊維で構成する繊維束の繊維間にマトリックス樹脂を含浸させてなるバンド状の繊維強化樹脂プリプレグ、シート状の維強化樹脂プリプレグがある。
また、本発明者は、幅の狭いテープ状の屈曲繊維強化プリプレグテープが製織可能である事を見出した。この製織された屈曲繊維強化プリプレグシートを単層、又は複数枚積層して三次元立体形状に成形することにより、より均一な積層構造の繊維強化複合材料成形体とすることができる。
そして、このようにして成形された繊維強化複合材料は成形された構造中の各繊維が適度に伸張した状態を維持し、強化繊維の引張強さが最大限に発揮された。
As a specific form of the bent fiber reinforced prepreg of the present invention,
There are band-like fiber reinforced resin prepregs and sheet-like fiber reinforced resin prepregs obtained by impregnating a matrix resin between fibers of a fiber bundle composed of continuous fibers.
The present inventor has also found that a narrow tape-like bent fiber reinforced prepreg tape can be woven. A single layer or a plurality of the woven bent fiber reinforced prepreg sheets laminated and formed into a three-dimensional solid shape can be formed into a fiber reinforced composite material molded body having a more uniform laminated structure.
The fiber-reinforced composite material molded in this way maintained a state in which each fiber in the molded structure was properly stretched, and the tensile strength of the reinforcing fiber was exhibited to the maximum.

本発明の屈曲プリプレグの製造方法;
(1) 強化繊維束を平面となるように長手方向に引き揃え、その長手方向と直角にその幅全体にわたって治具によって挟持して長手方向にずれないように固定する。
各治具は、一つ置きに長手方向に直角に屈曲の振幅だけ相対的に移動すると共に長さ方向にも間隔を詰めて予定された振幅と周期間隔の屈曲を形成し、樹脂を含浸してその屈曲状態に固定する。屈曲の周期は隣り合った2つの治具で山と谷を形成するから、2つ一対の治具で一サイクルの屈曲が形成される。
含浸する樹脂は、あらかじめ強化繊維束をシート状に引き揃えて樹脂を含浸させた状態の素材を治具で挟持固定し、加熱軟化して屈曲を付与してから冷却固化してその状態に固定してもよく、治具に塗付しておいて加熱軟化して屈曲処理し、或いは強化繊維を屈曲状態としてから加熱溶融した樹脂を含浸させてもよい。さらに、繊維束に沿って繊維状樹脂やシート状の樹脂を添え、或いはパウダー状の樹脂を付着、コーティングするなどしてもよい。
強化繊維の屈曲操作を行うには、強化繊維を挟持する各治具間の長手方向の間隔を狭めて屈曲に必要なたるみを形成する必要があるが、その際に各繊維は撓みやねじれを生じて整列状態がみだれて引き揃えられた平面から逸脱しやすいため、各治具の間に治具とは別に押圧する手段などを設けて、引き揃えた平面に向けて押圧して繊維を平面に整列した状態を維持することが望ましい。
A method for producing the bent prepreg of the present invention;
(1) The reinforcing fiber bundles are aligned in the longitudinal direction so as to be flat, and are clamped by a jig over the entire width at right angles to the longitudinal direction and fixed so as not to be displaced in the longitudinal direction.
Each jig moves relative to each other by the bending amplitude at right angles to the longitudinal direction, and at the same time, forms a bending with a predetermined amplitude and periodic interval by filling the length, and impregnating with resin. Fix to the bent state. Since the bending period forms a peak and a valley with two adjacent jigs, a pair of jigs form one cycle of bending.
For the resin to be impregnated, the reinforcing fiber bundles are preliminarily arranged in a sheet shape, the material impregnated with the resin is sandwiched and fixed with a jig, softened by heating, bent, cooled and solidified, and fixed in that state. Alternatively, it may be applied to a jig and softened by heating to bend, or may be impregnated with a heat-melted resin after the reinforcing fibers are bent. Further, a fibrous resin or a sheet-like resin may be added along the fiber bundle, or a powdery resin may be attached and coated.
In order to perform the bending operation of the reinforcing fiber, it is necessary to form a slack necessary for bending by narrowing the longitudinal interval between the jigs sandwiching the reinforcing fiber. As a result, the alignment state is found and it is easy to deviate from the aligned plane, so that a means for pressing separately from the jig is provided between each jig, and the fibers are pressed by pressing toward the aligned plane. It is desirable to maintain an aligned state.

(2) また、他の製造方法として、
平面となるように引き揃えた繊維束に対して複数の治具で屈曲角度を持たせて所定の間隔で挟持固定し、これらの治具両端を2本の平行ガイド間にまたがってスライド可能とし、平行ガイドを屈曲角度で方向を変える屈曲したコースを経由させることによって、繊維束に屈曲を付与する。
平行ガイドの屈曲部を経由した治具は繊維束の長手方向に垂直となり、治具に固定された繊維束はそれぞれの治具毎に平行ガイドのコースの屈曲角度に相当する屈曲を付与される。
各治具は平行ガイドに沿ってスライド移動して屈曲部を経由することによって、各繊維束は平行ガイドのコースの屈曲角度に応じた屈曲を付与されると同時に、各治具の間の繊維束は屈曲角度に応じて繊維の屈曲に必要なたるみを形成する。
繊維束はこの屈曲を付与した状態で樹脂を固化させてその状態で固定する。
なお、この屈曲操作の際に繊維束の撓み、ねじれによる繊維のずれや重なりの発生を抑止するため治具の間の繊維束を平面状に押圧することが好ましいことは、前記の製造方法と同様である。
また、強化繊維の樹脂による含浸、固定操作も前記の製造方法と同様でよい。
(2) As another manufacturing method,
The fiber bundles aligned so as to be flat are fixed with a plurality of jigs with a bending angle at predetermined intervals, and both ends of these jigs can be slid across two parallel guides. The fiber bundle is bent by passing the parallel guide through a bent course that changes the direction at the bending angle.
The jig passing through the bending portion of the parallel guide is perpendicular to the longitudinal direction of the fiber bundle, and the fiber bundle fixed to the jig is given a bending corresponding to the bending angle of the course of the parallel guide for each jig. .
As each jig slides along the parallel guide and passes through the bent portion, each fiber bundle is bent according to the bending angle of the course of the parallel guide, and at the same time, the fibers between the jigs. The bundle forms a slack necessary for bending the fiber according to the bending angle.
The fiber bundle is fixed in this state by solidifying the resin in a state where this bending is applied.
Note that it is preferable to press the fiber bundle between the jigs flatly in order to suppress the occurrence of fiber deviation and overlap due to bending and twisting of the fiber bundle during the bending operation, It is the same.
Further, the impregnation and fixing operations of the reinforcing fibers with the resin may be the same as the above manufacturing method.

(1)一般に流通する強化繊維のプリプレグシートを三次元曲面に沿った変形をさせる場合、繊維の伸びに対する抵抗が曲面に沿った変形を阻害する。このため、曲面形状を有する立体に成形する際は、曲率の大きなところではシートを小片に切断し、小片のシートを曲面に沿った形状に積層する必要があり、これらの積層を伴う作業に多大な労力を要する。
本発明の屈曲強化繊維プリプレグを利用したプリプレグシートはそれ一枚でも、数枚方向を変えて積層したものでも、三次元形状に沿った変形が容易であり、曲面形状を有する部品製造に適用することにより、部品成型コストの低減化と成形加工の迅速化が図れる。
(2)製造設備の単純化、低コスト化
以上の物理的および経済的効果により、本発明は、良好な曲面を有し強化繊維配向の均一性が良好である優れた工業的品質の複合材料部材の成型が可能である。
特に、本発明により得られる熱可塑性樹脂プリプレグは、従来の熱可塑性樹脂プリプレグと異なり、小さな曲率半径を有する型に入れて熱圧成形することにより種々の形状の複合材構造物に成形することができる。
(1) When a prepreg sheet of reinforcing fiber that is generally distributed is deformed along a three-dimensional curved surface, resistance to the elongation of the fiber inhibits deformation along the curved surface. For this reason, when forming into a three-dimensional shape having a curved surface, it is necessary to cut the sheet into small pieces where the curvature is large, and to stack the small pieces of sheets into a shape along the curved surface. Requires a lot of effort.
The prepreg sheet using the bending reinforcing fiber prepreg of the present invention can be easily deformed along a three-dimensional shape, even if it is a single sheet or a laminate of several sheets with different directions, and can be applied to manufacturing a part having a curved surface shape. As a result, it is possible to reduce the part molding cost and speed up the molding process.
(2) Simplification of production equipment and cost reduction Due to the above physical and economic effects, the present invention provides an excellent industrial quality composite material having a good curved surface and good uniformity of reinforcing fiber orientation. The member can be molded.
In particular, unlike conventional thermoplastic resin prepregs, the thermoplastic resin prepreg obtained by the present invention can be molded into composite structures of various shapes by hot pressing into a mold having a small radius of curvature. it can.

