JP6308547B2 - Method for producing organosilicon compound - Google Patents

Method for producing organosilicon compound Download PDF

Info

Publication number
JP6308547B2
JP6308547B2 JP2014030412A JP2014030412A JP6308547B2 JP 6308547 B2 JP6308547 B2 JP 6308547B2 JP 2014030412 A JP2014030412 A JP 2014030412A JP 2014030412 A JP2014030412 A JP 2014030412A JP 6308547 B2 JP6308547 B2 JP 6308547B2
Authority
JP
Japan
Prior art keywords
group
atom
organosilicon compound
reaction
halogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014030412A
Other languages
Japanese (ja)
Other versions
JP2015155387A (en
Inventor
浩 中沢
浩 中沢
正安 五十嵐
正安 五十嵐
中島 裕美子
裕美子 中島
島田 茂
茂 島田
佐藤 一彦
一彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Osaka City University
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Osaka City University filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014030412A priority Critical patent/JP6308547B2/en
Publication of JP2015155387A publication Critical patent/JP2015155387A/en
Application granted granted Critical
Publication of JP6308547B2 publication Critical patent/JP6308547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、有機ケイ素化合物の製造方法に関し、より詳しくはジイミン配位子を有する鉄錯体を触媒として利用した有機ケイ素化合物の製造方法に関する。   The present invention relates to a method for producing an organosilicon compound, and more particularly to a method for producing an organosilicon compound using an iron complex having a diimine ligand as a catalyst.

有機ケイ素化合物は、分子内に少なくとも1つのケイ素−炭素結合を持つ化合物の総称で、多数の化合物が報告されており、電子材料、シリコーンオイル、シリコーン樹脂、シリコーンゴムなど我々の生活の身近なところで利用されている。しかし、有機ケイ素化合物は天然には存在せず、それら全ては人工的に化学合成されたものである。炭素−炭素多重結合へのヒドロシリル化反応は、理論的には全く副生成物を生じない直接的でかつ原子効率が高い反応であるため、有機ケイ素化合物を合成する上で重要な反応の1つである。
この反応は、通常、遷移金属触媒を必要とし、工業的には白金を用いたSpeier触媒(例えば、非特許文献1参照)やKarstedt触媒(例えば、非特許文献2参照)が使用されている。その他、ビニルシランを位置選択的、立体選択的に合成することが可能な優れた触媒として、ロジウム触媒(非特許文献3参照)やルテニウム触媒(非特許文献4参照)も報告されているが、中心金属は全て希少金属である。その一方で地殻中に豊富に存在し、供給不安がなく、価格が安く、毒性が低い鉄を用いた触媒も報告されているが(例えば、特許文献1、2、非特許文献5〜8)、いずれも白金触媒を代替できるほどの活性は示していない。
Organosilicon compounds are a general term for compounds having at least one silicon-carbon bond in the molecule, and many compounds have been reported, such as electronic materials, silicone oils, silicone resins, silicone rubbers, etc. It's being used. However, organosilicon compounds do not exist in nature and all of them are artificially chemically synthesized. The hydrosilylation reaction to carbon-carbon multiple bonds is one of the important reactions in synthesizing organosilicon compounds because it is a direct and highly atomic reaction that theoretically generates no by-products. It is.
This reaction usually requires a transition metal catalyst, and industrially, a Speier catalyst using platinum (for example, see Non-Patent Document 1) or a Karstedt catalyst (for example, see Non-Patent Document 2) is used. In addition, rhodium catalysts (see Non-Patent Document 3) and ruthenium catalysts (see Non-Patent Document 4) have been reported as excellent catalysts capable of regioselectively and stereoselectively synthesizing vinylsilane. All metals are rare metals. On the other hand, a catalyst using iron that is abundant in the earth's crust, has no supply insecurity, is inexpensive, and has low toxicity has been reported (for example, Patent Documents 1 and 2 and Non-Patent Documents 5 to 8). Neither shows any activity to replace the platinum catalyst.

米国特許出願公開第2011/0009565号明細書US Patent Application Publication No. 2011/0009565 国際公開第2011/006049号International Publication No. 2011/006049

S. E. Denmark. D. Wehrli, Org. Lett., 2000, 2, 565.S. E. Denmark. D. Wehrli, Org. Lett., 2000, 2, 565. S. E. Denmark, Z. Wang, Org. Synth., 2005, 81, 54.S. E. Denmark, Z. Wang, Org. Synth., 2005, 81, 54. A. Sato, H. Kinoshita, H. Shinokubo, K. Oshima, Org. Lett., 2004, 6, 2217.A. Sato, H. Kinoshita, H. Shinokubo, K. Oshima, Org. Lett., 2004, 6, 2217. Y. Na, S. Chang, Org. Lett., 2000, 2, 1887.Y. Na, S. Chang, Org. Lett., 2000, 2, 1887. C. C. H. Atienza, A. M. Tondreau, K. J. Weller. K. M. Lewis, R. W. Cruse, S. A. Nye, J. L. Boyer. J. G. P. Delis, P. J. Chirik. ACS Catal., 2012, 2, 2169C. C. H. Atienza, A. M. Tondreau, K. J. Weller. K. M. Lewis, R. W. Cruse, S. A. Nye, J. L. Boyer. J. G. P. Delis, P. J. Chirik. ACS Catal., 2012, 2, 2169 A. M. Tondreau, C. C. H. Atienza, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis. P. J. Chirik, Science, 2012, 335, 567.A. M. Tondreau, C. C. H. Atienza, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis. P. J. Chirik, Science, 2012, 335, 567. A. M. Archer, M. W. Bouwkamp, M. P. Cortez, E. Lobkovsky, P. J. Chirik, Organometallics, 2006, 25, 4269.A. M. Archer, M. W. Bouwkamp, M. P. Cortez, E. Lobkovsky, P. J. Chirik, Organometallics, 2006, 25, 4269. S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc., 2004, 126, 13794.S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc., 2004, 126, 13794.

前述のようにアルケン類やアルキン類のヒドロシリル化反応は、触媒として白金等の希少金属が用いられたり、活性が不十分であったりしたため、コスト及び効率の観点で改善の余地を残すものであった。
本発明は、ヒドロシリル化反応における触媒を改良し、効率良く有機ケイ素化合物を製
造することができる方法を提供することを課題とする。
As described above, the hydrosilylation reaction of alkenes and alkynes leaves room for improvement in terms of cost and efficiency because rare metals such as platinum are used as a catalyst or the activity is insufficient. It was.
An object of the present invention is to provide a method capable of improving the catalyst in the hydrosilylation reaction and efficiently producing an organosilicon compound.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、ジイミン配位子を有する特定の鉄錯体とヒドリド還元剤を触媒として使用することにより、効率良く有機ケイ素化合物を製造することができることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors efficiently produce an organosilicon compound by using a specific iron complex having a diimine ligand and a hydride reducing agent as a catalyst. The present invention has been completed.

即ち、本発明は以下の通りである。
<1> アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させ
る有機ケイ素化合物の製造方法であって、
前記触媒として、下記式(A)で表される鉄錯体化合物とヒドリド還元剤を使用することを特徴とする、有機ケイ素化合物の製造方法。

Figure 0006308547
(式(A)中、Rはそれぞれ独立して水素原子又は炭素数1〜20の炭化水素基を、R’は水素原子又は炭素数1〜20の炭化水素基を、Xはハロゲン原子を表す。但し、2つのR’が共に炭化水素基である場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
<2> 下記式(I)、(I’)、(II−1)、(II−2)、(II’−1)、又
は(II’−2)で表される化合物を製造する方法である、<1>に記載の有機ケイ素化合物の製造方法。
Figure 0006308547
(式(I)、(I’)、(II−1)、(II−2)、(II’−1)、及び(II’−2)中、R〜Rはそれぞれ独立して水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を、Rはそれぞれ独立して水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R〜Rの2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。 That is, the present invention is as follows.
<1> A method for producing an organosilicon compound in which an alkene and / or an alkyne and a hydrosilane are reacted in the presence of a catalyst,
An iron compound and a hydride reducing agent represented by the following formula (A) are used as the catalyst.
Figure 0006308547
(In the formula (A), each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R ′ represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom. (However, when both R ′ are hydrocarbon groups, the hydrocarbon groups may be linked to form a cyclic structure.)
<2> A method for producing a compound represented by the following formula (I), (I ′), (II-1), (II-2), (II′-1), or (II′-2). The manufacturing method of the organosilicon compound as described in <1>.
Figure 0006308547
(In formulas (I), (I ′), (II-1), (II-2), (II′-1), and (II′-2), R 1 to R 4 are each independently hydrogen. An atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom, R 5 Are each independently at least one selected from the group consisting of a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms which may be contained, provided that when two or more of R 1 to R 4 are hydrocarbon groups, two or more hydrocarbon groups are linked to form a cyclic structure. May be. )

本発明によれば、効率良く有機ケイ素化合物を製造することができる。     According to the present invention, an organosilicon compound can be produced efficiently.

実施例27〜32の1−オクテン/MePhSiHと転化率の関係を示したグラフである。It is a graph showing the relation between the 1-octene / MePhSiH 2 and conversion of Example 27 to 32. 実施例33〜35の反応時間と転化率の関係を示したグラフである。It is the graph which showed the relationship between the reaction time of Examples 33-35, and the conversion rate.

本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。   In describing the present invention, specific examples will be described. However, the present invention is not limited to the following contents without departing from the gist of the present invention, and can be implemented with appropriate modifications.

