JP6305938B2 - Gas purification equipment - Google Patents

Gas purification equipment Download PDF

Info

Publication number
JP6305938B2
JP6305938B2 JP2014554548A JP2014554548A JP6305938B2 JP 6305938 B2 JP6305938 B2 JP 6305938B2 JP 2014554548 A JP2014554548 A JP 2014554548A JP 2014554548 A JP2014554548 A JP 2014554548A JP 6305938 B2 JP6305938 B2 JP 6305938B2
Authority
JP
Japan
Prior art keywords
gas
pressure
path
miscellaneous
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014554548A
Other languages
Japanese (ja)
Other versions
JPWO2014104196A1 (en
Inventor
高久 夘瀧
高久 夘瀧
保 小谷
保 小谷
由喜男 藤原
由喜男 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JPWO2014104196A1 publication Critical patent/JPWO2014104196A1/en
Application granted granted Critical
Publication of JP6305938B2 publication Critical patent/JP6305938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel

Description

原料ガスから精製対象ガス以外の雑ガスを吸着する吸着材を充填してある吸着塔を設け、
前記吸着塔に原料ガスを供給する原料ガス供給路を設け、
前記吸着材に吸着しなかった精製対象ガスを製品ガスとして排出する製品ガス回収路を設け、
前記吸着材に吸着した雑ガスを脱着させて排気する雑ガス排出路を設け、
前記吸着塔と、前記原料ガス供給路と、前記製品ガス回収路と、前記排ガスとを、
前記原料ガス供給路から原料ガスを受け入れて、雑ガスを前記吸着材に吸着するとともに、製品ガスを回収する吸着工程と、
吸着材に吸着した雑ガスを脱着して前記雑ガス排出路より排気する脱着工程と、
を交互に行う圧力揺動運転可能に接続したガス精製装置に関する。
An adsorption tower filled with an adsorbent that adsorbs miscellaneous gases other than the gas to be purified from the source gas is provided.
A source gas supply path for supplying source gas to the adsorption tower is provided,
A product gas recovery path for discharging the gas to be purified that has not been adsorbed on the adsorbent as product gas is provided,
Provide a miscellaneous gas discharge path for desorbing and exhausting miscellaneous gas adsorbed on the adsorbent,
The adsorption tower, the raw material gas supply path, the product gas recovery path, and the exhaust gas,
An adsorption step of receiving a raw material gas from the raw material gas supply path, adsorbing a miscellaneous gas to the adsorbent, and collecting a product gas;
A desorption step of desorbing the miscellaneous gas adsorbed on the adsorbent and exhausting it from the miscellaneous gas discharge path;
The present invention relates to a gas purification apparatus connected so as to be capable of performing pressure fluctuation operation alternately.

可燃性ガスを有効に利用する場合には、可燃性ガスが含まれる原料ガスから空気などのガスを分離して、適当な濃度範囲にまで可燃性ガスを濃縮する必要がある。このような可燃性ガスを濃縮する装置や方法は種々提案されているが、可燃性ガスとしてのメタンを含有する炭鉱から発生するガス(いわゆる炭鉱ガス)を原料ガスとして、この原料ガスから吸着材を用いて空気(主に窒素、酸素、二酸化炭素が含まれる)を分離し、メタンを濃縮して利用する発明が提案されている。   In order to effectively use the combustible gas, it is necessary to separate the gas such as air from the raw material gas containing the combustible gas and concentrate the combustible gas to an appropriate concentration range. Various devices and methods for concentrating such a combustible gas have been proposed. A gas generated from a coal mine containing methane as a combustible gas (so-called coal mine gas) is used as a raw material gas, and an adsorbent is obtained from the raw material gas. An invention has been proposed in which air (mainly containing nitrogen, oxygen and carbon dioxide) is separated using methane, and methane is concentrated for use.

すなわち、窒素に比べてメタンの吸着速度が非常に遅い天然ゼオライトを吸着材として用いて(換言すると、メタンに対して窒素、酸素、二酸化炭素を優先的に吸着する吸着材を用いて)、当該吸着材が充填された吸着塔に炭鉱ガスを圧縮機等により所定圧になるまで導入する。これにより、炭鉱ガスに含まれる酸素、窒素、二酸化炭素を先に吸着塔の手前部(下部)に吸着させ、吸着塔の奥部(上部)に吸着速度の遅いメタンを吸着させる。さらに当該メタンを吸着塔の上部から大気圧になるまで放出して、メタンを濃縮するための装置および方法の発明が提案されている。
これにより、原料ガスとしての炭鉱ガスから、吸着材を用いて空気を分離し、メタンを濃縮して、当該濃縮されたメタンを燃料等として利用することができるものとされている。
That is, using natural zeolite as an adsorbent that adsorbs methane very slowly compared to nitrogen (in other words, using an adsorbent that preferentially adsorbs nitrogen, oxygen, and carbon dioxide to methane) The coal mine gas is introduced into the adsorption tower filled with the adsorbent by a compressor or the like until a predetermined pressure is reached. Thereby, oxygen, nitrogen, and carbon dioxide contained in the coal mine gas are first adsorbed to the front part (lower part) of the adsorption tower, and methane having a slow adsorption rate is adsorbed to the rear part (upper part) of the adsorption tower. Further, an invention of an apparatus and a method for concentrating methane by releasing the methane from the upper part of the adsorption tower to atmospheric pressure has been proposed.
Thereby, it is supposed that air can be separated from a coal mine gas as a raw material gas using an adsorbent, methane can be concentrated, and the concentrated methane can be used as a fuel or the like.

つまり、原料ガスから精製対象ガス以外の雑ガスを吸着する吸着材を充填してある吸着塔を設け、
前記吸着塔に原料ガスを供給する原料ガス供給路を設け、
前記吸着材に吸着しなかった精製対象ガスを製品ガスとして排出する製品ガス回収路を設け、
前記吸着材に吸着した雑ガスを減圧脱着させて排気する雑ガス排出路を設け、
前記吸着塔と、前記原料ガス供給路と、前記製品ガス回収路と、前記雑ガス排出路とを、
前記原料ガス供給路から原料ガスを受け入れて、雑ガスを前記吸着材に吸着するとともに、製品ガスを回収する吸着工程と、
吸着材に吸着した雑ガスを脱着して前記雑ガス排出路より排気する脱着工程と、
を交互に行う圧力揺動運転可能に接続した構成(以下PSA装置と称する)が想定される。
That is, an adsorption tower filled with an adsorbent that adsorbs miscellaneous gases other than the gas to be purified from the source gas is provided,
A source gas supply path for supplying source gas to the adsorption tower is provided,
A product gas recovery path for discharging the gas to be purified that has not been adsorbed on the adsorbent as product gas is provided,
A miscellaneous gas discharge path for exhausting the miscellaneous gas adsorbed on the adsorbent by desorbing under reduced pressure is provided,
The adsorption tower, the source gas supply path, the product gas recovery path, and the miscellaneous gas discharge path,
An adsorption step of receiving a raw material gas from the raw material gas supply path, adsorbing a miscellaneous gas to the adsorbent, and collecting a product gas;
A desorption step of desorbing the miscellaneous gas adsorbed on the adsorbent and exhausting it from the miscellaneous gas discharge path;
A configuration (hereinafter referred to as a PSA device) connected so as to be able to perform a pressure swing operation that alternately performs is assumed.

これにより、原料ガスを原料ガス供給路から吸着塔に供給すると、原料ガス中の雑ガスを前記吸着塔内の吸着材に吸着させる吸着工程を行うことができる。吸着材に吸着しなかった原料ガス中の精製対象ガスは、製品ガス回収路から回収されるとともに、雑ガスを吸着して飽和した吸着塔は、吸着材に吸着された雑ガスを減圧脱着する脱着工程を行うことによって、再生することができる。この際生じた排ガスは、雑ガスを主成分とするものとなっていて、雑ガス排出路より排気される。この吸着工程および脱着工程を繰り返す圧力揺動運転が行える。   Thereby, if source gas is supplied to an adsorption tower from a source gas supply path, the adsorption process which makes the adsorbent in the said adsorption tower adsorb the miscellaneous gas in source gas can be performed. The gas to be purified in the raw material gas that has not been adsorbed by the adsorbent is recovered from the product gas recovery path, and the adsorption tower that has adsorbed and saturated the miscellaneous gas desorbs the miscellaneous gas adsorbed by the adsorbent under reduced pressure. It can be regenerated by performing a desorption process. The exhaust gas generated at this time is mainly composed of miscellaneous gas and is exhausted from the miscellaneous gas discharge passage. A pressure swing operation in which the adsorption process and the desorption process are repeated can be performed.

ここで、前記製品ガスの精製対象ガス純度をある程度以上に高めようとする場合、吸着塔を通過する雑ガス量を抑制する必要がある。すると、吸着塔内に残留する精製対象ガスを排ガスとして排出することになるから、精製対象ガスの回収率を低下させることになる。また、逆に回収率を向上しようとすると製品ガス純度を低下させることになるから、製品ガス純度を維持しつつ精製対象ガスの回収率を向上させることが望まれている。   Here, in order to increase the purity of the product gas to be purified to a certain degree or more, it is necessary to suppress the amount of miscellaneous gas passing through the adsorption tower. Then, since the purification target gas remaining in the adsorption tower is discharged as exhaust gas, the recovery rate of the purification target gas is reduced. On the other hand, if an attempt is made to improve the recovery rate, the product gas purity is lowered. Therefore, it is desired to improve the recovery rate of the gas to be purified while maintaining the product gas purity.

上記目的のために、排気される排ガスをさらに精製し、精製対象ガスの回収率を向上すべく膜分離装置を前記雑ガス排出路に設けた構成(特許文献1参照)や、ガス精製装置の上流側に膜分離装置を設ける構成(特許文献2参照)が考えられている。   For the above purpose, the exhaust gas to be exhausted is further purified, and a configuration in which a membrane separation device is provided in the miscellaneous gas discharge path in order to improve the recovery rate of the gas to be purified (see Patent Document 1), The structure (refer patent document 2) which provides a membrane separation apparatus in the upstream is considered.

米国特許出願公開2004−099138号公報US Patent Application Publication No. 2004-099138 米国特許出願公開2011−094378号公報US Patent Application Publication No. 2011-094378

ところが前記特許文献1には、排ガス中の精製対象ガスを膜分離し、分離膜を透過した精製対象ガスを原料ガス供給路に返送する構成としてあるため、精製対象ガスを膜分離する動力を大きく確保する必要があって、装置全体の運転動力が大きく必要になる。そのうえ、最終的な製品ガスの精製対象ガス純度は膜分離装置で決まることになり、高い純度を維持するためには、膜分離装置の分離膜透過ガス量を増加させる必要があり、回収率を低下させざるを得ない構成となっている。   However, in Patent Document 1, the gas to be purified in the exhaust gas is subjected to membrane separation, and the gas to be purified that has permeated through the separation membrane is returned to the raw material gas supply path. Therefore, the power for membrane separation of the gas to be purified is greatly increased. It is necessary to secure it, and the driving power of the entire apparatus is required. In addition, the final product gas purification target gas purity will be determined by the membrane separator, and in order to maintain high purity, it is necessary to increase the amount of separation membrane permeate gas in the membrane separator, and to improve the recovery rate. It has a configuration that must be reduced.

また、前記特許文献2の技術によると、PSA装置によって製品ガスの純度を決定することができるために、製品ガスを高純度に設定することが可能であるが、PSA装置に供給される原料ガスの純度を、あらかじめ向上させておくのに用いられる膜分離装置が精製対象ガスの回収率を大きく低下させる原因となって、結果的に装置全体としては回収率の向上には寄与しにくいものとなっていた。   Further, according to the technique of Patent Document 2, since the purity of the product gas can be determined by the PSA apparatus, the product gas can be set to a high purity, but the raw material gas supplied to the PSA apparatus As a result, the membrane separator used to improve the purity of the gas greatly reduces the recovery rate of the gas to be purified. As a result, the overall device is unlikely to contribute to the improvement of the recovery rate. It was.

そこで本発明の目的は、PSA装置を用いたガス精製装置からの精製対象ガス回収率を改善し、動力効率よく純度と回収率の両立を図ることにある。   Accordingly, an object of the present invention is to improve the recovery rate of the gas to be purified from the gas purifier using the PSA device, and to achieve both the purity and the recovery rate with high power efficiency.

〔構成1〕
上記目的を達成するための本発明のガス精製装置の特徴構成は、
原料ガスから精製対象ガス以外の雑ガスを吸着する吸着材を充填してある吸着塔を設け、
前記吸着塔に原料ガスを供給する原料ガス供給路を設け、
前記吸着材に吸着しなかった精製対象ガスを製品ガスとして排出する製品ガス回収路を設け、
前記吸着材に吸着した雑ガスを脱着させて排気する雑ガス排出路を設け、
前記吸着塔と、前記原料ガス供給路と、前記製品ガス回収路と、前記雑ガス排出路とを、
前記原料ガス供給路から原料ガスを受け入れて、雑ガスを前記吸着材に吸着するとともに、製品ガスを回収する吸着工程と、
吸着材に吸着した雑ガスを脱着して前記雑ガス排出路より排気する脱着工程と、
を交互に行う圧力揺動運転可能に接続したガス精製装置であって、
前記雑ガス排出路に、精製対象ガスを透過せず、前記雑ガスを透過する分離膜を有するとともに、前記吸着塔の排気圧で精製対象ガスと雑ガスとを分離する膜分離装置を設け、
分離膜で精製対象ガス濃度の高められた再生ガスを前記原料ガス供給路に返送する再生ガス返送路を設け、
前記再生ガス返送路に、前記脱着工程時に前記吸着塔の排気圧が徐々に低下するように、開度調整して圧力を制御する再生圧力制御弁を設け、前記再生圧力制御弁により前記分離膜の膜分離圧を制御する再生制御装置を備えて、前記再生圧力制御弁を用いて前記膜分離装置の膜分離圧を前記吸着塔の排気圧により制御する点にある。
[Configuration 1]
The characteristic configuration of the gas purification apparatus of the present invention for achieving the above object is as follows:
An adsorption tower filled with an adsorbent that adsorbs miscellaneous gases other than the gas to be purified from the source gas is provided.
A source gas supply path for supplying source gas to the adsorption tower is provided,
A product gas recovery path for discharging the gas to be purified that has not been adsorbed on the adsorbent as product gas is provided,
Provide a miscellaneous gas discharge path for desorbing and exhausting miscellaneous gas adsorbed on the adsorbent,
The adsorption tower, the source gas supply path, the product gas recovery path, and the miscellaneous gas discharge path,
An adsorption step of receiving a raw material gas from the raw material gas supply path, adsorbing a miscellaneous gas to the adsorbent, and collecting a product gas;
A desorption step of desorbing the miscellaneous gas adsorbed on the adsorbent and exhausting it from the miscellaneous gas discharge path;
A gas purifier connected to perform pressure fluctuation operation alternately,
The miscellaneous gas discharge passage has a separation membrane that does not transmit the gas to be purified but permeates the miscellaneous gas, and a membrane separation device that separates the gas to be purified and the miscellaneous gas by the exhaust pressure of the adsorption tower,
A regeneration gas return path is provided for returning the regeneration gas whose concentration of the gas to be purified is increased by the separation membrane to the source gas supply path,
The regeneration gas return path is provided with a regeneration pressure control valve that controls the pressure by adjusting the opening so that the exhaust pressure of the adsorption tower gradually decreases during the desorption process, and the separation membrane is controlled by the regeneration pressure control valve. includes a reproduction control unit for controlling the membrane separation pressure is a membrane separation pressure of the membrane separation device in that a more controlled exhaust pressure of the adsorption tower with the regeneration pressure control valve.

〔作用効果1〕
すなわち、PSA装置の雑ガス排出路に精製対象ガスを透過せず、前記雑ガスを透過する分離膜を有するとともに、前記吸着塔の排気圧で精製対象ガスと雑ガスとを分離する膜分離装置を設けると、原料ガスから製品ガスを取り出すガス路では、PSA装置が精製対象ガスの精製に寄与するものの、前記膜分離装置は精製対象ガスの精製に関与しないために、製品ガス中の精製対象ガス純度はPSA装置によって高く設定することができる。このとき、PSA装置からの精製対象ガス回収率は低下しがちになるが、排ガスを回収して原料ガス供給路に返送するから、精製対象ガスの回収率を高くすることができる。排ガスを全量回収しても、吸着塔に供給されるガス中の雑ガス濃度が上昇することになるから、製品ガス中の精製対象ガス純度が低下するおそれがある。そこで、膜分離装置により、返送される排ガス中から精製対象ガスを含まない真の排ガスを除去すれば、吸着塔に供給されるガス中の雑ガス濃度上昇を抑制することができるようになる。すると、製品ガス中の精製対象ガス純度が低下するのを抑制してPSA装置での精製対象ガス純度を低下させることなく回収率を向上させることができるようになる。
[Function 1]
That is, a membrane separation device that has a separation membrane that does not allow the gas to be purified to permeate through the miscellaneous gas discharge path of the PSA device but permeates the gas to be purified, and that separates the gas to be purified and the gas by the exhaust pressure of the adsorption tower In the gas path for extracting the product gas from the raw material gas, although the PSA device contributes to the purification of the gas to be purified, the membrane separation device does not participate in the purification of the gas to be purified. The gas purity can be set high by the PSA apparatus. At this time, the purification target gas recovery rate from the PSA device tends to decrease, but the recovery rate of the purification target gas can be increased because the exhaust gas is recovered and returned to the source gas supply path. Even if the entire amount of exhaust gas is recovered, the concentration of miscellaneous gas in the gas supplied to the adsorption tower increases, so that the purity of the purification target gas in the product gas may be reduced. Therefore, if the true exhaust gas that does not contain the gas to be purified is removed from the exhaust gas that is returned by the membrane separator, it is possible to suppress an increase in the miscellaneous gas concentration in the gas supplied to the adsorption tower. Then, the recovery rate can be improved without reducing the purification target gas purity in the product gas and reducing the purification target gas purity in the PSA apparatus.