図1は、本発明の屈曲繊維強化プリプレグしートの構造を示す概念図である。FIG. 1 is a conceptual diagram showing the structure of a bent fiber reinforced prepreg sheet of the present invention. 図2(実施例1)は、繊維束を挟持固定する治具を操作して屈曲を付与する方法を示す。FIG. 2 (Example 1) shows a method of bending by operating a jig for sandwiching and fixing a fiber bundle. 図3(実施例1)は、図2に示す屈曲付与工程の詳細を示す。FIG. 3 (Example 1) shows details of the bending process shown in FIG. 図4は、図3の工程の挟持治具の操作の詳細を示す。FIG. 4 shows details of the operation of the clamping jig in the step of FIG. 図5は、(実施例2)繊維束の固定治具を屈曲したコースを経由する平行ガイドに沿って移送することによって屈曲を付与する方法を示す。FIG. 5 shows a method of imparting bending by transferring the fixing jig for the fiber bundle along a parallel guide passing through a bent course (Example 2). 図6は、連続的に屈曲を付与する装置の概念図を示す。FIG. 6 shows a conceptual diagram of an apparatus for continuously applying bending. 半波長位相の異なる屈曲プリプレグシートを積層した状態を示す。The state which laminated | stacked the bending prepreg sheet | seat from which a half wavelength phase differs is shown.

[屈曲プリプレグの製造方法1]
図2は、屈曲繊維強化プリプレグの製造方法を示す。
図2において、一本の繊維束ないし複数本の繊維束6を長手方向に引き揃え、繊維の長手方向と直角に、かつ平行に複数が配置された棒状の挟持治具7、・・・によって繊維束を挟持して、固定する。これらの繊維束は治具により幅広にかつ治具に沿って線状に挟持され、所定の間隔9で固定される。
治具7を繊維長手方向に沿って移動させ、これと同期して隣接する治具7を1つおきに繊維の長手方向と垂直方向に移動8させて繊維束を屈曲させると共に隣接する治具の間隔9を繊維束の屈曲角度に応じて狭める(間隔10)。
この時、後続する治具7、・・・も同期して同じだけ繊維束の長手方向に平行移動させる。
このように、繊維束を挟持固定した治具を一つ置きに繊維に対して直角方向に屈曲の振幅分に応じて移動させると共に間隔を狭めて移動し、同時に隣接する治具を同期して繊維長手方向に移動することにより、各治具間の繊維束を屈曲させる。
[Production method 1 of bent prepreg]
FIG. 2 shows a method for producing a bent fiber reinforced prepreg.
In FIG. 2, a single fiber bundle or a plurality of fiber bundles 6 are aligned in the longitudinal direction, and a plurality of rod-shaped clamping jigs 7 are arranged perpendicular to and parallel to the longitudinal direction of the fibers. Clamp the fiber bundle and fix it. These fiber bundles are held in a wide line by the jig and linearly along the jig, and are fixed at a predetermined interval 9.
The jig 7 is moved along the longitudinal direction of the fiber, and every other adjacent jig 7 is moved 8 in the direction perpendicular to the longitudinal direction of the fiber in synchronism with this to bend the fiber bundle and adjacent jigs. Is narrowed according to the bending angle of the fiber bundle (interval 10).
At this time, the following jigs 7 are also moved in parallel in the longitudinal direction of the fiber bundle in synchronization.
In this way, every other jig that holds and fixes the fiber bundle is moved in a direction perpendicular to the fiber in accordance with the amount of bending, and the gap is narrowed and moved at the same time. The fiber bundle between the jigs is bent by moving in the fiber longitudinal direction.

また、この繊維束の屈曲操作に伴って屈曲部位の繊維が撓み、ねじれるなどして整列状態が乱れるのを防ぐため、別途設けた整列治具により屈曲部位の繊維束を配列面に向けて押圧して張力を負荷しながら整列させて配列状態を維持する。
屈曲操作後、繊維束を含浸樹脂により屈曲状態を固定するが、最終的に屈曲操作後のプリプレグの強化繊維をその屈曲状態を維持された状態に維持できればよいので、これらの樹脂は、予め繊維束に含浸させておいたり、或いは屈曲を付与して後含浸させてもよいが、粘度の高い熱可塑性樹脂などは予め整列させた繊維束に含浸させた樹脂プリプレグとしておいて屈曲を付与する工程で加熱軟化するとよい。
また、繊維束に樹脂を含浸させる方法として、治具に付着させておいたり、強化繊維束に沿って繊維状、シート状或は粉粒状等の形態で沿わせておいて屈曲操作時に加熱溶融して軟化させてもよく、また、屈曲操作後含浸させて固定してもよい。
なお、装置からのプリプレグ取り出しを容易にするためには溶融軟化した樹脂に接する治具などの部位に予め離型紙ないし離型剤を塗布するとよい。
In addition, in order to prevent the fibers in the bent portion from being bent and twisted due to the bending operation of the fiber bundle, the fiber bundle at the bent portion is pressed toward the arrangement surface by an alignment jig provided separately. Then, the alignment state is maintained by applying the tension.
After the bending operation, the fiber bundle is fixed in a bent state with an impregnating resin, but it is only necessary that the reinforcing fiber of the prepreg after the bending operation can be maintained in a state in which the bent state is maintained. The bundle may be impregnated or may be post-impregnated by imparting a bend, but a high viscosity thermoplastic resin or the like is a step of imparting a bend as a resin prepreg impregnated in a pre-aligned fiber bundle It is good to soften by heating.
Also, as a method of impregnating the fiber bundle with resin, it is attached to a jig, or along the reinforcing fiber bundle in the form of a fiber, sheet or powder, etc., and heated and melted during the bending operation. It may be softened, or may be impregnated and fixed after the bending operation.
In order to facilitate the removal of the prepreg from the apparatus, a release paper or a release agent may be applied in advance to a part such as a jig that contacts the melt-softened resin.

図3に上記製造方法の詳細を工程を追って示す。
炭素繊維束6を図右方から送り、治具7、7−1,7−2、・・・により表裏面から挟持して繊維がずれないように保持し、一定の間隔9を維持する(図3−A)。
次いで、整列治具11、・・・をこれらの挟持治具の間に配置して押圧し、繊維の整列状態がずれないようにぴんと張った状態を維持して挟持治具の間隔を屈曲の半波長分狭める(図3−B)。
一対の整列治具とその間に位置する挟持治具を図の下方に屈曲の振幅分垂直に移動させる。このとき、繊維6は屈曲変形を付与され、同時に整列治具は押し戻されて繊維束の撓みは復元する(図3−C)。
挟持治具の狭められた間隔10が屈曲変形の半波長であり、挟持治具及び押圧治具の垂直移動分8が屈曲の振幅となる。
炭素繊維に屈曲変形を付与する工程は、繊維束をこれらの工程にしたがって移動させ、同時に挟持治具及び押圧治具を図の右側から供給して前記の操作を繰返せばよい。
FIG. 3 shows the details of the manufacturing method step by step.
The carbon fiber bundle 6 is fed from the right side of the figure and is held from the front and back surfaces by jigs 7, 7-1, 7-2,... FIG. 3-A).
Next, the alignment jigs 11,... Are placed between these clamping jigs and pressed to maintain the tensioned state so that the fiber alignment state does not deviate, and the interval between the clamping jigs is bent. Narrow by half wavelength (FIG. 3-B).
The pair of alignment jigs and the holding jig positioned between them are moved vertically downward in the figure by the bending amplitude. At this time, the fiber 6 is bent and deformed, and at the same time, the alignment jig is pushed back to restore the bending of the fiber bundle (FIG. 3C).
The narrowed interval 10 of the clamping jig is a half wavelength of bending deformation, and the vertical movement 8 of the clamping jig and the pressing jig is the bending amplitude.
The step of imparting bending deformation to the carbon fiber may be performed by moving the fiber bundle according to these steps, and simultaneously supplying the clamping jig and the pressing jig from the right side of the drawing and repeating the above operation.