<有機ケイ素化合物の製造方法>
本発明の一態様である有機ケイ素化合物の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる有機ケイ素化合物の製造方法であるが、触媒として、下記式(A)で表される鉄錯体化合物(以下、「鉄錯体化合物」と略す場合がある。)とヒドリド還元剤を使用することを特徴とする。

Figure 0006308547

(式(A)中、Rはそれぞれ独立して水素原子又は炭素数1〜20の炭化水素基を、R’は水素原子又は炭素数1〜20の炭化水素基を、Xはハロゲン原子を表す。但し、2つのR’が共に炭化水素基である場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
鉄錯体がヒドロシリル化反応に対して触媒活性を示すためには、活性種は0価でd電子数が14電子以下であることが望ましいと考えられる。これは下記反応式に示されるように、触媒サイクル中でアルケン若しくはアルキンによるη配位、ヒドロシランによるSi−H結合の酸化的付加が生じるものと想定されるからである。
Figure 0006308547

しかし、工業的な使用に耐えられる触媒としては、取り扱いが容易であること、即ち空気、湿気、熱的に対して安定であることが求められるが、上述の条件を満たす鉄錯体は非常に不安定であり、取り扱いや長期保管に問題があった。
本発明者らは、式(A)で表される鉄錯体とヒドリド還元剤を反応系中に添加することによって活性種を容易に誘導することができ、これがヒドロシリル化反応において高い触媒活性を示して、効率良く有機ケイ素化合物を製造することができることを明らかとしたのである。また、式(A)で表される鉄錯体は、比較的簡易的に合成することができる化合物であり、さらに空気中で安定であるため、取扱いが容易であり、実用性に富んだ触媒となることを見出したのである。
なお、「アルケン類」とは炭素−炭素二重結合を少なくとも1つ有する有機化合物を、「アルキン類」とは炭素−炭素三重結合を少なくとも1つ有する有機化合物を、「ヒドロシラン類」とはケイ素−水素結合(Si−H)を少なくとも1つ有する化合物を、「有機ケイ素化合物」とは炭素−ケイ素結合(C−Si)を少なくとも1つ有する有機化合物を意味するものとする。従って、「アルケン類及び/又はアルキン類」と「ヒドロシラン類」の反応として、例えば下記の反応式で示されるような反応が挙げられる(「アルケン類」が「1−オクテン」であり、「ヒドロシラン類」がジフェニルシランである。)。
Figure 0006308547
<Method for producing organosilicon compound>
The method for producing an organosilicon compound which is one embodiment of the present invention is a method for producing an organosilicon compound in which an alkene and / or alkyne and hydrosilane are reacted in the presence of a catalyst. ) And an hydride reducing agent (hereinafter, abbreviated as “iron complex compound”) and a hydride reducing agent.
Figure 0006308547

(In the formula (A), each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R ′ represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom. (However, when both R ′ are hydrocarbon groups, the hydrocarbon groups may be linked to form a cyclic structure.)
In order for the iron complex to exhibit catalytic activity for the hydrosilylation reaction, it is considered that the active species is preferably zero-valent and has a d-electron number of 14 electrons or less. This is because, as shown in the following reaction formula, it is assumed that η 2 coordination by alkene or alkyne and oxidative addition of Si—H bond by hydrosilane occur in the catalyst cycle.
Figure 0006308547

However, a catalyst that can withstand industrial use is required to be easy to handle, that is, to be stable against air, moisture, and heat. It was stable and had problems in handling and long-term storage.
The present inventors can easily induce active species by adding an iron complex represented by the formula (A) and a hydride reducing agent to the reaction system, and this shows high catalytic activity in the hydrosilylation reaction. Thus, it has been clarified that an organosilicon compound can be produced efficiently. In addition, the iron complex represented by the formula (A) is a compound that can be synthesized relatively easily, and is stable in the air, so that it is easy to handle and has a practical utility. I found out.
“Alkenes” means an organic compound having at least one carbon-carbon double bond, “alkynes” means an organic compound having at least one carbon-carbon triple bond, and “hydrosilanes” means silicon. -A compound having at least one hydrogen bond (Si-H), and an "organosilicon compound" means an organic compound having at least one carbon-silicon bond (C-Si). Therefore, the reaction of “alkenes and / or alkynes” and “hydrosilanes” includes, for example, the reaction represented by the following reaction formula (“alkenes” is “1-octene”, “hydrosilane” Class "is diphenylsilane).
Figure 0006308547

式(A)中、Rはそれぞれ独立して水素原子又は炭素数1〜20の炭化水素基を表しているが、Rが炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。
また、Rが炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
Rの具体的な炭化水素基としては、tert−ブチル基、1,1,3,3−テトラブチルブチル基、シクロへキシル基、アダマンチル基、フェニル基、2,6−ジイソプロピルフェニル基等が挙げられる。
In formula (A), each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and the carbon number when R is a hydrocarbon group is preferably 2 or more, more preferably. Is 3 or more, more preferably 4 or more, preferably 19 or less, more preferably 17 or less, and still more preferably 15 or less.
When R is a hydrocarbon group, it is not limited to a linear saturated hydrocarbon group, and may have a branched structure, a cyclic structure, or a carbon-carbon unsaturated bond (branched structure, cyclic structure). , And at least one selected from the group consisting of carbon-carbon unsaturated bonds.
Specific examples of the hydrocarbon group for R include tert-butyl group, 1,1,3,3-tetrabutylbutyl group, cyclohexyl group, adamantyl group, phenyl group, and 2,6-diisopropylphenyl group. It is done.

式(A)中、R’はそれぞれ独立して水素原子又は炭素数1〜20の炭化水素基を表しているが、R’が炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。
また、R’が炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
R’の具体的な炭化水素基としては、メチル基、エチル基、プロピル基、tert−ブチル基、シクロへキシル基、フェニル基等が挙げられる。
さらに、2つのR’が共に炭化水素基である場合、炭化水素基同士が連結して環状構造を形成していてもよく、具体的には下記式で表される構造が挙げられる。

Figure 0006308547
In the formula (A), R ′ each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and when R ′ is a hydrocarbon group, the number of carbon atoms is preferably 2 or more, More preferably, it is 3 or more, More preferably, it is 4 or more, Preferably it is 19 or less, More preferably, it is 17 or less, More preferably, it is 15 or less.
In addition, when R ′ is a hydrocarbon group, it is not limited to a linear saturated hydrocarbon group, and may have a branched structure, a cyclic structure, or a carbon-carbon unsaturated bond (branched structure, cyclic It may have at least one selected from the group consisting of a structure and a carbon-carbon unsaturated bond).
Specific examples of the hydrocarbon group for R ′ include a methyl group, an ethyl group, a propyl group, a tert-butyl group, a cyclohexyl group, and a phenyl group.
Furthermore, when both R ′ are hydrocarbon groups, the hydrocarbon groups may be linked to form a cyclic structure, and specific examples include structures represented by the following formula.
Figure 0006308547

鉄錯体化合物の配位子としては、下記式で表されるものが挙げられる。

Figure 0006308547
Examples of the ligand of the iron complex compound include those represented by the following formula.
Figure 0006308547

鉄錯体化合物としては、下記式で表されるものが挙げられる。

Figure 0006308547
Examples of the iron complex compound include those represented by the following formula.
Figure 0006308547

本発明の有機ケイ素化合物の製造方法における鉄錯体化合物の使用量は、目的に応じて適宜することができるが、ヒドロシラン類の使用量に対して、物質量([mol])で、通常0.001倍以上、好ましくは0.01倍以上、より好ましくは0.05倍以上であり、通常1倍以下、好ましくは0.1倍以下、より好ましくは0.05倍以下である。上記範囲内であると、有機ケイ素化合物をより収率良く製造することができる。   The amount of the iron complex compound used in the method for producing an organosilicon compound of the present invention can be appropriately determined according to the purpose, but the amount of the substance ([mol]) relative to the amount of hydrosilane used is usually 0. It is 001 times or more, preferably 0.01 times or more, more preferably 0.05 times or more, and usually 1 time or less, preferably 0.1 times or less, more preferably 0.05 times or less. Within the above range, the organosilicon compound can be produced with higher yield.

(ヒドリド還元剤)
本発明の有機ケイ素化合物の製造方法は、ヒドリド還元剤を使用することを特徴とするが、ヒドリド還元剤の種類は特に限定されず、公知のものを適宜選択することができる。
具体的なヒドリド還元剤としては、水素化ホウ素リチウム(LiBH)、水素化ホウ素ナトリウム(NaBH)、シアノ水素化ホウ素ナトリウム(NaBHCN)、水素化トリエチルホウ素リチウム(LiBHEt)、水素化トリエチルホウ素ナトリウム(NaBHEt)、水素化トリ(sec−ブチル)ホウ素リチウム(LiBH(sec−Bu))、水素化トリ(sec−ブチル)ホウ素カリウム(KBH(sec−Bu))等の水素化ホウ素酸塩;水素化アルミニウムリチウム(LiAlH)、水素化ビス(2−メトキシエトキシ)アルミニウムナトリウム(NaAlH(OCOCH)等のアルミニウムのヒドリド錯体等が挙げられる。
これらの中でも、水素化トリエチルホウ素ナトリウム(NaBHEt)が特に好ましい。
(Hydride reducing agent)
The method for producing an organosilicon compound of the present invention is characterized by using a hydride reducing agent, but the type of the hydride reducing agent is not particularly limited, and a known one can be appropriately selected.
Specific hydride reducing agents include lithium borohydride (LiBH 4 ), sodium borohydride (NaBH 4 ), sodium cyanoborohydride (NaBH 3 CN), lithium triethylborohydride (LiBHEt 3 ), hydrogenation Hydrogen such as sodium triethyl boron (NaBHEt 3 ), lithium tri (sec-butyl) borohydride (LiBH (sec-Bu) 3 ), potassium tri (sec-butyl) borohydride (KBH (sec-Bu) 3 ), etc. Examples thereof include borohydride salts; aluminum hydride complexes such as lithium aluminum hydride (LiAlH 4 ) and sodium bis (2-methoxyethoxy) aluminum hydride (NaAlH 2 (OC 2 H 4 OCH 3 ) 2 ).
Among these, sodium triethylborohydride (NaBHEt 3 ) is particularly preferable.

