JP6307161B2 - Auxiliary heating in waste heat recovery - Google Patents

Auxiliary heating in waste heat recovery Download PDF

Info

Publication number
JP6307161B2
JP6307161B2 JP2016534131A JP2016534131A JP6307161B2 JP 6307161 B2 JP6307161 B2 JP 6307161B2 JP 2016534131 A JP2016534131 A JP 2016534131A JP 2016534131 A JP2016534131 A JP 2016534131A JP 6307161 B2 JP6307161 B2 JP 6307161B2
Authority
JP
Japan
Prior art keywords
working fluid
waste heat
boiler
circuit
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016534131A
Other languages
Japanese (ja)
Other versions
JP2017503947A (en
Inventor
ギブル,ジョン
Original Assignee
ボルボ トラック コーポレイション
ボルボ トラック コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ トラック コーポレイション, ボルボ トラック コーポレイション filed Critical ボルボ トラック コーポレイション
Publication of JP2017503947A publication Critical patent/JP2017503947A/en
Application granted granted Critical
Publication of JP6307161B2 publication Critical patent/JP6307161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、内燃機関の廃熱からエネルギーを回収するための、ランキンサイクル装置等の、ボトミングサイクル装置、より詳細には、作動流体が廃熱膨張機の運転に十分な温度であることを確実にするための方法及び装置に関する。   The present invention relates to bottoming cycle devices, such as Rankine cycle devices, for recovering energy from waste heat of internal combustion engines, and more particularly to ensuring that the working fluid is at a temperature sufficient for the operation of the waste heat expander. The present invention relates to a method and an apparatus.

ボトミングサイクル装置、例えばランキンサイクルに基づく装置では、システム効率は、使用可能時間、即ち、廃熱の回収が起こる運転時間に直接関係している。非作動期間は、多くの場合、利用できる低品質熱(十分でない廃熱)や部品予熱時間(ボイラーや膨張機を暖める時)が原因である。例えば、トラックエンジンに接続された廃熱回収装置は、エンジンの始動及び暖機の直後は作動していない場合がある。   In bottoming cycle devices, such as devices based on Rankine cycles, system efficiency is directly related to the uptime, i.e. the operating time during which waste heat recovery occurs. Non-operational periods are often caused by low quality heat (not enough waste heat) and part preheating time (when warming boilers and expanders) that are available. For example, a waste heat recovery device connected to a truck engine may not be operating immediately after starting and warming up the engine.

本発明は、低品質熱の利用可能期間中の温度管理を向上させることによって運転時間を増加するため、及び運転に戻る時の装置の予熱時間を減少するための解決策を提案する。   The present invention proposes a solution to increase the operating time by improving the temperature management during low quality heat availability and to reduce the preheating time of the device when returning to operation.

本発明は、ランキンサイクル、エリクソンサイクル及びその他の廃熱回収サイクル等のボトミングサイクルに適用できる。   The present invention can be applied to bottoming cycles such as Rankine cycle, Ericsson cycle and other waste heat recovery cycles.

ボトミングサイクル装置は、ボイラー、蒸発器、又は熱交換器等の、廃熱回収熱交換器から作動流体を受け取るための作動流体回路に接続された膨張機を含むことができる。膨張機に案内された作動流体は、膨張器内で膨張して使用可能な仕事又はエネルギーを発生する。   The bottoming cycle apparatus can include an expander connected to a working fluid circuit for receiving a working fluid from a waste heat recovery heat exchanger, such as a boiler, an evaporator, or a heat exchanger. The working fluid guided to the expander expands in the expander to generate usable work or energy.

本発明によれば、作動流体回路上に動作可能に接続された加熱装置は、廃熱回収熱交換器によって回収された廃熱が膨張機の作動レベルまで作動流体エンタルピーを増加させるのに十分でない場合に作動流体に補助熱を提供する。   In accordance with the present invention, a heating device operably connected on the working fluid circuit is not sufficient for the waste heat recovered by the waste heat recovery heat exchanger to increase the working fluid enthalpy to the expander operating level. In some cases, it provides auxiliary heat to the working fluid.