以上の屈曲付与工程で挟持治具を平行移動させながら一つ置きに繊維に垂直方向に移動させるための機構について、平行ガイドと挟持治具とからなる構造の1例を図4に示す。
プリプレグの移動方向(繊維の長手方向)に対して垂直に挟持治具が一定間隔で配列され、プリプレグを上下から挟持する。図では上側の幅の広い挟持治具に対して下側の幅の狭い、厚さに大小を設けた挟持治具が用いられている(X−Y断面参照)。
図では整列治具11が省略されているが、挟持治具に連動して以下の動作を行う。
挟持治具は図の上下に配置された平行ガイド14,15に沿って、プッシャー(押し棒)12によって図示しないスペーサーを介してその間隔を維持しながら、左方に向けて移送される。
下側の挟持治具は一つ置きに厚さが異なり(例:20mm、30mm)、その厚い方の挟持治具はその厚さの差分の段差が設けられている(D断面及びC断面参照)。
図の左方に示すようにこれらの挟持治具が平行ガイド上に乗せられた状態で左方に移送されると、厚さの薄い挟持治具はそのまま平行ガイド上を移送される(図D断面、及びA断面、)が、厚さのある挟持治具は図の上側の平行ガイド14の下側に突出部が、図の下側の平行ガイド15にはこれに対応して凹溝部が設けられており、その厚み部分の段差部がこれらの突出部と凹溝部にガイドされて(図C断面、及びB断面)、その厚さの差分押し下げられてプリプレグを屈曲させる。
FIG. 4 shows an example of a structure comprising a parallel guide and a clamping jig for a mechanism for moving the clamping jig in the vertical direction to every other fiber while moving the clamping jig in the above-described bending process.
Holding jigs are arranged at regular intervals perpendicular to the moving direction of the prepreg (the longitudinal direction of the fiber), and hold the prepreg from above and below. In the drawing, a clamping jig having a small width on the lower side and a large or small thickness is used with respect to the clamping jig having a wider upper side (see the XY cross section).
Although the alignment jig 11 is omitted in the figure, the following operation is performed in conjunction with the clamping jig.
The holding jig is moved toward the left along the parallel guides 14 and 15 arranged on the upper and lower sides of the drawing while maintaining the interval through a spacer (not shown) by a pusher (push bar) 12.
Every other lower clamping jig has a different thickness (for example, 20 mm and 30 mm), and the thicker clamping jig is provided with a step difference in thickness (see D and C cross sections). ).
As shown on the left side of the figure, when these clamping jigs are transferred to the left while being placed on the parallel guide, the thin clamping jig is transferred on the parallel guide as it is (FIG. D). The holding jig having a thick cross section and a cross section A) has a protruding portion on the lower side of the parallel guide 14 on the upper side of the drawing, and a concave groove portion on the parallel guide 15 on the lower side of the drawing. The step portion of the thickness portion is guided by the projecting portion and the concave groove portion (C and B cross sections in FIG. C), and the thickness difference is pushed down to bend the prepreg.

[屈曲プリプレグの製造方法2]
また、図5に平行ガイドの屈曲したコースに沿って繊維束を挟持した治具を移動させて屈曲を付与する製造方法の詳細を示す。
長手方向に繊維を引き揃えた繊維束19に対して付与すべき屈曲角度Θに相当する角度とした挟持治具7−1,7−2、・・・により所定の間隔で挟持固定する。
これらの繊維束を挟持した挟持治具を移行する経路を規定するガイドは、治具の両端を嵌合してスライド可能な2本の平行なガイド14、15からなり、治具の移動方向17に沿って繊維束の導入側(右方)では繊維に平行に、すなわち治具に対して角度Θで配置され、次いで、角度Θで屈曲した方向18に向けて方向を変えて配置される。
挟持治具と共に繊維束が移送されて移動方向を17から屈曲角度Θを経て移動方向18に向かうと挟持治具に固定された繊維束は治具間で屈曲に必要なたるみを生じて屈曲角度Θで屈曲させられ、所定の振幅、角度の屈曲が付与される。
この場合も各挟持治具間には所定の間隔を維持するスペーサー及び繊維束の繊維の整列状態を維持するための整列治具を配置することは、前記の方法と同様である。
[Bending prepreg manufacturing method 2]
FIG. 5 shows details of a manufacturing method in which a bending is performed by moving a jig holding a fiber bundle along a bent course of a parallel guide.
Are held and fixed at predetermined intervals by holding jigs 7-1, 7-2,... Having an angle corresponding to the bending angle Θ to be given to the fiber bundle 19 in which fibers are aligned in the longitudinal direction.
A guide for defining a path for moving the holding jig holding these fiber bundles is composed of two parallel guides 14 and 15 which can be slid by fitting both ends of the jig. Is arranged parallel to the fiber on the introduction side (right side) of the fiber bundle, that is, at an angle Θ with respect to the jig, and then changed in the direction toward the direction 18 bent at the angle Θ.
When the fiber bundle is transferred together with the clamping jig and moves in the moving direction 17 through the bending angle Θ toward the moving direction 18, the fiber bundle fixed to the clamping jig generates a slack necessary for bending between the jigs, and the bending angle. It is bent at Θ, and bending of a predetermined amplitude and angle is given.
Also in this case, a spacer for maintaining a predetermined distance between the holding jigs and an alignment jig for maintaining the alignment state of the fibers of the fiber bundle are arranged in the same manner as described above.

これらの繊維束の屈曲状態は、屈曲の周期をサインカーブと同様に山と谷の1周期で360°として、屈曲を付与する際の力のかかり具合から、一周期の0°〜180°と180°〜360°で屈曲の形が少し異なるが、複数のプリプレグを疑似等方性に積層して利用することを考慮すると、形の異なることによる積層材への強度低下の影響は少なく、一周期の長さを短くできることにより疑似等方性積層材の局所特性ずれを少なくできる。   The bending state of these fiber bundles is set to 360 ° in one cycle of peaks and troughs as in the case of the sine curve, and from 0 ° to 180 ° in one cycle because of the force applied when bending is applied. The bending shape is slightly different between 180 ° and 360 °. However, considering the use of a plurality of prepregs laminated in a pseudo-isotropic manner, there is little influence on strength reduction due to the difference in shape. By reducing the length of the period, the local characteristic deviation of the pseudo-isotropic laminate can be reduced.

図6に屈曲強化繊維プリプレグを連続的に製造する装置全体概念図を示す。
繊維束を挟持する挟持治具55,56は、上下スプロケット53,54でそれぞれ駆動される上下タイミングベルト57、58表面に固定され、図の左方から送られる、引き揃えられた繊維束(プリプレグ)51はこれらの挟持治具間で挟持固定されて図の表裏側に配置された一対の平行ガイド(図略)に沿って整列治具61,62を配置した屈曲加工部に送られる。
平行ガイドは屈曲加工部で屈曲角度分方向を変え、挟持治具は繊維束に所定の屈曲を付与する。
装置左方では屈曲を付与されたプリプレグ52を工具63で取り外し、含浸させた樹脂を硬化(熱軟化性樹脂の場合)させて屈曲加工工程を完了する。
FIG. 6 shows an overall conceptual diagram of an apparatus for continuously producing a bending reinforcing fiber prepreg.
The clamping jigs 55 and 56 for clamping the fiber bundle are fixed to the surfaces of the upper and lower timing belts 57 and 58 driven by the upper and lower sprockets 53 and 54, respectively, and are sent from the left side of the drawing. ) 51 is clamped and fixed between these clamping jigs and sent to a bending portion where alignment jigs 61 and 62 are arranged along a pair of parallel guides (not shown) arranged on the front and back sides of the figure.
The parallel guide changes the direction of the bending angle at the bending portion, and the holding jig imparts a predetermined bending to the fiber bundle.
On the left side of the apparatus, the bent prepreg 52 is removed with a tool 63, and the impregnated resin is cured (in the case of a thermosoftening resin) to complete the bending process.