ここで、前記膜分離装置は、分離膜における膜分離圧を背吸着塔の排気圧から得て精製対象ガスと雑ガスとを分離する構成としてあるので、膜分離装置自体に圧縮機等のガス供給装置を設けることなく膜分離を行うことができる。すなわち、PSA装置で脱着工程を行っている状態で、雑ガス排出路には吸着塔からの排気圧がかかっている。この排気圧を用いて膜分離することでガス供給に要する動力を減らすことができ、低エネルギーで動力効率よくガス分離を行えるようになった。   Here, since the membrane separation device is configured to obtain the membrane separation pressure in the separation membrane from the exhaust pressure of the back adsorption tower and separate the gas to be purified from the miscellaneous gas, the membrane separation device itself includes a gas such as a compressor. Membrane separation can be performed without providing a supply device. That is, the exhaust pressure from the adsorption tower is applied to the miscellaneous gas discharge passage while the desorption process is performed by the PSA device. By performing membrane separation using this exhaust pressure, the power required for gas supply can be reduced, and gas separation can be performed efficiently with low energy and power.

したがって、膜分離装置を有効に利用することによって、動力効率よく、精製対象ガス純度を低下させることなく回収率を向上させることができるようになった。   Therefore, by effectively using the membrane separation apparatus, the recovery rate can be improved efficiently without reducing the purity of the gas to be purified.

また、膜分離装置は、PSA装置に比べて設備費が少なくてすむため、PSA装置で精製された製品ガスや排ガス中の精製対象ガスをさらにPSA装置で精製するのに比べ、安価にガス精製装置を構成することができる。
また、上記構成によると、膜分離装置の分離膜にかかる圧力を再生圧力制御弁により設定変更することができるようになる。これにより、膜分離装置における排ガス中から雑ガスの除去が安定的に行えるようになるとともに、原料ガス供給路側の原料ガス供給圧とのバランスをとることができ、原料ガスの供給が不安定になるのを抑制することができる。
また、前記再生圧力制御弁により前記分離膜の膜分離圧を制御する再生制御装置を備えれば、PSA装置の各工程中に再生ガス圧力が変動しても、その変動に応じて安定して再生ガスを原料ガス中に供給するのに寄与する。
In addition, the membrane separation device requires less equipment costs than the PSA device, so the gas purification is cheaper than the product gas purified by the PSA device and the gas to be purified in the exhaust gas are further purified by the PSA device. A device can be configured.
Further, according to the above configuration, the pressure applied to the separation membrane of the membrane separation device can be changed by the regeneration pressure control valve. This makes it possible to stably remove the miscellaneous gas from the exhaust gas in the membrane separation apparatus and balance the source gas supply pressure on the source gas supply path side, which makes the supply of the source gas unstable. It can be suppressed.
Further, if a regeneration control device that controls the membrane separation pressure of the separation membrane by the regeneration pressure control valve is provided, even if the regeneration gas pressure fluctuates during each process of the PSA device, This contributes to supplying the regeneration gas into the raw material gas.

〔構成2〕[Configuration 2]
前記分離膜で精製対象ガス濃度の高められた再生ガスを製品ガスとして回収する再生ガス回収路を設けてもよい。A regeneration gas recovery path may be provided for recovering the regeneration gas having a higher concentration of the gas to be purified by the separation membrane as product gas.
ガス精製装置から、製品ガス濃度の高い排ガスが発生する場合、その排ガスを膜分離装置に通じると、再生ガス返送路に流通する再生ガスの製品ガス純度がきわめて高くなり、製品として回収可能なものとなる場合がある。このようなガスを製品ガス純度が原料ガスと同等レベルにまでしか高められていない再生ガスと混合し、再度原料ガスとして精製しなおすのは効率面で無駄が多いと考えられる。When exhaust gas with high product gas concentration is generated from a gas purification device, if the exhaust gas is passed through a membrane separation device, the product gas purity of the recycled gas flowing through the regeneration gas return path becomes extremely high and can be recovered as a product. It may become. It is considered that it is wasteful in terms of efficiency to mix such a gas with a regeneration gas whose product gas purity is only raised to the same level as that of the raw material gas and to re-purify it again as the raw material gas.

そこで、このような場合であっても、再生ガス回収路を設けてあれば、精製対象ガス濃度の高められた再生ガスを、製品ガス回収路に返送することができるようになり、製品ガス純度の高いガスを効率よく回収することができるようになる。Therefore, even in such a case, if a regeneration gas recovery path is provided, the regeneration gas having a higher concentration of the purification target gas can be returned to the product gas recovery path. Gas can be efficiently recovered.

〔構成
前記雑ガス排出路に流通する排ガスを、前記膜分離装置をバイパスして前記再生ガス返送路に導くバイパス路を設けてあってもよい。
[Configuration 3 ]
A bypass path may be provided that guides the exhaust gas flowing through the miscellaneous gas discharge path to the regeneration gas return path by bypassing the membrane separation device.

〔作用効果
PSAの工程によっては、ガス精製装置から、製品ガス濃度の高い排ガスが発生する場合がある。このような排ガスを、製品ガス純度の低い雑ガスと同様に膜分離装置に供給すると、膜分離装置における製品ガスのロスが大きくなるおそれがあって、むしろ、そのまま原料ガスとして再利用するのが好ましい場合もある。
[Effect 3 ]
Depending on the PSA process, an exhaust gas with a high product gas concentration may be generated from the gas purifier. If such an exhaust gas is supplied to a membrane separation device in the same manner as a miscellaneous gas having a low product gas purity, there is a risk that the loss of product gas in the membrane separation device may increase. Rather, it may be reused as a raw material gas as it is. It may be preferable.

そこで、上記構成において再生ガス返送路を有する場合、前記バイパス路を設けてあれば、排ガスを膜分離装置をバイパスして前記再生ガス返送路に導くことにより、製品ガスをロスすることなく原料ガスとして再利用することができるようになる。   Therefore, in the above configuration, when the regeneration gas return path is provided, if the bypass path is provided, the exhaust gas is bypassed through the membrane separator and guided to the regeneration gas return path, so that the raw material gas is not lost. Can be reused as

〔構成
前記雑ガス排出路における前記膜分離装置の上流部に、バッファタンクを設けてあってもよい。
[Configuration 4 ]
A buffer tank may be provided upstream of the membrane separation device in the miscellaneous gas discharge path.

〔作用効果
前記バッファタンクは、脱着工程により排出される雑ガスを、前記膜分離装置に供給される前に一旦貯留することができる。このとき、前記吸着塔とバッファタンクとの圧力差により均圧操作により、比較的高濃度に精製対象ガスを含む高圧の雑ガスをそのバッファタンク内に蓄積することができる。
[Effect 4 ]
The buffer tank can temporarily store the miscellaneous gas discharged in the desorption process before being supplied to the membrane separation device. At this time, high-pressure miscellaneous gas containing the gas to be purified having a relatively high concentration can be accumulated in the buffer tank by pressure equalization operation by the pressure difference between the adsorption tower and the buffer tank.

その後、前記バッファタンク内の雑ガスを膜分離装置に供給することができ、吸着塔内から初期に排出される高圧の雑ガスを圧力緩和して膜分離装置に供給することができるようになり、高圧の雑ガスの圧力を利用した回収率の高い膜分離動作を行いながらも、雑ガスから精製対象ガスを高精度に精製することができる。つまり、吸着塔内から初期に排出される高圧の雑ガスの流速が高すぎることで分離膜での雑ガスの透過が十分に行われず一部が再生ガス側に混入し精製の精度が低下することを回避できる。
〔構成5〕
また、前記雑ガス排出路における前記膜分離装置の雑ガス透過側に減圧ポンプを定常運転する状態で設けてもよい。
Thereafter, the miscellaneous gas in the buffer tank can be supplied to the membrane separation device, and the high-pressure miscellaneous gas discharged from the adsorption tower at an early stage can be relaxed and supplied to the membrane separation device. While performing a membrane separation operation with a high recovery rate using the pressure of high-pressure miscellaneous gas, the gas to be purified can be purified from the miscellaneous gas with high accuracy. In other words, the flow rate of high-pressure miscellaneous gas discharged from the adsorption tower at an early stage is too high, and the permeation of the miscellaneous gas through the separation membrane is not sufficiently performed, and a part of the miscellaneous gas is mixed into the regeneration gas side, thereby reducing the purification accuracy. You can avoid that.
[Configuration 5]
Further, a decompression pump may be provided in a state of steady operation on the miscellaneous gas permeation side of the membrane separation device in the miscellaneous gas discharge path.

〔作用効果
減圧ポンプを設けてあれば、膜分離装置の膜分離圧が不足する場合に、精製対象ガスの膜分離を継続するために必要最小限の動力を供給することができ、より安定に膜分離動作を継続することができるようになる。
[Effect 5 ]
If a vacuum pump is provided, the minimum necessary power can be supplied to continue the membrane separation of the gas to be purified when the membrane separation pressure of the membrane separation device is insufficient. Will be able to continue.

〔構成
また、前記再生ガス返送路に再生ガスタンクを設けてあってもよい。
[Configuration 6 ]
A regeneration gas tank may be provided in the regeneration gas return path.

〔作用効果
膜分離装置でPSA装置からの排ガス中から雑ガスを除去した後のガスは、精製対象ガスの濃度が高められており、原料ガスとして用いることができる再生ガスとなる。しかし、この再生ガス中の精製対象ガス濃度は、PSA装置の各工程中に変動する。そこで、再生ガスを再生ガスタンクに一時貯留することによって、再生ガスの経時的な濃度変動を緩和することができ、原料ガスに対する再生ガスの安定供給に寄与する。
[Operation effect 6 ]
The gas after removing the miscellaneous gas from the exhaust gas from the PSA apparatus by the membrane separator has a higher concentration of the gas to be purified, and becomes a regeneration gas that can be used as a raw material gas. However, the concentration of the purification target gas in the regeneration gas varies during each process of the PSA apparatus. Thus, by temporarily storing the regeneration gas in the regeneration gas tank, the concentration fluctuation of the regeneration gas over time can be reduced, which contributes to the stable supply of the regeneration gas to the raw material gas.

〔構成7〕
また、前記製品ガス回収路に製品ガスタンクを設けてもよい。
[Configuration 7]
A product gas tank may be provided in the product gas recovery path.

〔作用効果7〕
製品ガス回収路においても製品ガスタンクを設けてあれば製品ガス中の精製対象ガス濃度を安定化することができる。また、このような構成において製品ガスタンクを設けると、製品ガスタンク内は有圧になるので、吸着塔内の吸着材から雑ガスを脱着させて再吸着可能に再生する際の洗浄用ガスとして製品ガスを流入させて用いることもできる。
[Operation effect 7]
If a product gas tank is also provided in the product gas recovery path, the concentration of the purification target gas in the product gas can be stabilized. In addition, if a product gas tank is provided in such a configuration, the product gas tank will have a pressure, so that the product gas can be used as a cleaning gas when desorbing miscellaneous gas from the adsorbent in the adsorption tower and regenerating it so that it can be resorbed. Can also be used.

〔構成8〕
さらに、上記構成において、前記製品ガスタンクから前記吸着塔に製品ガスを流入する製品ガス洗浄路を設け、製品ガス洗浄路における製品ガスタンクと吸着塔との間に製品圧力制御弁を設け、前記製品ガスタンクから製品ガスを吸着塔に流入させて前記吸着塔を洗浄する洗浄制御装置を備えてもよい。
[Configuration 8]
Furthermore, in the above-described configuration, a product gas cleaning path for flowing product gas from the product gas tank to the adsorption tower is provided, a product pressure control valve is provided between the product gas tank and the adsorption tower in the product gas cleaning path, and the product gas tank A cleaning control device may be provided for cleaning the adsorption tower by flowing product gas into the adsorption tower.

〔作用効果8〕
製品ガスタンクに加えて製品ガスタンクから前記吸着塔に製品ガスを流入する洗浄路を設け、洗浄路における製品ガスタンクと吸着塔との間に製品圧力制御弁を設けてあれば、製品ガスタンクから洗浄路を介してPSA装置へ製品ガスを供給することができる。これにより、吸着塔内の吸着材から雑ガスを脱着させて再吸着可能に再生する際の洗浄用ガスとしてそのまま製品ガスを用いることができる。また、この際の圧力は洗浄排ガスが雑ガス排出路に排出される際にも排ガスに負荷される。そのため、洗浄排ガスに含まれる精製対象ガスも、膜分離装置により回収可能に運転される。また、負荷される圧力を別途供給する必要も無いので、膜分離装置に対する動力供給を低減することができる。
[Operation effect 8]
In addition to the product gas tank, if a cleaning path is provided for the product gas to flow from the product gas tank to the adsorption tower and a product pressure control valve is provided between the product gas tank and the adsorption tower in the cleaning path, the cleaning path from the product gas tank is The product gas can be supplied to the PSA apparatus via the PSA apparatus. As a result, the product gas can be used as it is as a cleaning gas when the miscellaneous gas is desorbed from the adsorbent in the adsorption tower and regenerated so as to be resorbable. The pressure at this time is also applied to the exhaust gas when the cleaning exhaust gas is discharged to the miscellaneous gas discharge passage. Therefore, the purification target gas contained in the cleaning exhaust gas is also operated so as to be recovered by the membrane separation device. In addition, since it is not necessary to separately supply a pressure to be applied, power supply to the membrane separation apparatus can be reduced.

なお、吸着塔内の吸着材から雑ガスを脱着させて再吸着可能に再生する際にも、膜分離装置を継続的に運転可能であるから、膜分離装置の運転に支障を生じさせずに安定運転することができる。   In addition, even when other gases are desorbed from the adsorbent in the adsorption tower and regenerated so that they can be adsorbed again, the membrane separation device can be operated continuously, so that it does not interfere with the operation of the membrane separation device. Stable operation is possible.

〔構成9〕
また、前記原料ガスがメタン含有ガスであり、精製対象ガスがメタンであり、雑ガスが二酸化炭素を主成分とするガスとすることができる。
[Configuration 9]
The source gas may be a methane-containing gas, the purification target gas may be methane, and the miscellaneous gas may be a gas mainly composed of carbon dioxide.

〔作用効果9〕
たとえば、バイオガス等の、燃料ガスとしてそのまま用いるにはメタン含有率が低いガス源から、燃料ガスとしてそのまま利用可能な純度のメタンを供給可能にでき、未利用燃料ガスの有効利用を図ることができる。また、このような原料ガスは、雑ガスとして二酸化炭素を主に含んでいる場合、メタンと二酸化炭素との化学的性質の違いにより、膜分離装置による分離が適している場合が多く、特に好適に利用できる。
[Effect 9]
For example, it is possible to supply methane having a purity that can be used as a fuel gas from a gas source having a low methane content to be used as a fuel gas, such as biogas, and to effectively use unused fuel gas. it can. In addition, when such raw material gas mainly contains carbon dioxide as a miscellaneous gas, separation by a membrane separation device is often suitable due to the difference in chemical properties between methane and carbon dioxide, which is particularly suitable. Available to:

〔構成10〕
さらに、前記原料ガスが、精製対象ガスとしてメタンを40%以上含有するメタン含有ガスであり、メタンを90%以上含有する製品ガスを得るものとすることができる。
[Configuration 10]
Furthermore, the source gas is a methane-containing gas containing 40% or more of methane as a gas to be purified, and a product gas containing 90% or more of methane can be obtained.

〔作用効果10〕
典型的なバイオガスの組成は、メタン40〜60%、二酸化炭素60〜40%程度である。このようなバイオガスに対して、従来のガス精製装置を用いてメタンを90%以上含有する製品ガスを得る場合には、回収率をあまり高くすることができず、排ガス中に含まれるメタンの濃度が高くなりやすいという実情があった。
しかし、膜分離装置を備えて、回収率を高めたガス精製装置として、メタンを90%以上含有する製品ガスを得ることができると、バイオガス中のメタンを有効利用することができるとともに、大気中に放散される地球温暖化ガスとしてのメタンを減少させ、環境保全に寄与することができる。
[Operation effect 10]
A typical biogas composition is about 40 to 60% methane and about 60 to 40% carbon dioxide. For such biogas, when a product gas containing 90% or more of methane is obtained using a conventional gas purification device, the recovery rate cannot be increased so much, and the methane contained in the exhaust gas cannot be increased. There was a fact that the concentration tends to be high.
However, if a product gas containing 90% or more of methane can be obtained as a gas purification device having a membrane separation device and an improved recovery rate, methane in biogas can be used effectively and the atmosphere It can contribute to environmental conservation by reducing methane as a global warming gas emitted into the environment.

〔構成11〕
前記吸着材が活性炭、モレキュラーシーブカーボン、ゼオライト、多孔性の金属錯体から選ばれる少なくとも一種の材料を主成分とするものであってもよい。
[Configuration 11]
The adsorbent may be mainly composed of at least one material selected from activated carbon, molecular sieve carbon, zeolite, and a porous metal complex.

〔作用効果11〕
活性炭、モレキュラーシーブカーボン、ゼオライト、多孔性の金属錯体から選ばれる少なくとも一種の材料を主成分とする吸着材は、PSA装置の吸着材として汎用されており、ガス吸着分離効率が高いものが知られている。特に、活性炭や、モレキュラーシーブカーボンは、メタンガスと二酸化炭素との分離特性に優れ、バイオガス、炭鉱ガスの濃縮の際二酸化炭素を効率よく吸着分離できる。モレキュラーシーブカーボン、ゼオライト、多孔性の金属錯体は、分子径の小さなガスを分離するのに適しており、水素、ヘリウム等を含有するガスからメタンを濃縮する用途でも好適に用いられる。
[Operation effect 11]
Adsorbents mainly composed of at least one material selected from activated carbon, molecular sieve carbon, zeolite, and porous metal complexes are widely used as adsorbents for PSA equipment, and those with high gas adsorption separation efficiency are known. ing. In particular, activated carbon and molecular sieve carbon have excellent separation characteristics between methane gas and carbon dioxide, and can efficiently adsorb and separate carbon dioxide when concentrating biogas and coal mine gas. Molecular sieve carbon, zeolite, and a porous metal complex are suitable for separating a gas having a small molecular diameter, and are also suitably used for concentrating methane from a gas containing hydrogen, helium, or the like.

〔構成12〕
前記吸着材が、MP法で測定した細孔径0.38nm以上において、その細孔径における細孔容積(V0.40)が0.01cm/gを超えず、細孔径0.34nmにおける細孔容積(V0.34)が0.20cm/g以上であるモレキュラーシーブカーボンであってもよい。
[Configuration 12]
When the adsorbent has a pore diameter of 0.38 nm or more measured by the MP method, the pore volume (V 0.40 ) at the pore diameter does not exceed 0.01 cm 3 / g, and the pore diameter is 0.34 nm. Molecular sieve carbon having a volume (V 0.34 ) of 0.20 cm 3 / g or more may be used.

〔作用効果12〕
このようなモレキュラーシーブカーボンは、きわめてメタン、空気分離性能が高く、バイオガス等の原料ガスから精製対象ガスとしてメタンを濃縮するのに好適な形態とすることができる。
[Operation effect 12]
Such molecular sieve carbon has extremely high methane and air separation performance, and can be in a form suitable for concentrating methane as a gas to be purified from a raw material gas such as biogas.

〔構成13〕
また、前記分離膜が酢酸セルロース、ポリアミド、ポリイミド、ポリスルホン、ポリテトラフルオロエチレン、ポリエーテルスルホン、カーボン膜、微多孔質ガラス複合膜、DDR型ゼオライト、多分岐ポリイミドシリカ、ポリジメチルシロキサンから選ばれる少なくとも一種の材料を主成分とするものとすることができる。
[Configuration 13]
The separation membrane is at least selected from cellulose acetate, polyamide, polyimide, polysulfone, polytetrafluoroethylene, polyethersulfone, carbon membrane, microporous glass composite membrane, DDR type zeolite, multi-branched polyimide silica, and polydimethylsiloxane. One kind of material can be the main component.

〔作用効果13〕
膜分離装置が、これらの分離膜を備えると、効率よく膜分離を行え、しかも、耐久性が高いことが知られており有用である。また、これらの材料は、特にメタンと二酸化炭素の分離係数が高く、バイオガスからメタンを濃縮する際に有効である。
[Operation effect 13]
When a membrane separation apparatus includes these separation membranes, it is known that membrane separation can be performed efficiently and durability is high, which is useful. In addition, these materials have a high separation factor between methane and carbon dioxide, and are effective when concentrating methane from biogas.

〔構成14〕
また、前記原料ガス供給路に昇圧ポンプを備え、前記昇圧ポンプによる原料ガスの吸着塔に対する供給圧が0.5MPaG〜2MPaGとすることができる。
なお、本願で用いる「PaG」とは、ゲージ圧をPaであらわしたものであって、大気圧との相対圧を示すものである。
[Configuration 14]
The source gas supply path may be provided with a booster pump, and the supply pressure of the source gas to the adsorption tower by the booster pump may be 0.5 MPaG to 2 MPaG.
Note that “PaG” used in the present application represents the gauge pressure in terms of Pa, and indicates a relative pressure with respect to the atmospheric pressure.

〔作用効果14〕
このような圧力であれば、常圧で供給される原料ガスを比較的少ない動力でPSA装置の吸着塔に供給でき、PSA装置でも十分な吸着分離性能を発揮しやすいため好適である。また、圧力を上げすぎると、メタンの回収率が低下する問題がある。
そこで、0.5MPaG以上としておくことによって、PSA装置におけるガス分離能力を高く維持しつつ、2MPaG以下としておくことによって、装置全体としてエネルギー効率の高い動力に設定でき、メタン回収率も高く維持できる。
[Operation effect 14]
Such a pressure is preferable because the raw material gas supplied at normal pressure can be supplied to the adsorption tower of the PSA apparatus with relatively little power, and the PSA apparatus can easily exhibit sufficient adsorption separation performance. In addition, if the pressure is increased too much, there is a problem that the recovery rate of methane decreases.
Therefore, by setting the pressure to 0.5 MPaG or more, the gas separation capability in the PSA apparatus is maintained high, and by setting the pressure to 2 MPaG or less, the apparatus as a whole can be set to energy-efficient power, and the methane recovery rate can also be maintained high.

なお、PSA装置の排気圧は、脱着工程のガス脱着圧や、吸着材を洗浄する際のガス洗浄圧にしたがって変動する。また、膜分離圧は、最大でも常圧(膜分離装置の雑ガス透過側に減圧ポンプを設けてある場合はその減圧度)との差圧となる。したがって、排気圧は、PSA装置における工程の進行状況によってある程度変動し、膜分離圧もこの分だけ変動する。また、膜分離装置の雑ガス透過側に減圧ポンプを設けてあれば、減圧ポンプの駆動動力を小さくかつ、効率のよい膜分離が可能な範囲に維持設定できることになる。   Note that the exhaust pressure of the PSA apparatus varies according to the gas desorption pressure in the desorption process and the gas cleaning pressure when cleaning the adsorbent. In addition, the maximum membrane separation pressure is a differential pressure from the normal pressure (or the degree of pressure reduction when a decompression pump is provided on the miscellaneous gas permeation side of the membrane separation device). Therefore, the exhaust pressure varies to some extent depending on the progress of the process in the PSA apparatus, and the membrane separation pressure also varies accordingly. Further, if a decompression pump is provided on the miscellaneous gas permeation side of the membrane separation apparatus, the driving power of the decompression pump can be maintained and set within a range where efficient membrane separation is possible.

したがって、より高純度のメタンを回収できるようになり、従来再利用することが困難であったバイオガス等をメタン回収率高く有効利用することができるようになった。   Accordingly, it is possible to recover methane of higher purity, and it is possible to effectively use biogas and the like that have been difficult to reuse in the past with a high methane recovery rate.

ガス精製装置の概略図Schematic diagram of gas purification equipment メタン濃縮方法を示す工程図Process diagram showing methane concentration method 図2のメタン濃縮方法を行う場合のガス流通動作説明図Explanatory diagram of gas flow when performing the methane concentration method of FIG. 図2のメタン濃縮方法を行う場合の吸着塔内の圧力の推移を示す図The figure which shows transition of the pressure in the adsorption tower when performing the methane concentration method of FIG. 別実施形態(2)のガス精製装置の概略図Schematic of the gas purification device of another embodiment (2) 別実施形態(5)のガス精製装置の概略図Schematic of the gas purification device of another embodiment (5) 別実施形態(6)のガス精製装置の概略図Schematic of the gas purification device of another embodiment (6) 別実施形態(7)のガス精製装置によるメタン濃縮方法を示す工程図Process drawing which shows the methane concentration method by the gas purification apparatus of another embodiment (7) 別実施形態(10)のガス精製装置の概略図Schematic of the gas purification apparatus of another embodiment (10) 別実施形態(11)のメタン濃縮方法を示す工程図Process drawing which shows the methane concentration method of another embodiment (11) 図10のメタン濃縮方法を行う場合のガス流通動作説明図Explanatory diagram of gas flow operation when performing methane concentration method of FIG. 図10のメタン濃縮方法を行う場合の吸着塔内の圧力の推移を示す図The figure which shows transition of the pressure in an adsorption tower in the case of performing the methane concentration method of FIG. 別実施形態(5)の更に異なるガス精製装置の概略図Schematic of still another gas purification device of another embodiment (5)

以下に、本発明のガス精製装置を説明する。なお、以下に好適な実施形態を記すが、これら実施形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the gas purification apparatus of this invention is demonstrated. Preferred embodiments will be described below, but these embodiments are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

〔ガス精製装置〕
ガス精製装置は、図1に示すように、吸着材A11〜A14を充填した吸着塔A1〜A4を備える。各吸着塔には、原料ガスタンクT1からたとえばバイオガスを原料として供給する原料ガス供給路L1、吸着材A11〜A14に吸着されなかった精製対象ガスとしてのメタンを製品ガスとして回収する製品ガス回収路L2および製品ガスタンクT2、吸着材A11〜A41に吸着した雑ガスとしての二酸化炭素を脱着させて排気する雑ガス排出路L3が設けられる。本実施の形態では、吸着塔A1〜A4の4塔を備える構成としたが、塔数は複数であれば限定されるものではなく、3塔、5塔その他、適宜必要に応じ選択することが可能である。
[Gas purification equipment]
As shown in FIG. 1, the gas purification apparatus includes adsorption towers A1 to A4 filled with adsorbents A11 to A14. In each adsorption tower, for example, a raw material gas supply path L1 for supplying biogas as a raw material from a raw material gas tank T1, and a product gas recovery path for recovering methane as a purification target gas that has not been adsorbed by the adsorbents A11 to A14 as a product gas. L2 and product gas tank T2, and miscellaneous gas discharge passage L3 for desorbing and exhausting carbon dioxide as miscellaneous gas adsorbed on adsorbents A11 to A41 are provided. In this Embodiment, it was set as the structure provided with 4 towers of adsorption tower A1-A4, However, if the number of towers is two or more, it will not be limited, 3 towers, 5 towers, etc. can be suitably selected as needed. Is possible.

原料ガスタンクT1から原料ガス供給路L1へのガス供給は、供給ポンプP1を用いて行い、その供給ポンプP1をバイパスするバイパス路L10に圧力制御弁Vc1を設け、吸着塔A1〜A4を昇圧する際の圧力を安定制御可能に構成してある。前記原料ガス供給路L1に供給された原料ガスは切換弁V11〜V41を備えた供給路L11〜L41を介して各吸着塔A1〜A4に供給される。   Gas supply from the source gas tank T1 to the source gas supply path L1 is performed using the supply pump P1, and when the pressure control valve Vc1 is provided in the bypass path L10 that bypasses the supply pump P1, the adsorption towers A1 to A4 are pressurized. The pressure can be controlled stably. The source gas supplied to the source gas supply path L1 is supplied to the adsorption towers A1 to A4 via supply paths L11 to L41 provided with switching valves V11 to V41.

前記吸着塔A1〜A4から排出された製品ガスは、切換弁V12〜V42を備えた回収路L12〜L42を通じて製品ガス回収路L2に流入する。前記製品ガス回収路L2には、圧力制御弁Vc2が設けられている。前記圧力制御弁Vc2により、前記吸着塔A1〜A4から製品ガスタンクT2に回収される製品ガスの圧力を制御することにより、吸着塔A1〜A4における原料ガスの供給圧との関係から前記吸着塔A1〜A4からの製品ガス回収圧を制御可能に構成してある。   The product gas discharged from the adsorption towers A1 to A4 flows into the product gas recovery path L2 through the recovery paths L12 to L42 having switching valves V12 to V42. A pressure control valve Vc2 is provided in the product gas recovery path L2. By controlling the pressure of the product gas recovered from the adsorption towers A1 to A4 to the product gas tank T2 by the pressure control valve Vc2, the adsorption tower A1 is related to the supply pressure of the raw material gas in the adsorption towers A1 to A4. The product gas recovery pressure from ~ A4 can be controlled.

前記吸着塔A1〜A4で吸着された雑ガスは、減圧されることにより吸着材A11〜A14から脱離し、切換弁V13〜V43を備えた排ガス路L13〜L43を通じて前記雑ガス排出路L3から排出される。前記雑ガス排出路L3には、精製対象ガスとしてのメタンを透過せず、前記雑ガスとしての二酸化炭素を透過する分離膜M1を有する。また、前記吸着塔A1〜A4の排気圧で精製対象ガスと雑ガスとを分離する膜分離装置Mを設け、分離膜M1で精製対象ガス濃度の高められた再生ガスを原料ガス供給路L1に返送する再生ガス返送路L5を設けるとともに、前記雑ガス排出路L3における前記膜分離装置Mの雑ガス透過側に排気路L6を設けてある。   The miscellaneous gas adsorbed in the adsorption towers A1 to A4 is desorbed from the adsorbents A11 to A14 by being depressurized, and is discharged from the miscellaneous gas discharge path L3 through the exhaust gas paths L13 to L43 having switching valves V13 to V43. Is done. The miscellaneous gas discharge path L3 has a separation membrane M1 that does not transmit methane as the gas to be purified but transmits carbon dioxide as the miscellaneous gas. Further, a membrane separation device M for separating the purification target gas and the miscellaneous gas by the exhaust pressure of the adsorption towers A1 to A4 is provided, and the regeneration gas whose concentration of the purification target gas is increased by the separation membrane M1 is supplied to the raw material gas supply path L1. A regeneration gas return path L5 for return is provided, and an exhaust path L6 is provided on the miscellaneous gas permeation side of the membrane separation apparatus M in the miscellaneous gas discharge path L3.

また、前記製品ガス回収路L2には、前記製品ガスタンクT2から前記吸着塔A1〜A4に洗浄用ガスとしての製品ガスを流入する製品ガス洗浄路L4を前記圧力制御弁Vc2の上流側(吸着塔A1〜A4側)に設けてある。すなわち、洗浄用ガスは製品ガスタンクT2から製品ガス洗浄路L4に流れ、切換弁V14〜V44を備えた洗浄路L14〜L44を通じて各吸着塔へ供給されるとともに、前記吸着塔A1〜A4内のガスは、製品ガスに置換され、雑ガスとして、切換弁V13〜V43を備えた排ガス路L13〜L43を通じて前記雑ガス排出路L3から排出される。さらに、製品ガス洗浄路L4における製品ガス回収路L2と吸着塔A1〜A4との間には、減圧弁Vr4,開閉弁Vo、ニードル弁Vn4を設けてある。これにより、前記製品ガスタンクT2から製品ガスを洗浄用ガスとして、製品ガス洗浄路L4から切換弁V14〜V44を備える洗浄路L14〜L44を介して吸着塔A1〜A4に流入させて、前記吸着塔A1〜A4を洗操作浄可能となる。したがって、吸着塔A1〜A4の洗浄圧力は減圧弁Vr4により制御され、ニードル弁Vn4により急激な圧力変化が起きないように調整されるとともに、開閉弁Vo4により操作切換容易になっている。   The product gas recovery path L2 has a product gas cleaning path L4 through which product gas as a cleaning gas flows from the product gas tank T2 into the adsorption towers A1 to A4 on the upstream side of the pressure control valve Vc2 (adsorption tower). (A1-A4 side). That is, the cleaning gas flows from the product gas tank T2 to the product gas cleaning path L4, and is supplied to each adsorption tower through the cleaning paths L14 to L44 having switching valves V14 to V44, and the gas in the adsorption towers A1 to A4. Is replaced with product gas and discharged as miscellaneous gas from the miscellaneous gas discharge path L3 through exhaust gas paths L13 to L43 provided with switching valves V13 to V43. Further, a pressure reducing valve Vr4, an on-off valve Vo, and a needle valve Vn4 are provided between the product gas recovery path L2 and the adsorption towers A1 to A4 in the product gas cleaning path L4. As a result, the product gas from the product gas tank T2 is flowed into the adsorption towers A1 to A4 through the washing paths L14 to L44 having the switching valves V14 to V44 from the product gas washing path L4 as the cleaning gas. A1 to A4 can be cleaned. Therefore, the washing pressures of the adsorption towers A1 to A4 are controlled by the pressure reducing valve Vr4, adjusted so as not to cause a rapid pressure change by the needle valve Vn4, and easily switched by the on-off valve Vo4.

前記再生ガス返送路L5には、再生ガスタンクT5および再生圧力制御弁Vc5を設けてある。すなわち、膜分離装置Mで分離膜M1を透過しなかった雑ガスは、L5を通じてT5に回収貯留されるとともに、再生ガスタンクT5からL1に再供給される構成となっている。これにより、膜分離装置Mの膜分離圧が各吸着塔A1〜A4の排気圧に基づき制御されるとともに、再生ガスタンクT5に貯留され、再生ガス返送路L5に返送される再生ガスは、定圧で前記原料ガス供給路L1に返送され、再利用される。 The regeneration gas return path L5 is provided with a regeneration gas tank T5 and a regeneration pressure control valve Vc5. That is, the miscellaneous gas that has not permeated through the separation membrane M1 in the membrane separation device M is collected and stored in T5 through L5, and is re-supplied from the regeneration gas tank T5 to L1. As a result, the membrane separation pressure of the membrane separation apparatus M is controlled based on the exhaust pressure of each adsorption tower A1 to A4, and the regeneration gas stored in the regeneration gas tank T5 and returned to the regeneration gas return path L5 is a constant pressure. It is returned to the raw material gas supply path L1 and reused.

また、前記雑ガス排出路L3から、膜分離装置Mを経由せずに雑ガスを前記再生ガス返送路L5の再生圧力制御弁Vc5よりも下流側(再生ガスタンクT5側)にバイパスさせるバイパス路L30が設けられている。前記バイパス路L30およびバイパス路L30よりも膜分離装置M側の前記雑ガス排出路L3に開閉弁Vo3,Vo5を設け、メタン純度の高い雑ガスを、膜分離装置Mを経由せずそのまま再生ガスタンクT5に回収可能に構成してある。 Further, a bypass passage L30 that bypasses the miscellaneous gas from the miscellaneous gas discharge passage L3 to the downstream side (regeneration gas tank T5 side) from the regeneration pressure control valve Vc5 of the regeneration gas return passage L5 without passing through the membrane separation device M. Is provided. On-off valves Vo3 and Vo5 are provided on the bypass passage L30 and the miscellaneous gas discharge passage L3 on the side of the membrane separator M from the bypass passage L30, so that miscellaneous gases having high methane purity can be directly regenerated without passing through the membrane separator M. Recoverable at T5.

前記膜分離装置Mの雑ガス透過側の前記排気路L6には、減圧ポンプP6を設けてある。前記減圧ポンプP6は、定常運転され、吸着塔A1〜A4の雑ガス排出路L3側圧力に基づいて膜分離圧を所定圧以上に維持する役割を果たす。   A decompression pump P6 is provided in the exhaust passage L6 on the miscellaneous gas permeation side of the membrane separator M. The decompression pump P6 is operated in a steady state and plays a role of maintaining the membrane separation pressure at a predetermined pressure or higher based on the miscellaneous gas discharge path L3 side pressure of the adsorption towers A1 to A4.

また、各吸着塔A1〜A4には塔間均圧路L7が設けられ、各均圧(降圧)工程において吸着塔A1〜A4の上部から排出されるガスをL4を介して各均圧(昇圧)工程の行われる吸着塔A1〜A4の上部に移送可能に構成してある。すなわち、均圧(降圧)工程において吸着塔A1〜A4の上部から排出されるガスは、切換弁V17〜V47を備える均圧路L17〜L47を介して塔間均圧路L7に流入し、切換弁V14〜V44を備える洗浄路L14〜L44を介して各均圧(昇圧)工程の行われる吸着塔A1〜A4に流入する。この際、前記塔間均圧路L7には、ニードル弁Vn7および開閉弁Vo7が設けられており、これにより、各均圧路を通じて吸着塔上部から排出されたガスは、ニードル弁Vn7により徐々に移送され、製品ガス洗浄路L4を介して異なる吸着塔A1〜A4に流入することになる。尚、本実施の形態では、均圧路は図1に示すとおり、各吸着塔の上部どうしを接続して均圧する構成としたが、これに限定されず、たとえば、吸着塔の上部と下部をつなぐ構成や、下部と下部とをつなぐ構成、中間部をつなぐ構成など適宜変更して設けることができる。   Each adsorption tower A1 to A4 is provided with an inter-column pressure equalization path L7, and the gas discharged from the upper part of the adsorption towers A1 to A4 in each pressure equalization (pressure reduction) step is supplied to each pressure equalization (pressure increase) via L4. ) It can be transferred to the upper part of the adsorption towers A1 to A4 where the process is performed. That is, the gas discharged from the upper part of the adsorption towers A1 to A4 in the pressure equalization (step-down) step flows into the inter-column pressure equalization path L7 via the pressure equalization paths L17 to L47 provided with the switching valves V17 to V47. It flows into the adsorption towers A1 to A4 where each pressure equalization (pressure increase) process is performed through washing paths L14 to L44 including valves V14 to V44. At this time, the inter-column pressure equalizing path L7 is provided with a needle valve Vn7 and an on-off valve Vo7, whereby the gas discharged from the upper part of the adsorption tower through each pressure equalizing path is gradually moved by the needle valve Vn7. It is transferred and flows into different adsorption towers A1 to A4 through the product gas cleaning path L4. In the present embodiment, as shown in FIG. 1, the pressure equalizing path is configured to connect the upper parts of the adsorption towers to equalize the pressure, but the present invention is not limited to this. For example, the upper and lower parts of the adsorption towers The connecting structure, the structure connecting the lower part and the lower part, the structure connecting the intermediate part, and the like can be changed as appropriate.

また、各吸着塔A1〜A4には、吸着塔A1〜A4内部を昇圧用ガスとしての製品ガスを供給するための製品ガス昇圧路L8が設けてある。すなわち、昇圧工程において、T2から供給される製品ガスは、製品ガス昇圧路L8から切換弁V18〜V48を備える昇圧路L18〜L48を介して各吸着塔に流入する。この際、前記製品ガス昇圧路L8には、開閉弁Vo8および圧力制御弁Vc8が設けられており、製品ガスタンクT2の保有圧に基づき吸着塔A1〜A4内に製品ガスを移流させて昇圧可能に構成してある。   Each of the adsorption towers A1 to A4 is provided with a product gas pressure increase path L8 for supplying a product gas as a pressure-increasing gas inside the adsorption towers A1 to A4. That is, in the pressure increasing process, the product gas supplied from T2 flows into the respective adsorption towers from the product gas pressure increasing path L8 via pressure increasing paths L18 to L48 including switching valves V18 to V48. At this time, the product gas pressurization path L8 is provided with an on-off valve Vo8 and a pressure control valve Vc8, and the product gas can be boosted by advancing the product gas into the adsorption towers A1 to A4 based on the pressure held in the product gas tank T2. It is configured.

また、ガス精製装置には、制御装置Cが設けられている。この制御装置Cは、前記吸着塔A1〜A4と、前記原料ガス供給路L1、前記製品ガス回収路L2、前記雑ガス排出路L3、前記製品ガス洗浄路L4、前記L5、前記L6、前記L7、前記L8の各配管に設けられた切換弁V11〜V48等を開閉制御する。これにより、P1,P6を用いて各吸着塔A1〜A4において各吸着工程を行う吸脱着制御装置として働くとともに、前記再生圧力制御弁Vc5により前記分離膜M1の膜分離圧を制御する再生制御装置や、前記製品ガスタンクT2から製品ガスを吸着塔A1〜A4に流入させて前記吸着塔A1〜A4を洗浄する洗浄制御装置としても機能する。 Moreover, the control apparatus C is provided in the gas purification apparatus. The controller C includes the adsorption towers A1 to A4, the raw material gas supply path L1, the product gas recovery path L2, the miscellaneous gas discharge path L3, the product gas cleaning path L4, the L5, the L6, and the L7. The switching valves V11 to V48 and the like provided in the pipes of L8 are controlled to open and close. Thus, the regeneration control device that functions as an adsorption / desorption control device that performs each adsorption step in each adsorption tower A1 to A4 using P1 and P6, and controls the membrane separation pressure of the separation membrane M1 by the regeneration pressure control valve Vc5. Alternatively, it also functions as a cleaning control device that cleans the adsorption towers A1 to A4 by flowing product gas from the product gas tank T2 into the adsorption towers A1 to A4.

なお、ここでは、前記吸着材A11〜A41としては、バイオガス中の二酸化炭素を主成分とする雑ガスを選択的に吸着できる吸着材A11〜A14が好適に用いられる。このような吸着材A11〜A41としては、活性炭、モレキュラーシーブカーボン、ゼオライト、多孔性の金属錯体から選ばれる少なくとも一種の材料を主成分とするものが用いられ、具体的には、たとえば、MP法で測定した細孔径0.38nm以上において、その細孔径における細孔容積(V0.40)が0.01cm/gを超えず、細孔径0.34nmにおける細孔容積(V0.34)が0.20cm/g以上であるモレキュラーシーブカーボンが用いられる。Here, as the adsorbents A11 to A41, adsorbents A11 to A14 capable of selectively adsorbing miscellaneous gases mainly composed of carbon dioxide in biogas are preferably used. As such adsorbents A11 to A41, those mainly composed of at least one material selected from activated carbon, molecular sieve carbon, zeolite, and porous metal complex are used. Specifically, for example, the MP method The pore volume (V 0.40 ) at the pore diameter does not exceed 0.01 cm 3 / g and the pore volume (V 0.34 ) at the pore diameter of 0.34 nm is measured. A molecular sieve carbon having an A of 0.20 cm 3 / g or more is used.

前記分離膜M1としては、排ガス中の二酸化炭素を主成分とする雑ガスを透過し、精製対象ガスとしてのメタンを透過しない材料が好適に用いられる。このような分離膜としては、酢酸セルロース、ポリアミド、ポリイミド、ポリスルホン、ポリテトラフルオロエチレン、ポリエーテルスルホン、カーボン膜、微多孔質ガラス複合膜、DDR型ゼオライト、多分岐ポリイミドシリカ、ポリジメチルシロキサンから選ばれる少なくとも一種の材料を主成分とするものが用いられる。   As the separation membrane M1, a material that transmits a miscellaneous gas mainly composed of carbon dioxide in the exhaust gas and does not transmit methane as a purification target gas is preferably used. Such a separation membrane is selected from cellulose acetate, polyamide, polyimide, polysulfone, polytetrafluoroethylene, polyethersulfone, carbon membrane, microporous glass composite membrane, DDR type zeolite, multi-branched polyimide silica, and polydimethylsiloxane. The main component is at least one kind of material.

なお、ここで用いる原料ガスとしてのバイオガスは、主成分がメタンおよび二酸化炭素であり、メタン含有率が60%程度のものを対象としており、メタンを98%以上含有する製品ガスを得るためのガス精製を行う。   The biogas as the raw material gas used here is mainly for methane and carbon dioxide with a methane content rate of about 60%, to obtain a product gas containing 98% or more of methane. Perform gas purification.

〔吸着塔〕
吸着塔A1〜A4は、それぞれ、吸着材A11〜A14を充填してなる。各吸着塔A1〜A4の下部には、原料ガスタンクT1から供給ポンプP1によりバイオガスを供給する供給路L11〜L41を設けて原料ガス供給路L1を構成する。また、各吸着塔A1〜A4の上部に、吸着塔A1〜A4に供給されたバイオガスのうち吸着材A11〜A41に吸着されなかった精製対象ガスとしてのメタンを回収する回収路L12〜L42を設けて製品ガス回収路L2を構成してある。これにより、原料ガス供給路L1から吸着塔A1〜A4にバイオガスを供給するとともに、吸着材A11〜A14に吸着されなかったメタンを製品ガス回収路L2から排出することによって、吸着材A11〜A14に雑ガスを吸着してメタンと分離可能に構成してある。また、前記吸着塔A1〜A4には、吸着材A11〜A14に吸着された雑ガスを排出する排ガス路L13〜L43を各吸着塔A1〜A4の下部に設けて前記雑ガス排出路L3を構成してあり、原料ガス供給路L1から供給されたバイオガスのうち吸着材A11〜A41に吸着され、濃縮後の高濃度の二酸化炭素を取出し可能に構成する。
[Adsorption tower]
The adsorption towers A1 to A4 are filled with adsorbents A11 to A14, respectively. Under the respective adsorption towers A1 to A4, supply paths L11 to L41 for supplying biogas from the source gas tank T1 by the supply pump P1 are provided to constitute the source gas supply path L1. Further, recovery paths L12 to L42 for recovering methane as a purification target gas that has not been adsorbed to the adsorbents A11 to A41 among the biogas supplied to the adsorption towers A1 to A4 are provided above the adsorption towers A1 to A4. A product gas recovery path L2 is provided. Thus, the biogas is supplied from the raw material gas supply path L1 to the adsorption towers A1 to A4, and the methane that has not been adsorbed by the adsorbents A11 to A14 is discharged from the product gas recovery path L2, thereby causing the adsorbents A11 to A14. It can be separated from methane by adsorbing miscellaneous gas. Further, in the adsorption towers A1 to A4, exhaust gas passages L13 to L43 for discharging the miscellaneous gases adsorbed by the adsorbents A11 to A14 are provided below the adsorption towers A1 to A4 to constitute the miscellaneous gas discharge passage L3. In addition, the biogas supplied from the raw material gas supply path L1 is adsorbed by the adsorbents A11 to A41, and is configured to be able to take out high-concentration carbon dioxide after concentration.

なお、各ガス路L11〜L48には、切換弁V11〜48を設けてあり、各ポンプP1,P6の動作により、各吸着塔A1〜A4へのガスの供給、排出、停止の切換を、制御装置Cから一括して制御可能に構成してある。   The gas passages L11 to L48 are provided with switching valves V11 to 48, and the operation of the pumps P1 and P6 controls the switching of gas supply, discharge, and stop to the adsorption towers A1 to A4. The apparatus C can be controlled collectively.

〔膜分離装置〕
前記膜分離装置Mは、分離膜M1をモジュールとして備え、雑ガス排出路L3を介して供給される雑ガスを膜分離して雑ガスに含まれる精製対象ガスを回収可能に構成してある。具体的には、原料ガスとしてバイオガスを用いて精製対象ガスとしてメタンを精製する場合、雑ガスとして二酸化炭素を主成分とし、メタンを含有するガスが膜分離装置Mに供給される。膜分離装置Mに供給された雑ガスは膜分離装置M内で分離膜M1と接触し、分離膜M1の膜分離特性により、二酸化炭素が分離膜M1を透過して除去されるとともに、不透過のガスとして、供給された雑ガスよりもメタンの濃縮された再生ガスが得られる。この再生ガスを再生ガス返送路L5に排出し、原料ガス供給路L1に返送供給する一方、膜を透過した二酸化炭素を主成分とするガスを、排気路L6より外部に排出する。
[Membrane separator]
The membrane separation apparatus M includes a separation membrane M1 as a module, and is configured to be capable of recovering a purification target gas contained in the miscellaneous gas by performing membrane separation on the miscellaneous gas supplied via the miscellaneous gas discharge path L3. Specifically, when purifying methane as a gas to be purified using biogas as a raw material gas, carbon dioxide is the main component as miscellaneous gas, and a gas containing methane is supplied to the membrane separator M. The miscellaneous gas supplied to the membrane separator M comes into contact with the separation membrane M1 in the membrane separator M, and carbon dioxide permeates and is removed through the separation membrane M1 due to the membrane separation characteristics of the separation membrane M1. As the gas, a regenerated gas in which methane is more concentrated than the supplied miscellaneous gas is obtained. The regeneration gas is discharged to the regeneration gas return path L5 and returned to the raw material gas supply path L1, while the gas mainly composed of carbon dioxide that has permeated through the membrane is discharged to the outside through the exhaust path L6.

また、前記再生ガス返送路L5には、再生ガスタンクT5が設けられるとともに、膜分離された再生ガスを、再生ガスタンクT5に貯留した後、所定圧力で原料ガス供給路L1に返送する。   The regeneration gas return path L5 is provided with a regeneration gas tank T5. The regeneration gas separated from the membrane is stored in the regeneration gas tank T5 and then returned to the raw material gas supply path L1 at a predetermined pressure.

〔メタン濃縮方法〕
前記制御装置Cは、図3に示すように、前記各切換弁V11〜V47および各ポンプP1,P6を制御して、図2にしたがって、各吸着塔A1〜A4で、
前記原料ガス供給路L1から原料ガスを受け入れて、雑ガスを前記吸着材A11〜A14に吸着するとともに、製品ガスを回収する吸着工程と、
吸着材A11〜A14に吸着した二酸化炭素を主成分とする雑ガスを減圧脱着して前記雑ガス排出路L3より排気する脱着工程と、を交互に行う圧力揺動運転を行う。
[Methane enrichment method]
As shown in FIG. 3, the control device C controls the switching valves V11 to V47 and the pumps P1 and P6, and in accordance with FIG.
An adsorbing step of receiving a raw material gas from the raw material gas supply path L1, adsorbing a miscellaneous gas to the adsorbents A11 to A14, and collecting a product gas;
A pressure fluctuation operation is performed in which the desorption step of desorbing the miscellaneous gas mainly composed of carbon dioxide adsorbed on the adsorbents A11 to A14 and exhausting it from the miscellaneous gas discharge path L3 is performed alternately.

この圧力揺動運転にあたり、具体的には図2に示すように、
吸着塔A1〜A4下部から大気圧近傍のバイオガスの供給を受けて供給ポンプP1により前記吸着材A11〜A41に供給し、二酸化炭素を主成分とする雑ガスを吸着するとともに、精製対象ガスとしてのメタンを主成分とする製品ガスを吸着塔A1〜A4上部から放出する前記吸着工程の前後で、2塔の吸着塔A1〜A4に同時に吸着工程を進行する並行吸着工程を行い、(前並行吸着工程、吸着工程、後並行吸着工程を順に行い、)
後並行吸着工程の後、高圧状態の吸着塔A1〜A4内の、比較的雑ガス濃度の低いガスを、当該吸着塔A1〜A4より低圧の中間圧状態の他の吸着塔A1〜A4に移送して、吸着塔A1〜A4内の圧力を高圧側の中間圧状態とする初段均圧(降圧)工程、
吸着塔A1〜A4の動作を行わない待機工程、
低圧状態より高圧の中間圧状態の吸着塔A1〜A4内の、初段均圧(降圧)工程に比べてメタン濃度のやや高められたガスを、低圧状態の他の吸着塔A1〜A4に移送して、吸着塔A1〜A4内の圧力を低圧側の中間圧状態とする最終均圧(降圧)工程と、
均圧(降圧)工程により塔内圧力が低下した後、さらに前記吸着材A11〜A41を低圧状態まで減圧して、前記吸着材A11〜A41に吸着された雑ガスを脱着させて吸着塔A1〜A4下部から回収する脱着工程、
脱着工程により吸着材A11〜A14の再生された吸着塔A1〜A4内に残留する雑ガスを製品ガスで置換洗浄する洗浄工程
低圧状態の吸着塔A1〜A4内に、前記高圧側の中間圧状態の吸着塔A1〜A4内のガスを受け入れて、吸着塔A1〜A4内の圧力を低圧側の中間圧状態とする初段均圧(昇圧)工程と、
待機工程と、
低圧側の中間圧状態の吸着塔A1〜A4内に、高圧状態の他の吸着塔A1〜A4内のガスを受け入れて、吸着塔A1〜A4内の圧力を高圧側の中間圧状態とする最終均圧(昇圧)工程と、
均圧(昇圧)工程により塔内圧力を上昇した後、さらに、前記吸着塔A1〜A4内に吸着塔A1〜A4上部から昇圧用空気を供給して、前記吸着材A11〜A41をメタンを選択的に吸着可能な高圧状態に復元する昇圧工程、
を順に行うように運転制御する。
Specifically, in this pressure fluctuation operation, as shown in FIG.
A supply of biogas in the vicinity of atmospheric pressure from the lower part of the adsorption towers A1 to A4 is supplied to the adsorbents A11 to A41 by the supply pump P1, adsorbing miscellaneous gas mainly composed of carbon dioxide, and as a gas to be purified. Before and after the adsorption step of releasing the product gas mainly composed of methane from the upper part of the adsorption towers A1 to A4, a parallel adsorption process is performed in which the adsorption process proceeds simultaneously to the two adsorption towers A1 to A4. Adsorption process, adsorption process, and post-parallel adsorption process are performed in order)
After the post-parallel adsorption step, the gas having a relatively low concentration in the high-pressure adsorption towers A1 to A4 is transferred to other adsorption towers A1 to A4 in an intermediate pressure state lower than the adsorption towers A1 to A4. The first-stage pressure equalization (pressure reduction) step for setting the pressure in the adsorption towers A1 to A4 to an intermediate pressure state on the high-pressure side,
A standby step in which the operation of the adsorption towers A1 to A4 is not performed,
A gas having a slightly higher methane concentration than the first-stage pressure equalization (pressure reduction) process in the adsorption towers A1 to A4 in the intermediate pressure state higher than the low pressure state is transferred to the other adsorption towers A1 to A4 in the low pressure state. A final pressure equalization (pressure reduction) step in which the pressure in the adsorption towers A1 to A4 is set to an intermediate pressure state on the low pressure side,
After the pressure in the tower is lowered by the pressure equalization (pressure reduction) step, the adsorbents A11 to A41 are further depressurized to a low pressure state, and the miscellaneous gases adsorbed on the adsorbents A11 to A41 are desorbed to adsorb the towers A1 to A1. Desorption process to recover from the bottom of A4,
A cleaning process in which the miscellaneous gas remaining in the adsorption towers A1 to A4 regenerated of the adsorbents A11 to A14 by the desorption process is replaced with a product gas. First-stage pressure equalization (pressure increase) step of receiving the gas in the adsorption towers A1 to A4 and setting the pressure in the adsorption towers A1 to A4 to an intermediate pressure state on the low pressure side;
Waiting process;
The gas in the other adsorption towers A1 to A4 in the high pressure state is received into the adsorption towers A1 to A4 in the intermediate pressure state on the low pressure side, and the pressure in the adsorption towers A1 to A4 is changed to the intermediate pressure state on the high pressure side. Pressure equalization (pressure increase) process;
After increasing the pressure in the tower by the pressure equalization (pressure increase) step, pressurization air is further supplied from above the adsorption towers A1 to A4 into the adsorption towers A1 to A4, and methane is selected as the adsorbents A11 to A41. Boosting process to restore the high-pressure state that can be adsorbed automatically,
The operation is controlled in such a way as to perform in order.

また、このような制御により、各吸着塔A1〜A4の内部圧力は図4のように推移する。すなわち、各均圧工程により、順次塔内圧力を減少させることにより、塔内圧力が大きく低下した状態から脱着工程を行えることになり、少ない動力で吸着材に吸着した雑ガスを脱着させて吸着材を再生しやすくすることができる。   Moreover, the internal pressure of each adsorption tower A1-A4 changes like FIG. 4 by such control. That is, by sequentially reducing the pressure in the tower through each pressure equalization process, the desorption process can be performed from a state where the pressure in the tower is greatly reduced, and adsorption is performed by desorbing the miscellaneous gas adsorbed on the adsorbent with less power. The material can be easily regenerated.

さらに具体的には、吸着塔A1に対して以下のステップにしたがって制御する。他の吸着塔A2〜A4についても位相をずらせて同様の動作を行うことになるが、説明が重複するので図2、3の説明をもって詳細な説明を省略する。なお、吸着塔A1〜A4をこの順に第一〜第四吸着塔A1〜A4と呼ぶものとする。また、図2、3に各工程における開閉弁等の動作状態を示す。また、以下の説明における<番号>は、図2,3におけるステップ番号を示している。また、下記に具体的に示す運転条件は例示であって、本発明は、下記具体例により限定されるものではない。   More specifically, the adsorption tower A1 is controlled according to the following steps. The same operation is performed by shifting the phases of the other adsorption towers A2 to A4. However, since the description is duplicated, the detailed description is omitted with the description of FIGS. The adsorption towers A1 to A4 are referred to as first to fourth adsorption towers A1 to A4 in this order. 2 and 3 show the operating state of the on-off valve and the like in each step. Further, <number> in the following description indicates a step number in FIGS. The operating conditions specifically shown below are examples, and the present invention is not limited to the following specific examples.

<1>前並行吸着工程
図2、3に示すように第一吸着塔A1に、原料ガスタンクT1より原料ガスとしてのバイオガスを導入する。このとき第一吸着塔A1内の圧力は、原料ガスの供給圧により昇圧される。また、供給路L11の切換弁V11を介して原料ガスタンクT1から供給されるバイオガス中の雑ガスとしての二酸化炭素を前記吸着材A11に吸着させつつ、吸着しなかった製品ガスとしてのメタンを回収路L12の切換弁V12を介して製品ガスタンクT2に回収する。
ここで、吸着工程初期には、徐々に第一吸着塔A1内圧を上昇させるために、第四吸着塔A4の吸着工程の終了時期に徐々に第四吸着塔A4内圧を低下するのと合わせて、第一吸着塔A1の吸着工程を開始する。すなわち、第一吸着塔A1の吸着工程の開始に先立って、第四吸着塔A4の後並行吸着工程ととともに前並行吸着工程を行う。
<1> Pre-parallel adsorption process As shown in FIGS. 2 and 3, biogas as a raw material gas is introduced into the first adsorption tower A1 from the raw material gas tank T1. At this time, the pressure in the first adsorption tower A1 is increased by the supply pressure of the raw material gas. Further, carbon dioxide as a miscellaneous gas in the biogas supplied from the raw material gas tank T1 through the switching valve V11 of the supply path L11 is adsorbed to the adsorbent A11, and methane as a product gas that has not been adsorbed is recovered. It collects in the product gas tank T2 via the switching valve V12 of the path L12.
Here, in the initial stage of the adsorption process, in order to gradually increase the internal pressure of the first adsorption tower A1, the internal pressure of the fourth adsorption tower A4 is gradually decreased at the end of the adsorption process of the fourth adsorption tower A4. The adsorption process of the first adsorption tower A1 is started. That is, prior to the start of the adsorption process of the first adsorption tower A1, the pre-parallel adsorption process is performed together with the post-parallel adsorption process of the fourth adsorption tower A4.

このとき、第二吸着塔A2では待機工程となり、第三吸着塔A3では脱着工程が開始されている。   At this time, the second adsorption tower A2 becomes a standby process, and the third adsorption tower A3 starts the desorption process.

この前並行吸着工程は、約5秒行われ、第一吸着塔A1内で原料ガス中のメタンと二酸化炭素の吸着分離が開始される。   This pre-parallel adsorption step is performed for about 5 seconds, and adsorption separation of methane and carbon dioxide in the raw material gas is started in the first adsorption tower A1.

<2〜4>吸着工程
図2、3に示すように、前記前並行吸着工程に続き、第一吸着塔A1に、原料ガスタンクT1よりバイオガスを導入する。このとき第一吸着塔A1内の圧力は、原料ガスの供給圧によりさらに昇圧される。また、供給路L11の切換弁V11を介して二酸化炭素を前記吸着材A11に吸着させつつ、メタンを製品ガスタンクT2に回収する。
<2-4> Adsorption process As shown in FIGS. 2 and 3, biogas is introduced into the first adsorption tower A1 from the raw gas tank T1 following the preceding parallel adsorption process. At this time, the pressure in the first adsorption tower A1 is further increased by the supply pressure of the raw material gas. Further, methane is recovered in the product gas tank T2 while carbon dioxide is adsorbed on the adsorbent A11 via the switching valve V11 of the supply path L11.

なお、このとき第二吸着塔A2では<1>最終均圧(昇圧)工程を行うとともに、<2〜3>昇圧工程に移行している。
また、第三吸着塔A3では、<1>脱着工程の後、<2>洗浄工程、<3>初段均圧(昇圧)工程を行っている。
さらに、第四吸着塔A4では、<1>初段均圧(降圧)工程を行うとともに、<2>待機工程を挟んで、<3>最終均圧(降圧)工程に移行している。
At this time, in the second adsorption tower A2, the <1> final pressure equalization (pressure increase) step is performed and the process proceeds to the <2-3> pressure increase step.
In the third adsorption tower A3, after the <1> desorption step, a <2> cleaning step and a <3> first-stage pressure equalization (pressure increase) step are performed.
Further, in the fourth adsorption tower A4, the <1> first-stage pressure equalization (step-down) process is performed, and the <2> standby step is interposed, and the process proceeds to the <3> final pressure-equalization (step-down) process.

また、このときの製品ガス中のメタン純度は吸着工程の時間設定等により設定することができ、90%以上とすることができる。
たとえば、円筒型(内径54mm、容積4.597L)の吸着塔A1を用い、
前記吸着材A11として、MP法によって細孔分布を測定した場合の細孔径分布が、細孔径0.38nm以上において、その細孔径における細孔容積(V0.40)が0.05cm/g程度、細孔径0.34nmにおける細孔容積(V0.34)が0.20〜0.23cm/gであるモレキュラーシーブカーボンを用い、
10L/分でメタン約60%、二酸化炭素約40%のバイオガスを処理したところ、
吸着工程を、供給ポンプP1による供給圧を0.8MPaG程度として90秒間行った場合、メタン濃度96〜98%、二酸化炭素濃度2%、圧力0.7〜0.75MPaG程度の製品ガスを製品ガスタンクT2に回収することができた。
Further, the methane purity in the product gas at this time can be set by setting the time of the adsorption process, and can be 90% or more.
For example, a cylindrical type (inner diameter 54 mm, volume 4.597 L) adsorption tower A1 is used,
As the adsorbent A11, when the pore size distribution is measured by the MP method and the pore size is 0.38 nm or more, the pore volume (V 0.40 ) at the pore size is 0.05 cm 3 / g. Using molecular sieve carbon having a pore volume (V 0.34 ) of 0.20 to 0.23 cm 3 / g at a pore diameter of 0.34 nm,
When a biogas of about 60% methane and about 40% carbon dioxide was processed at 10 L / min,
When the adsorption process is performed for 90 seconds with the supply pressure of the supply pump P1 being about 0.8 MPaG, a product gas tank with a product gas tank with a methane concentration of 96 to 98%, a carbon dioxide concentration of 2% and a pressure of about 0.7 to 0.75 MPaG is used. It was possible to recover at T2.

<5>後並行吸着工程
第一吸着塔A1の吸着工程の終期に、吸着工程始期の第二吸着塔A2と並行して吸着工程を行う後並行吸着工程を行う。すなわち、吸着工程におけるバイオガスの供給量と、本工程における第一、第二吸着塔A1,A2に対するバイオガス供給量の和が同量となるので、本工程では第一、第二吸着塔A1,A2に対するバイオガス供給量それぞれが、吸着工程におけるバイオガス供給量よりも少なく設定されることになる。したがって、図2、3に示すように、この工程では、吸着工程の終期に吸着流量を低下させることによって、吸着塔内の環境変化が穏やかに進行するように抑制することができ、吸着塔A1内のバイオガス流を安定させ、吸着塔A1内に乱流が生じるのを抑制し、吸着材A11を安定的に作用させることができる。
<5> Post-parallel adsorption process At the end of the adsorption process of the first adsorption tower A1, a post-parallel adsorption process is performed in which the adsorption process is performed in parallel with the second adsorption tower A2 at the beginning of the adsorption process. That is, since the biogas supply amount in the adsorption step and the sum of the biogas supply amounts to the first and second adsorption towers A1 and A2 in this step are the same, in this step, the first and second adsorption towers A1 are used. , A2 is set to be smaller than the biogas supply amount in the adsorption process. Therefore, as shown in FIGS. 2 and 3, in this process, by reducing the adsorption flow rate at the end of the adsorption process, the environmental change in the adsorption tower can be suppressed so as to proceed gently, and the adsorption tower A1. It is possible to stabilize the internal biogas flow, suppress the generation of turbulent flow in the adsorption tower A1, and allow the adsorbent A11 to act stably.

なお、このとき、第三吸着塔A3では待機工程、第四吸着塔A4では脱着工程を行っている。   At this time, a standby process is performed in the third adsorption tower A3, and a desorption process is performed in the fourth adsorption tower A4.

また、この後並行吸着工程は、上記吸着工程の直後5秒間行われる。   Further, the subsequent parallel adsorption step is performed for 5 seconds immediately after the adsorption step.

<6>初段均圧(降圧)工程
吸着工程を終えた第一吸着塔A1では、最終均圧(昇圧)工程を行う第三吸着塔A3との間で初段均圧(降圧)工程を行う。すなわち、図2、3に示すように、均圧路L17の切換弁V17を介して、塔内の非吸着ガスを排出し、洗浄路L34の切換弁V34を介して第三吸着塔A3に移送する構成となっている。これにより第一吸着塔A1は、図3に示すように、低圧側の中間圧状態の第三吸着塔A3と圧力平衡が行われる。
<6> First-stage pressure equalization (pressure reduction) process In the first adsorption tower A1 after the adsorption process, the first-stage pressure equalization (pressure reduction) process is performed with the third adsorption tower A3 that performs the final pressure equalization (pressure increase) process. That is, as shown in FIGS. 2 and 3, the non-adsorbed gas in the tower is discharged via the switching valve V17 of the pressure equalizing path L17 and transferred to the third adsorption tower A3 via the switching valve V34 of the cleaning path L34. It is the composition to do. As a result, as shown in FIG. 3, the first adsorption tower A1 is pressure balanced with the third adsorption tower A3 in the intermediate pressure state on the low pressure side.

なお、このとき、第二吸着塔A2では吸着工程を行っており、第四吸着塔A4では脱着工程を行っている。   At this time, the adsorption process is performed in the second adsorption tower A2, and the desorption process is performed in the fourth adsorption tower A4.

また、この初段均圧(降圧)工程は、5秒間行われ、約0.5MPaGの高圧側の中間圧状態に移行する。   In addition, this first-stage pressure equalization (step-down) step is performed for 5 seconds, and shifts to an intermediate pressure state on the high pressure side of about 0.5 MPaG.

<7>待機工程
次に、第一吸着塔A1は待機状態となり、高圧側の中間圧状態が維持される。
<7> Standby process Next, 1st adsorption tower A1 will be in a standby state, and the intermediate pressure state of a high voltage | pressure side is maintained.

このとき、第二吸着塔A2は吸着工程を行っており、また、第三吸着塔A3は、昇圧工程に移行し、第四吸着塔A4は洗浄工程に移行する。   At this time, the second adsorption tower A2 performs the adsorption process, the third adsorption tower A3 shifts to the pressure increasing process, and the fourth adsorption tower A4 shifts to the washing process.

また、この待機工程は、90秒間行われ、上記高圧側の中間圧状態が維持される。   The standby process is performed for 90 seconds, and the intermediate pressure state on the high pressure side is maintained.

<8>最終均圧(降圧)工程
次に、図2、3に示すように、第一吸着塔A1は、脱着工程を終え、初段均圧(昇圧)工程を行う第四吸着塔A4との間で最終均圧(降圧)工程を行う。すなわち、均圧路L17の切換弁V17を介して、塔内の非吸着ガスおよび吸着材A11から初期に脱着し始める雑ガスを排出し、洗浄路L44の切換弁V44を介して第四吸着塔A4に移送する構成となっている。これにより、第一吸着塔A1は、脱着工程を終えて低圧状態の第四吸着塔A4と圧力平衡が行われる。
<8> Final pressure equalization (pressure reduction) step Next, as shown in FIGS. 2 and 3, the first adsorption tower A <b> 1 finishes the desorption process and performs the first-stage pressure equalization (pressure increase) process with the fourth adsorption tower A <b> 4. The final pressure equalization (pressure reduction) process is performed in between. That is, the non-adsorbed gas in the tower and the miscellaneous gas that starts to be desorbed from the adsorbent A11 are discharged through the switching valve V17 in the pressure equalizing path L17, and the fourth adsorbing tower through the switching valve V44 in the cleaning path L44. It is configured to transfer to A4. Thereby, the first adsorption tower A1 finishes the desorption process, and the pressure is balanced with the fourth adsorption tower A4 in the low pressure state.

なお、このとき、第二吸着塔A2は吸着工程を行っており、第三吸着塔A3は昇圧工程を行っている。   At this time, the second adsorption tower A2 is performing an adsorption process, and the third adsorption tower A3 is performing a pressure increasing process.

また、この最終均圧(降圧)工程は、5秒間行われ、約0.25MPaGの低圧側の中間圧状態に移行する。   Further, this final pressure equalization (pressure reduction) step is performed for 5 seconds, and shifts to an intermediate pressure state on the low pressure side of about 0.25 MPaG.

<9〜10>脱着工程
図2、3に示すように、低圧側の中間圧状態に達した第一吸着塔A1は、塔内の吸着材A11に高濃度の雑ガスを吸着している状態になっており、塔内を低圧側の中間圧状態から低圧状態にまで減圧する脱着工程を行うことにより、吸着材A11に吸着された高濃度の雑ガスを回収する。すなわち、排ガス路L13の切換弁V13を介して濃縮された雑ガスを第一吸着塔A1の内圧により膜分離装置Mに供給する。
このときの膜分離装置Mの動作状態については後述する。
<9-10> Desorption Step As shown in FIGS. 2 and 3, the first adsorption tower A1 that has reached the intermediate pressure state on the low pressure side is adsorbing a high-concentration miscellaneous gas to the adsorbent A11 in the tower. The high concentration miscellaneous gas adsorbed by the adsorbent A11 is recovered by performing a desorption process in which the inside of the tower is depressurized from an intermediate pressure state on the low pressure side to a low pressure state. That is, the miscellaneous gas concentrated through the switching valve V13 of the exhaust gas passage L13 is supplied to the membrane separation device M by the internal pressure of the first adsorption tower A1.
The operation state of the membrane separation apparatus M at this time will be described later.

なお、このとき第二吸着塔A2では第三吸着塔A3と並行して<8>後並行吸着工程を行った後、第四吸着塔A4との間で<9>初段均圧(降圧)工程が行われる。
また第三吸着塔A3では、第二吸着塔A2と並行して<8>前並行吸着工程が行われた後、<9>吸着工程が行われる。
第四吸着塔A4では、<8>待機工程の後、第二吸着塔A2との間で<9>最終均圧(昇圧)工程が順に行われる。
At this time, the second adsorption tower A2 performs the <8> post-parallel adsorption process in parallel with the third adsorption tower A3, and then the <9> first-stage pressure equalization (pressure reduction) process with the fourth adsorption tower A4. Is done.
In the third adsorption tower A3, the <9> pre-adsorption process is performed in parallel with the second adsorption tower A2, and then the <9> adsorption process is performed.
In the fourth adsorption tower A4, after the <8> standby process, a <9> final pressure equalization (pressure increase) process is sequentially performed with the second adsorption tower A2.

また、この脱着工程は、365秒間行われ、第一吸着塔A1は、図3に示されるように、低圧側の中間圧状態からほぼ大気圧の低圧状態に移行する。   Further, this desorption step is performed for 365 seconds, and the first adsorption tower A1 shifts from the intermediate pressure state on the low pressure side to the low pressure state of almost atmospheric pressure as shown in FIG.

<11>洗浄工程
図2、3に示すように、低圧状態に移行した第一吸着塔A1は、塔内に製品ガスを流入させることにより、塔内ガスをメタンを主成分とするガスに置換洗浄する。すなわち、製品ガス洗浄路L4の開閉弁Vo4を開成し、ニードル弁Vn4を調節して、洗浄路L14の切換弁V14を通じて製品ガスタンクT2から第一吸着塔A1に製品ガスを流入させて製品ガスタンクT2の内圧を吸着塔A1内に静かに作用させて、第一吸着塔A1内雰囲気をメタンに置換するとともに、第一吸着塔A1内に残留するガス排ガスとして排ガス路L13の切換弁V13を介して雑ガス排出路L3に放出するに供給する。
このとき、開閉弁Vo5を開成するとともに、開閉弁Vo3を閉成し、製品ガスを主成分とする洗浄ガスを、膜分離装置Mをバイパスして再生ガス返送路L5に移行させ、直接再生ガスタンクT5に回収する構成とする。
<11> Cleaning step As shown in FIGS. 2 and 3, the first adsorption tower A1 that has shifted to a low pressure state replaces the gas in the tower with a gas mainly composed of methane by flowing the product gas into the tower. Wash. That is, the on-off valve Vo4 of the product gas cleaning path L4 is opened, the needle valve Vn4 is adjusted, and the product gas is allowed to flow from the product gas tank T2 to the first adsorption tower A1 through the switching valve V14 of the cleaning path L14. Is gently applied to the adsorption tower A1, the atmosphere in the first adsorption tower A1 is replaced with methane, and the gas exhaust gas remaining in the first adsorption tower A1 is passed through the switching valve V13 of the exhaust gas passage L13. It supplies to discharge to the miscellaneous gas discharge path L3.
At this time, the on-off valve Vo5 is opened, the on-off valve Vo3 is closed, and the cleaning gas containing the product gas as a main component is transferred to the regeneration gas return path L5, bypassing the membrane separation device M, and directly into the regeneration gas tank. It is set as the structure collect | recovered at T5.

なお、このとき第二吸着塔A2では、待機工程となり、第三吸着塔A3では吸着工程を継続している。また、第四吸着塔A4では、昇圧工程が行われる。   At this time, the second adsorption tower A2 becomes a standby process, and the third adsorption tower A3 continues the adsorption process. In the fourth adsorption tower A4, a pressure increasing process is performed.

この洗浄工程は、約90秒間行われ、第一吸着塔A1内はほぼ大気圧の低圧状態に移行される。   This washing step is performed for about 90 seconds, and the inside of the first adsorption tower A1 is shifted to a low pressure state of almost atmospheric pressure.

<12>初段均圧(昇圧)工程
図2、3に示すように、低圧状態となって、吸着したメタンを放出し、吸着材A11を再生された第一吸着塔A1では、第二吸着塔A2との間で初段均圧(昇圧)工程を行うことにより、塔内の圧力を回復するとともに、第二吸着塔A2における最終均圧(降圧)工程で排出された、吸着材A11からの初期脱離ガスにより比較的メタンを高濃度に含有する排ガスを受け入れる。すなわち、塔間均圧路L7において、均圧路L27における切換弁V27を介して高圧側の中間圧状態の第二吸着塔A2から排出される塔内ガスを、洗浄路L14における切換弁V14より受け入れる。これにより第一吸着塔A1は、図3に示すように、低圧状態から低圧側の中間圧状態にまで圧力を回復する。
<12> First-stage pressure equalization (pressure increase) step As shown in FIGS. 2 and 3, in the first adsorption tower A1 in which the adsorbent A11 is regenerated by releasing the adsorbed methane by releasing the adsorbed methane, the second adsorption tower By performing the first-stage pressure equalization (pressure increase) step with A2, the pressure in the tower is recovered, and the initial pressure from the adsorbent A11 discharged in the final pressure equalization (pressure decrease) step in the second adsorption tower A2 The desorbed gas receives exhaust gas containing a relatively high concentration of methane. That is, in the inter-column pressure equalizing path L7, the gas in the column discharged from the second adsorption tower A2 in the intermediate pressure state on the high pressure side via the switching valve V27 in the pressure equalizing path L27 is transferred from the switching valve V14 in the cleaning path L14. accept. As a result, the first adsorption tower A1 recovers the pressure from the low pressure state to the intermediate pressure state on the low pressure side, as shown in FIG.

なお、このとき第三吸着塔A3では、吸着工程を継続しており、第四吸着塔A4では昇圧工程を行っている。   At this time, the third adsorption tower A3 continues the adsorption process, and the fourth adsorption tower A4 performs the pressure increasing process.

この初段均圧(昇圧)工程は、約10秒間行われ、第一吸着塔A1は約0.25MPaGまで圧力を回復する。   This first-stage pressure equalization (pressure increase) step is performed for about 10 seconds, and the first adsorption tower A1 recovers the pressure to about 0.25 MPaG.

<13>待機工程
次に、図2、3に示すように、第一吸着塔A1は待機状態となり、高圧側の中間圧状態が維持される。
<13> Standby Step Next, as shown in FIGS. 2 and 3, the first adsorption tower A1 is in a standby state, and the intermediate pressure state on the high pressure side is maintained.

このとき、第二吸着塔A2は脱着工程を行っており、また、第三吸着塔A3、第四吸着塔A4は後並行吸着工程および前並行吸着工程に移行している。   At this time, the second adsorption tower A2 is performing the desorption process, and the third adsorption tower A3 and the fourth adsorption tower A4 are shifted to the post-parallel adsorption process and the pre-parallel adsorption process.

この待機工程は、約5秒間行われ、第一吸着塔A1は約0.25MPaGに維持される。   This standby process is performed for about 5 seconds, and the first adsorption tower A1 is maintained at about 0.25 MPaG.

<14>最終均圧(昇圧)工程
図2、3に示すように、低圧側の中間圧状態にまで圧力を回復した第一吸着塔A1は、次に吸着工程を終えた直後で初段均圧(降圧)工程を行う第三吸着塔A3との間で最終均圧(昇圧)工程を行うことにより、さらに塔内の圧力の回復を図る。すなわち、塔間均圧路L7の均圧路L17〜L37において、切換弁V17、V37を介して、高圧状態の第三吸着塔A3から排出される塔内ガスを受け入れる。これにより第一吸着塔A1は、図3に示すように、低圧側の中間圧状態から高圧側の中間圧状態にまで圧力を回復する。
<14> Final pressure equalization (pressure increase) step As shown in FIGS. 2 and 3, the first adsorption tower A <b> 1 that has recovered the pressure to the intermediate pressure state on the low pressure side immediately after the adsorption step is finished, The pressure in the column is further recovered by performing a final pressure equalization (pressure increase) step with the third adsorption tower A3 that performs the (pressure decrease) step. That is, in the pressure equalization paths L17 to L37 of the inter-column pressure equalization path L7, the gas in the tower discharged from the high-pressure third adsorption tower A3 is received via the switching valves V17 and V37. Thereby, as shown in FIG. 3, the first adsorption tower A1 recovers the pressure from the low pressure side intermediate pressure state to the high pressure side intermediate pressure state.

なお、このとき第二吸着塔A2では脱着工程を行っており、第四吸着塔A4では吸着工程を行っている。   At this time, the desorption process is performed in the second adsorption tower A2, and the adsorption process is performed in the fourth adsorption tower A4.

この最終均圧(昇圧)工程は、約10秒間行われ、第一吸着塔A1内は、約0.5MPaGにまで昇圧される。   This final pressure equalization (pressure increase) step is performed for about 10 seconds, and the pressure in the first adsorption tower A1 is increased to about 0.5 MPaG.

<15〜16>昇圧工程
図3に示すように、高圧側の中間圧状態にまで圧力を回復した第一吸着塔A1は、製品ガスを圧入することにより高圧状態にまで圧力を復元される。すなわち、製品ガス洗浄路L4の切換弁V14を介して第一吸着塔A1に製品ガスを流入させる。これにより、第一吸着塔A1内部は高圧状態まで復元され、バイオガスを供給することによりバイオガス中の二酸化炭素を吸着可能な高圧状態に再生される。
<15-16> Boosting Step As shown in FIG. 3, the first adsorption tower A <b> 1 that has recovered the pressure to the intermediate pressure state on the high pressure side is restored to the high pressure state by injecting the product gas. That is, the product gas is caused to flow into the first adsorption tower A1 via the switching valve V14 of the product gas cleaning path L4. Thereby, the inside of the first adsorption tower A1 is restored to a high pressure state, and is regenerated to a high pressure state capable of adsorbing carbon dioxide in the biogas by supplying the biogas.

なお、このとき、第二吸着塔A2では、<14>洗浄工程の後、第三吸着塔A3との間で<15>初段均圧(昇圧)工程を行う。また、第三吸着塔A3では、<14>待機工程の後、第二吸着塔A2との間で<15>最終均圧(降圧)工程を行っている。また、第四吸着塔A4では吸着工程が行われている。   At this time, in the second adsorption tower A2, after the <14> washing process, a <15> first-stage pressure equalization (pressure increase) process is performed with the third adsorption tower A3. In the third adsorption tower A3, after the <14> standby process, a <15> final pressure equalization (pressure reduction) process is performed with the second adsorption tower A2. Further, an adsorption step is performed in the fourth adsorption tower A4.

この昇圧工程は約50秒行われ、第一吸着塔A1内をバイオガス中のメタンと二酸化炭素とを分離可能な0.8MPaGにまで昇圧される。   This pressurization step is performed for about 50 seconds, and the pressure in the first adsorption tower A1 is increased to 0.8 MPaG that can separate methane and carbon dioxide in the biogas.

〔膜分離装置の動作状態〕
雑ガス排出路L3には、分離膜M1を備えた膜分離装置Mが設けられ、雑ガス排出路L3から排出される二酸化炭素を主成分とする雑ガスから二酸化炭素を透過してメタンを分離可能に接続されている。分離膜M1を透過せず、メタン濃度の高められたガスは、再生ガスとして再生ガス返送路L5に排出され、分離膜M1を透過して、二酸化炭素を主成分とするガスは、減圧ポンプP6により排気路L6に放出可能に構成してある。
[Operation status of membrane separator]
The miscellaneous gas discharge path L3 is provided with a membrane separation device M having a separation membrane M1, and separates methane by permeating carbon dioxide from miscellaneous gas mainly composed of carbon dioxide discharged from the miscellaneous gas discharge path L3. Connected as possible. A gas that does not permeate the separation membrane M1 and has an increased methane concentration is discharged as a regeneration gas to the regeneration gas return path L5, and a gas mainly containing carbon dioxide that permeates the separation membrane M1 and passes through the separation membrane M1. Thus, it can be discharged into the exhaust path L6.

脱着工程時には、膜分離装置Mによる分離膜M1の一次側圧力は、吸着塔A1〜A4の排気圧となるので0.25MPaG〜0MPaG程度に変動するが、二次側は減圧ポンプP6により、常時−0.1MPaG(真空相当)とされており、膜分離圧0.35MPaG〜0.1MPaGが維持され、連続的な膜分離操作が行える状況になっている。   At the time of the desorption process, the primary side pressure of the separation membrane M1 by the membrane separation apparatus M becomes the exhaust pressure of the adsorption towers A1 to A4, and thus varies to about 0.25 MPaG to 0 MPaG. -0.1 MPaG (equivalent to vacuum), the membrane separation pressure of 0.35 MPaG to 0.1 MPaG is maintained, and a continuous membrane separation operation can be performed.

また、洗浄工程の際には、膜分離装置Mによる膜分離の一次側圧力は、吸着塔A1〜A4の洗浄圧となるので0MPaG程度で一定であるので、膜分離圧0.1MPaGが維持され、連続的な膜分離操作が行える状況になっているが、基本的に洗浄用ガスとして製品ガスを用いる場合、膜分離装置Mに供給されるガス中に二酸化炭素ガスはあまり含まれておらず、十分なガス分離が継続される。   In the cleaning process, the primary pressure of the membrane separation by the membrane separation device M becomes the cleaning pressure of the adsorption towers A1 to A4 and is constant at about 0 MPaG, so the membrane separation pressure of 0.1 MPaG is maintained. Although continuous membrane separation operation can be performed, basically, when product gas is used as a cleaning gas, the gas supplied to the membrane separator M does not contain much carbon dioxide gas. Sufficient gas separation is continued.

このような構成により、排気路L6から放出される排ガスはメタン2〜6%、二酸化炭素94〜98%程度の排ガスとすることができる。また、再生ガス返送路L5に返送されるガス組成は、メタン60%、二酸化炭素40%程度のメタン含有ガスとなっている。   With such a configuration, the exhaust gas discharged from the exhaust path L6 can be an exhaust gas of about 2 to 6% methane and 94 to 98% carbon dioxide. The gas composition returned to the regeneration gas return path L5 is a methane-containing gas of about 60% methane and about 40% carbon dioxide.

また、再生ガス返送路L5には再生圧力制御弁Vc5を設けるとともに、膜分離装置Mと再生圧力制御弁Vc5との間には、再生ガスタンクT5を設けてあり、再生ガス返送路L5は、原料ガス供給路L1における供給ポンプP1の上流側に接続してあるから、再生ガスを原料ガスに混合して再度分離精製することができる。 Further, provided with the regeneration pressure control valve Vc5 the regeneration gas return path L5, between the membrane separation device M and the regeneration pressure control valve Vc5, is provided with a regeneration gas tank T5, the regeneration gas return passage L5 is raw material Since it is connected to the upstream side of the supply pump P1 in the gas supply path L1, the regeneration gas can be mixed with the raw material gas and separated and purified again.

上記実施形態のメタン濃縮方法では、10L/分でメタン60%のバイオガスを処理した場合に、メタン96〜98%の製品ガスと、メタン2〜5%の排ガスが得られ、メタンの回収率は95%であった。また、流量を増やして17L/分としてもメタン96〜98%の製品ガスと、メタン2〜5%の排ガスが得られ、メタンの回収率は95%と、同様の濃縮効率及び回収率でメタン濃縮が可能であることが確認できた。
これに対して、上記膜分離装置を用いることなく、前記吸着塔を圧力揺動運転して、メタン濃縮を行ったところ、10L/分でメタン60%のバイオガスを処理した場合に、メタン96〜98%の製品ガスを得ると、排ガスはメタン15〜20%となり、メタンの回収率は83%であった。
すなわち、本発明のメタン濃縮方法によると、高い濃縮効率と高い回収率とを両立できることが実験的に明らかになった。
In the methane concentration method of the above embodiment, when a biogas of 60% methane is treated at 10 L / min, a product gas of 96 to 98% methane and an exhaust gas of 2 to 5% methane are obtained, and the methane recovery rate Was 95%. Further, even if the flow rate is increased to 17 L / min, a product gas of 96 to 98% methane and an exhaust gas of 2 to 5% methane are obtained, and the methane recovery rate is 95%, with the same concentration efficiency and recovery rate. It was confirmed that concentration was possible.
On the other hand, when the adsorption tower was operated with pressure fluctuation and the methane concentration was performed without using the membrane separator, methane 96 was obtained when 60% methane biogas was processed at 10 L / min. When ˜98% product gas was obtained, the exhaust gas was 15-20% methane, and the methane recovery was 83%.
That is, according to the methane concentration method of the present invention, it was experimentally clarified that both high concentration efficiency and high recovery rate can be achieved.

〔別実施形態〕
(1)
上記ガス精製装置には、圧力センサ、温度センサ等は適宜設けることができる。具体的には、通常、原料ガスの供給圧や、製品ガスのメタン濃度などをモニタする圧力センサやガスセンサを設けるのであるが、上述の実施形態においては詳細な説明を省略してあるものとする。
[Another embodiment]
(1)
The gas purification apparatus can be appropriately provided with a pressure sensor, a temperature sensor, and the like. Specifically, a pressure sensor or a gas sensor for monitoring the supply pressure of the raw material gas or the methane concentration of the product gas is usually provided, but detailed description is omitted in the above-described embodiment. .

(2)
また、各配管にガスを流通させるための供給ポンプP1や減圧ポンプP6は、上記配置に限らず、ガス流通可能に構成されるのであれば種々変形することができる。具体的には、上述のガス精製装置では、必要最小限度の構成としてあるが、原料ガス供給路L1における再生ガス返送路L5との接続部分より上流側(原料ガスタンクT1側)に供給ポンプP1を設ける構成が採用できるほか、たとえば、供給ポンプP1を省略して、再生ガス返送路L5に原料ガス供給路L1に対して原料ガスの供給圧を与える圧縮ポンプP5を設けることとしてもよい。このような場合、たとえば、図5のように構成し、圧縮ポンプP5にバイパスするバイパス路に設けた圧力制御弁Vc51により、原料ガス供給路L1に対する供給圧を適正に維持する。
(2)
Further, the supply pump P1 and the decompression pump P6 for allowing the gas to flow through each pipe are not limited to the above arrangement, and can be variously modified as long as the gas can flow. Specifically, in the above-described gas refining apparatus, it is constituted of a necessary minimum, raw material supply pump to the upstream side (raw gas tank T1 side) than the connection portion between the regeneration gas return passage L5 in the gas supply passage L1 P1 For example, the supply pump P1 may be omitted, and the compression pump P5 that applies the supply pressure of the source gas to the source gas supply path L1 may be provided in the regeneration gas return path L5. In such a case, for example, the supply pressure to the raw material gas supply path L1 is appropriately maintained by the pressure control valve Vc51 configured as shown in FIG. 5 and provided in the bypass path bypassed to the compression pump P5.

(3)
また、上述の実施形態の説明によると、排気路L6には、減圧ポンプP6を設けなくても動作可能であることが明らかであり、設備の簡素化の観点からは減圧ポンプP6を省略することが好ましく、膜分離圧の安定化の観点からは、減圧ポンプP6を設けることが好ましい。また、減圧ポンプP6を設ける場合、安定運転の観点からは、減圧ポンプP6を定常運転することが望ましいが、図2における洗浄工程が進行しているステップ3,7,11,15および、その後、脱着工程が開始されるまでのステップ4,8,12,16においては、減圧ポンプP6を低負荷運転、または、停止することができる。またこのような場合に、再生圧力制御弁Vc5は、開度を絞った状態あるいは閉止状態に固定しておくことができる。
(3)
Further, according to the description of the above-described embodiment, it is clear that the exhaust passage L6 can be operated without providing the pressure reducing pump P6, and the pressure reducing pump P6 is omitted from the viewpoint of simplifying the equipment. It is preferable to provide a decompression pump P6 from the viewpoint of stabilizing the membrane separation pressure. In the case of providing the decompression pump P6, it is desirable to operate the decompression pump P6 in a steady manner from the viewpoint of stable operation. However, Steps 3, 7, 11, 15 in which the cleaning process in FIG. In steps 4, 8, 12, and 16 until the desorption process is started, the decompression pump P6 can be operated at a low load or stopped. In such a case, the regeneration pressure control valve Vc5 can be fixed in a state where the opening degree is reduced or in a closed state.

すなわち、脱着工程の際には、雑ガス排出路L3のガスを膜分離して再生ガスを得る必要があるので、膜分離圧を十分作用させる必要があるが、雑ガス排出路L3にガスが流出しない工程時や、洗浄工程を行う際に、製品ガスを用いる場合には膜分離を行う必要性が少なく、また、そもそも洗浄工程では膜分離装置Mに対するガス供給圧が少ない。したがって膜分離圧の要求されない時間帯に減圧ポンプP6の出力を低下させておくことできる。減圧ポンプP6の出力を要求される膜分離圧に応じて低下させる場合、減圧ポンプP6をインバータ制御することができる。   That is, in the desorption process, the gas in the miscellaneous gas discharge path L3 needs to be membrane-separated to obtain a regenerated gas. Therefore, it is necessary to sufficiently apply the membrane separation pressure. When a product gas is used at the time of a process that does not flow out or at the time of a cleaning process, it is less necessary to perform membrane separation. In the first place, the gas supply pressure to the membrane separation apparatus M is low in the cleaning process. Therefore, the output of the decompression pump P6 can be lowered during a time period when the membrane separation pressure is not required. When the output of the pressure reducing pump P6 is reduced according to the required membrane separation pressure, the pressure reducing pump P6 can be inverter-controlled.

(4)
上記実施形態において再生ガス返送路L5においては、ガス組成のバランスを図る上で、膜分離装置Mから回収するガス量が原料ガス供給路L1に再供給されるガス量を上回る状況も想定される。このような場合、再生ガスタンクT5に貯留されるガスは、増加し続けることになるので、前記再生ガスタンクT5に余剰再生ガスを廃棄するための廃棄路を設けておくこともできる。
(4)
In the above embodiment, in the regeneration gas return path L5, it is assumed that the amount of gas recovered from the membrane separator M exceeds the amount of gas re-supplied to the raw material gas supply path L1 in order to balance the gas composition. . In such a case, since the gas stored in the regeneration gas tank T5 continues to increase, a waste path for discarding excess regeneration gas can be provided in the regeneration gas tank T5.

(5)
先にも述べたように、洗浄工程の際に雑ガス排出路L3に流通するガスは、製品ガスが主成分であるから、膜分離工程後、直接製品ガスとして回収してもかまわない程度の純度である場合もある。また、通常の脱着工程における再生ガスであっても、同様に十分な純度である場合がある。このような場合、図6に示すように、再生ガス返送路L5に、再生ガスを製品ガスとして回収するための再生ガス回収路L9を設けて、圧入ポンプP9を介して製品ガス回収路L2にバイパスさせることもできる。このような場合、雑ガス排出路L3に流通するガスの組成等に応じて、再生ガスの流通先を再生ガス返送路L5→原料ガス供給路L1にするか再生ガス回収路L9→製品ガスタンクT2にするか分岐制御すればよい。すなわち、再生ガスの製品ガス純度が高い場合には、再生ガスを再生ガス回収路L9を介して製品ガスタンクT2 に回収し、再生ガスの製品ガス純度が低いときには再生ガス返送路L5を介して原料ガス供給路L1に返送する形態とすることができる。
なお、参考の別実施形態として、たとえば、(1)常に、再生ガスを製品ガスとして回収してよい製品ガス純度に維持できるような場合、または、(2)再生ガスが、原料ガス
より高純度である場合、もしくは、(3)再生ガスに原料ガスを適量添加することで発電用燃料として十分に使用可能になる程度の純度を有している場合などは、再生ガス返送路L5を省略して、再生ガス回収路L9のみ設けることもできる(図13参照)。
(5)
As described above, since the product gas is the main component of the gas flowing through the miscellaneous gas discharge passage L3 during the cleaning process, it may be recovered directly as the product gas after the membrane separation process. It can be purity. Moreover, even if it is the regeneration gas in a normal desorption process, it may have sufficient purity similarly. In such a case, as shown in FIG. 6, the regeneration gas return path L5 is provided with a regeneration gas recovery path L9 for recovering the regeneration gas as product gas, and the product gas recovery path L2 is connected via the press-fit pump P9. It can also be bypassed. In such a case, depending on the composition of the gas flowing through the miscellaneous gas discharge path L3, the regeneration gas distribution destination is the regeneration gas return path L5 → the raw material gas supply path L1, or the regeneration gas recovery path L9 → the product gas tank T2. Or branch control. That is, when the product gas purity of the regeneration gas is high, the regeneration gas is recovered to the product gas tank T2 via the regeneration gas recovery path L9, and when the product gas purity of the regeneration gas is low, the raw material is returned via the regeneration gas return path L5. It can be set as the form which returns to the gas supply path L1.
In addition, as another embodiment of reference, for example, (1) When the regeneration gas can always be maintained at the product gas purity that can be recovered as the product gas, or (2) The regeneration gas has a higher purity than the source gas. Or (3) the regeneration gas return path L5 is omitted if it has a purity that can be sufficiently used as a fuel for power generation by adding an appropriate amount of source gas to the regeneration gas. Thus, only the regeneration gas recovery path L9 can be provided (see FIG. 13).

(6)
上記実施形態では4塔の吸着塔A1〜A4を備えたガス精製装置としたが、これに限らず2塔、3塔で交互に処理する方式のものであっても良く、複数塔備えて連続的なPSAが行える構成であればよい。たとえば、3塔であれば、図7のように構成することができる。
(6)
In the above embodiment, the gas purification apparatus includes four adsorption towers A1 to A4. However, the gas purification apparatus is not limited to this, and may be a system that alternately processes two or three towers. Any configuration that can perform typical PSA is acceptable. For example, three towers can be configured as shown in FIG.

(7)
PSAサイクルとしては、各吸着塔を連続的に有効に利用できる形態であれば上述の構成に限るものではなく、種々変形を行うことができる。たとえば、上記図7の構成のガス精製装置であれば、図8に従った運転方法が可能である。
(7)
The PSA cycle is not limited to the above-described configuration as long as each adsorption tower can be effectively used continuously, and various modifications can be made. For example, if the gas purification apparatus has the configuration shown in FIG. 7, the operation method according to FIG. 8 is possible.

(8)
前の実施形態では、洗浄工程の際に前記吸着塔に対して静圧(圧力をかけない)で製品ガスを供給したが、加圧状態で洗浄工程を行うこともできる。この場合、洗浄効率を向上できる。
(8)
In the previous embodiment, the product gas was supplied at a static pressure (no pressure applied) to the adsorption tower during the cleaning step, but the cleaning step can be performed in a pressurized state. In this case, the cleaning efficiency can be improved.

(9)
本発明のガス精製装置は、バイオガスの精製に用いる例を示したが、バイオガス以外にもたとえば炭鉱ガスなど、バイオガス同様に含有するメタンを高濃度に濃縮する場合や、他にも、原料ガスから精製対象ガス以外の雑ガスを吸着することにより精製する用途で用いることができ、この際、精製対象ガス、雑ガスの種類、濃度に応じて、吸着剤、分離膜の材料を適宜変更することができる。
(9)
The gas purification apparatus of the present invention has shown an example used for biogas purification, but in addition to biogas, for example, coal mine gas, etc. It can be used for the purpose of purification by adsorbing miscellaneous gases other than the gas to be purified from the raw material gas. Can be changed.

(10)
先の実施形態の構成に加えて、図9に示すように、前記雑ガス排出路L3における前記膜分離装置Mの上流部に、バッファタンクT3を設けて構成することができる。なお、Vc52は、バッファタンクT3内の圧力を適宜吸着塔A1〜A4の内圧よりも低く維持するための圧力制御弁である。また、図9中L9は、図6における再生ガス回収路L9と同様に、圧入ポンプP9を介して製品ガス回収路L2に再生ガスを回収する管路であることを同様の符号を付して示すものである。
(10)
In addition to the configuration of the previous embodiment, as shown in FIG. 9, a buffer tank T3 can be provided in the upstream portion of the membrane separation device M in the miscellaneous gas discharge path L3. Vc52 is a pressure control valve for appropriately maintaining the pressure in the buffer tank T3 lower than the internal pressure of the adsorption towers A1 to A4. In addition, L9 in FIG. 9 is similar to the regeneration gas recovery path L9 in FIG. 6 and is denoted by the same reference numeral as being a conduit for recovering the regeneration gas to the product gas recovery path L2 via the press-in pump P9. It is shown.

この場合、前記バッファタンクは、脱着工程により排出される雑ガスを、前記膜分離装置に供給される前に一旦貯留することができる。このとき、前記吸着塔とバッファタンクとの圧力差により均圧操作により、比較的高濃度に精製対象ガスを含む高圧の雑ガスをそのバッファタンク内に蓄積することができる。雑ガスの内、比較的圧力の低い雑ガスは、Vo5を経由して再生ガスタンクに供給することができ、バッファタンクおよび再生ガスタンク内の雑ガスは、吸着塔で脱着工程を行っていない時期であっても、必要に応じて膜分離装置に供給することができる。   In this case, the buffer tank can temporarily store the miscellaneous gas discharged in the desorption process before being supplied to the membrane separation device. At this time, high-pressure miscellaneous gas containing the gas to be purified having a relatively high concentration can be accumulated in the buffer tank by pressure equalization operation by the pressure difference between the adsorption tower and the buffer tank. Among miscellaneous gases, miscellaneous gases having a relatively low pressure can be supplied to the regeneration gas tank via Vo5, and the miscellaneous gases in the buffer tank and the regeneration gas tank are not subjected to the desorption process in the adsorption tower. Even if it exists, it can supply to a membrane separator as needed.

その後、前記バッファタンク内の雑ガスを膜分離装置に供給すると、吸着塔内から初期に排出される高圧の雑ガスを圧力緩和して膜分離装置に供給することができるようになり、高圧の雑ガスの圧力を利用した回収率の高い膜分離動作を行いながらも、雑ガスから精製対象ガスを高精度に精製することができる。   After that, when the miscellaneous gas in the buffer tank is supplied to the membrane separation device, the high-pressure miscellaneous gas discharged from the adsorption tower in the initial stage can be relaxed and supplied to the membrane separation device. While performing a membrane separation operation with a high recovery rate using the pressure of the miscellaneous gas, the gas to be purified can be purified from the miscellaneous gas with high accuracy.

また、図9の構成においても、図6の構成同様に、雑ガス排出路L3に流通するガスの組成等に応じて、再生ガスの流通先を再生ガス返送路L5→原料ガス供給路L1にするか再生ガス回収路L9→製品ガスタンクT2にしたり、再生ガス回収路L9→直接製品ガスとして使用するなどに分岐制御することができる。すなわち、再生ガスの製品ガス純度が高い場合には、再生ガスを再生ガス回収路L9を介して製品ガスタンクT2に回収したり、製品ガスタンクT2に回収することなく製品ガスタンクT2内の製品ガスとは別の用途などの別の製品ガスとして使用することができ、再生ガスの製品ガス純度が低いときには再生ガス返送路L5を介して原料ガス供給路L1に返送する形態とすることができる。
なお、参考の別実施形態として、常に、再生ガスを製品ガスとして回収してよい製品ガス純度に維持できるような場合、再生ガス返送路L5を省略して、再生ガス回収路L9の
み設けることもできる。
Also in the configuration of FIG. 9, as in the configuration of FIG. 6, the regeneration gas distribution destination is changed from the regeneration gas return path L5 to the source gas supply path L1 in accordance with the composition of the gas flowing in the miscellaneous gas discharge path L3. Alternatively, branch control can be performed such that the regeneration gas recovery path L9 is changed to the product gas tank T2, or the regeneration gas recovery path L9 is directly used as the product gas. That is, when the product gas purity of the regeneration gas is high, the regeneration gas is recovered in the product gas tank T2 via the regeneration gas recovery path L9, or the product gas in the product gas tank T2 without being recovered in the product gas tank T2. The product gas can be used as another product gas for other purposes, and when the product gas purity of the regeneration gas is low, it can be returned to the raw material gas supply path L1 via the regeneration gas return path L5.
As another embodiment of reference, when it is possible to always maintain the product gas purity so that the regeneration gas can be recovered as the product gas, the regeneration gas return path L5 may be omitted and only the regeneration gas recovery path L9 may be provided. it can.

(11)
前の実施形態における図2〜4の構成のガス精製装置における配管、弁構成を簡略化することによって、図10〜12に従った運転方法を行うことができる。
すなわち、図10〜12の構成によると、製品ガスによる吸着塔の昇圧を省略し、原料ガスにより昇圧することにより、製品ガス昇圧路L8を不要とするとともに、洗浄工程を不要にできることから、製品ガス洗浄路L4を不要としている。このとき、昇圧による製品ガスのロスを節約できるので、製品ガス回収率を向上することができる。また、後並行吸着工程ののち待機工程を設けることで、圧力変動を一旦中断させることにより、図4において最大圧力から最少圧力まで3段階で変動していたところ、図12において4段階でより緩慢に変動することになり、吸着塔内に急激な圧力変動を生じないのでより安定したガス精製装置の運転に寄与する。
(11)
The operation method according to FIGS. 10 to 12 can be performed by simplifying the piping and valve configuration in the gas purification apparatus having the configuration of FIGS.
That is, according to the configuration of FIGS. 10 to 12, the pressure of the adsorption tower by the product gas is omitted, and the pressure by the raw material gas is eliminated, so that the product gas pressure increasing path L <b> 8 is unnecessary and the cleaning process is unnecessary. The gas cleaning path L4 is unnecessary. At this time, loss of product gas due to pressure increase can be saved, so that the product gas recovery rate can be improved. Further, by providing a standby process after the post-parallel adsorption process, the pressure fluctuation is temporarily interrupted, so that the pressure changes in three stages from the maximum pressure to the minimum pressure in FIG. 4, but becomes slower in four stages in FIG. As a result, there is no sudden pressure fluctuation in the adsorption tower, which contributes to a more stable operation of the gas purification apparatus.

本発明のガス精製装置は、より高純度のメタンを回収できるようになり、従来再利用することが困難であったバイオガス等をメタン回収率高く有効利用することができるガス精製装置として利用することができる。   The gas purification apparatus of the present invention can recover higher-purity methane, and can be used as a gas purification apparatus that can effectively utilize biogas and the like that have been difficult to reuse in the past with a high methane recovery rate. be able to.

A1〜A4 :(第一〜第四)吸着塔
A11〜A41:吸着材
C :制御装置
L1 :原料ガス供給路
L2 :製品ガス回収路
L3 :雑ガス排出路
L4 :製品ガス洗浄路
L5 :再生ガス返送路
L6 :排気路
L7 :塔間均圧路
L8 :製品ガス昇圧路
L9 :再生ガス回収路
L10、L30:バイパス路
L11〜L41:供給路
L12〜L42:回収路
L13〜L43:排ガス路
L14〜L44:洗浄路
L17〜L47:均圧路
L18〜L48:昇圧路
M :膜分離装置
M1 :分離膜
P1 :供給ポンプ
P5 :圧縮ポンプ
P6 :減圧ポンプ
P9 :圧入ポンプ
T1 :原料ガスタンク
T2 :製品ガスタンク
T5 :再生ガスタンク
V11〜V44:切換弁
Vc1〜Vc8:圧力制御弁
Vn4、Vn7:ニードル弁
Vo3〜Vo8:開閉弁
Vr4 :減圧弁
A1 to A4: (first to fourth) adsorption towers A11 to A41: adsorbent C: control device L1: raw material gas supply path L2: product gas recovery path L3: miscellaneous gas discharge path L4: product gas cleaning path L5: regeneration Gas return path L6: Exhaust path L7: Inter-column pressure equalization path L8: Product gas pressure increase path L9: Regeneration gas recovery path L10, L30: Bypass paths L11-L41: Supply paths L12-L42: Recovery paths L13-L43: Exhaust path L14 to L44: Washing paths L17 to L47: Pressure equalizing paths L18 to L48: Boosting path M: Membrane separation device M1: Separation membrane P1: Supply pump P5: Compression pump P6: Pressure reducing pump P9: Pressurizing pump T1: Feed gas tank T2: Product gas tank T5: Regeneration gas tanks V11 to V44: Switching valves Vc1 to Vc8: Pressure control valves Vn4, Vn7: Needle valves Vo3 to Vo8: On-off valves Vr4: Pressure reducing valves

Claims (14)

原料ガスから精製対象ガス以外の雑ガスを吸着する吸着材を充填してある吸着塔を設け、
前記吸着塔に原料ガスを供給する原料ガス供給路を設け、
前記吸着材に吸着しなかった精製対象ガスを製品ガスとして排出する製品ガス回収路を設け、
前記吸着材に吸着した雑ガスを脱着させて排気する雑ガス排出路を設け、
前記吸着塔と、前記原料ガス供給路と、前記製品ガス回収路と、前記雑ガス排出路とを、
前記原料ガス供給路から原料ガスを受け入れて、雑ガスを前記吸着材に吸着するとともに、製品ガスを回収する吸着工程と、
前記吸着材に吸着した雑ガスを減圧脱着して前記雑ガス排出路より排気する脱着工程と、
を交互に行う圧力揺動運転可能に接続したガス精製装置であって、
前記雑ガス排出路に、精製対象ガスを透過せず、雑ガスを透過する分離膜を有するとともに、前記吸着塔の排気圧で精製対象ガスと雑ガスとを分離する膜分離装置を設け、
分離膜で精製対象ガス濃度の高められた再生ガスを前記原料ガス供給路に返送する再生ガス返送路を設け、
前記再生ガス返送路に、前記脱着工程時に前記吸着塔の排気圧が徐々に低下するように、開度調整して圧力を制御する再生圧力制御弁を設け、前記再生圧力制御弁により前記分離膜の膜分離圧を制御する再生制御装置を備えて、前記再生圧力制御弁を用いて前記膜分離装置の膜分離圧を前記吸着塔の排気圧により制御するガス精製装置。
An adsorption tower filled with an adsorbent that adsorbs miscellaneous gases other than the gas to be purified from the source gas is provided.
A source gas supply path for supplying source gas to the adsorption tower is provided,
A product gas recovery path for discharging the gas to be purified that has not been adsorbed on the adsorbent as product gas is provided,
Provide a miscellaneous gas discharge path for desorbing and exhausting miscellaneous gas adsorbed on the adsorbent,
The adsorption tower, the source gas supply path, the product gas recovery path, and the miscellaneous gas discharge path,
An adsorption step of receiving a raw material gas from the raw material gas supply path, adsorbing a miscellaneous gas to the adsorbent, and collecting a product gas;
A desorption step of desorbing the miscellaneous gas adsorbed on the adsorbent and depressurizing the miscellaneous gas discharge path;
A gas purifier connected to perform pressure fluctuation operation alternately,
The miscellaneous gas discharge path has a separation membrane that does not transmit the gas to be purified and transmits the miscellaneous gas, and a membrane separation device that separates the gas to be purified and the miscellaneous gas by the exhaust pressure of the adsorption tower,
A regeneration gas return path is provided for returning the regeneration gas whose concentration of the gas to be purified is increased by the separation membrane to the source gas supply path,
The regeneration gas return path is provided with a regeneration pressure control valve that controls the pressure by adjusting the opening so that the exhaust pressure of the adsorption tower gradually decreases during the desorption process, and the separation membrane is controlled by the regeneration pressure control valve. of includes a reproduction control unit for controlling the membrane separation pressure, the gas purification system further controls the membrane separation pressure of the membrane separation device using the regeneration pressure control valve to exhaust pressure of the adsorption tower.
前記分離膜で精製対象ガス濃度の高められた再生ガスを製品ガスとして回収する再生ガス回収路を設けた請求項1に記載のガス精製装置。   The gas purification apparatus according to claim 1, further comprising a regeneration gas recovery path that recovers a regeneration gas having a concentration of a purification target gas increased by the separation membrane as a product gas. 前記雑ガス排出路に流通する雑ガスを、前記膜分離装置をバイパスして前記再生ガス返送路に導くバイパス路を設けた請求項1または2に記載のガス精製装置。   The gas purification apparatus according to claim 1 or 2, further comprising a bypass path for bypassing the miscellaneous gas flowing through the miscellaneous gas discharge path to the regeneration gas return path by bypassing the membrane separation device. 前記雑ガス排出路における前記膜分離装置の上流部に、バッファタンクを設けてある請求項1〜3のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 3, wherein a buffer tank is provided upstream of the membrane separation apparatus in the miscellaneous gas discharge path. 前記雑ガス排出路における前記膜分離装置の雑ガス透過側に減圧ポンプを定常運転する状態で設けてある請求項1〜4のいずれか一項に記載のガス精製装置。   The gas purification apparatus as described in any one of Claims 1-4 provided in the state which carries out the steady operation of the decompression pump in the miscellaneous gas permeation | transmission side of the said membrane separator in the said miscellaneous gas discharge path. 前記再生ガス返送路に再生ガスタンクを設けてある請求項1〜5のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 5, wherein a regeneration gas tank is provided in the regeneration gas return path. 前記製品ガス回収路に製品ガスタンクを設けてある請求項1〜6のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 6, wherein a product gas tank is provided in the product gas recovery path. 前記製品ガスタンクから前記吸着塔に製品ガスを流入する製品ガス洗浄路を設け、製品ガス洗浄路における前記製品ガスタンクと前記吸着塔との間に製品圧力制御弁を設け、前記製品ガスタンクから製品ガスを前記吸着塔に流入させて前記吸着塔を洗浄する洗浄制御装置を備えた請求項7に記載のガス精製装置。   A product gas cleaning path for flowing product gas from the product gas tank to the adsorption tower is provided, a product pressure control valve is provided between the product gas tank and the adsorption tower in the product gas cleaning path, and product gas is supplied from the product gas tank. The gas purification apparatus according to claim 7, further comprising a cleaning control device that flows into the adsorption tower to wash the adsorption tower. 前記原料ガスがメタン含有ガスであり、精製対象ガスがメタンであり、雑ガスが二酸化炭素を主成分とするガスである請求項1〜8のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 8, wherein the source gas is a methane-containing gas, the gas to be purified is methane, and the miscellaneous gas is a gas mainly containing carbon dioxide. 前記原料ガスが、精製対象ガスとしてメタンを40%以上含有するメタン含有ガスであり、メタンを90%以上含有する製品ガスを得る請求項1〜9のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 9, wherein the raw material gas is a methane-containing gas containing 40% or more of methane as a gas to be purified, and a product gas containing 90% or more of methane is obtained. 前記吸着材が活性炭、モレキュラーシーブカーボン、ゼオライト、多孔性の金属錯体から選ばれる少なくとも一種の材料を主成分とするものである請求項1〜10のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 10, wherein the adsorbent is mainly composed of at least one material selected from activated carbon, molecular sieve carbon, zeolite, and a porous metal complex. 前記吸着材が、MP法で測定した細孔径0.38nm以上において、その細孔径における細孔容積(V0.40)が0.01 cm/gを超えず、細孔径0.34nmにおける細孔容積(V0.34)が0.20 cm/g以上であるモレキュラーシーブカーボンである請求項11に記載のガス精製装置。 When the adsorbent has a pore diameter of 0.38 nm or more measured by the MP method, the pore volume (V 0.40 ) at the pore diameter does not exceed 0.01 cm 3 / g, and the pore diameter is 0.34 nm. The gas purifier according to claim 11, which is a molecular sieve carbon having a pore volume (V 0.34 ) of 0.20 cm 3 / g or more. 前記分離膜が酢酸セルロース、ポリアミド、ポリイミド、ポリスルホン、ポリテトラフルオロエチレン、ポリエーテルスルホン、カーボン膜、微多孔質ガラス複合膜、DDR型ゼオライト、多分岐ポリイミドシリカ、ポリジメチルシロキサンから選ばれる少なくとも一種の材料を主成分とするものである請求項1〜12のいずれか一項に記載のガス精製装置。   The separation membrane is at least one selected from cellulose acetate, polyamide, polyimide, polysulfone, polytetrafluoroethylene, polyethersulfone, carbon membrane, microporous glass composite membrane, DDR type zeolite, multi-branched polyimide silica, and polydimethylsiloxane. The gas purification apparatus according to any one of claims 1 to 12, wherein the gas purification apparatus is composed mainly of a material. 前記原料ガス供給路に昇圧ポンプを備え、前記昇圧ポンプによる原料ガスの前記吸着塔に対する供給圧が0.5MPaG〜2MPaGである請求項1〜13のいずれか一項に記載のガス精製装置。   The gas purification apparatus according to any one of claims 1 to 13, wherein a pressure pump is provided in the source gas supply path, and a supply pressure of the source gas by the pressure pump to the adsorption tower is 0.5 MPaG to 2 MPaG.
JP2014554548A 2012-12-28 2013-12-26 Gas purification equipment Active JP6305938B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012288639 2012-12-28
JP2012288639 2012-12-28
PCT/JP2013/084893 WO2014104196A1 (en) 2012-12-28 2013-12-26 Gas refining apparatus

Publications (2)

Publication Number Publication Date
JPWO2014104196A1 JPWO2014104196A1 (en) 2017-01-19
JP6305938B2 true JP6305938B2 (en) 2018-04-04

Family

ID=51021270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554548A Active JP6305938B2 (en) 2012-12-28 2013-12-26 Gas purification equipment

Country Status (5)

Country Link
JP (1) JP6305938B2 (en)
MY (1) MY176621A (en)
PH (1) PH12015501485B1 (en)
SG (2) SG10201705168PA (en)
WO (1) WO2014104196A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384960B2 (en) * 2015-03-23 2018-09-05 住友精化株式会社 Helium gas purification method and purification system
JP6091683B1 (en) * 2016-03-31 2017-03-08 大阪瓦斯株式会社 Pressure fluctuation adsorption gas production equipment
JP6091681B1 (en) * 2016-03-31 2017-03-08 大阪瓦斯株式会社 Pressure fluctuation adsorption gas production equipment
JP6091682B1 (en) * 2016-03-31 2017-03-08 大阪瓦斯株式会社 Pressure fluctuation adsorption gas production equipment
JP6466008B1 (en) * 2018-03-22 2019-02-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Adsorption tower switching device
CN109260905A (en) * 2018-09-28 2019-01-25 合肥鸿叶紫新能源有限公司 A kind of combustible gas wet purification equipment of new energy field
FR3097450B1 (en) * 2019-06-20 2021-11-19 Air Liquide Treatment of a methane stream comprising VOCs and carbon dioxide by combining an adsorption unit and a membrane separation unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238204A (en) * 1979-06-18 1980-12-09 Monsanto Company Selective adsorption process
ZA876419B (en) * 1986-10-01 1988-06-29 Boc Group Inc Psa process and apparatus employing gaseous diffusion barriers
DE3715555A1 (en) * 1987-05-09 1988-11-17 Draegerwerk Ag DEVICE FOR DISASSEMBLING AND ENRICHING A MULTI-COMPONENT GAS WITH THE HELP OF SEVERAL SEPARATION CHAMBERS
US4783203A (en) * 1987-10-22 1988-11-08 Union Carbide Corporation Integrated pressure swing adsorption/membrane separation process
DE4324526A1 (en) * 1993-07-21 1995-01-26 Linde Ag Method and device for cleaning and decomposing a gas mixture
JPH07241426A (en) * 1994-03-02 1995-09-19 Nitto Denko Corp Gas separating method
BR0211507A (en) * 2001-07-31 2004-09-14 Praxair Technology Inc Gas recovery system and process

Also Published As

Publication number Publication date
SG10201705168PA (en) 2017-07-28
SG11201504518SA (en) 2015-07-30
PH12015501485A1 (en) 2015-09-21
JPWO2014104196A1 (en) 2017-01-19
MY176621A (en) 2020-08-18
WO2014104196A1 (en) 2014-07-03
PH12015501485B1 (en) 2015-09-21

Similar Documents

Publication Publication Date Title
JP6305938B2 (en) Gas purification equipment
AU2018232927B2 (en) Gas purification method
TWI421345B (en) Method for separating blast furnace gas and apparatus therefore
JP2000354726A (en) Pressure swing adsorption process and device
JP5968252B2 (en) Methane gas enrichment method
US9656202B2 (en) Method and device for separating a gas mixture by means of pressure swing adsorption
JP6811538B2 (en) How to operate the pressure fluctuation adsorption type hydrogen production equipment
CN104066493A (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
EP0151186B1 (en) Method and apparatus for separating mixed gas
JP6351721B2 (en) Gas concentration method
JP6013865B2 (en) Method and system for producing city gas
WO2018207343A1 (en) Gas separation device
JP7374925B2 (en) Gas separation equipment and gas separation method
JP2014077060A (en) Methane fermentation gas purification process and purification system
JP2012110824A (en) Psa device
US11738302B1 (en) Method of generating renewable natural gas
RU2773664C1 (en) Gas separation unit and gas separation method
JP6136074B2 (en) Nitrogen separation apparatus and method
KR20070079939A (en) Pressure swing adsorption method and apparatus thereof
JP2018177567A (en) Hydrogen gas purifier, and operation method of hydrogen gas purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160726

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170424

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6305938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150