加熱装置は、作動流体を加熱するために熱交換器と共に配設されるバーナー又は電気加熱装置を含むことができる。バーナーは、燃料源、例えば、ディーゼル等の炭化水素燃料を含むことができる。電気加熱装置は、車両給電システム等の供給源から電気エネルギーを受け取るように接続することができる。   The heating device can include a burner or an electrical heating device disposed with the heat exchanger to heat the working fluid. The burner can include a fuel source, for example, a hydrocarbon fuel such as diesel. The electrical heating device can be connected to receive electrical energy from a source such as a vehicle power supply system.

制御装置は、加熱装置の運転を制御するため、また作動流体の温度及び圧力(ボイラーの出口で測定可能)を監視するために接続することができる。   The control device can be connected to control the operation of the heating device and to monitor the temperature and pressure of the working fluid (measurable at the boiler outlet).

加熱装置は、ボイラーと膨張機の間の作動流体回路上に配置することができる。或いは、加熱装置は、ポンプとボイラーの間の作動流体回路上に配置することができる。   The heating device can be placed on the working fluid circuit between the boiler and the expander. Alternatively, the heating device can be placed on the working fluid circuit between the pump and the boiler.

更に別の代替例によれば、加熱装置は、廃熱源流に熱を付加するためにボイラー上に配置することができる。例えば、ボイラーが廃熱源としてエンジン排気ガスの流れを受け取るように接続されている場合、補助加熱装置は、ボイラーに入った時に排気ガスに熱を付加するように配置することができる。   According to yet another alternative, the heating device can be placed on the boiler to add heat to the waste heat source stream. For example, if the boiler is connected to receive a flow of engine exhaust gas as a waste heat source, the auxiliary heating device can be arranged to add heat to the exhaust gas as it enters the boiler.

本発明によれば、作動流体回路は、補助加熱装置が配置された加熱ループを含むことができ、加熱ループは弁によって制御され、弁は、作動流体の熱品質に応じて、膨張機に侵入する前に作動流体を膨張機又は加熱ループに直接案内している。   According to the present invention, the working fluid circuit may include a heating loop in which an auxiliary heating device is arranged, the heating loop being controlled by a valve, which enters the expander depending on the thermal quality of the working fluid. The working fluid is guided directly to the expander or heating loop before it is done.

更に別の態様によれば、作動流体回路は、熱品質が低い場合、又は膨張機の運転が望ましくない場合、膨張機の周囲に、作動流体が案内されるバイパス回路を含むことができる。   According to yet another aspect, the working fluid circuit may include a bypass circuit around which the working fluid is guided when the thermal quality is low or when the operation of the expander is undesirable.

一実施形態によれば、バイパス回路は、補助加熱装置が配置され、作動流体を膨張機に戻す第1のループ、即ち加熱ループと、膨張機を迂回するように第1のループからの作動流体を案内する第2のループとを含むことができる。   According to one embodiment, the bypass circuit includes a first loop in which an auxiliary heating device is disposed and returns the working fluid to the expander, i.e., a heating loop, and the first loop to bypass the expander. And a second loop for guiding.

従来技術による典型的なランキンサイクル装置の概略図である。1 is a schematic view of a typical Rankine cycle device according to the prior art. 作動流体に膨張機を迂回させるためのバイパス回路を有するランキンサイクル装置の概略図である。It is the schematic of the Rankine cycle apparatus which has a bypass circuit for making a working fluid bypass an expander. 作動流体に熱を選択的に付加するために補助加熱装置が設けられている、本発明の一実施形態によるボトミングサイクル装置の概略図である。1 is a schematic diagram of a bottoming cycle device according to one embodiment of the present invention, in which an auxiliary heating device is provided to selectively add heat to a working fluid. FIG. 膨張機の周囲にバイパス回路を含む、図3の装置の代替実施形態の概略図である。FIG. 4 is a schematic diagram of an alternative embodiment of the apparatus of FIG. 3 including a bypass circuit around the expander. 補助加熱装置が設けられた第1のバイパス回路と、膨張機の周囲の第2のバイパス回路とを含む、図3の装置の別の代替実施形態の概略図である。FIG. 4 is a schematic diagram of another alternative embodiment of the apparatus of FIG. 3 including a first bypass circuit provided with an auxiliary heating device and a second bypass circuit around the expander. 加熱装置がボイラーの上流に設けられている、一代替実施形態によるボトミングサイクル装置の概略図である。FIG. 2 is a schematic view of a bottoming cycle device according to an alternative embodiment, in which a heating device is provided upstream of the boiler. 加熱装置がボイラーへの廃熱入口に設けられている、更なる代替実施形態によるボトミングサイクル装置の概略図である。FIG. 6 is a schematic diagram of a bottoming cycle device according to a further alternative embodiment, in which a heating device is provided at the waste heat inlet to the boiler.