実施例1及び2の製造方法において、繊維束の屈曲した状態に固定する含浸樹脂について、次のような態様とすることができる。
繊維束に屈曲を付与する前の繊維束を引き揃えるに際して、引き揃えられた繊維束の上下両面ないし片面に樹脂シートを添え、パウダー状の樹脂が繊維間に分散されたもの、樹脂繊維とコミングルされたもの、各繊維束を樹脂シートや繊維で鞘のように包んでいるもの、各単繊維に樹脂がコートされたもの、それらのいくつかが同時に繊維束に施されたものとすることができる。
これらの態様においては、樹脂により各単繊維間の相対移動は束縛されていず、繊維束が屈曲できる樹脂の状態であればよい。挟持治具によって上下から押さえ繊維束を固定する際に、治具を適切な温度に加熱して固定される部分の樹脂を溶融し、押し付けられた部分の繊維の相対移動を止めることにより、樹脂がない場合と比較してより小さな押しつけ力により樹脂の動きが固定できる。屈曲状態の固定にはその屈曲部を加熱・加圧することにより樹脂を含浸し、冷却することで可能である。
In the manufacturing methods of Examples 1 and 2, the impregnating resin that is fixed in a bent state of the fiber bundle can be configured as follows.
When aligning the fiber bundle before bending the fiber bundle, a resin sheet is attached to both the upper and lower surfaces or one surface of the aligned fiber bundle, and a powdery resin is dispersed between the fibers, resin fiber and commingle It is assumed that each fiber bundle is wrapped like a sheath with a resin sheet or fiber, each single fiber is coated with resin, and some of them are applied to the fiber bundle at the same time it can.
In these embodiments, the relative movement between the single fibers is not constrained by the resin, and any resin may be used as long as the fiber bundle can be bent. When fixing the fiber bundle from above and below by the clamping jig, the resin is melted at the appropriate temperature by heating the jig to melt the resin, and the relative movement of the pressed part of the fiber is stopped to stop the resin. The movement of the resin can be fixed by a smaller pressing force compared to the case where there is no. The bent state can be fixed by impregnating the resin by heating and pressurizing the bent portion and cooling.

引き揃えられた繊維束に樹脂を伴わない状態の場合は、治具で上下から押さえて繊維束を固定する際に、治具に樹脂を塗布して適切な温度に加熱して軟化した樹脂で繊維の相対移動を止めることもできる。樹脂がない場合と比較してより小さな押しつけ力により樹脂の動きが固定できる。屈曲の固定にはその屈曲部を樹脂含浸後、冷却することで可能である。
また、引き揃えられた繊維束に樹脂が予め含浸されたプリプレグシートの場合は、加熱により樹脂を軟化させ、治具で上下から押さえて繊維束を固定する。屈曲の固定は樹脂を冷却することで可能である。
If the bundle of fibers is not accompanied by resin, when fixing the fiber bundle by pressing it from above and below with a jig, apply resin to the jig and heat it to an appropriate temperature to soften the resin. The relative movement of the fibers can also be stopped. The movement of the resin can be fixed by a smaller pressing force compared to the case without the resin. The bent portion can be fixed by cooling the bent portion after impregnation with resin.
In the case of a prepreg sheet in which the aligned fiber bundle is pre-impregnated with resin, the resin is softened by heating, and the fiber bundle is fixed by pressing from above and below with a jig. The bending can be fixed by cooling the resin.

[熱硬化性樹脂プリプレグの製造]
ステップ1
幅7mm、厚さ0.09mm、繊維数12,000本の炭素繊維束10本を引き揃え、幅70mmの炭素繊維シートを作成する。
125℃硬化用プリプレグに適用されるエポキシ樹脂と硬化剤との混合物を70℃に加温し、約0.08mmの厚さでコート紙表面に塗布する。
該エポキシ樹脂を塗布したコート紙と上記引き揃えられた炭素繊維シートを重ねてロール間に通し、樹脂を含浸させてプリプレグを作成する
[Manufacture of thermosetting resin prepreg]
Step 1
Ten carbon fiber bundles having a width of 7 mm, a thickness of 0.09 mm, and a number of fibers of 12,000 are aligned to produce a carbon fiber sheet having a width of 70 mm.
A mixture of an epoxy resin and a curing agent applied to a prepreg for curing at 125 ° C. is heated to 70 ° C. and applied to the coated paper surface at a thickness of about 0.08 mm.
The coated paper coated with the epoxy resin and the aligned carbon fiber sheet are overlapped and passed between rolls, and the resin is impregnated to prepare a prepreg.

ステップ2
上記プリプレグを上下方向から挟持する治具として、断面:6mm×10mmの方形、長さ300mmのステンレス製角棒を使用し、各角棒は、プリプレグと接する箇所を離型効果を有する20μm厚のプラスチックフィルムで被包した。
各治具両端には平行ガイドに係合する溝が設けられている。
長さ50cmの前記プリプレグを60℃に加温し、一対の挟持治具の6mm幅の挟持面で12mm間隔で両面から挟圧し、一対の挟持治具両端をクリップで固定し、さらに12mm×10mm×15mmのステンレス製ブロックを各挟持治具間に配置して12mm間隔を維持した。
挟持治具とプリプレグの長手方向との角度は45°とした。
Step 2
As a jig for sandwiching the prepreg from above and below, a stainless steel square bar having a cross section of 6 mm × 10 mm and a length of 300 mm is used. Each square bar has a 20 μm-thickness that has a mold release effect at a portion in contact with the prepreg. Encapsulated with plastic film.
Grooves engaged with the parallel guides are provided at both ends of each jig.
The prepreg having a length of 50 cm is heated to 60 ° C., clamped from both sides with a 6 mm-wide clamping surface of a pair of clamping jigs, and fixed at both ends of the pair of clamping jigs with clips, and further 12 mm × 10 mm A 15 mm stainless block was placed between the holding jigs to maintain a 12 mm interval.
The angle between the holding jig and the longitudinal direction of the prepreg was 45 °.

なお、前記挟持治具でプリプレグを押圧・挟持するための繊維の長手方向に沿う幅は、押圧力が繊維に伝達するのにプリプレグの厚さの約2倍の長さが必要である。炭素繊維の場合、開繊繊維で十分に広げられた繊維束でも最少20μm程度となる。そこから計算すると、40〜50μmの押さえ幅が必要となる。 繊維の特性にもよるが短繊維の破断最小曲げ半径で発生するひずみの1/10程度とし強度低下を避けると、最小曲げ半径は2mm程度となる。以上より本プリプレグ製造方法での繊維屈曲最小波長は40μm+4mmで押さえ幅40μmとなる。   The width along the longitudinal direction of the fiber for pressing and clamping the prepreg with the clamping jig needs to be about twice the thickness of the prepreg so that the pressing force is transmitted to the fiber. In the case of carbon fibers, even a fiber bundle that is sufficiently spread with spread fibers is at least about 20 μm. If it calculates from there, the pressing width of 40-50 micrometers will be needed. Although it depends on the characteristics of the fiber, if the strain is reduced to about 1/10 of the strain generated at the minimum bending radius of short fibers, the minimum bending radius is about 2 mm. As described above, the minimum fiber bending wavelength in this prepreg manufacturing method is 40 μm + 4 mm and the pressing width is 40 μm.

ステップ3
45°の傾斜角度から0°の方向に移動方向を変える平行ガイドに上記プリプレグを固定した挟持治具の両端の溝を係合し、平行ガイドに沿って挟持治具で支持されたプリプレグを移送した。
挟持治具の移動に伴い、平行ガイドの45°区間から0度区間へと角度を変える箇所で
プリプレグが屈曲変形を受ける際に撓み変形してプリプレグの平面から逸脱することを抑制するために8mm×8mm×150mmのステンレス製角棒をプリプレグ面を押圧する整列治具として各挟持治具間のプリプレグ上に置いてその自重でプリプレグを押圧して張力を負荷し、下方から加熱して60℃に保った。(図5参照)
プリプレグを屈曲したのち、冷却しつつ移送し、固化した段階でプリプレグから挟持治具を取り外し、室温下でプリプレグを両面から平板で押圧加工して平滑に仕上げた。
プリプレグの移送に連れて、挟持治具を追加してプリプレグを挟持固定して順次前記の平行ガイドの傾斜区間に導入して送り込むことにより連続的に屈曲加工を行った。
Step 3
Engage the grooves at both ends of the holding jig that fixed the prepreg with a parallel guide that changes the direction of movement from 45 ° to 0 °, and transfer the prepreg supported by the holding jig along the parallel guide. did.
8 mm to prevent the prepreg from bending and deviating from the plane of the prepreg when the prepreg undergoes bending deformation at a position where the angle of the parallel guide changes from the 45 ° section to the 0 ° section as the clamping jig moves. A stainless steel square bar measuring 8 mm x 150 mm is placed on the prepreg between the holding jigs as an alignment jig that presses the prepreg surface, presses the prepreg with its own weight, applies tension, and heats from below to 60 ° C. Kept. (See Figure 5)
After bending the prepreg, the prepreg was transferred while being cooled, and when it was solidified, the clamping jig was removed from the prepreg, and the prepreg was pressed with a flat plate from both sides at room temperature to finish it smoothly.
As the prepreg was transferred, a clamping jig was added to clamp and fix the prepreg, and the prepreg was successively introduced into the inclined section of the parallel guide and fed to continuously perform bending.