本発明の有機ケイ素化合物の製造方法におけるヒドリド還元剤の使用量は、目的に応じて適宜することができるが、鉄錯体化合物の使用量に対して、物質量([mol])で、通常1倍以上、好ましくは1.5倍以上、より好ましくは2倍以上であり、通常10倍以下、好ましくは5倍以下、より好ましくは2倍以下である。上記範囲内であると、有機ケイ素化合物をより収率良く製造することができる。   The amount of the hydride reducing agent used in the method for producing an organosilicon compound of the present invention can be appropriately selected according to the purpose, but is usually 1 in terms of the amount of substance ([mol]) relative to the amount of iron complex compound used. The number is double or more, preferably 1.5 or more, more preferably 2 or more, and usually 10 or less, preferably 5 or less, more preferably 2 or less. Within the above range, the organosilicon compound can be produced with higher yield.

(有機ケイ素化合物)
本発明によって製造する有機ケイ素化合物は、前述のように炭素−ケイ素結合(C−Si)を少なくとも有する有機化合物であれば、具体的な構造は特に限定されず、幅広い有機ケイ素化合物に適用することができる。
具体的には、下記式(I)、(I’)、(II−1)、(II−2)、(II’−1)、又は(II’−2)で表される化合物が挙げられる。

Figure 0006308547

(式(I)、(I’)、(II−1)、(II−2)、(II’−1)、及び(II’−2)中、R〜Rはそれぞれ独立して水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を、Rはそれぞれ独立して水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R〜Rの2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。)
即ち、上記式(I)及び(I’)で表される化合物は、アルケン類とヒドロシラン類との反応によって得られる有機ケイ素化合物であり、上記式(II−1)及び(II−2)並びに(II’−1)及び(II’−2)で表される化合物は、アルキン類とヒドロシラン類との反応によって得られる有機ケイ素化合物である。また、SiR 基が付加する位置は特に限定されず、さらにアルキン類とヒドロシラン類との反応によって得られる有機ケイ素化合物は、Z体、E体、Z体とE体の混合物の何れであってもよいことを意味する。
なお、本発明の有機ケイ素化合物の製造方法は、anti−Markovnikov型の生成物を選択的に製造することも可能である。 (Organic silicon compound)
As long as the organosilicon compound produced according to the present invention is an organic compound having at least a carbon-silicon bond (C—Si) as described above, the specific structure is not particularly limited, and it can be applied to a wide variety of organosilicon compounds. Can do.
Specific examples include compounds represented by the following formula (I), (I ′), (II-1), (II-2), (II′-1), or (II′-2). .
Figure 0006308547

(In formulas (I), (I ′), (II-1), (II-2), (II′-1), and (II′-2), R 1 to R 4 are each independently hydrogen. An atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom, R 5 Are each independently at least one selected from the group consisting of a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms which may be contained, provided that when two or more of R 1 to R 4 are hydrocarbon groups, two or more hydrocarbon groups are linked to form a cyclic structure. May be.)
That is, the compounds represented by the above formulas (I) and (I ′) are organosilicon compounds obtained by the reaction of alkenes and hydrosilanes, and the above formulas (II-1) and (II-2) and The compounds represented by (II′-1) and (II′-2) are organosilicon compounds obtained by reaction of alkynes and hydrosilanes. The position where SiR 5 3 group is added is not particularly limited, further organosilicon compounds obtained by the reaction of alkynes and hydrosilane is either a Z isomer, E-isomer, a mixture of Z-form and E form It means you may.
In addition, the manufacturing method of the organosilicon compound of this invention can also selectively manufacture an anti-Markovnikov type product.

〜Rはそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ
素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表しているが、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」とは、クロロ基(−Cl)、フルオロ基(−F)、アミノ基(−NH)、ニトロ基(−NO)、エポキシ基、ヒドロキシル基(−OH)、カルボニル基(−C(=O)−)、tert−ブチルジメチルシリル基(−SiBuMe)、アジ基(−N)等の窒素原子、酸素原子、ケイ素原子、硫黄原子、又はハロゲン原子を含む官能基を含んでいてもよいことを意味するほか、エーテル基(−O−)、チオエーテル基(−S−)等の窒素原子、酸素原子、ケイ素原子、硫黄原子、又はハロゲン原子を含む連結基を炭素骨格の内部又は末端に含んでいてもよいことを意味する。
〜Rが炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。なお、R〜Rの2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよいが、例えばRとRが連結してシクロヘプタン構造、シクロヘプテン構造、シクロヘキサン構造、シクロヘキセン構造等を形成していることが挙げられる。
〜Rが炭化水素基である場合の炭化水素基に含まれる官能基は、クロロ基(−Cl)、フルオロ基(−F)、アミノ基(−NH)、ニトロ基(−NO)、エポキシ基、ヒドロキシル基(−OH)、カルボニル基(−C(=O)−)、tert−ブチルジメチルシリル基(−SiBuMe)、アジ基(−N)等が挙げられる。
また、R〜Rが炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
具体的なR〜Rとしては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、n−へキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、メチルプロピル基、メチルブチル基、メチルペンチル基、メチルへキシル基、メチルヘプチル基、ジメチルプロピル基、ジメチルブチル基、ジメチルペンチル基、ジメチルへキシル基、ジメチルヘプチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、フェニルへキシル基、フェニルヘプチル基等が挙げられる。
R 1 to R 4 each independently contain at least one selected from the group consisting of a hydrogen atom, a halogen atom, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group of ˜20, but “may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom” means a chloro group (—Cl), fluoro group (—F), amino group (—NH 2 ), nitro group (—NO 2 ), epoxy group, hydroxyl group (—OH), carbonyl group (—C (═O) —), tert- butyldimethylsilyl group (-SiBuMe 2), meaning the nitrogen atom such as azide group (-N 3), an oxygen atom, a silicon atom, a sulfur atom, or that may contain a functional group containing a halogen atom In addition, a linking group containing a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, or a halogen atom such as an ether group (—O—) or a thioether group (—S—) is contained in the carbon skeleton or at the terminal. Means good.
The number of carbons in the case where R 1 to R 4 are hydrocarbon groups is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 19 or less, more preferably 17 or less, still more preferably 15 or less. In addition, when two or more of R 1 to R 4 are hydrocarbon groups, two or more hydrocarbon groups may be linked to form a cyclic structure. For example, R 1 and R 2 are linked to form a cyclo Examples include formation of a heptane structure, a cycloheptene structure, a cyclohexane structure, a cyclohexene structure, and the like.
The functional group contained in the hydrocarbon group when R 1 to R 4 are hydrocarbon groups is a chloro group (—Cl), a fluoro group (—F), an amino group (—NH 2 ), a nitro group (—NO 2 ), an epoxy group, a hydroxyl group (—OH), a carbonyl group (—C (═O) —), a tert-butyldimethylsilyl group (—SiBuMe 2 ), an azide group (—N 3 ) and the like.
In addition, when R 1 to R 4 are hydrocarbon groups, they are not limited to linear saturated hydrocarbon groups, and each of them may have a branched structure, a cyclic structure, or a carbon-carbon unsaturated bond (branch). It may have at least one selected from the group consisting of a structure, a cyclic structure, and a carbon-carbon unsaturated bond.
Specific examples of R 1 to R 4 include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an n-hexyl group, an n-heptyl group, an n-octyl group, an n-nonyl group, and a methylpropyl group. , Methylbutyl group, methylpentyl group, methylhexyl group, methylheptyl group, dimethylpropyl group, dimethylbutyl group, dimethylpentyl group, dimethylhexyl group, dimethylheptyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, Examples thereof include a phenylpentyl group, a phenylhexyl group, and a phenylheptyl group.

はそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表しているが、「窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい」については、R〜Rの場合と同義である。
が炭化水素基である場合の炭素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは19以下、より好ましくは17以下、さらに好ましくは15以下である。
がポリシロキシ基である場合のケイ素数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは48以下、より好ましくは46以下、さらに好ましくは45以下である。
また、Rが炭化水素基である場合、直鎖状の飽和炭化水素基に限られず、分岐構造、環状構造、炭素−炭素不飽和結合のそれぞれを有していてもよい(分岐構造、環状構造、及び炭素−炭素不飽和結合からなる群より選択される少なくとも1種を有していてもよい。)。
具体的なRとしては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、フェニル基、メトキシ基、エトキシ基、ポリメチルシロキシ基等が挙げられる。この中でも、水素原子が好ましい。
はそれぞれ独立に水素原子等を表しているが、2つのRが水素原子であることが特に好ましい。水素原子が2つ以上であると、より収率良く有機ケイ素化合物を製造することができる。
R 5 is independently at least one selected from the group consisting of a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms, which may contain “at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. The term “may be present” has the same meaning as in the case of R 1 to R 4 .
When R 5 is a hydrocarbon group, the carbon number is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 19 or less, more preferably 17 or less, and even more preferably 15 or less. is there.
When R 5 is a polysiloxy group, the number of silicon is preferably 2 or more, more preferably 3 or more, still more preferably 4 or more, preferably 48 or less, more preferably 46 or less, and even more preferably 45 or less. .
In addition, when R 5 is a hydrocarbon group, it is not limited to a linear saturated hydrocarbon group, and may have a branched structure, a cyclic structure, or a carbon-carbon unsaturated bond (branched structure, cyclic It may have at least one selected from the group consisting of a structure and a carbon-carbon unsaturated bond).
Specific examples of R 5 include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group, a methoxy group, an ethoxy group, and a polymethylsiloxy group. Etc. Among these, a hydrogen atom is preferable.
R 5 independently represents a hydrogen atom or the like, but it is particularly preferable that two R 5 are hydrogen atoms. When the number of hydrogen atoms is 2 or more, the organosilicon compound can be produced with higher yield.