図1に示すように、典型的なボトミングサイクル廃熱回収装置は、熱源(図示せず)、例えば、作動流体を加熱するための、内燃機関排気からの廃熱、エンジン冷却液、エンジンオイルクーラー、又はその他の供給源から熱を回収するための蒸発器又はボイラー10を含んでいる。ボイラー入口の流入管11は、廃熱輸送媒体(例えば、排気ガス)をボイラー10に導通し、流出管13は、熱交換後にボイラー出口から出た媒体を輸送する。作動流体は、作動流体回路12によって廃熱回収装置を通して輸送される。ボイラー10を出る加熱された作動流体は、作動流体回路線12aを通して膨張機14に案内され、そこで作動流体を膨張させることによって仕事を発生する。膨張機は、タービン、ピストンエンジン、スクロール、スクリュー、又はその他の機械であってもよい。発生した仕事は、軸15を通して伝達することができ、例えば、発電機を駆動するために、即ち、内燃機関の駆動軸に付与される機械力として使用することができる。膨張した作動流体は、回路線12bを通して凝縮器16に案内され、そこで作動流体から残留熱を除去し、作動流体を凝縮する。凝縮した流体は、その後回路線12cを通してポンプ18に案内され、そこで作動流体を圧縮する。回路線12cは、作動流体をポンプ18からボイラー10に輸送して、廃熱回収サイクルを繰り返す。   As shown in FIG. 1, a typical bottoming cycle waste heat recovery system includes a heat source (not shown), eg, waste heat from an internal combustion engine exhaust, engine coolant, engine oil cooler for heating a working fluid. Or an evaporator or boiler 10 for recovering heat from other sources. The inflow pipe 11 at the boiler inlet conducts a waste heat transport medium (for example, exhaust gas) to the boiler 10, and the outflow pipe 13 transports the medium exiting from the boiler outlet after heat exchange. The working fluid is transported through the waste heat recovery device by the working fluid circuit 12. The heated working fluid leaving the boiler 10 is guided to the expander 14 through the working fluid circuit line 12a where it generates work by expanding the working fluid. The expander may be a turbine, piston engine, scroll, screw, or other machine. The generated work can be transmitted through the shaft 15 and can be used, for example, to drive the generator, i.e. as mechanical force applied to the drive shaft of the internal combustion engine. The expanded working fluid is guided to the condenser 16 through the circuit line 12b, where residual heat is removed from the working fluid and the working fluid is condensed. The condensed fluid is then guided to pump 18 through circuit line 12c where it compresses the working fluid. The circuit line 12c transports the working fluid from the pump 18 to the boiler 10 and repeats the waste heat recovery cycle.