[熱硬化性樹脂屈曲プリプレグの伸張性評価]
上記の工程で製造したプリプレグを長さ約20cmに切断し、両端を治具で固定して、平板上で上下から離型紙で挟んで2kgの力でプリプレグに一様圧が負荷されるように押圧した。
これを80℃に加熱し、プリプレグ両端に固定された治具を介して引っ張り、プリプレグを伸張させた。プリプレグは、ほとんど抵抗なくまっすぐ伸び、プリプレグの繊維には著しい乱れは見られず、ほぼ一様に伸張した。
[Extension evaluation of thermosetting resin bent prepreg]
The prepreg manufactured in the above process is cut to a length of about 20 cm, both ends are fixed with a jig, and sandwiched between release papers from above and below on a flat plate so that a uniform pressure is applied to the prepreg with a force of 2 kg. Pressed.
This was heated to 80 ° C. and pulled through jigs fixed to both ends of the prepreg to extend the prepreg. The prepreg stretched straight with almost no resistance, and the prepreg fibers did not show any significant disturbance and stretched almost uniformly.

半波長差で位相の相違した積層屈曲プリプレグの伸張性評価(図7参照)。
約20cmの長さに切断した2枚のプリプレグを屈曲波長の半分の長さ約9mmずらして積層し、上記と同様の条件で伸張させた。
プリプレグは、ほとんど抵抗なく真っ直ぐ伸張し、プリプレグの繊維に乱れはみられず、ほぼ一様に伸張した。
Evaluation of extensibility of laminated bent prepreg having a phase difference due to a half-wavelength difference (see FIG. 7).
Two prepregs cut to a length of about 20 cm were stacked while being shifted by about 9 mm, which is half the bending wavelength, and stretched under the same conditions as described above.
The prepreg stretched straight with almost no resistance, and the prepreg fibers were not disturbed and stretched almost uniformly.

[屈曲プリプレグの幅方向(90度方向)の伸張性評価]
上記の工程で製造したプリプレグを長さ約20cmに切断し、20cm×10.7cmとした2枚の屈曲プリプレグを隙間がないように平面上に並べて、約20cm×20.7cmのシートとしたものを6枚作成し、各2枚づつ屈曲波長を半波長ずらして積層した積層プリプレグを3枚作成した。
次いで、これらの積層プリプレグを屈曲プリプレグの長手方向を0度、90度、0度で積層して、前記ステップ5と同様の条件で2kgの力で押圧しながら80℃で0度方向へ伸びが20%になるまで伸張させた。
屈曲プリプレグはほとんど抵抗なく真っ直ぐ伸張し、繊維は乱れなくほぼ一様に伸張した。
[Evaluation of extensibility in the width direction (90 degree direction) of bent prepreg]
The prepreg produced in the above process is cut into a length of about 20 cm, and two bent prepregs having a size of 20 cm × 10.7 cm are arranged on a plane so as not to have a gap, thereby forming a sheet of about 20 cm × 20.7 cm. 6 were prepared, and 3 laminated prepregs were produced by laminating the bending wavelength by half a wavelength for each 2 sheets.
Next, these laminated prepregs are laminated at 0 °, 90 °, 0 ° in the longitudinal direction of the bent prepreg, and stretched in the 0 ° direction at 80 ° C. while pressing with a force of 2 kg under the same conditions as in Step 5. Stretched to 20%.
The bent prepreg stretched straight with almost no resistance, and the fiber stretched almost uniformly with no disturbance.

[熱可塑性樹脂屈曲プリプレグの製造]
ステップ1
Ten Cate社の品番TC910のPA6をマトリックス樹脂とする炭素繊維プリプレグから7cm幅の炭素繊維プリプレグシートを切り出した。
[Manufacture of thermoplastic resin bent prepreg]
Step 1
A carbon fiber prepreg sheet having a width of 7 cm was cut out from a carbon fiber prepreg having a matrix resin of PA6 of Ten Cate, product number TC910.

ステップ2
上記プリプレグを上下方向から挟持する治具として、断面形状6mm×10mmの方形、長さ30cmのステンレス製角棒を使用し、各治具両端には平行ガイドに係合して移動するための溝が設けた。
上記プリプレグを長さ50cmに切断し、230℃に加熱し、一対の挟持治具の幅6mmの面で上下から12mm間隔で挟持治具とプリプレグの長手方向の角度を45°となるように挟持固定し、挟持治具の両端をクリップで固定してプリプレグが挟持治具に対し動くことを防止した。
12mm×10mm×15mmのステンレス製のブロックを介して各挟持治具間の間隔を12mmとなるよう維持した。約230℃に加熱した挟持治具を使用した。プリプレグが屈曲されるまで下部から遠赤外線ヒーターでプリプレグの温度低下を防止した。
Step 2
As a jig for clamping the prepreg from above and below, a square bar with a cross-sectional shape of 6 mm x 10 mm and a stainless steel square bar with a length of 30 cm are used, and grooves for engaging and moving parallel guides at both ends of each jig. Provided.
The prepreg is cut to a length of 50 cm, heated to 230 ° C., and clamped so that the angle in the longitudinal direction of the clamping jig and the prepreg is 45 ° at intervals of 12 mm from the top and bottom on the 6 mm wide surface of the pair of clamping jigs. It fixed and the both ends of the clamping jig were fixed with the clip, and it prevented that a prepreg moved with respect to the clamping jig.
The interval between the holding jigs was maintained to be 12 mm through a 12 mm × 10 mm × 15 mm stainless steel block. A clamping jig heated to about 230 ° C. was used. Until the prepreg was bent, the temperature of the prepreg was prevented from lowering by a far infrared heater from the bottom.

ステップ3
挟持治具の溝を平行ガイドに係合させ、平行ガイドに沿って挟持治具で挟持したプリプレグを移動させた。
挟持治具の移動に従い、平行ガイドに挟持治具を導入した45°区間から0度区間に移行する箇所でプリプレグを230℃に加熱し、約230℃に加熱した8mm×8mm×150mmのステンレス製の角棒の自重でプリプレグを上から押圧して繊維に張力を負荷した状態でプリプレグを屈曲させ、屈曲したプリプレグを冷やしながら移動して固化させ、挟持治具をプリプレグから取り外した。
その後、屈曲したプリプレグを230℃に加熱して上下から230℃に加熱した平板で挟んで表面を平滑に仕上げた。
プリプレグの屈曲操作の進行に伴い、新たに挟持治具を追加して平行ガイドの45度区間に向けてプリプレグ長手方向に対して45度の角度、12mm間隔で挟持して、プリプレグを送り込んだ。
Step 3
The groove of the holding jig was engaged with the parallel guide, and the prepreg held by the holding jig was moved along the parallel guide.
According to the movement of the clamping jig, the prepreg is heated to 230 ° C. at the location where the 45 ° section where the clamping jig is introduced into the parallel guide is shifted to 0 ° section, and is heated to about 230 ° C. 8 mm × 8 mm × 150 mm made of stainless steel The prepreg was bent from above by pressing the prepreg with its own weight, and the bent prepreg was bent, moved and solidified while cooling, and the clamping jig was removed from the prepreg.
Thereafter, the bent prepreg was heated to 230 ° C. and sandwiched between flat plates heated to 230 ° C. from the top and bottom to finish the surface smoothly.
With the progress of the prepreg bending operation, a new holding jig was added, and the prepreg was fed toward the 45 degree section of the parallel guide at an angle of 45 degrees with respect to the longitudinal direction of the prepreg at 12 mm intervals.

[熱可塑性樹脂屈曲プリプレグの伸張性評価]
上記で製造したプリプレグを約20cmの長さに切断し、両端を治具で固定し、平板の上で上下から離型紙で挟み、2kgの力でプリプレグに一様圧が負荷されるように押し付けた。これを240℃に加熱してプリプレグの両端に固定された治具で引張りプリプレグを伸長させた。ほとんど抵抗なくプリプレグは真っ直ぐ伸びた。プリプレグの繊維に著しい乱れは見られなかった。
[Evaluation of stretchability of thermoplastic resin bent prepreg]
Cut the prepreg produced above to a length of about 20 cm, fix both ends with a jig, and sandwich it with release paper from above and below on a flat plate and press it so that a uniform pressure is applied to the prepreg with a force of 2 kg. It was. This was heated to 240 ° C. and pulled with a jig fixed to both ends of the prepreg to extend the prepreg. The prepreg stretched straight with almost no resistance. There was no significant disturbance in the prepreg fibers.