(アルケン類・アルキン類)
本発明の有機ケイ素化合物の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる方法であるが、アルケン類及び/又はアルキン類の種類は特に限定されず、製造目的である有機ケイ素化合物に基づいて適宜選択されるべきである。
基本的に製造目的である有機ケイ素化合物と共通する構造を有するアルケン類やアルキン類を選択すべきであり、例えば式(I)、(I’)、(II−1)、(II−2)、(II’−1)、又は(II’−2)で表される化合物を製造目的とする場合、アルケン類としては下記式(i)で表される化合物が、アルキン類としては(ii)で表される化合物が挙げられる。

Figure 0006308547

(式(i)及び(ii)中、R〜Rはそれぞれ独立に水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R〜Rの2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。)
具体的なアルケン類としては、1−オクテン、1−デセン、4−フェニル−1−ブテン、6,6−ジメチル−1−ヘプテン、4,4−ジメチル−1−ヘキセン、1−オクテン、スチレン、シクロヘキセン等が挙げられる。
また、具体的なアルキン類としては、ジフェニルアセチレン、1−フェニル−1−プロピン、4−オクチン、フェニルアセチレン等が挙げられる。 (Alkenes and alkynes)
The method for producing an organosilicon compound of the present invention is a method in which alkenes and / or alkynes and hydrosilanes are reacted in the presence of a catalyst, but the types of alkenes and / or alkynes are not particularly limited, and are produced. It should be appropriately selected based on the target organosilicon compound.
Alkenes and alkynes having a structure that is basically the same as that of the organosilicon compound that is the object of production should be selected. For example, formulas (I), (I ′), (II-1), (II-2) , (II′-1), or (II′-2), the production of the compound represented by the following formula (i) as the alkene, and the alkyne as (ii) The compound represented by these is mentioned.
Figure 0006308547

(In the formulas (i) and (ii), R 1 to R 4 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms which may contain one kind, provided that when two or more of R 1 to R 4 are hydrocarbon groups, the two or more hydrocarbon groups are linked to form a cyclic structure; May be formed.)
Specific alkenes include 1-octene, 1-decene, 4-phenyl-1-butene, 6,6-dimethyl-1-heptene, 4,4-dimethyl-1-hexene, 1-octene, styrene, And cyclohexene.
Specific alkynes include diphenylacetylene, 1-phenyl-1-propyne, 4-octyne, phenylacetylene and the like.

(ヒドロシラン類)
本発明の有機ケイ素化合物の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる方法であるが、ヒドロシラン類の種類は特に限定されず、製造目的である有機ケイ素化合物に基づいて適宜選択されるべきである。
基本的に製造目的である有機ケイ素化合物と共通する構造を有するヒドロシラン類を選択すべきであり、例えば式(I)、(I’)、(II−1)、(II−2)、(II’−1)、又は(II’−2)で表される化合物を製造目的とする場合、ヒドロシラン類としては下記式(s)で表される化合物が挙げられる。

Figure 0006308547

(式(s)中、Rはそれぞれ独立に水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。)
具体的なヒドロシラン類としては、ジエチルシラン、フェニルシラン、ジフェニルシラン、メチルフェニルシラン、ジメチルフェニルシラン、トリエトキシシラン、トリエチルシラン、ジエトキシメチルシラン等が挙げられる。 (Hydrosilanes)
The method for producing an organosilicon compound of the present invention is a method in which alkenes and / or alkynes and hydrosilanes are reacted in the presence of a catalyst, but the type of hydrosilanes is not particularly limited, and is an organosilicon which is the production purpose. It should be selected appropriately based on the compound.
Basically, hydrosilanes having a structure in common with the organosilicon compound that is the object of production should be selected. For example, formulas (I), (I ′), (II-1), (II-2), (II When the compound represented by '-1) or (II'-2) is intended for production, hydrosilanes include compounds represented by the following formula (s).
Figure 0006308547

(In the formula (s), each R 5 is independently a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from more.)
Specific hydrosilanes include diethylsilane, phenylsilane, diphenylsilane, methylphenylsilane, dimethylphenylsilane, triethoxysilane, triethylsilane, diethoxymethylsilane and the like.

本発明の有機ケイ素化合物の製造方法におけるアルケン類及び/又はアルキン類とヒドロシラン類の使用量は、目的に応じて適宜することができるが、ヒドロシラン類の使用量は、アルケン類及び/又はアルキン類の使用量に対して、物質量([mol])で、通常0.0001倍以上、好ましくは0.001倍以上、より好ましくは0.03倍以上であり、通常1倍以下、好ましくは0.1倍以下、より好ましくは0.05倍以下である。上記範囲内であると、有機ケイ素化合物をより収率良く製造することができる。   The amount of alkenes and / or alkynes and hydrosilanes used in the method for producing an organosilicon compound of the present invention can be appropriately determined according to the purpose, but the amount of hydrosilanes used is that of alkenes and / or alkynes. The amount of the substance ([mol]) is usually 0.0001 times or more, preferably 0.001 times or more, more preferably 0.03 times or more, usually 1 time or less, preferably 0. .1 times or less, more preferably 0.05 times or less. Within the above range, the organosilicon compound can be produced with higher yield.

(溶媒)
本発明の有機ケイ素化合物の製造方法は、溶媒を使用しても、使用しなくてもよいが、溶媒を使用しない方が好ましい。また、溶媒を使用する場合、その溶媒の種類は特に限定されず、目的に応じて適宜することができるが、具体的にはヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、ジエチルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)等のエーテル系溶媒、1,2−ジクロロエタン、クロロホルム等のハロゲン系溶媒、エタノール、エチレングリコール、グリセリン等のプロトン性極性溶媒、アセトン、ジメチルアセトアミド(DMA)、N,N−ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒等が挙げられる。
(solvent)
The method for producing the organosilicon compound of the present invention may or may not use a solvent, but it is preferable not to use a solvent. Further, when a solvent is used, the type of the solvent is not particularly limited and can be appropriately determined according to the purpose. Specifically, hydrocarbon solvents such as hexane, benzene, toluene, diethyl ether, 1, Ether solvents such as 4-dioxane and tetrahydrofuran (THF), halogen solvents such as 1,2-dichloroethane and chloroform, protic polar solvents such as ethanol, ethylene glycol and glycerol, acetone, dimethylacetamide (DMA), N, Examples include aprotic polar solvents such as N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and dimethyl sulfoxide (DMSO).

(反応条件)
本発明の有機ケイ素化合物の製造方法は、アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる方法であるが、反応温度、反応時間等の反応条件は特に限定されない。
反応温度は、通常25℃以上、好ましくは70℃以上、より好ましくは110℃以上であり、通常200℃以下、好ましくは150℃以下、より好ましくは130℃以下である。上記範囲内であれば、有機ケイ素化合物をより収率良く製造することができる。
反応時間は、通常1時間以上、好ましくは2時間以上、より好ましくは10時間以上であり、通常60時間以下、好ましくは48時間以下、より好ましくは24時間以下である。
反応は、通常窒素、アルゴン等の不活性雰囲気下で行う。
(Reaction conditions)
The method for producing an organosilicon compound of the present invention is a method in which alkenes and / or alkynes and hydrosilanes are reacted in the presence of a catalyst, but the reaction conditions such as reaction temperature and reaction time are not particularly limited.
The reaction temperature is usually 25 ° C. or higher, preferably 70 ° C. or higher, more preferably 110 ° C. or higher, and is usually 200 ° C. or lower, preferably 150 ° C. or lower, more preferably 130 ° C. or lower. If it is in the said range, an organosilicon compound can be manufactured with a sufficient yield.
The reaction time is usually 1 hour or longer, preferably 2 hours or longer, more preferably 10 hours or longer, and usually 60 hours or shorter, preferably 48 hours or shorter, more preferably 24 hours or shorter.
The reaction is usually carried out under an inert atmosphere such as nitrogen or argon.

以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but can be appropriately changed without departing from the gist of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.