図2に示すように、且つ当該技術において周知のように、ボトミングサイクル廃熱装置は、作動流体を膨張機14の周囲で凝縮器16に選択的に案内するためのバイパス弁20及びバイパス回路22を含むことができる。バイパス弁20は、作動流体が運転状態にある場合は線24を通して膨張機14に案内するか、若しくは、膨張機による発電が望ましくない場合又は作動流体の品質が膨張に十分でない場合は線22を通して膨張機14を迂回するように制御することができる。例えば、過熱蒸気のように、作動流体を運転温度まで加熱するためにボイラー10で利用できる廃熱が足りない場合、作動流体の品質は、十分でなくなる可能性がある。凝縮器16は、バイパス回路から受け取った作動流体を冷却し、冷却した流体は、ポンプ18によって蒸発器/ボイラー10にポンプ輸送される。   As shown in FIG. 2 and as is well known in the art, the bottoming cycle waste heat device includes a bypass valve 20 and a bypass circuit 22 for selectively guiding the working fluid around the expander 14 to the condenser 16. Can be included. The bypass valve 20 guides the expander 14 through line 24 when the working fluid is in operation, or through line 22 if power generation by the expander is not desired or the quality of the working fluid is not sufficient for expansion. Control can be performed to bypass the expander 14. For example, if there is not enough waste heat available in the boiler 10 to heat the working fluid to the operating temperature, such as superheated steam, the quality of the working fluid may not be sufficient. The condenser 16 cools the working fluid received from the bypass circuit, and the cooled fluid is pumped to the evaporator / boiler 10 by a pump 18.

図3は、本発明による装置の一実施形態を図示している。図3の装置は、作動流体に補助熱を提供するために作動流体回路12に動作可能に接続された加熱装置40を含んでいる。加熱装置40は、蒸発器10と膨張機14の間に接続されて図示されている。蒸発器10によって回収されて作動流体に伝達された熱が膨張機14で使用するのに十分でない場合、加熱装置40は、作動流体に補助熱を付加するように作動することができる。   FIG. 3 illustrates one embodiment of an apparatus according to the present invention. The apparatus of FIG. 3 includes a heating device 40 operably connected to the working fluid circuit 12 to provide supplemental heat to the working fluid. The heating device 40 is shown connected between the evaporator 10 and the expander 14. If the heat recovered by the evaporator 10 and transferred to the working fluid is not sufficient for use in the expander 14, the heating device 40 can be operated to add auxiliary heat to the working fluid.

加熱装置40は、バーナー又は電気加熱装置によって供給される熱による熱交換器として構成することができる。   The heating device 40 can be configured as a heat exchanger with heat supplied by a burner or an electric heating device.

加熱装置40は、エネルギー源44からのエネルギーを受け取るように接続されている。加熱装置40はバーナー装置であってもよく、エネルギー源44は炭化水素燃料であってもよい。燃料は、都合の良いことに、廃熱を発生させるエンジンが使用するのと同じ燃料であってもよい。加熱装置40は、代わりに、電気ヒーターや、電気エネルギー源として構成されたエネルギー源であってもよい。例えば、廃熱回収装置がトラックと関連している場合、トラックの電気システムはエネルギー源として接続することができる。その他の加熱装置を使用してもよい。   The heating device 40 is connected to receive energy from the energy source 44. The heating device 40 may be a burner device and the energy source 44 may be a hydrocarbon fuel. The fuel may conveniently be the same fuel used by the engine that generates waste heat. The heating device 40 may instead be an electric heater or an energy source configured as an electric energy source. For example, if the waste heat recovery device is associated with a truck, the truck's electrical system can be connected as an energy source. Other heating devices may be used.

加熱装置40は、ボイラー10を出る作動流体の検出温度に基づいて作動することができる。ボイラー10の出口の、又はボイラーの出口側の作動流体回路12a上の温度センサ46は、温度信号を制御装置48に提供するように接続することができ、この制御装置48は、センサ46からの温度信号に応じて加熱装置40及びエネルギー源44を制御するように接続されている。   The heating device 40 can operate based on the detected temperature of the working fluid exiting the boiler 10. A temperature sensor 46 on the working fluid circuit 12 a at the outlet of the boiler 10 or on the outlet side of the boiler can be connected to provide a temperature signal to the controller 48, which is connected to the sensor 48 from the sensor 46. It connects so that the heating apparatus 40 and the energy source 44 may be controlled according to a temperature signal.