[半波長差の積層熱可塑性樹脂屈曲プリプレグの伸長評価(図7参照)]
約20cmの長さに切断した2枚のプリプレグを屈曲波長の半分の長さ約9mmずらして積層したサンプルを作成し、上記と同様に230℃で伸長させた。ほとんど抵抗なくプリプレグはまっすぐのび、プリプレグの繊維に著しい乱れは見られなかった。
[Stretching evaluation of laminated thermoplastic resin bent prepreg with half-wavelength difference (see Fig. 7)]
A sample was prepared by laminating two prepregs cut to a length of about 20 cm while shifting the length of half the bending wavelength by about 9 mm, and stretched at 230 ° C. as described above. The prepreg stretched straight with almost no resistance, and no significant disturbance was observed in the prepreg fibers.

[熱可塑性樹脂屈曲プリプレグの幅方向(90°方向)の伸張性評価]
約20cmの長さに切断した 20cm×10.7cmの屈曲プリプレグ2枚を隙間がないように並べて、約20cm× 20.7cmとしたシートを6枚作成した。
これらの20cm×20.7cmのシート2枚の屈曲波長を半波長ずらして積層した積層プリプレグを3枚作成し、屈曲プリプレグの長手方向を0度、90度、0度の方向を変えて積層したサンプルを作成し、上記と同様にして240℃で0°方向へ伸びが25%になるまで伸長させた。ほとんど抵抗なくプリプレグは伸びた。
[Evaluation of stretchability in the width direction (90 ° direction) of thermoplastic resin bent prepreg]
Two sheets of 20 cm × 10.7 cm bent prepregs cut to a length of about 20 cm were arranged so as not to have a gap, and six sheets of about 20 cm × 20.7 cm were prepared.
Three laminated prepregs were prepared by laminating two of these 20 cm × 20.7 cm sheets with the bending wavelength shifted by a half wavelength, and the longitudinal direction of the bent prepreg was changed to 0 degree, 90 degrees, and 0 degree and laminated. Samples were prepared and extended in the same manner as described above at 240 ° C. in the 0 ° direction until the elongation was 25%. The prepreg stretched with little resistance.

[熱可塑性樹脂屈曲プリプレグの製造]
ステップ1
Ten Cate社の品番TC910のPA6をマトリックス樹脂とする炭素繊維プリプレグから7cm幅の炭素繊維プリプレグシートを切り出した。
[Manufacture of thermoplastic resin bent prepreg]
Step 1
A carbon fiber prepreg sheet having a width of 7 cm was cut out from a carbon fiber prepreg using Ten Cat's product number TC910 PA6 as a matrix resin.

ステップ2
上下からプリプレグを挟持する挟持治具の下側挟持治具として厚さ1mm、長さ30cmのステンレス製フラットバーの20mm幅と30mm幅のものを使用した。上側の挟持治具は6mm×15mm、長さ30cmのステンレス製棒を使用した。各フラットバーは2本の平行ガイドの間に支持されて平行移動し、挟持治具一対ごとにプリプレグの長手方向へ移動して、垂直方向へ所定の距離移動するように動作してプリプレグに周期的な屈曲を付与する構成とした。
ステップ1のプリプレグを長さ50cmに切断し、230℃に加熱して一対の挟持治具の幅1mmの面と上から6mmの面で上下から13mm間隔で挟持治具とプリプレグの長手方向に垂直に挟持し、挟持治具の両端をクリップで固定してプリプレグが挟持治具に対し動かないように固定した。
厚さ8mm×10mm×40mmのステンレス製のブロックを各治具間に介し8mm間隔を維持した。下側挟持治具の形状と平行ガイドの形状により、挟持治具が平行ガイドに沿って移動する際に挟持治具を一対おきにプリプレグの長手方向と垂直方向へ7.5mm移動させてプリプレグに屈曲を付与した。
Step 2
As the lower holding jig for holding the prepreg from above and below, stainless steel flat bars having a thickness of 1 mm and a length of 30 cm and having a width of 20 mm and a width of 30 mm were used. The upper clamping jig used was a 6 mm × 15 mm stainless steel rod having a length of 30 cm. Each flat bar is supported in parallel by two parallel guides, moves in parallel, moves in the longitudinal direction of the prepreg for each pair of clamping jigs, and moves to a predetermined distance in the vertical direction. The configuration is such that a typical bend is imparted.
Cut the prepreg from step 1 to 50 cm in length and heat it to 230 ° C., perpendicular to the longitudinal direction of the clamping jig and the prepreg at a distance of 13 mm from the top and bottom with a 1 mm wide surface and a 6 mm surface from the top. The both ends of the holding jig were fixed with clips so that the prepreg was not moved relative to the holding jig.
A stainless steel block having a thickness of 8 mm × 10 mm × 40 mm was interposed between the jigs, and the interval of 8 mm was maintained. Due to the shape of the lower holding jig and the shape of the parallel guide, when the holding jig moves along the parallel guide, every other pair of holding jigs is moved 7.5 mm in the direction perpendicular to the longitudinal direction of the prepreg. Bending was given.

ステップ3
プッシャーにより平行ガイドに沿って挟持治具で挟持固定したプリプレグを移動させ、
プリプレグを屈曲させる区間では、プリプレグを230℃に加熱し、約230℃に熱した4.5mm×15mm×150mmのステンレス製の角棒の自重でプリプレグを上から押え、挟持治具がプリプレグの長手方向の間隔を狭め、プリプレグの長手方向に対して90°の方向へ移動させた(挟持治具の間隔が13mmから10mmに狭まり、プリプレグの長手方向に対して90度方向へ7.5mm移動)。
さらに挟持治具の間隔が5mmになるように前記ステップ2の8mm×10mm×40mmのブロックを5mm×10mm×40mmのブロックに置き換えた。
プリプレグの屈曲操作後、冷やしながら移動して挟持治具を固化したプリプレグから取り外した。その後、屈曲したプリプレグを230℃に加熱して上下から230℃に加熱した平板で押圧して表面を平滑に仕上げた。
また、プリプレグの屈曲操作の進行に伴い、後方では新たに挟持治具を追加してプリプレグを挟持して平行ガイドに送り込んだ。
Step 3
Move the prepreg clamped by the clamping jig along the parallel guide with the pusher,
In the section where the prepreg is bent, the prepreg is heated to 230 ° C., and the prepreg is pressed from above by the weight of a stainless steel square bar of 4.5 mm × 15 mm × 150 mm heated to about 230 ° C. The direction interval was narrowed and moved in the direction of 90 ° with respect to the longitudinal direction of the prepreg (the interval between the holding jigs was reduced from 13 mm to 10 mm, and moved to 90 ° direction with respect to the longitudinal direction of the prepreg by 7.5 mm) .
Further, the block of 8 mm × 10 mm × 40 mm in Step 2 was replaced with a block of 5 mm × 10 mm × 40 mm so that the interval of the holding jig was 5 mm.
After the bending operation of the prepreg, the nip was removed from the solidified prepreg by moving while cooling. Thereafter, the bent prepreg was heated to 230 ° C. and pressed with a flat plate heated to 230 ° C. from above and below to finish the surface smoothly.
Further, as the prepreg bending operation progressed, a new clamping jig was added at the rear, and the prepreg was clamped and fed to the parallel guide.

[熱可塑性樹脂屈曲プリプレグの伸張性評価]
前記の工程で製造したプリプレグを約20cmの長さに切断し、両端を治具で固定し、平板の上で上下から離型紙で挟み、2kgの力でプリプレグに一様圧が負荷されるように押し付けた。これを230℃に加熱してプリプレグの両端に固定された治具で引張り、プリプレグを伸長させた。ほとんど抵抗なくプリプレグは真っ直ぐ伸びた。プリプレグの繊維に著しい乱れは見られなかった。
[Extension evaluation of thermoplastic resin bent prepreg]
The prepreg manufactured in the above process is cut into a length of about 20 cm, both ends are fixed with a jig, and sandwiched between release papers from above and below on a flat plate so that a uniform pressure is applied to the prepreg with a force of 2 kg. Pressed against. This was heated to 230 ° C. and pulled with a jig fixed to both ends of the prepreg to extend the prepreg. The prepreg stretched straight with almost no resistance. There was no significant disturbance in the prepreg fibers.