<配位子の合成>
(合成例1:N,N’−Dicyclohexylethanediimineの合成)

Figure 0006308547

空気下、室温でシクロヘキシルアミン23.0g(231.6mmol)とn−プロパノール160mLの混合溶液に40%グリオキサール水溶液15.4g(103.4mmol)と水48mL、n−プロパノール16mLを加え、1.5時間70℃で撹拌した。室温まで冷却後、ろ過し、ろ物を水10mLで3回、冷却したメタノール20mLで1回、順次掛け洗い洗浄を行った。残った固体を減圧下で乾燥することにより、白色粉末19.6g(収率86%)を得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 1.12-1.78 (m, 20H), 3.07-3.15 (m, 2H), 7.89 (s,
2H).
13C NMR (100 MHz, CDCl3, d/ppm) : 24.61, 25.53, 33.98, 69.50, 160.13.
Anal. Calc. for C14H24N2 : C, 76.31; H, 10.98; N, 12.71. Found: C, 76.36; H, 10.96; N, 12.77. MS(FAB) for C14H24N2 : m/z 221.3 (M+) <Synthesis of ligand>
(Synthesis Example 1: Synthesis of N, N′-Dicclohexylethanimine)
Figure 0006308547

Under air, 15.4 g (103.4 mmol) of 40% aqueous glyoxal solution, 48 mL of water and 16 mL of n-propanol were added to a mixed solution of 23.0 g (231.6 mmol) of cyclohexylamine and 160 mL of n-propanol at room temperature. Stir at 70 ° C. for hours. After cooling to room temperature, the mixture was filtered, and the filtrate was washed with 10 mL of water three times and once with 20 mL of cooled methanol for washing. The remaining solid was dried under reduced pressure to obtain 19.6 g of white powder (yield 86%).
1 H NMR (400 MHz, CDCl 3 , d / ppm): 1.12-1.78 (m, 20H), 3.07-3.15 (m, 2H), 7.89 (s,
2H).
13 C NMR (100 MHz, CDCl 3 , d / ppm): 24.61, 25.53, 33.98, 69.50, 160.13.
Anal.Calc. For C 14 H 24 N 2 : C, 76.31; H, 10.98; N, 12.71.Found: C, 76.36; H, 10.96; N, 12.77. MS (FAB) for C 14 H 24 N 2 : m / z 221.3 (M +)

(合成例2:N,N’−Di(1−adamantyl)ethanediimineの合成)

Figure 0006308547

空気下、室温でアダマンチルアミン5.0g(33.08mmol)をエタノール72mLに溶解し撹拌を開始した。この溶液に40%グリオキサール水溶液2.4g(16.54mmol)を滴下した。約30分後に生成物の晶析が認められた。22時間後反応溶液をろ過し、固体を冷エタノール6mLで2回、ろ物を掛け洗い洗浄した。得られた白色粉末を減圧下で乾燥させた(収量3.36g;1晶目63%)。ろ液を液量が半分になるま
で濃縮し溶存している生成物を晶析させた。これをろ過し、冷エタノール5mLで2回、ろ物を掛け洗い洗浄を行った。得られた白色粉末を減圧下で乾燥させた(収量0.75g;2晶目)。1晶と2晶を合わせて白色粉末4.1g(収率77%)を得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 1.63-1.73 (m, 24H), 2.18 (s, 6H), 7.91 (s, 2H).

13C NMR (100 MHz, CDCl3, d/ppm) : 29.48, 36.50, 42.87, 58.64, 157.96. Anal. Calc. for C22H32N2 : C, 81.43; H, 9.94; N, 8.63. Found: C, 81.18; H, 9.91; N, 8.64. MS(FAB) for C22H32N2 : m/z 325.3 (M+) (Synthesis Example 2: Synthesis of N, N′-Di (1-adamantyl) ethanedimine)
Figure 0006308547

Under air, 5.0 g (33.08 mmol) of adamantylamine was dissolved in 72 mL of ethanol at room temperature, and stirring was started. To this solution, 2.4 g (16.54 mmol) of 40% glyoxal aqueous solution was added dropwise. Crystallization of the product was observed after about 30 minutes. After 22 hours, the reaction solution was filtered, and the solid was washed twice with 6 mL of cold ethanol, washed with the filtrate. The white powder obtained was dried under reduced pressure (yield 3.36 g; first crystal 63%). The filtrate was concentrated until the liquid volume was halved to crystallize the dissolved product. This was filtered, and the filtrate was washed twice with 5 mL of cold ethanol for washing. The resulting white powder was dried under reduced pressure (yield 0.75 g; second crystal). Crystals 1 and 2 were combined to obtain 4.1 g (yield 77%) of white powder.
1 H NMR (400 MHz, CDCl 3 , d / ppm): 1.63-1.73 (m, 24H), 2.18 (s, 6H), 7.91 (s, 2H).

13 C NMR (100 MHz, CDCl 3 , d / ppm): 29.48, 36.50, 42.87, 58.64, 157.96. Anal.Calc. For C 22 H 32 N 2 : C, 81.43; H, 9.94; N, 8.63. : C, 81.18; H, 9.91; N, 8.64.MS (FAB) for C 22 H 32 N 2 : m / z 325.3 (M +)

(合成例3:1,2−Bis[(2,6−diisopropylphenyl)imino]acenaphtheneの合成)

Figure 0006308547

空気下、室温でアセナフトキノン1.54g(182.2mmol)をアセトニトリル62mLに溶解し、攪拌を開始した。この溶液を1時間還流させ、酢酸14.5mL(253.6mmol)を添加した。反応溶液が均一になったことを確認後、2,6−ジイソプロピルアニリンを30分以上かけて滴下した。生成した固体をろ別し、ヘキサン30mLで2回掛け洗い洗浄した後、減圧下で乾燥することにより、黄色粉末11.3g(収率69%)を得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 0.97 (d, J = 6.8, 12H), 1.24 (d, J = 7.2 ,12H),
2.96-3.07 (m, 4H), 6.63 (d, J = 7.2, 2H), 7.27 (s, 6H), 7.36 (t, J = 8.0, 2H), 7.88 (d, J = 8.0, 2H).
13C NMR (100 MHz, CDCl3, d/ppm) : 23.27, 23.57, 28.74, 123.59, 123.59, 124.41, 128.01, 129.00, 129.61, 131.23, 135.55, 140.92, 147.61, 161.10.
Anal. Calc. for C36H40N2: C, 86.35; H, 8.05; N, 5.59. Found: C, 86.22; H, 8.14; N, 5.62. MS(FAB) for C36H40N2 : m/z 501.3 (M+) (Synthesis Example 3: Synthesis of 1,2-Bis [(2,6-diisoprophylphenyl) imino] acenaphthene)
Figure 0006308547

Under air, 1.54 g (182.2 mmol) of acenaphthoquinone was dissolved in 62 mL of acetonitrile at room temperature, and stirring was started. The solution was refluxed for 1 hour and 14.5 mL (253.6 mmol) acetic acid was added. After confirming that the reaction solution was uniform, 2,6-diisopropylaniline was added dropwise over 30 minutes. The produced solid was separated by filtration, washed twice with 30 mL of hexane, washed and dried under reduced pressure to obtain 11.3 g (yield 69%) of a yellow powder.
1 H NMR (400 MHz, CDCl 3 , d / ppm): 0.97 (d, J = 6.8, 12H), 1.24 (d, J = 7.2, 12H),
2.96-3.07 (m, 4H), 6.63 (d, J = 7.2, 2H), 7.27 (s, 6H), 7.36 (t, J = 8.0, 2H), 7.88 (d, J = 8.0, 2H).
13 C NMR (100 MHz, CDCl 3 , d / ppm): 23.27, 23.57, 28.74, 123.59, 123.59, 124.41, 128.01, 129.00, 129.61, 131.23, 135.55, 140.92, 147.61, 161.10.
Anal.Calc. For C 36 H 40 N 2 : C, 86.35; H, 8.05; N, 5.59. Found: C, 86.22; H, 8.14; N, 5.62. MS (FAB) for C 36 H 40 N 2 : m / z 501.3 (M +)

(合成例4:N,N’−Di(cyclohexyl)butane−2,3−diimineの合成)

Figure 0006308547

空気下、室温でシクロへキシルアミン4.9g(49.8mmol)とメタノール34mLの混合溶液に2,3−ブタジオン1.70g(19.8mmol)とメタノール17mLを注加し、室温で18時間攪拌した。反応溶液をろ過、濃縮した後に得られた茶褐色のオイルをKugelrohr蒸留により精製した(40Pa,140℃)。これにより茶褐色粉
末1.41 g (収率 29%) を得た。
Anal. Calc. for C16H28N2: C, 77.36; H, 11.36; N, 11.28. Found: C, 77.30; H, 11.40; N, 11.31. (Synthesis Example 4: Synthesis of N, N′-Di (cyclohexyl) butane-2,3-diimine)
Figure 0006308547

Under air, 1.70 g (19.8 mmol) of 2,3-butadione and 17 mL of methanol were added to a mixed solution of 4.9 g (49.8 mmol) of cyclohexylamine and 34 mL of methanol at room temperature, and the mixture was stirred at room temperature for 18 hours. . The brown oil obtained after filtering and concentrating the reaction solution was purified by Kugelrohr distillation (40 Pa, 140 ° C.). As a result, 1.41 g (yield 29%) of a brown powder was obtained.
Anal.Calc. For C 16 H 28 N 2 : C, 77.36; H, 11.36; N, 11.28.Found: C, 77.30; H, 11.40; N, 11.31.