加熱装置40は、作動流体の圧力等の、その他の運転条件に基づいて制御することもできる。更に、膨張機の出口側(又は凝縮器の入口)の温度センサ62は、出ていく膨張した作動流体の温度を監視し、信号を制御装置48に提供することができる。   The heating device 40 can also be controlled based on other operating conditions such as the pressure of the working fluid. In addition, a temperature sensor 62 on the outlet side of the expander (or condenser inlet) can monitor the temperature of the expanded working fluid exiting and provide a signal to the controller 48.

図4は、図3の装置の一代替実施形態の概略図である。バイパス弁20は、熱品質が膨張に十分でない場合、バイパス回路22を通して膨張機14を迂回するように作動流体を案内するために設けられている。バイパス弁20は、ボイラー10から回収した廃熱からの、又は加熱装置40からの補助熱からの、又はその両方からの、作動流体の熱品質が膨張に十分でない場合、作動流体を膨張機14に案内するように制御されている。バイパス弁20は、ボイラーの出口側のセンサ46及び/又は加熱装置40の出口側のセンサ47によって測定された作動流体の温度を含む条件に応じて、制御装置48によって制御されている。   FIG. 4 is a schematic diagram of an alternative embodiment of the apparatus of FIG. The bypass valve 20 is provided to guide the working fluid to bypass the expander 14 through the bypass circuit 22 if the thermal quality is not sufficient for expansion. Bypass valve 20 may remove the working fluid from expander 14 if the thermal quality of the working fluid is not sufficient for expansion, from waste heat recovered from boiler 10, from auxiliary heat from heating device 40, or both. Is controlled to guide. The bypass valve 20 is controlled by a control device 48 according to conditions including the temperature of the working fluid measured by the sensor 46 on the outlet side of the boiler and / or the sensor 47 on the outlet side of the heating device 40.

図5は、ボイラー10から流れる作動流体の熱品質が十分な品質である場合、又は補助加熱が必要な場合、補助加熱装置40が配置される第1のバイパス回路22aに第1のバイパス弁20aを含む、別の代替実施形態を示している。第2のバイパス弁20bは加熱装置40の下流にあり、作動流体の熱品質が膨張に十分である場合、回路22bを通して膨張機14に作動流体を案内し、それによって第1のバイパス回路を終了する。第2のバイパス弁20bは、作動流体の熱品質が膨張に十分でない場合、第2のバイパス回路22cを通して作動流体を案内する。第1のバイパス弁20a及び第2のバイパス弁20bは、ボイラー10の出口側のセンサ46及び加熱装置40の出口側のセンサ47によって測定された作動流体の温度を含む運転条件に応じて、制御装置48によって制御されている。   FIG. 5 shows that when the heat quality of the working fluid flowing from the boiler 10 is sufficient, or when auxiliary heating is required, the first bypass valve 20a is provided in the first bypass circuit 22a in which the auxiliary heating device 40 is disposed. Figure 2 shows another alternative embodiment including: The second bypass valve 20b is downstream of the heating device 40 and guides the working fluid through the circuit 22b to the expander 14 when the thermal quality of the working fluid is sufficient for expansion, thereby terminating the first bypass circuit. To do. The second bypass valve 20b guides the working fluid through the second bypass circuit 22c when the thermal quality of the working fluid is not sufficient for expansion. The first bypass valve 20a and the second bypass valve 20b are controlled according to operating conditions including the temperature of the working fluid measured by the sensor 46 on the outlet side of the boiler 10 and the sensor 47 on the outlet side of the heating device 40. It is controlled by the device 48.

図5の一代替実施形態によれば、第2のバイパス弁20b及び第2のバイパス回路22cは省略され、第1のバイパス弁20a、バイパス回路22a及び加熱装置40は加熱ループを構成している。バイパス弁20aは、作動流体が膨張機に案内される前の補助加熱用に、膨張機又は加熱ループに直接作動流体を案内するように制御されている。   According to an alternative embodiment of FIG. 5, the second bypass valve 20b and the second bypass circuit 22c are omitted, and the first bypass valve 20a, the bypass circuit 22a and the heating device 40 constitute a heating loop. . The bypass valve 20a is controlled to guide the working fluid directly to the expander or heating loop for auxiliary heating before the working fluid is guided to the expander.