[半波長差で積層した積層熱可塑性樹脂屈曲プリプレグの伸長性評価(図7参照)]
前記の工程で製造したプリプレグを約20cmの長さに切断した、2枚のプリプレグを屈曲波長の半分の長さ約11mmずらして積層してサンプルを作成した。
上記サンプルを前記と同様の条件で230℃に加熱して伸長させた。ほとんど抵抗なくプリプレグはまっすぐのび、プリプレグの繊維に著しい乱れは見られなかった。
[Evaluation of extensibility of laminated thermoplastic resin bent prepreg laminated at half-wavelength difference (see Fig. 7)]
The prepreg produced in the above process was cut to a length of about 20 cm, and two prepregs were laminated while being shifted by about 11 mm, which is half the bending wavelength.
The sample was stretched by heating to 230 ° C. under the same conditions as described above. The prepreg stretched straight with almost no resistance, and no significant disturbance was observed in the prepreg fibers.

[熱可塑性樹脂屈曲プリプレグの幅方向(90°方向)評価]
前記の工程で製造したプリプレグを約20cmの長さに切断し
200mm × 77.5mmとした屈曲プリプレグプリプレグ3枚を隙間がないように並べて、約200mm × 217.5mmとしたシートを6枚作成した。
これらの200mm × 217.5mmのシートを2枚づつ屈曲波長を半波長ずらして積層した積層プリプレグを3枚作成した。屈曲プリプレグの長手方向を0度、90度、0度で変えて積層したサンプルを作成した。
上記サンプルを230℃で0°方向へ伸びが25%になるまで伸長させた。ほとんど抵抗なくプリプレグは伸張し、繊維の乱れはほとんど認められなかった。
[Evaluation of width direction (90 ° direction) of thermoplastic resin bent prepreg]
The prepreg produced in the above process was cut into a length of about 20 cm, and three bent prepreg prepregs having a size of 200 mm × 77.5 mm were arranged so as not to have a gap, and six sheets having a size of about 200 mm × 217.5 mm were prepared. .
Three laminated prepregs were prepared by laminating two of these 200 mm × 217.5 mm sheets by shifting the bending wavelength by half a wavelength. Samples were prepared by changing the longitudinal direction of the bent prepreg at 0 degrees, 90 degrees, and 0 degrees.
The sample was stretched at 230 ° C. in the 0 ° direction until the elongation reached 25%. The prepreg stretched with little resistance, and almost no fiber disturbance was observed.

本発明の屈曲繊維強化プリプレグは、従来の繊維強化プリプレグに比較して、鋼板の絞り加工と同様に三次元曲面形状に沿った成形加工が可能であり、強化繊維の強化性能を最大限に発揮することが可能であり、その成形品としての屈曲繊維強化材料は低コストで得られるため、産業上当該分野に大いに貢献し得る。   The bending fiber reinforced prepreg of the present invention can be formed along a three-dimensional curved surface shape as well as the drawing processing of steel sheet, and exhibits the reinforcing performance of the reinforced fiber to the maximum, compared with the conventional fiber reinforced prepreg. Since the bent fiber reinforced material as the molded product can be obtained at low cost, it can greatly contribute to the field in the industry.

1 屈曲の周期(波長)
2 屈曲の振幅
3 屈曲角
4 強化繊維
5 強化繊維の長手方向
6、19、20、51 引き揃えられた炭素繊維束(プリプレグ)
7、7−1、7-2、・・・ 挟持治具
8 挟持治具の垂直移動量
9 治具間隔
10 挟持治具の平行移動後の間隔
11 整列治具
12 プッシャー
13 屈曲角(Θ)
14、15 平行ガイド
16、52 屈曲された炭素繊維束(プリプレグ)
17,18 治具移動方向(平行ガイドのコース)
53,54 上側と下側のスプロケット
55,56上側、下側挟持治具
57,58 上側、下側タイミングベルト
59、60 スプロケットの回転方向
61,62 炭素繊維の屈曲時の撓みなどによる繊維乱れを防止するための押圧治具(整列治具)
63 樹脂含浸された屈曲プリプレグの取外し。

1 Bending period (wavelength)
2 Bending amplitude 3 Bending angle 4 Reinforcing fiber 5 Longitudinal direction of reinforcing fiber 6, 19, 20, 51 Aligned carbon fiber bundle (prepreg)
7, 7-1, 7-2,... Holding jig 8 Vertical movement amount of the holding jig 9 Jig interval 10 Distance after the parallel movement of the holding jig 11 Alignment jig 12 Pusher 13 Bending angle (Θ)
14, 15 Parallel guide 16, 52 Bent carbon fiber bundle (prepreg)
17, 18 Jig movement direction (Parallel guide course)
53, 54 Upper and lower sprockets 55, 56 upper, lower clamping jigs 57, 58 Upper, lower timing belt 59, 60 Sprocket rotation direction 61, 62 Fiber disturbance caused by bending of carbon fiber when bent Pressing jig (alignment jig) to prevent
63 Removal of resin-impregnated bent prepreg.

Claims (13)