(合成例5:N,N’−Diphenylbutane−2,3−diimineの合成)

Figure 0006308547

空気下、室温でジアセチル6.02g(69.7mmol)とメタノール55mLの混合溶液にアニリン22.65g(243.9mmol)とメタノール45mLを加えて攪拌を開始した。この溶液にジアセチルに対して触媒量(10mol%)のぎ酸0.6gを添加し、室温で5時間攪拌した。生成した固体をろ別し、メタノール20mLでろ物の掛け洗い洗浄を行い、黄色粉末11.3g(収率69%)を得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 2.18 (s, 6H), 6.82 (d, J = 8.2, 4H), 7.14 (t, J
= 7.4, 2H), 7.39 (t, J = 8.2, 4H).
13C NMR (100 MHz, CDCl3, d/ppm) : 15.51, 118.84, 123.92, 129.15, 151.03, 168.35.
Anal. Calc. for C16H16N2: C, 81.32; H, 6.82; N, 11.85. Found: C, 81.35; H, 6.93;
N, 11.82. MS(FAB) for C16H16N2 : m/z 237.2 (M+) (Synthesis Example 5: Synthesis of N, N′-Diphenylbutane-2,3-diimine)
Figure 0006308547

Under air, 22.65 g (243.9 mmol) of aniline and 45 mL of methanol were added to a mixed solution of 6.02 g (69.7 mmol) of diacetyl and 55 mL of methanol at room temperature, and stirring was started. To this solution was added a catalytic amount (10 mol%) of formic acid (0.6 g) with respect to diacetyl, and the mixture was stirred at room temperature for 5 hours. The produced solid was separated by filtration, and the residue was washed with 20 mL of methanol to obtain 11.3 g (yield 69%) of a yellow powder.
1 H NMR (400 MHz, CDCl 3 , d / ppm): 2.18 (s, 6H), 6.82 (d, J = 8.2, 4H), 7.14 (t, J
= 7.4, 2H), 7.39 (t, J = 8.2, 4H).
13 C NMR (100 MHz, CDCl 3 , d / ppm): 15.51, 118.84, 123.92, 129.15, 151.03, 168.35.
Anal.Calc. For C 16 H 16 N 2 : C, 81.32; H, 6.82; N, 11.85. Found: C, 81.35; H, 6.93;
N, 11.82.MS (FAB) for C 16 H 16 N 2 : m / z 237.2 (M +)

(合成例6:N,N’−Di(tert−butyl)ethanediimineの合成)

Figure 0006308547

空気下、室温でtert−ブチルアミン20.76g(284.0mmol)とヘキサン51mLの混合溶液を氷浴につけて冷却し、40%グリオキサール水溶液20.30g(139.9mmol)を加え、室温で1時間攪拌した。分液後、ヘキサン層を硫酸マグネシウム2.00gにて乾燥させた。ろ過後、減圧下で乾燥し、白色粉末19.8g(収率84%)を得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 1.15 (s, 18H), 7.83 (s, 2H).
13C NMR (100 MHz, CDCl3, d/ppm) : 29.37, 58.16, 157.82.
Anal. Calc. for C10H20N2 : C, 71.37; H, 11.98; N, 16.65. Found: C, 71.09; H, 12.14; N, 16.45. (Synthesis Example 6: Synthesis of N, N′-Di (tert-butyl) ethanedimine)
Figure 0006308547

A mixed solution of 20.76 g (284.0 mmol) of tert-butylamine and 51 mL of hexane was cooled in an ice bath at room temperature under air, and 20.30 g (139.9 mmol) of 40% glyoxal aqueous solution was added, followed by stirring at room temperature for 1 hour. did. After separation, the hexane layer was dried with 2.00 g of magnesium sulfate. After filtration, it was dried under reduced pressure to obtain 19.8 g of white powder (yield 84%).
1 H NMR (400 MHz, CDCl 3 , d / ppm): 1.15 (s, 18H), 7.83 (s, 2H).
13 C NMR (100 MHz, CDCl 3 , d / ppm): 29.37, 58.16, 157.82.
Anal.Calc. For C 10 H 20 N 2 : C, 71.37; H, 11.98; N, 16.65. Found: C, 71.09; H, 12.14; N, 16.45.

(合成例7:N,N’−Bis(1,1,3,3−tetramethylbutyl)ethanediimineの合成)

Figure 0006308547

空気下、室温で1,1,3,3−テトラメチルブチルアミン19.50g(150.9
mmol)と水100mLの混合溶液に40%グリオキサール水溶液20.30g(139.9mmol)を加え、室温で1時間攪拌した。ろ過後、ろ物を水10mLで2回、掛け洗い洗浄した後、減圧下で乾燥することにより、白色粉末19.65g(収率95%)で得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 0.89 (s, 18H), 1.26 (s, 12H), 1.67 (s, 4H), 7.91 (s, 2H).
13C NMR (100 MHz, CDCl3, d/ppm) : 29.50, 31.78, 32.22, 62.09, 157.73.
Anal. Calc. for C18H36N2: C, 77.08; H, 12.94; N, 9.98. Found: C, 77.17; H, 13.19; N, 9.97. MS(FAB) for C18H36N2 : m/z 280.3 (M+) (Synthesis Example 7: Synthesis of N, N′-Bis (1,1,3,3-tetramethylbutyl) etheridimine)
Figure 0006308547

19.50 g (150.9 g) of 1,1,3,3-tetramethylbutylamine at room temperature under air
mmol) and 100 mL of water were added with 20.30 g (139.9 mmol) of 40% aqueous glyoxal solution, and the mixture was stirred at room temperature for 1 hour. After filtration, the residue was washed twice with 10 mL of water and then dried under reduced pressure to obtain 19.65 g (yield 95%) of white powder.
1 H NMR (400 MHz, CDCl 3 , d / ppm): 0.89 (s, 18H), 1.26 (s, 12H), 1.67 (s, 4H), 7.91 (s, 2H).
13 C NMR (100 MHz, CDCl 3 , d / ppm): 29.50, 31.78, 32.22, 62.09, 157.73.
Anal.Calc. For C 18 H 36 N 2 : C, 77.08; H, 12.94; N, 9.98. Found: C, 77.17; H, 13.19; N, 9.97. MS (FAB) for C 18 H 36 N 2 : m / z 280.3 (M +)

(合成例8:N,N’−Di(1−adamantyl)butane−2,3−diimineの合成)

Figure 0006308547

空気下、室温でアダマンチルアミン3.51g(11.62mmol)とメタノール40mLの混合溶液に2,3−ブタジオン1.0g(23.23mmol)を注加し、室温で18時間攪拌した。反応溶液をろ過、濃縮した後に得られた茶褐色のオイルをKugelrohr蒸留により精製した(40Pa,140℃)。これにより黄白色粉末1.8g (収率45%) を得た。
1H NMR (400 MHz, CDCl3, d/ppm) : 1.63-1.73 (m, 24H), 2.18 (s, 6H), 2.48 (s, 6H).13C NMR (100 MHz, CDCl3, d/ppm) : 15.32, 29.41, 35.47, 42.81, 59.48, 154.91. (Synthesis Example 8: Synthesis of N, N′-Di (1-adamantyl) butane-2,3-diimine)
Figure 0006308547

Under air, 1.0 g (23.23 mmol) of 2,3-butadione was added to a mixed solution of 3.51 g (11.62 mmol) of adamantylamine and 40 mL of methanol at room temperature, and the mixture was stirred at room temperature for 18 hours. The brown oil obtained after filtering and concentrating the reaction solution was purified by Kugelrohr distillation (40 Pa, 140 ° C.). As a result, 1.8 g (yield 45%) of a yellowish white powder was obtained.
1 H NMR (400 MHz, CDCl 3 , d / ppm): 1.63-1.73 (m, 24H), 2.18 (s, 6H), 2.48 (s, 6H). 13 C NMR (100 MHz, CDCl 3 , d / ppm): 15.32, 29.41, 35.47, 42.81, 59.48, 154.91.

<鉄錯体の合成>
(合成例9:N,N’−Di(1−adamantyl)ethanediimine FeClの合成)

Figure 0006308547

窒素雰囲気下、合成例2で合成した配位子1.00g(3.08mmol)をCHCl50mL(50倍volume)に溶解させ、塩化鉄(II)0.39g(3.08mmol)を加えた。塩化鉄は反応の進行と共に溶解し、同時に青〜紫色の不溶物として目的物が析出した。24時間撹拌後、反応溶液を窒素気流下ろ過した。ろ物をヘキサン10mL(10倍volume)に加えて20分懸濁させた後、ろ過した。ろ液をGCにて分析し、配位子のピークが消失するまで洗浄を繰り返し、未反応配位子を除去した後、室温にて減圧乾燥させて鉄錯体を得た(収率86%)。
なお、錯体は常磁性のため、NMRでの構造決定が困難である。そのためFAB−Massによるフラグメントピーク(−Cl)の確認、若しくは元素分析による推定構造を示した。
Anal. Calc. for C22H32Cl2FeN2 : C, 58.46; H, 7.15; N, 6.21. Found: C, 58.45; H, 7.18; N, 6.22. <Synthesis of iron complex>
(Synthesis Example 9: Synthesis of N, N′-Di (1-adamantyl) ethanediimine FeCl 2 )
Figure 0006308547

Under a nitrogen atmosphere, 1.00 g (3.08 mmol) of the ligand synthesized in Synthesis Example 2 was dissolved in 50 mL (50 times volume) of CH 2 Cl 2 , and 0.39 g (3.08 mmol) of iron (II) chloride was dissolved. added. Iron chloride dissolved with the progress of the reaction, and at the same time, the target product precipitated as a blue to purple insoluble material. After stirring for 24 hours, the reaction solution was filtered under a nitrogen stream. The filtrate was added to 10 mL of hexane (10 times volume), suspended for 20 minutes, and then filtered. The filtrate was analyzed by GC, and washing was repeated until the ligand peak disappeared to remove the unreacted ligand, followed by drying under reduced pressure at room temperature to obtain an iron complex (yield 86%). .
Since the complex is paramagnetic, it is difficult to determine the structure by NMR. Therefore, the fragment peak (-Cl) was confirmed by FAB-Mass, or the estimated structure by elemental analysis was shown.
Anal.Calc. For C 22 H 32 Cl 2 FeN 2 : C, 58.46; H, 7.15; N, 6.21. Found: C, 58.45; H, 7.18; N, 6.22.

(合成例10:N,N’−Dicyclohexylethanediimine FeClの合成)

Figure 0006308547

配位子を合成例1で合成した配位子に置き換えた以外は、合成例9と同様の方法により鉄錯体を得た。
MS(FAB) for C14H24Cl2FeN2: m/z 346.1 (M+), m/z 311.2 (M+-Cl). (Synthesis Example 10: Synthesis of N, N′-Dicycyclohexanidineimine FeCl 2 )
Figure 0006308547

An iron complex was obtained in the same manner as in Synthesis Example 9 except that the ligand was replaced with the ligand synthesized in Synthesis Example 1.
MS (FAB) for C 14 H 24 Cl 2 FeN 2 : m / z 346.1 (M + ), m / z 311.2 (M + -Cl).

(実施例1:N,N’−Di(cyclohexyl)butane−2,3−diimine FeClの合成)

Figure 0006308547

配位子を合成例4で合成した配位子に置き換えた以外は、合成例9と同様の方法により鉄錯体を得た。
MS(FAB) for C16H28Cl2FeN2: m/z 374.1 (M+), m/z 339.1 (M+-Cl). (Example 1: Synthesis of N, N'-Di (cyclohexyl) butane-2,3-dimine FeCl 2 )
Figure 0006308547

An iron complex was obtained in the same manner as in Synthesis Example 9 except that the ligand was replaced with the ligand synthesized in Synthesis Example 4.
MS (FAB) for C 16 H 28 Cl 2 FeN 2 : m / z 374.1 (M + ), m / z 339.1 (M + -Cl).

(実施例2:N,N’−Diphenylbutane−2,3−diimine FeClの合成)

Figure 0006308547

配位子を合成例5で合成した配位子に置き換えた以外は、合成例9と同様の方法により鉄錯体を得た。
MS(FAB) for C16H16Cl2FeN2: m/z 362.0 (M+), m/z 327.1 (M+-Cl). (Example 2: Synthesis of N, N'-Diphenylbutane-2,3-dimine FeCl 2 )
Figure 0006308547

An iron complex was obtained in the same manner as in Synthesis Example 9 except that the ligand was replaced with the ligand synthesized in Synthesis Example 5.
MS (FAB) for C 16 H 16 Cl 2 FeN 2 : m / z 362.0 (M + ), m / z 327.1 (M + -Cl).

(合成例11:N,N’−Di(tert−butyl)ethanediimine
FeClの合成)

Figure 0006308547

配位子を合成例6で合成した配位子に置き換えた以外は、合成例9と同様の方法により鉄錯体を得た。
MS(FAB) for C10H20Cl2FeN2: m/z 294.0 (M+), m/z 259.1 (M+-Cl). (Synthesis Example 11: N, N′-Di (tert-butyl) ethanedimine
Synthesis of FeCl 2 )
Figure 0006308547

An iron complex was obtained in the same manner as in Synthesis Example 9 except that the ligand was replaced with the ligand synthesized in Synthesis Example 6.
MS (FAB) for C 10 H 20 Cl 2 FeN 2 : m / z 294.0 (M + ), m / z 259.1 (M + -Cl).

(合成例12:N,N’Bis(1,1,3,3−tetramethylbutyl)ethanediimine FeClの合成)

Figure 0006308547

配位子を合成例7で合成した配位子に置き換えた以外は、合成例9と同様の方法により鉄錯体を得た。
MS(FAB) for C18H36Cl2FeN2: m/z 406.1 (M+), m/z 371.1 (M+-Cl). (Synthesis Example 12: Synthesis of N, N′Bis (1,1,3,3-tetramethylbutyl) ethanediimine FeCl 2 )
Figure 0006308547

An iron complex was obtained in the same manner as in Synthesis Example 9 except that the ligand was replaced with the ligand synthesized in Synthesis Example 7.
MS (FAB) for C 18 H 36 Cl 2 FeN 2 : m / z 406.1 (M + ), m / z 371.1 (M + -Cl).

(実施例3:1,2−Bis[(2,6−diisopropylphenyl)imino]acenaphthene FeClの合成)

Figure 0006308547

配位子を合成例3で合成した配位子に置き換えた以外は、合成例9と同様の方法により鉄錯体を得た。
MS(FAB) for C36H40Cl2FeN2: m/z 626.3 (M+), m/z 591.3 (M+-Cl), Anal. Calc. for C36H40Cl2FeN2 : C, 68.91; H, 6.43; N, 4.46. Found: C, 68.87; H, 6.51; N, 4.48. Example 3: Synthesis of 1,2-Bis [(2,6-diisopropylphenyl) imino] acenaphthene FeCl 2
Figure 0006308547

An iron complex was obtained in the same manner as in Synthesis Example 9 except that the ligand was replaced with the ligand synthesized in Synthesis Example 3.
MS (FAB) for C 36 H 40 Cl 2 FeN 2 : m / z 626.3 (M + ), m / z 591.3 (M + -Cl), Anal.Calc. For C 36 H 40 Cl 2 FeN 2 : C, 68.91; H, 6.43; N, 4.46. Found: C, 68.87; H, 6.51; N, 4.48.

<有機ケイ素化合物の製造>
(実施例4〜16)
合成例9〜12、及び実施例1〜3で合成した鉄錯体をそれぞれ使用して、アルケン類のヒドロシリル化反応を実施した。なお、具体的な実験操作及び条件については、下記の通りである。
鉄錯体を空気中で所定量(実施例4:合成例9で合成した鉄錯体、5mg,0.011mmol)精密に測り取り、窒素気流下のシュレンクに移した。1−オクテン(8.52mL,54.26mmol)、PhSiH(1.00mL,5.43mmol)を順次加え、室温で撹拌を開始した。続いてNaBHEt(22μL,0.022mmol)を加えた後、100℃に昇温してシュレンクを密閉した状態で撹拌を維持した。所定の時間が経過した後、同温度にて窒素気流下、GCで反応溶液を分析した。反応終了確認後、反応溶液を室温に戻した。セライトろ過、アセトニトリルで洗浄した後、減圧下濃縮し、残渣を蒸留することでヒドロシリル化反応生成物を単離した。結果を表1に示す。

Figure 0006308547
<Manufacture of organosilicon compounds>
(Examples 4 to 16)
Using the iron complexes synthesized in Synthesis Examples 9-12 and Examples 1-3, alkenes were hydrosilylated. Specific experimental operations and conditions are as follows.
The iron complex was precisely measured in air in a predetermined amount (Example 4: Iron complex synthesized in Synthesis Example 9, 5 mg, 0.011 mmol) and transferred to Schlenk under a nitrogen stream. 1-octene (8.52 mL, 54.26 mmol) and Ph 2 SiH 2 (1.00 mL, 5.43 mmol) were sequentially added, and stirring was started at room temperature. Subsequently, NaBHEt 3 (22 μL, 0.022 mmol) was added, and then the temperature was raised to 100 ° C. and stirring was maintained in a state where the Schlenk was sealed. After a predetermined time elapsed, the reaction solution was analyzed by GC under the nitrogen stream at the same temperature. After confirming the completion of the reaction, the reaction solution was returned to room temperature. After filtration through celite and washing with acetonitrile, the residue was concentrated under reduced pressure, and the residue was distilled to isolate the hydrosilylation reaction product. The results are shown in Table 1.
Figure 0006308547

Figure 0006308547
Figure 0006308547

(実施例17〜24)
PhSiHをMeSiHに置き換えた以外、実施例4〜16と同様の方法により、アルケン類のヒドロシリル化反応を実施した。結果を表2に示す。

Figure 0006308547
(Examples 17 to 24)
A hydrosilylation reaction of alkenes was carried out in the same manner as in Examples 4 to 16, except that Ph 2 SiH 2 was replaced with MeSiH 2 . The results are shown in Table 2.
Figure 0006308547

Figure 0006308547
Figure 0006308547

(実施例25、26)
下記表3に記載の条件を変更した以外、実施例7と同様の方法により、アルケン類のヒドロシリル化反応を実施した。結果を表3に示す。

Figure 0006308547
(Examples 25 and 26)
A hydrosilylation reaction of alkenes was carried out in the same manner as in Example 7, except that the conditions described in Table 3 below were changed. The results are shown in Table 3.
Figure 0006308547

Figure 0006308547
Figure 0006308547

(実施例27〜32)
合成例10で合成した鉄錯体(5mg,0.011mmol)精密に測り取り、窒素気流下のシュレンクに移した。所定量の1−オクテンとMePhSiHを順次加え、室温で撹拌を開始した。続いてNaBHEt(2.7mg,0.022mmol)を加えた
後、100℃に昇温してシュレンクを密閉した状態で撹拌を維持した。所定の時間が経過した後、同温度にて窒素気流下、GCで反応溶液を分析した。反応終了確認後、反応溶液を室温に戻した。セライトろ過、アセトニトリルで洗浄した後、減圧下濃縮し、残渣を蒸留することでヒドロシリル化反応生成物を単離した。結果を表4に、1−オクテン/MePhSiHと転化率の関係を示したグラフを図1に示す。

Figure 0006308547
(Examples 27 to 32)
The iron complex (5 mg, 0.011 mmol) synthesized in Synthesis Example 10 was accurately measured and transferred to Schlenk under a nitrogen stream. A predetermined amount of 1-octene and MePhSiH 2 were sequentially added, and stirring was started at room temperature. Subsequently, NaBHEt 3 (2.7 mg, 0.022 mmol) was added, and then the temperature was raised to 100 ° C., and stirring was maintained while the Schlenk was sealed. After a predetermined time elapsed, the reaction solution was analyzed by GC under the nitrogen stream at the same temperature. After confirming the completion of the reaction, the reaction solution was returned to room temperature. After filtration through celite and washing with acetonitrile, the residue was concentrated under reduced pressure, and the residue was distilled to isolate the hydrosilylation reaction product. The results are shown in Table 4, and a graph showing the relationship between 1-octene / MePhSiH 2 and the conversion is shown in FIG.
Figure 0006308547

Figure 0006308547
Figure 0006308547

(実施例33〜35)
合成例9で合成した鉄錯体(5mg,0.011mmol)精密に測り取り、窒素気流
下のシュレンクに移した。1−オクテン(173.93mL,1.11mol)、PhSiH(20.42mL,0.11mol)を順次加え、室温で撹拌を開始した。続いてNaBHEt(2.7mg,0.022mmol)を加えた後、100℃に昇温して
シュレンクを密閉した状態で撹拌を維持した。所定の時間が経過した後、同温度にて窒素気流下、GCで反応溶液を分析した。結果を表5に、反応時間と転化率の関係を示したグラフを図2に示す。

Figure 0006308547
(Examples 33 to 35)
The iron complex (5 mg, 0.011 mmol) synthesized in Synthesis Example 9 was accurately measured and transferred to Schlenk under a nitrogen stream. 1-octene (173.93 mL, 1.11 mol) and Ph 2 SiH 2 (20.42 mL, 0.11 mol) were sequentially added, and stirring was started at room temperature. Subsequently, NaBHEt 3 (2.7 mg, 0.022 mmol) was added, and then the temperature was raised to 100 ° C., and stirring was maintained while the Schlenk was sealed. After a predetermined time elapsed, the reaction solution was analyzed by GC under the nitrogen stream at the same temperature. The results are shown in Table 5, and a graph showing the relationship between the reaction time and the conversion rate is shown in FIG.
Figure 0006308547

Figure 0006308547
Figure 0006308547

実施例35の結果より、反応開始から15日経過後の転化率が42%であることが明らかであるが、15日以降も鉄触媒が失活していないことを確認した。即ち、鉄錯体はヒドロシリル化反応においてターンオーバー数(turnover number)が4200を超える優れた活性を有することが明らかである。   From the results of Example 35, it is clear that the conversion after 15 days from the start of the reaction was 42%, but it was confirmed that the iron catalyst was not deactivated after 15 days. That is, it is apparent that the iron complex has an excellent activity in which the turnover number exceeds 4200 in the hydrosilylation reaction.

本発明によって得られた有機ケイ素化合物は、様々な材料の原料として使用することができる。   The organosilicon compound obtained by the present invention can be used as a raw material for various materials.

Claims (2)

アルケン類及び/又はアルキン類とヒドロシラン類とを触媒存在下で反応させる有機ケイ素化合物の製造方法であって、
前記触媒として、下記式(A)で表される鉄錯体化合物とヒドリド還元剤を使用することを特徴とする、有機ケイ素化合物の製造方法。
Figure 0006308547
(式(A)中、Rはそれぞれ独立して水素原子又は炭素数1〜20の炭化水素基を、R’は水素原子又は炭素数1〜20の炭化水素基を、Xはハロゲン原子を表す。但し、2つのR’が共に炭化水素基である場合、炭化水素基同士が連結して環状構造を形成していてもよい。)
A process for producing an organosilicon compound comprising reacting alkenes and / or alkynes with hydrosilanes in the presence of a catalyst,
An iron compound and a hydride reducing agent represented by the following formula (A) are used as the catalyst.
Figure 0006308547
(In the formula (A), each R independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, R ′ represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and X represents a halogen atom. (However, when both R ′ are hydrocarbon groups, the hydrocarbon groups may be linked to form a cyclic structure.)
下記式(I)、(I’)、(II−1)、(II−2)、(II’−1)、又は(II’−2)で表される化合物を製造する方法である、請求項1に記載の有機ケイ素化合物の製造方法。
Figure 0006308547
(式(I)、(I’)、(II−1)、(II−2)、(II’−1)、及び(II’−2)中、R〜Rはそれぞれ独立して水素原子、ハロゲン原子、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を、Rはそれぞれ独立して水素原子、ハロゲン原子、シロキシ基、ケイ素数1〜50のポリシロキシ基、又は窒素原子、酸素原子、ケイ素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種を含んでいてもよい炭素数1〜20の炭化水素基を表す。但し、R〜Rの2以上が炭化水素基である場合、2以上の炭化水素基が連結して環状構造を形成していてもよい。)
A method for producing a compound represented by the following formula (I), (I ′), (II-1), (II-2), (II′-1), or (II′-2), Item 2. A method for producing an organosilicon compound according to Item 1.
Figure 0006308547
(In formulas (I), (I ′), (II-1), (II-2), (II′-1), and (II′-2), R 1 to R 4 are each independently hydrogen. An atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms which may contain at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom, R 5 Are each independently at least one selected from the group consisting of a hydrogen atom, a halogen atom, a siloxy group, a polysiloxy group having 1 to 50 silicon atoms, or a nitrogen atom, an oxygen atom, a silicon atom, a sulfur atom, and a halogen atom. Represents a hydrocarbon group having 1 to 20 carbon atoms which may be contained, provided that when two or more of R 1 to R 4 are hydrocarbon groups, two or more hydrocarbon groups are linked to form a cyclic structure. May be.)
JP2014030412A 2014-02-20 2014-02-20 Method for producing organosilicon compound Active JP6308547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030412A JP6308547B2 (en) 2014-02-20 2014-02-20 Method for producing organosilicon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030412A JP6308547B2 (en) 2014-02-20 2014-02-20 Method for producing organosilicon compound

Publications (2)

Publication Number Publication Date
JP2015155387A JP2015155387A (en) 2015-08-27
JP6308547B2 true JP6308547B2 (en) 2018-04-11

Family

ID=54774962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030412A Active JP6308547B2 (en) 2014-02-20 2014-02-20 Method for producing organosilicon compound

Country Status (1)

Country Link
JP (1) JP6308547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728308B1 (en) 2015-09-14 2017-04-19 기초과학연구원 Non-transition metal mediated hydrosilylation to prepare silicone containing polymers
CN109400777B (en) * 2018-11-09 2021-01-22 河北师范大学 Vanadium complex based on acenaphthoquinone diimine ligand and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9705627A (en) * 1995-01-24 1998-07-31 Du Pont 'alpha'-OLEFINS AND OLEFIN POLYMERS AND PROCESSES THEREFOR.
US7727926B2 (en) * 2005-07-21 2010-06-01 Chevron Phillips Chemical Company Lp Diimine metal complexes, methods of synthesis, and method of using in oligomerization and polymerization
US8415443B2 (en) * 2009-07-10 2013-04-09 Momentive Performance Materials Inc. Hydrosilylation catalysts
WO2012071358A2 (en) * 2010-11-24 2012-05-31 Momentive Performance Materials Inc. In-situ activation of metal complexes containing terdentate nitrogen ligands used as hydrosilylation catalysts

Also Published As

Publication number Publication date
JP2015155387A (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6389220B2 (en) Hydrosilylation catalyst
Hayasaka et al. Highly efficient olefin hydrosilylation catalyzed by iron complexes with iminobipyridine ligand
WO2011081277A2 (en) Saturated n-heterocyclic carbene-ligand metal complex derivatives, preparing method thereof, and preparing method of silane compound by hydrosilylation reaction using the same as catalyst
JP6467673B2 (en) Method for producing carbodiimide compound
Fukumoto et al. Desulfurization of N, N-dimethylthioformamide by hydrosilane with the help of an iron complex. Isolation and characterization of an iron–carbene complex as an intermediate of C [double bond, length as m-dash] S double bond cleavage
JP6308547B2 (en) Method for producing organosilicon compound
JP6763525B2 (en) An iron complex compound and a method for producing an organosilicon compound using the iron complex compound.
JP5276043B2 (en) Ruthenium complex having aromatic ring substituted with silicon-containing substituent as ligand and method for producing the same
JP6333710B2 (en) Method for producing organosilicon compound and catalyst composition
JP6089286B2 (en) Mononuclear ruthenium complex and organic synthesis reaction using it
JPWO2015122502A1 (en) Process for producing optically active compound and novel metal-diamine complex
JP5407332B2 (en) Method for producing quarterpyridine derivative and its intermediate
JP6598406B2 (en) Method for producing silyl compound by hydrosilylation of allyl compound using iridium complex, etc.
JP7351460B2 (en) Iminobipyridine cobalt complex and method for producing organosilicon compound by hydrosilylation reaction using iminobipyridine cobalt complex
JP6269940B2 (en) Nickel complex compound, catalyst composition, and method for producing organosilicon compound
JP7497022B2 (en) Method for producing alkynylsilanes
WO2019151419A1 (en) Polycarbonyl compound, derivative thereof, and production method therefor
JP7367927B2 (en) Compounds having allyl ether and allylsilane skeletons and methods for producing the same
EP2937355B1 (en) Phosphorus compound and transition metal complex of the same
JP5283984B2 (en) Process for producing transition metal compound
JP6635257B2 (en) Method for producing nitrogen-containing silicon-containing compound having both amino and silyl groups
CN103588807A (en) Preparation method of bis(alcoxyl silicon radical) alkane
JP2018095613A (en) Method for producing nitrogen-containing and silicon-containing organic compound using hydrosilane
JP4967098B2 (en) Cycloheptatrienylpalladium compound and process for producing the same
JP2019218279A (en) Method for producing organosilicon compound, method for producing amino aryl group-containing organosilicon compound and organosilicon compound

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6308547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250