図6は、一代替実施形態の概略図である。加熱装置40は、ポンプ18とボイラー10の間で、ボイラー10の入口側の作動流体回路12に接続することができる。バイパス弁20及びバイパス回路22は、膨張機の運転が望ましくない場合、又は作動流体の品質が膨張に十分でない場合、膨張機を迂回するように作動流体を案内するように設けることもできる。   FIG. 6 is a schematic diagram of an alternative embodiment. The heating device 40 can be connected between the pump 18 and the boiler 10 to the working fluid circuit 12 on the inlet side of the boiler 10. The bypass valve 20 and the bypass circuit 22 can also be provided to guide the working fluid to bypass the expander when operation of the expander is not desired or when the quality of the working fluid is not sufficient for expansion.

図7は、加熱装置40がボイラー10の廃熱流入管11上に接続されている、別の代替実施形態の概略図である。バイパス弁20及びバイパス回路22は、その他の実施形態と同様に設けることもできる。   FIG. 7 is a schematic diagram of another alternative embodiment in which the heating device 40 is connected on the waste heat inlet pipe 11 of the boiler 10. The bypass valve 20 and the bypass circuit 22 can be provided similarly to the other embodiments.

本発明は、好ましい原理、実施形態、及び構成要素に関して説明した。当業者は、特許請求の範囲によって定義される本発明の技術的範囲から逸脱することなく構成要素の置換を行うことができることを理解するであろう。   The invention has been described with reference to preferred principles, embodiments and components. Those skilled in the art will appreciate that component substitutions can be made without departing from the scope of the invention as defined by the claims.

Claims (9)