連続繊維を用いた強化繊維樹脂プリプレグにおいて、
各強化繊維を平面内で長手方向に沿って平行にかつ整列して引き揃えた状態で一周期内で各単繊維の屈曲形状を等しく揃えて屈曲せしめ、マトリックス樹脂によって固定したことにより、
大きなせん断変形を可能としたことを特徴とする深絞り加工可能な強化繊維樹脂プリプレグ。
In the reinforced fiber resin prepreg using continuous fibers,
In the state where each reinforcing fiber is parallel and aligned along the longitudinal direction in a plane and aligned and bent, the bending shape of each single fiber is equally aligned and bent within one period, and fixed by a matrix resin.
Reinforced fiber resin prepreg capable of deep drawing, characterized by enabling large shear deformation.
上記強化繊維が平面内で長手方向に沿って平行にかつ整列して引き揃えた状態で一周期内で各単繊維の屈曲形状を等しく揃えて屈曲せしめ、マトリックス樹脂によって固定した繊維束として、該繊維束を製織してなるものであることを特徴とする請求項1記載の深絞り加工可能な強化繊維樹脂プリプレグ。 As the fiber bundle fixed by a matrix resin, the reinforcing fibers are bent in the same direction in the plane in parallel and aligned along the longitudinal direction, and the single fibers are bent in the same shape and bent in one cycle. The reinforced fiber resin prepreg capable of deep drawing according to claim 1, wherein the fiber bundle is woven. 上記強化繊維が平面内で長手方向に沿って平行にかつ整列して引き揃えた状態で一周期内で各単繊維の屈曲形状を等しく揃えて屈曲せしめ、マトリックス樹脂によって固定した繊維シートとして、該シートを複数積層してなるものであることを特徴とする請求項1記載の深絞り加工可能な強化繊維樹脂プリプレグ。 As the fiber sheet fixed with a matrix resin, the reinforcing fibers are bent in the same direction in the plane in parallel and aligned along the longitudinal direction, and the single fibers are bent in the same shape and bent in one cycle. The reinforced fiber resin prepreg capable of deep drawing according to claim 1, wherein the sheet is formed by laminating a plurality of sheets. 前記樹脂が熱可塑性、または熱硬化性樹脂であることを特徴とする、請求項1乃至3記載の深絞り加工可能なプリプレグ。 The deep-drawable prepreg according to claim 1, wherein the resin is a thermoplastic or thermosetting resin. 請求項1から請求項4に記載の深絞り加工可能なプリプレグにより作成された複合材料成形物 A composite material molded by the deep-drawable prepreg according to claim 1. (1)強化繊維を繊維の長手方向に沿って引き揃え、
(2)繊維と直角方向に交差すると共にそれぞれ平行に間隔を保って配置された複数の治具によってこれらの繊維を挟持して該治具に沿って線状に固定し、
(3) 次いでこれらの繊維を挟持固定した治具を一つ置きに繊維の長手方向と直角方向に移行すると同時に間隔を狭めることにより、固定された各治具間の繊維に対して周期的に繊維に直角方向の屈曲を付与し、
(4) 同時に引き揃えられた繊維の面に対して押圧して繊維の整列面からの逸脱を抑止し
(5) 樹脂を含浸して屈曲状態に固定する、
ことを特徴とする深絞り加工可能なプリプレグの製造方法。
(1) aligning the reinforcing fibers along the longitudinal direction of the fibers,
(2) The fibers are sandwiched by a plurality of jigs that intersect with the fibers at right angles and are spaced in parallel to each other, and are fixed linearly along the jigs.
(3) Next, every other jig that sandwiches and fixes these fibers moves in the direction perpendicular to the longitudinal direction of the fibers and at the same time narrows the interval, thereby periodically with respect to the fibers between the fixed jigs. Give the fibers a right-angled bend,
(4) At the same time, pressing against the fiber surfaces that have been aligned to suppress deviation from the fiber alignment surface (5) impregnating with resin and fixing in a bent state,
A method for producing a prepreg capable of deep drawing.
前記(2)において、治具に溶融した樹脂を塗布しておき、上記繊維に屈曲を付与して後、前記(5)において加熱して樹脂を繊維に含浸せしめることを特徴とする、請求項6記載の深絞り加工可能なプリプレグの製造方法。 In (2), a molten resin is applied to a jig, the fiber is bent, and then heated in (5) to impregnate the fiber with the resin. 6. A method for producing a prepreg capable of deep drawing according to 6. 前記(1)において、前記強化繊維に予めシート状樹脂、フエルト状樹脂繊維が添えられ、あるいはパウダー状樹脂を混合し、又は繊維状樹脂をコミングルし、あるいはこれらを組み合わせた状態としておき、上記繊維に屈曲を付与して後、前記(5)において加熱して繊維間に樹脂を含浸・固定することを特徴とする、請求項6記載の深絞り加工可能なプリプレグの製造方法。 In the above (1), a sheet-like resin or a felt-like resin fiber is added to the reinforcing fiber in advance, or a powder-like resin is mixed, or a fibrous resin is mixed, or a combination of these is used. The method for producing a prepreg capable of deep drawing according to claim 6 , wherein after bending is applied to the fiber, the resin is impregnated and fixed between the fibers by heating in (5). 前記(1)において、繊維の長手方向に沿って引き揃えた強化繊維が、テープ状ないしシート状の樹脂の含浸された一方向プリプレグであって、これを加熱して樹脂を軟化させる、
ことを特徴とする、請求項6記載の深絞り加工可能なプリプレグの製造方法。
In the above (1), the reinforcing fiber aligned along the longitudinal direction of the fiber is a unidirectional prepreg impregnated with a tape-like or sheet-like resin, and this is heated to soften the resin.
The method for producing a prepreg capable of deep drawing according to claim 6 .
(1) 強化繊維を長手方向に引き揃え、
(2) 該長手方向に対して付与する屈曲度に相当する角度で平行に配列した複数の治具により該繊維を挟持して線状に斜めに角度をつけて固定し、
(3) 該治具を平行な間隔を維持しながら上記角度を戻すことにより、各治具間の繊維に屈曲を付与すると共に、
(4) 同時に、治具間の繊維の形成する面に向けて押圧することにより、繊維の撓みによるねじりや重なりを防止し、
(5) その後、樹脂を含浸して繊維の屈曲状態を固定する、
ことを特徴とする深絞り加工可能なプリプレグ製造方法。
(1) The reinforcing fibers are aligned in the longitudinal direction,
(2) The fibers are sandwiched by a plurality of jigs arranged in parallel at an angle corresponding to the bending degree to be imparted with respect to the longitudinal direction, and fixed obliquely in a linear shape,
(3) While bending the jig between the jigs by returning the angle while maintaining a parallel interval,
(4) At the same time, by pressing toward the surface on which the fibers between the jigs are formed, twisting and overlapping due to fiber bending are prevented,
(5) Then, the resin is impregnated to fix the bent state of the fiber.
A prepreg manufacturing method capable of deep drawing.
前記(2)において、治具に予め溶融した樹脂を塗布しておくこと、
を特徴とする請求項10記載の深絞り加工可能なプリプレグ製造方法。
In (2) above, applying a molten resin in advance to the jig,
The prepreg manufacturing method capable of deep drawing according to claim 10 .
前記(1)において、前記強化繊維に予めシート状樹脂、フエルト状樹脂繊維が添えられ、あるいはパウダー状樹脂を混合し、又は繊維状樹脂をコミングルし、あるいはこれらを組み合わせた状態としておき、上記繊維に屈曲を付与して後、前記(5)において加熱して繊維間に樹脂を含浸・固定すること、
を特徴とする請求項10記載の深絞り加工可能なプリプレグ製造方法。
In the above (1), a sheet-like resin or a felt-like resin fiber is added to the reinforcing fiber in advance, or a powder-like resin is mixed, or a fibrous resin is mixed, or a combination of these is used. After imparting a bend to the resin, heating in (5) above to impregnate and fix the resin between the fibers,
The prepreg manufacturing method capable of deep drawing according to claim 10 .
前記(1)において、繊維の長手方向に引き揃えた強化繊維が、テープ状ないしシート状の樹脂の含浸された一方向プリプレグであって、これを加熱して樹脂を軟化させること、
を特徴とする請求項10記載の深絞り加工可能なプリプレグ製造方法。
In the above (1), the reinforcing fiber aligned in the longitudinal direction of the fiber is a unidirectional prepreg impregnated with a tape-like or sheet-like resin, and this is heated to soften the resin,
The prepreg manufacturing method capable of deep drawing according to claim 10 .
JP2016570907A 2015-06-25 2016-06-13 Pre-preg capable of deep drawing and manufacturing method thereof Active JP6310578B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015128000 2015-06-25
JP2015128000 2015-06-25
PCT/JP2016/067600 WO2016208450A1 (en) 2015-06-25 2016-06-13 Deep drawing-processable prepreg and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2016208450A1 JPWO2016208450A1 (en) 2017-06-29
JP6310578B2 true JP6310578B2 (en) 2018-04-11

Family

ID=57586101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570907A Active JP6310578B2 (en) 2015-06-25 2016-06-13 Pre-preg capable of deep drawing and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6310578B2 (en)
WO (1) WO2016208450A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572201B1 (en) * 2017-01-18 2022-04-20 Mitsubishi Chemical Corporation Method for manufacturing fiber-reinforced plastic
JP7198701B2 (en) * 2019-03-27 2023-01-04 日産自動車株式会社 Fiber-reinforced plastic composites, fiber-reinforced plastic preforms, and fiber-reinforced plastic intermediate substrates
WO2021171488A1 (en) * 2020-02-27 2021-09-02 三菱重工業株式会社 Composite material member manufacturing method and composite material member manufacturing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993346A (en) * 1982-11-19 1984-05-29 三菱レイヨン株式会社 Carbon fiber reinforced composite sheet
JPS59184641A (en) * 1983-04-05 1984-10-20 三菱レイヨン株式会社 Structure sheet and molded processed product thereof

Also Published As

Publication number Publication date
WO2016208450A1 (en) 2016-12-29
JPWO2016208450A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP7285287B2 (en) Opener element for making unidirectional fiber reinforced tapes
CN107735433B (en) Method for producing fiber-reinforced resin sheet
US8815036B2 (en) Method for manufacturing a profiled preform
TWI547371B (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
US8470114B2 (en) Method of preparing thermoplastics-continuous fiber hybrid composite
KR101260088B1 (en) Reinforcing woven fabric and process for producing the same
RU2680505C1 (en) Method and system for impregnating fibres to form prepreg
JP2011073436A (en) Intermediate product and intermediate-product composite
JP6310578B2 (en) Pre-preg capable of deep drawing and manufacturing method thereof
AU2015348417B2 (en) Tape-like dry fibrous reinforcement
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP2009062648A (en) Method for producing chopped fiber bundle, molded material, and fiber reinforced plastic
KR102334459B1 (en) Continuous fiber reinforced thermoplastic polymer composite and manufacturing method thereof
CN113021936A (en) Continuous molding device and molding method for thermoplastic composite material sandwich structure
KR101517477B1 (en) Manufacturing method of continuous fiber reinforced polylactic acid composite by using direct melt impregnation method and double belt press and manufacturing apparatus thereof
JP2020536779A (en) Equipment and methods for impregnating fiber bundles with polymer melt
JP2003181832A (en) Manufacturing device for thermoplastic resin prepreg sheet material, and its manufacturing method
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
JP2004292604A (en) Continuous production process for strand prepreg
JPH1120059A (en) Reinforced fiber base material for composite material and manufacture thereof
KR101348948B1 (en) Thermoplastic composite for easy impregnation and manufacture method thereof
KR20120078465A (en) Method for manufacturing uni-directional prepreg having uniform fiber content and apparatus thereof
US20150107754A1 (en) Composite sandwich structure and method for producing such structure
KR20210138027A (en) Method for manufacturing fiber composites
JPH0834065A (en) Pultrusion of hollow object made of frp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20161201

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6310578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250