排気ガスシステムを備えた内燃機関を有する車両用廃熱回収装置において、
作動流体を循環させるための作動流体回路と、
前記作動流体回路上に接続され、前記排気ガスシステムから廃熱を回収し、回収した廃熱を前記作動流体に伝達するように構成されたボイラーと、
前記ボイラーから前記作動流体を受け取るために前記作動流体回路上に接続された膨張機と、
前記作動流体に熱を伝えるために接続されたバーナーまたは電気ヒータを含む補助加熱装置と
前記ボイラーの出口において前記作動流体の温度を検出し、それを表す温度信号を生成するように配置された温度センサと、
前記温度センサからの前記温度信号を受信するように接続され、前記膨張機の作動レベルには十分でない前記ボイラーから流出する前記作動流体の温度を示す前記温度信号に応じて前記作動流体に熱を伝えるために前記補助加熱装置を制御するように接続された制御装置とを備える
車両用廃熱回収装置。
In a vehicle waste heat recovery apparatus having an internal combustion engine with an exhaust gas system
A working fluid circuit for circulating the working fluid;
A boiler connected on the working fluid circuit and configured to recover waste heat from the exhaust gas system and to transfer the recovered waste heat to the working fluid;
An expander connected on the working fluid circuit to receive the working fluid from the boiler;
An auxiliary heating device including a burner or an electric heater connected to transfer heat to the working fluid ;
A temperature sensor arranged to detect the temperature of the working fluid at the outlet of the boiler and generate a temperature signal representative thereof;
The working fluid is connected to receive the temperature signal from the temperature sensor and heats the working fluid in response to the temperature signal indicating a temperature of the working fluid flowing out of the boiler that is not sufficient for an operating level of the expander. And a controller connected to control the auxiliary heating device to communicate
Waste heat recovery equipment for vehicles .
前記補助加熱装置は、前記ボイラーと前記膨張機の間で前記作動流体回路に接続されている、請求項1に記載の車両用廃熱回収装置。 The waste heat recovery apparatus for a vehicle according to claim 1, wherein the auxiliary heating device is connected to the working fluid circuit between the boiler and the expander. 前記補助加熱装置は、前記ポンプと前記ボイラーの間で前記作動流体回路に接続されている、請求項1に記載の車両用廃熱回収装置。 The waste heat recovery apparatus for a vehicle according to claim 1, wherein the auxiliary heating device is connected to the working fluid circuit between the pump and the boiler. 前記補助加熱装置は、前記ボイラーに熱を伝えるために接続されている、請求項1に記載の車両用廃熱回収装置。 The waste heat recovery apparatus for a vehicle according to claim 1, wherein the auxiliary heating device is connected to transmit heat to the boiler. 前記膨張機を迂回するように選択的に作動流体を案内するために前記作動流体回路上に接続されたバイパス弁及びバイパス回路を備える、請求項1に記載の車両用廃熱回収装置。 The vehicle waste heat recovery apparatus according to claim 1, further comprising a bypass valve and a bypass circuit connected on the working fluid circuit to selectively guide the working fluid to bypass the expander. 前記補助加熱装置は、前記ボイラーと前記バイパス弁の間で前記作動流体回路に接続されている、請求項に記載の車両用廃熱回収装置。 The waste heat recovery device for a vehicle according to claim 5 , wherein the auxiliary heating device is connected to the working fluid circuit between the boiler and the bypass valve. 第2のバイパス弁を備えており、前記バイパス回路は、作動流体が第1のバイパス弁によって前記第2のバイパス弁に、その後前記第2のバイパス弁によって前記膨張機に案内される第1の回路と、作動流体が前記第1のバイパス弁によって前記第2のバイパス弁に、その後前記第2のバイパス弁によって前記膨張機を迂回するように案内される第2のバイパス回路とからなる、請求項に記載の車両用廃熱回収装置。 A second bypass valve, wherein the bypass circuit guides the working fluid to the second bypass valve by the first bypass valve and then to the expander by the second bypass valve. A circuit and a second bypass circuit in which working fluid is guided by the first bypass valve to the second bypass valve and then by the second bypass valve to bypass the expander. Item 6. A waste heat recovery apparatus for a vehicle according to Item 5 . 前記補助加熱装置は、前記第1の回路上に配置されている、請求項に記載の車両用廃熱回収装置。 The auxiliary heating device is arranged in the first circuit on a vehicle for waste heat recovery apparatus according to claim 7. 前記膨張機又は加熱ループの一方に作動流体を選択的に案内するように前記作動流体回路上に接続された弁を備えており、前記補助加熱装置は、前記加熱ループ上に配置されている、請求項1に記載の車両用廃熱回収装置。 Comprising a valve connected on the working fluid circuit to selectively guide working fluid to one of the expander or heating loop, and the auxiliary heating device is disposed on the heating loop; The waste heat recovery apparatus for vehicles according to claim 1.
JP2016534131A 2013-11-26 2013-11-26 Auxiliary heating in waste heat recovery Expired - Fee Related JP6307161B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/071900 WO2015080697A1 (en) 2013-11-26 2013-11-26 Supplemental heating in waste heat recovery

Publications (2)

Publication Number Publication Date
JP2017503947A JP2017503947A (en) 2017-02-02
JP6307161B2 true JP6307161B2 (en) 2018-04-04

Family

ID=53199481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016534131A Expired - Fee Related JP6307161B2 (en) 2013-11-26 2013-11-26 Auxiliary heating in waste heat recovery

Country Status (4)

Country Link
US (1) US20160251984A1 (en)
EP (1) EP3074613B1 (en)
JP (1) JP6307161B2 (en)
WO (1) WO2015080697A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214727A1 (en) * 2015-08-03 2017-02-09 Robert Bosch Gmbh Waste heat utilization assembly of an internal combustion engine and method for operating the waste heat recovery assembly
AT518927B1 (en) * 2016-07-19 2020-09-15 MAN TRUCK & BUS OESTERREICH GesmbH Device for generating usable energy

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366674A (en) * 1980-06-06 1983-01-04 Caterpillar Tractor Co. Internal combustion engine with Rankine bottoming cycle
JPS63289203A (en) * 1987-05-20 1988-11-25 Mazda Motor Corp Engine waste heat energy recovery device
US6286297B1 (en) * 1997-07-02 2001-09-11 Mitsubishi Heavy Industries, Ltd. Steam cooled type combined cycle power generation plant and operation method thereof
ATE221179T1 (en) * 1998-02-03 2002-08-15 Miturbo Umwelttechnik Gmbh & C METHOD AND DEVICE FOR HEAT TRANSFORMATION FOR GENERATING HEATING MEDIA
JP3800384B2 (en) * 1998-11-20 2006-07-26 株式会社日立製作所 Combined power generation equipment
EP1902198A2 (en) * 2005-06-16 2008-03-26 UTC Power Corporation Organic rankine cycle mechanically and thermally coupled to an engine driving a common load
EP1953350A3 (en) * 2007-01-04 2009-01-07 Siemens Aktiengesellschaft Turbine blade
US20080163625A1 (en) * 2007-01-10 2008-07-10 O'brien Kevin M Apparatus and method for producing sustainable power and heat
US8424281B2 (en) * 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
JP5018592B2 (en) 2008-03-27 2012-09-05 いすゞ自動車株式会社 Waste heat recovery device
DE102008051384B3 (en) * 2008-10-11 2010-02-11 Technische Universität Dresden Solar-hybrid operated gas and steam power plant has solar plant, gas turbine system and steam turbine system, where heat-carrier circuit is provided for transmitting solar heat
JP4935935B2 (en) * 2008-12-18 2012-05-23 三菱電機株式会社 Waste heat regeneration system
AU2010271387B2 (en) * 2009-07-08 2014-12-11 Areva Solar, Inc. Solar powered heating system for working fluid
US8613195B2 (en) * 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US9267414B2 (en) * 2010-08-26 2016-02-23 Modine Manufacturing Company Waste heat recovery system and method of operating the same
EP2636079A4 (en) * 2010-11-05 2015-02-25 Mack Trucks Thermoelectric recovery and peltier heating of engine fluids
US8302399B1 (en) 2011-05-13 2012-11-06 General Electric Company Organic rankine cycle systems using waste heat from charge air cooling
JP2012251517A (en) * 2011-06-06 2012-12-20 Toyota Industries Corp Waste heat recovery apparatus
EP2831385B1 (en) * 2012-03-28 2016-11-09 General Electric Technology GmbH Combined cycle power plant and method for operating such a combined cycle power plant
US9391254B2 (en) * 2012-06-27 2016-07-12 Daniel Lessard Electric power generation
WO2015197088A1 (en) * 2014-06-26 2015-12-30 Volvo Truck Corporation Exhaust gas arrangement

Also Published As

Publication number Publication date
WO2015080697A1 (en) 2015-06-04
EP3074613A1 (en) 2016-10-05
JP2017503947A (en) 2017-02-02
EP3074613B1 (en) 2021-09-15
US20160251984A1 (en) 2016-09-01
EP3074613A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6377645B2 (en) Method and apparatus for heating an expander of a waste heat recovery device
CA2874473C (en) Device and method for utilizing the waste heat of an internal combustion engine, in particular for utilizing the waste heat of a vehicle engine
US20130025277A1 (en) Waste heat regeneration system
KR20120068670A (en) Waste heat recycling apparatus for ship
CN105089721A (en) Thermal energy recovery device and control method
JP2011208524A (en) Waste heat regeneration system
JP2011012625A (en) Exhaust heat recovery system and control method of the same
JP2014231738A (en) Waste heat regeneration system
JP6382219B2 (en) Series parallel waste heat recovery system
JP7057323B2 (en) Thermal cycle system
JP6307161B2 (en) Auxiliary heating in waste heat recovery
JP2012117410A (en) Operation stop method for waste heat regeneration device
US10378391B2 (en) Waste heat recovery device
WO2016129451A1 (en) Heat exchanger, energy recovery device, and ship
EP3303781B1 (en) Method and apparatus for bottoming cycle working fluid enthalpy control in a waste heat recovery apparatus
WO2012169376A1 (en) Waste heat recovery apparatus
CN213711133U (en) Back pressure type ORC combined heat and power generation system
JP6239008B2 (en) Apparatus and method for operation control and safety control of a heat engine
JP2015140668A (en) waste heat regeneration system
JP2015025422A (en) Feed water for boiler preheating system and feed water for boiler preheating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6307161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees