JP6305861B2 - Power transmission equipment - Google Patents

Power transmission equipment Download PDF

Info

Publication number
JP6305861B2
JP6305861B2 JP2014151622A JP2014151622A JP6305861B2 JP 6305861 B2 JP6305861 B2 JP 6305861B2 JP 2014151622 A JP2014151622 A JP 2014151622A JP 2014151622 A JP2014151622 A JP 2014151622A JP 6305861 B2 JP6305861 B2 JP 6305861B2
Authority
JP
Japan
Prior art keywords
signal
power
voltage
power supply
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014151622A
Other languages
Japanese (ja)
Other versions
JP2016029869A (en
Inventor
水谷 政敏
政敏 水谷
浩行 野田
浩行 野田
夏比古 森
夏比古 森
智哉 山田
智哉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2014151622A priority Critical patent/JP6305861B2/en
Priority to PCT/JP2015/070739 priority patent/WO2016013549A1/en
Priority to CN201580039581.2A priority patent/CN106537745B/en
Priority to EP15824570.4A priority patent/EP3174189B1/en
Publication of JP2016029869A publication Critical patent/JP2016029869A/en
Priority to US15/412,970 priority patent/US10033291B2/en
Application granted granted Critical
Publication of JP6305861B2 publication Critical patent/JP6305861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

この発明は、例えば、太陽光発電装置等の直流電源で発電した電力を、住宅等の商用電源に供給して住宅内等において消費し得る送電装置に関する。   The present invention relates to a power transmission device capable of supplying power generated by a DC power source such as a solar power generation device to a commercial power source such as a house and consuming it in a house or the like.

従来、太陽光発電装置のような直流電源から、交流電源に接続された商用電力系統に、交流電源の電圧に位相を合わせて電力を送電する装置が提案されている(特許文献1)。この装置は、直流電源の電圧の大きさを、商用電力系統に送電するために必要な電圧の大きさに変換し、交流電源の電圧に同期させてトランジスタブリッジで構成される交流スイッチを制御して、交流電源に位相を合わせて交流電流を逆潮流させる。   2. Description of the Related Art Conventionally, there has been proposed an apparatus for transmitting power from a DC power source such as a solar power generation device to a commercial power system connected to an AC power source in phase with the voltage of the AC power source (Patent Document 1). This device converts the magnitude of the voltage of the DC power supply to the magnitude of the voltage required to transmit power to the commercial power system, and controls the AC switch composed of a transistor bridge in synchronization with the voltage of the AC power supply. The AC current is made to flow backwards in phase with the AC power supply.

このような装置では、例えば、図6に示すように、入力される直流電源50の電圧を変換するのに絶縁トランスを使ったDC−DCコンバータ51を使用する。このDC−DCコンバータ51は、トランジスタ等のスイッチング素子52により、前記絶縁トランスの1次側に直流電源50の電流を流す閉状態と、この閉状態で蓄積されたエネルギが開放されて絶縁トランスの2次側に電流を流す開状態とに切り替える。   In such a device, for example, as shown in FIG. 6, a DC-DC converter 51 using an insulating transformer is used to convert the voltage of the input DC power supply 50. The DC-DC converter 51 has a closed state in which the current of the DC power supply 50 is caused to flow to the primary side of the insulating transformer by a switching element 52 such as a transistor, and energy accumulated in the closed state is released, so that the insulating transformer Switch to the open state in which current flows to the secondary side.

特許第3478338号公報Japanese Patent No. 3478338

商用電力系統53にこの装置を接続した場合、系統の正弦波電圧に位相を合わせて電流を逆潮流させる。この装置の力率を高めるには、逆潮流させる電流波形が系統の電圧と同様の正弦波であることが好ましい。   When this apparatus is connected to the commercial power system 53, the current is reversely flowed in phase with the sine wave voltage of the system. In order to increase the power factor of this device, it is preferable that the current waveform to be reversely flowed is a sine wave similar to the system voltage.

図7は、商用電力系統に逆潮流している電流の波形を示す図である。同図によると、正弦波54の頂点付近54aでのスイッチ開閉信号のパルス幅が足らず波形が歪んでしまっている。パルス幅を増やすには、例えば、CR積分回路の時定数を大きくしてパルスの立ち上がりを遅くすればよいが、放電も遅くなるため、装置の力率の改善に十分に対応できなかった。   FIG. 7 is a diagram illustrating a waveform of a current flowing backward in the commercial power system. According to the figure, the pulse width of the switch open / close signal near the apex 54a of the sine wave 54 is insufficient and the waveform is distorted. In order to increase the pulse width, for example, the time constant of the CR integration circuit may be increased to delay the rise of the pulse. However, since the discharge is also delayed, the improvement in the power factor of the apparatus could not be sufficiently handled.

この発明の目的は、必要なパルス幅を確保しつつ、電流波形の歪みを低減して装置の力率の改善を図ることができる送電装置を提供することである。   An object of the present invention is to provide a power transmission device capable of reducing the distortion of a current waveform and improving the power factor of the device while ensuring a necessary pulse width.

この発明の送電装置は、交流電源3に接続された交流配線系統2と直流電源1との間に接続され、前記直流電源1から前記交流配線系統2に電力を送電する送電装置であって、
前記交流配線系統2に接続され、前記交流配線系統2における電圧の極性および大きさを検出して交流電源電圧信号を生成する交流電源電圧信号生成手段10と、
この交流電源電圧信号生成手段10で検出される電圧の極性および大きさの変化に従って、前記直流電源1と前記交流配線系統2との接続の開閉を繰り返し、前記直流電源1から出力される直流電力を交流電力に変換する電力変換手段7と、
入力側と出力側を絶縁する絶縁トランスを含み、前記直流電源1の直流電圧を電圧変換して前記電力変換手段7に印加する直流電圧変換部6と、
前記直流電源1の直流電圧を前記直流電圧変換部6の入力側に印加する閉状態と印加しない開状態とに切り替えるスイッチング素子11と、
このスイッチング素子11を開閉させるスイッチ開閉信号を生成するスイッチ開閉信号生成手段12とを備え、
このスイッチ開閉信号生成手段12は、
所定のパルス信号からなる制御信号を生成する制御信号生成部14と、
前記制御信号が入力されてこの制御信号の立ち上がりが遅くなった遅延信号を生成する遅延信号生成手段15と、
この遅延信号生成手段15で生成される遅延信号が前記交流電源電圧信号10の電圧の大きさに対応する値となると、前記制御信号を立ち下がらせて前記制御信号を前記スイッチ開閉信号とするパルス幅決定手段16とを有し、
前記遅延信号生成手段15は、前記交流電源電圧信号生成手段10が生成する交流電源電圧信号の電圧の大きさに応じて前記遅延信号の立ち上がりをさらに遅らせる遅延信号遅延化部15bを含むことを特徴とする。
前記交流電源3として、例えば、交流電圧100Vの商用電源が適用される。
前記直流電源1として、例えば、太陽光発電装置やバッテリ等が適用される。
前記所定のパルス信号は、交流電源電圧信号生成手段10で生成される電圧の大きさ、例えば振幅により定められる。
The power transmission device of the present invention is a power transmission device that is connected between an AC wiring system 2 connected to an AC power source 3 and a DC power source 1 and transmits power from the DC power source 1 to the AC wiring system 2.
AC power supply voltage signal generating means 10 connected to the AC wiring system 2 and detecting the polarity and magnitude of the voltage in the AC wiring system 2 to generate an AC power supply voltage signal;
In accordance with the change in polarity and magnitude of the voltage detected by the AC power supply voltage signal generation means 10, the connection between the DC power supply 1 and the AC wiring system 2 is repeatedly opened and closed, and the DC power output from the DC power supply 1. Power conversion means 7 for converting the power into AC power;
A DC voltage conversion unit 6 that includes an insulating transformer that insulates the input side and the output side, converts the DC voltage of the DC power supply 1 and applies it to the power conversion means 7;
A switching element 11 for switching between a closed state in which the DC voltage of the DC power source 1 is applied to the input side of the DC voltage converter 6 and an open state in which the DC voltage is not applied;
Switch opening / closing signal generating means 12 for generating a switch opening / closing signal for opening / closing the switching element 11;
The switch opening / closing signal generating means 12
A control signal generator 14 for generating a control signal composed of a predetermined pulse signal;
A delay signal generating means 15 for generating a delay signal in which the rising edge of the control signal is delayed when the control signal is input;
When the delay signal generated by the delay signal generating means 15 has a value corresponding to the magnitude of the voltage of the AC power supply voltage signal 10, the control signal is caused to fall so that the control signal becomes the switch open / close signal. Width determining means 16;
The delay signal generation unit 15 includes a delay signal delay unit 15b that further delays the rising of the delay signal according to the magnitude of the voltage of the AC power supply voltage signal generated by the AC power supply voltage signal generation unit 10. And
As the AC power source 3, for example, a commercial power source with an AC voltage of 100V is applied.
As the DC power source 1, for example, a solar power generation device or a battery is applied.
The predetermined pulse signal is determined by the magnitude of the voltage generated by the AC power supply voltage signal generation means 10, for example, the amplitude.

この構成によると、交流配線系統2に接続される交流電源電圧信号生成手段10は、交流配線系統2における電圧の極性および大きさを検出する。電力変換手段7は、交流配線系統2の正弦波電圧に対して電圧の極性および大きさを合わせるため、検出される電圧の極性および大きさに従って、直流電源1と交流配線系統2との接続の開閉を繰り返す。
直流電圧変換部6は、直流電源1の直流電圧を電圧変換して電力変換手段7に印加する。直流電圧変換部6は、スイッチング素子11により、絶縁トランスの入力側に直流電源1の直流電圧を印加する閉状態と、この閉状態で蓄積されたエネルギが開放されて絶縁トランスの出力側に電流を流す開状態とに切り替える。スイッチ開閉信号生成手段12は、スイッチング素子11を開閉させるスイッチ開閉信号を生成する。
According to this configuration, the AC power supply voltage signal generation means 10 connected to the AC wiring system 2 detects the polarity and magnitude of the voltage in the AC wiring system 2. The power conversion means 7 adjusts the polarity and magnitude of the voltage to the sine wave voltage of the AC wiring system 2, so that the connection between the DC power supply 1 and the AC wiring system 2 is made according to the detected polarity and magnitude of the voltage. Repeat opening and closing.
The DC voltage converter 6 converts the DC voltage of the DC power supply 1 into a voltage and applies it to the power converter 7. The DC voltage conversion unit 6 is in a closed state in which the DC voltage of the DC power source 1 is applied to the input side of the insulation transformer by the switching element 11, and the energy accumulated in this closed state is released, and a current is output to the output side of the insulation transformer. Switch to open state. The switch opening / closing signal generating means 12 generates a switch opening / closing signal for opening / closing the switching element 11.

スイッチ開閉信号生成手段12における制御信号生成部14は、所定のパルス信号からなる制御信号を生成する。この制御信号の立ち上がりの時間は、例えば、交流電源3の周波数(例えば50Hzまたは60Hz)よりも十分に高く設定された前記制御信号の周波数(例えば、数十kHz〜数百kHz程度)により定められる。遅延信号生成手段15は、生成された遅延信号が入力されてこの制御信号の立ち上がりが遅くなった遅延信号を生成する。この立ち上がりが遅くなった遅延信号とは、制御信号が入力された後、時間の経過に伴って出力電圧が零から徐々に増加する信号を言う。   The control signal generator 14 in the switch opening / closing signal generator 12 generates a control signal composed of a predetermined pulse signal. The rise time of the control signal is determined by, for example, the frequency of the control signal (for example, about several tens of kHz to several hundreds of kHz) set sufficiently higher than the frequency of the AC power supply 3 (for example, 50 Hz or 60 Hz). . The delay signal generation means 15 receives the generated delay signal and generates a delay signal in which the rise of the control signal is delayed. The delayed signal whose rise is delayed refers to a signal in which the output voltage gradually increases from zero as time passes after the control signal is input.

パルス幅決定手段16は、この遅延信号が交流電源電圧信号の電圧の大きさに対応する値(この対応する値は、交流電源電圧の大きさに比例する値である。比例係数は、交流電源に逆潮流させる電流波形を観察しながら決定し調整する。)となると、前記制御信号を立ち下がらせて前記制御信号を前記スイッチ開閉信号とする。   The pulse width determining means 16 determines that the delay signal is a value corresponding to the magnitude of the voltage of the AC power supply voltage signal (this corresponding value is a value proportional to the magnitude of the AC power supply voltage. Then, it is determined and adjusted while observing the current waveform to be reversely flowed to the control circuit). Then, the control signal falls and the control signal becomes the switch open / close signal.

遅延信号生成手段15における遅延信号遅延化部15bは、交流電源電圧信号生成手段10が生成する交流電源電圧信号の電圧の大きさに応じて前記遅延信号の立ち上がりをさらに遅らせる。例えば、CR積分回路の容量素子20の充電電流を小さくし、前記容量素子20の放電電流を大きくして、遅延信号の立ち上がりを遅く立ち下がりを早くする。これにより、十分なスイッチ開閉信号のパルス幅を確保できるようになり、正弦波の歪みの少ない正弦波電流を流すことができる。そのため、装置の力率を高めることができる。   The delay signal delay unit 15b in the delay signal generation unit 15 further delays the rise of the delay signal in accordance with the voltage level of the AC power supply voltage signal generated by the AC power supply voltage signal generation unit 10. For example, the charging current of the capacitive element 20 of the CR integration circuit is reduced, the discharge current of the capacitive element 20 is increased, and the rise of the delay signal is delayed and the fall is accelerated. As a result, a sufficient pulse width of the switch opening / closing signal can be secured, and a sine wave current with less sine wave distortion can be flowed. Therefore, the power factor of the device can be increased.

前記交流電源電圧信号は、絶縁トランスを用いて前記交流電源3と絶縁して生成されるものとしても良い。この場合、前記絶縁トランスにより、1次コイルと2次コイル間を絶縁し、1次側のノイズが2次側へ直接伝導するのを防止することができ、安全性を高めることもできる。   The AC power supply voltage signal may be generated by being insulated from the AC power supply 3 using an insulating transformer. In this case, the insulation transformer can insulate between the primary coil and the secondary coil to prevent primary noise from being directly conducted to the secondary side, and safety can be improved.

前記遅延信号生成手段15は、入力された制御信号の立ち上がりが遅くなった遅延信号を生成する積分回路15aを有するものとしても良い。この場合、積分回路15aにより、遅延信号を容易に且つ確実に生成することができる。
前記積分回路15aは、第1の抵抗素子19と容量素子20とを直列に接続したもの(CR積分回路)であっても良い。このCR積分回路の入力側に電圧が印加されると、コンデンサである容量素子20に電荷が溜まる。容量素子20に溜まった電荷は第1の抵抗素子19により逃がし得る。容量素子20に電荷が溜まるに従って、この容量素子20に流れ込む電流が減少することで、制御信号の立ち上がりが遅くなった遅延信号を生成する。
The delay signal generation means 15 may include an integration circuit 15a that generates a delay signal in which the rising of the input control signal is delayed. In this case, the delay signal can be easily and reliably generated by the integrating circuit 15a.
The integration circuit 15a may be a circuit in which a first resistance element 19 and a capacitance element 20 are connected in series (CR integration circuit). When a voltage is applied to the input side of the CR integration circuit, electric charge is accumulated in the capacitive element 20 that is a capacitor. The charge accumulated in the capacitor element 20 can be released by the first resistance element 19. As the electric charge accumulates in the capacitive element 20, the current flowing into the capacitive element 20 is reduced, thereby generating a delayed signal in which the rise of the control signal is delayed.

前記遅延信号遅延化部15bは、前記容量素子20の充電電流を第1の閾値よりも小さくし、前記容量素子20の放電電流を第2の閾値よりも大きくする第2の抵抗素子23および整流素子24を有するものとしても良い。
前記第1,第2の閾値は、例えば、実験やシミュレーション等の結果によりそれぞれ定められる。
The delay signal delay unit 15b includes a second resistance element 23 and a rectifier that make the charging current of the capacitive element 20 smaller than a first threshold and the discharging current of the capacitive element 20 larger than a second threshold. The element 24 may be included.
The first and second threshold values are determined based on results of experiments, simulations, and the like, for example.

この場合、制御信号の立ち上がりでは、例えば、第1の抵抗素子19を流れる容量素子20の充電電流の一部が、第2の抵抗素子23に流れることで、第2の抵抗素子23および整流素子24が無い場合よりも、容量素子20の充電電流が小さくなり制御信号の立ち上がりが遅くなる。制御信号の立ち下がりでは、例えば、容量素子20の放電電流が第1および第2の抵抗素子19,23に流れることで、第2の抵抗素子23および整流素子24が無い場合よりも、容量素子20の放電電流が大きくなり制御信号の立ち下がりが速くなる。その結果、必要なパルス幅を確保しつつ、電流波形の歪みを低減して装置の力率の改善を図ることができる。   In this case, at the rise of the control signal, for example, a part of the charging current of the capacitive element 20 that flows through the first resistive element 19 flows into the second resistive element 23, whereby the second resistive element 23 and the rectifying element Compared with the case where 24 is not provided, the charging current of the capacitive element 20 becomes smaller and the rise of the control signal is delayed. At the falling edge of the control signal, for example, the discharge current of the capacitive element 20 flows through the first and second resistive elements 19 and 23, so that the capacitive element is more than when there is no second resistive element 23 and rectifying element 24. The discharge current of 20 becomes large and the fall of the control signal becomes quick. As a result, the power factor of the apparatus can be improved by reducing distortion of the current waveform while ensuring the necessary pulse width.

この発明の送電装置は、交流電源に接続された交流配線系統と直流電源との間に接続され、前記直流電源から前記交流配線系統に電力を送電する送電装置であって、前記交流配線系統に接続され、前記交流配線系統における電圧の極性および大きさを検出して交流電源電圧信号を生成する交流電源電圧信号生成手段と、この交流電源電圧信号生成手段で検出される電圧の極性および大きさの変化に従って、前記直流電源と前記交流配線系統との接続の開閉を繰り返し、前記直流電源から出力される直流電力を交流電力に変換する電力変換手段と、入力側と出力側を絶縁する絶縁トランスを含み、前記直流電源の直流電圧を電圧変換して前記電力変換手段に印加する直流電圧変換部と、前記直流電源の直流電圧を前記直流電圧変換部の入力側に印加する閉状態と印加しない開状態とに切り替えるスイッチング素子と、このスイッチング素子を開閉させるスイッチ開閉信号を生成するスイッチ開閉信号生成手段とを備える。
このスイッチ開閉信号生成手段は、所定のパルス信号からなる制御信号を生成する制御信号生成部と、前記制御信号が入力されてこの制御信号の立ち上がりが遅くなった遅延信号を生成する遅延信号生成手段と、この遅延信号生成手段で生成される遅延信号が前記交流電源電圧信号の電圧の大きさに対応する値となると、前記制御信号を立ち下がらせて前記制御信号を前記スイッチ開閉信号とするパルス幅決定手段とを有する。前記遅延信号生成手段は、前記交流電源電圧信号生成手段が生成する交流電源電圧信号の電圧の大きさに応じて前記遅延信号の立ち上がりをさらに遅らせる遅延信号遅延化部を含む。
このため、必要なパルス幅を確保しつつ、電流波形の歪みを低減して装置の力率の改善を図ることができる。
The power transmission device of the present invention is a power transmission device that is connected between an AC wiring system connected to an AC power source and a DC power source, and transmits power from the DC power source to the AC wiring system. AC power supply voltage signal generating means connected to generate an AC power supply voltage signal by detecting the polarity and magnitude of the voltage in the AC wiring system, and the polarity and magnitude of the voltage detected by the AC power supply voltage signal generating means In accordance with the change in power, the DC power source and the AC wiring system are repeatedly opened and closed to convert the DC power output from the DC power source into AC power, and the insulating transformer that insulates the input side from the output side. A DC voltage converter that converts the DC voltage of the DC power supply and applies it to the power conversion means, and a DC voltage of the DC power supply on the input side of the DC voltage converter Comprising a switching element to switch to the open state of not applying the closed state of pressure, and a switch-off signal generating means for generating a switch-off signal for opening and closing the switching element.
The switch opening / closing signal generating means includes a control signal generating section for generating a control signal composed of a predetermined pulse signal, and a delay signal generating means for generating a delay signal in which the control signal is input and the rise of the control signal is delayed. And when the delay signal generated by the delay signal generating means has a value corresponding to the magnitude of the voltage of the AC power supply voltage signal, the control signal is caused to fall and the control signal becomes the switch open / close signal. Width determining means. The delay signal generation unit includes a delay signal delay unit that further delays the rising of the delay signal according to the voltage level of the AC power supply voltage signal generated by the AC power supply voltage signal generation unit.
For this reason, it is possible to reduce the distortion of the current waveform and improve the power factor of the apparatus while ensuring the necessary pulse width.

この発明の実施形態に係る送電装置の回路図である。1 is a circuit diagram of a power transmission device according to an embodiment of the present invention. 同送電装置の要部を拡大して示すブロック図である。It is a block diagram which expands and shows the principal part of the power transmission device. 同送電装置における遅延信号生成手段等の要部構成を示す回路図である。It is a circuit diagram which shows the principal part structures, such as a delay signal production | generation means in the power transmission apparatus. 同送電装置により、遅延信号と交流電源電圧信号の電圧の大きさとを比較してスイッチ開閉信号を生成する状態を説明する図である。It is a figure explaining the state which compares the magnitude | size of a delay signal and the voltage of an alternating current power supply voltage signal, and produces | generates a switch opening / closing signal by the power transmission apparatus. 同送電装置により、正弦波電流の電流波形の歪みを低減した状態を示す図である。It is a figure which shows the state which reduced the distortion of the current waveform of the sine wave current with the power transmission apparatus. 従来の送電装置の回路図である。It is a circuit diagram of the conventional power transmission apparatus. 従来の商用電力系統に逆潮流している電流の波形を示す図である。It is a figure which shows the waveform of the electric current which is flowing backward into the conventional commercial power system.

この発明の実施形態に係る送電装置を図1ないし図5と共に説明する。
図1は、この送電装置の回路図である。この送電装置は、直流電源1から屋内配線となる交流配線系統2に電力を送電する。この送電装置は、例えば、太陽光発電装置等の直流電源1で発電した電力を、交流の商用電源に接続された住宅内等の交流配線系統2に供給して住宅内等において消費し得るものである。
A power transmission apparatus according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a circuit diagram of the power transmission device. This power transmission device transmits power from a DC power source 1 to an AC wiring system 2 serving as an indoor wiring. This power transmission device can be consumed in a house by supplying power generated by a DC power source 1 such as a solar power generator to an AC wiring system 2 such as in a house connected to an AC commercial power source. It is.

送電装置は、交流電源3に接続された交流配線系統2と直流電源1との間に接続される。交流配線系統2は、例えば、住宅等の分電盤4を介して単層の交流電源3に接続される。住宅等の分電盤4よりも屋内側の配線における電圧は、接続された電気機器の使用状態に応じて電圧が実際は変動しているが、一般の家庭では多少の電圧変動、電圧波形の変動や周波数変動は電気機器の動作に影響しない。そのため、直流電源1で発電した直流電力を、簡易な構成の直流電圧変換部や電力変換手段等で交流電力に変換し、住宅内で消費するようにしても支障が生じない。   The power transmission device is connected between the AC wiring system 2 connected to the AC power source 3 and the DC power source 1. The AC wiring system 2 is connected to a single-layer AC power supply 3 via a distribution board 4 such as a house. The voltage in the wiring on the indoor side of the distribution board 4 in the house or the like actually fluctuates depending on the usage state of the connected electrical equipment, but in a general home, there are some voltage fluctuations and voltage waveform fluctuations. And frequency fluctuations do not affect the operation of electrical equipment. Therefore, there is no problem even if the DC power generated by the DC power source 1 is converted into AC power by a DC voltage conversion unit, power conversion means, or the like having a simple configuration and consumed in a house.

交流電源3として、例えば、交流電圧100Vの商用電源が適用される。直流電源1として、例えば、太陽光発電装置のバッテリやその他のバッテリ等(例えば、住宅等の分電盤に接続された電気自動車のバッテリ)が適用される。交流配線系統2に負荷設備5が接続される。直流電源1で発電した直流電力が後述するように交流電力に変換され、この交流電力が負荷設備5に供給される。   As the AC power source 3, for example, a commercial power source with an AC voltage of 100V is applied. As the DC power source 1, for example, a battery of a solar power generation device, other batteries, or the like (for example, a battery of an electric vehicle connected to a distribution board such as a house) is applied. A load facility 5 is connected to the AC wiring system 2. The DC power generated by the DC power source 1 is converted into AC power as will be described later, and this AC power is supplied to the load facility 5.

送電装置は、直流電圧変換部6と、整流回路8と、電力変換手段7と、交流電圧変換部9と、交流電源電圧信号生成手段10と、スイッチング素子11と、スイッチ開閉信号生成手段12と、プラグ22とを備える。この送電装置は、電力変換手段7の出力側に接続されたプラグ22を交流配線系統2にあるコンセント21に挿込むだけで、直流電源1で発電した電力を住宅内等において消費し得る。前記コンセント21は、交流配線系統2にある任意のコンセントで良い。   The power transmission apparatus includes a DC voltage converter 6, a rectifier circuit 8, a power converter 7, an AC voltage converter 9, an AC power supply voltage signal generator 10, a switching element 11, and a switch open / close signal generator 12. And a plug 22. This power transmission device can consume the power generated by the DC power source 1 in a house or the like only by inserting the plug 22 connected to the output side of the power conversion means 7 into the outlet 21 in the AC wiring system 2. The outlet 21 may be an arbitrary outlet in the AC wiring system 2.

直流電圧変換部6は、この例では、入力側と出力側を絶縁する第1の絶縁トランスを含む絶縁型フライバックコンバータである。直流電源1の端子に、直流電圧変換部6の1次コイル6aとスイッチング素子11が直列接続される。直流電圧変換部6は、例えば、直流電源1の直流電圧を昇圧させた直流電圧に変換して、整流回路8を介して後述の電力変換手段7に印加する。太陽光発電装置で発電した電力の電圧はDC35V程度であるが、直流電圧変換部6は、このDC35V程度の直流電圧をDC100V程度に昇圧する。   In this example, the DC voltage converter 6 is an insulating flyback converter including a first insulating transformer that insulates the input side and the output side. The primary coil 6 a of the DC voltage converter 6 and the switching element 11 are connected in series to a terminal of the DC power supply 1. The DC voltage conversion unit 6 converts, for example, the DC voltage of the DC power supply 1 into a boosted DC voltage, and applies it to the power conversion means 7 described later via the rectifier circuit 8. The voltage of the electric power generated by the solar power generation device is about DC35V, but the DC voltage converter 6 boosts the DC voltage of about DC35V to about DC100V.

この直流電圧変換部6において、スイッチング素子11により、直流電源1の直流電圧を1次コイル6a(入力側)に印加する閉状態(オン)にすると、1次コイル6aに電流が流れ、発生する磁束によりコアが磁化される。スイッチング素子11を開状態(オフ)にすると、コアに蓄積されたエネルギが開放されて、2次コイル6b(出力側)に電流が流れる。この直流電圧変換部6では、逆磁コイルで逆方向の磁界を掛けておいて、前記のようにスイッチング素子11をオンオフ制御することで、第三象限内の誘起起電力を発生させる。そのため、1次コイル電圧の変化に対して2次コイル電圧を大きく変化させ得る。   In this DC voltage conversion unit 6, when the DC voltage of the DC power source 1 is applied to the primary coil 6a (input side) by the switching element 11, the current flows through the primary coil 6a and is generated. The core is magnetized by the magnetic flux. When the switching element 11 is opened (off), the energy accumulated in the core is released, and a current flows through the secondary coil 6b (output side). In this DC voltage conversion unit 6, a reverse magnetic field is applied with a reverse magnetic field, and the switching element 11 is turned on and off as described above, thereby generating an induced electromotive force in the third quadrant. Therefore, the secondary coil voltage can be greatly changed with respect to the change of the primary coil voltage.

電力変換手段7は、直流電源1と交流配線系統2との接続の開閉を繰り返し、直流電源1から出力される直流電力を交流電力に変換する。この電力変換手段7は、複数のスイッチング素子13を含むブリッジ7aと、このブリッジ7aを制御するブリッジ制御部7bとを有する。ブリッジ7aと交流配線系統2との接続間に、入力側と出力側を絶縁する第2の絶縁トランスを含む交流電圧変換部9が接続される。   The power conversion means 7 repeatedly opens and closes the connection between the DC power supply 1 and the AC wiring system 2 to convert the DC power output from the DC power supply 1 into AC power. The power conversion means 7 includes a bridge 7a including a plurality of switching elements 13 and a bridge controller 7b that controls the bridge 7a. Between the connection between the bridge 7 a and the AC wiring system 2, an AC voltage conversion unit 9 including a second insulating transformer that insulates the input side and the output side is connected.

交流電圧変換部9において、1次コイル9aと2次コイル9bの巻数比に応じて交流配線系統2からの交流電圧が変圧される。この交流電圧変換部9で出力される交流電圧は、第2の絶縁トランスを用いて交流電源3と絶縁して生成される。交流電源電圧信号生成手段10は、交流電圧変換部9で変圧された交流電圧の極性および大きさを検出して、全波整流された交流電源電圧信号(商用電力系統電圧信号)を生成する。ブリッジ制御部7bは、交流電源電圧信号生成手段10で検出される電圧の極性および大きさに従って、前記複数のスイッチング素子13の開閉を繰り返す制御を行うことで、直流電力を交流電力に変換する。   In the AC voltage converter 9, the AC voltage from the AC wiring system 2 is transformed according to the turn ratio of the primary coil 9a and the secondary coil 9b. The AC voltage output from the AC voltage conversion unit 9 is generated by being insulated from the AC power source 3 using a second insulating transformer. The AC power supply voltage signal generation means 10 detects the polarity and magnitude of the AC voltage transformed by the AC voltage converter 9, and generates a full-wave rectified AC power supply voltage signal (commercial power system voltage signal). The bridge control unit 7b converts the DC power into AC power by performing control to repeatedly open and close the plurality of switching elements 13 in accordance with the polarity and magnitude of the voltage detected by the AC power supply voltage signal generation means 10.

図2は、この送電装置の要部を拡大して示すブロック図である。スイッチ開閉信号生成手段12は、交流電源電圧信号生成手段10とスイッチング素子11との間に接続される。このスイッチ開閉信号生成手段12は、スイッチング素子11を開閉させるスイッチ開閉信号を生成する手段であって、制御信号生成部14と、遅延信号生成手段15と、パルス幅決定手段16とを有する。制御信号生成部14は、所定のパルス信号からなる制御信号を生成する。この制御信号の立ち上がりの時間は、例えば、交流電源3(図1)の周波数(例えば、50Hzまたは60Hz)よりも高く設定された周波数(例えば、数十kHz〜数百kHz程度)により定められる。   FIG. 2 is an enlarged block diagram illustrating a main part of the power transmission apparatus. The switch opening / closing signal generating means 12 is connected between the AC power supply voltage signal generating means 10 and the switching element 11. The switch open / close signal generating means 12 is a means for generating a switch open / close signal for opening and closing the switching element 11, and includes a control signal generating unit 14, a delay signal generating means 15, and a pulse width determining means 16. The control signal generation unit 14 generates a control signal composed of a predetermined pulse signal. The rise time of the control signal is determined by, for example, a frequency (for example, about several tens of kHz to several hundreds of kHz) set higher than the frequency (for example, 50 Hz or 60 Hz) of the AC power supply 3 (FIG. 1).

遅延信号生成手段15は、前記制御信号が入力されてこの制御信号の立ち上がりが遅くなった遅延信号を生成する。遅延信号生成手段15は、積分回路15aと、遅延信号遅延化部15bとを有する。図3に示すように、積分回路15aは、第1の抵抗素子19と容量素子20とを直列に接続したいわゆるCR積分回路である。この積分回路15aの入力側に電圧Viが印加されると、コンデンサである容量素子20に電荷が溜まる。容量素子20に電荷が溜まるに従って、この容量素子20に流れ込む電流が減少することで、制御信号の立ち上がりが遅くなった遅延信号を生成する。容量素子20に溜まった電荷は、第1の抵抗素子19および後述の第2の抵抗素子23により逃がし得る。   The delay signal generation means 15 generates a delay signal in which the control signal is input and the rise of the control signal is delayed. The delay signal generation unit 15 includes an integration circuit 15a and a delay signal delay unit 15b. As shown in FIG. 3, the integration circuit 15a is a so-called CR integration circuit in which a first resistance element 19 and a capacitance element 20 are connected in series. When the voltage Vi is applied to the input side of the integrating circuit 15a, electric charge is accumulated in the capacitive element 20 which is a capacitor. As the electric charge accumulates in the capacitive element 20, the current flowing into the capacitive element 20 is reduced, thereby generating a delayed signal in which the rise of the control signal is delayed. The electric charge accumulated in the capacitive element 20 can be released by the first resistance element 19 and a second resistance element 23 described later.

遅延信号遅延化部15bは、交流電源電圧信号生成手段10が生成する交流電源電圧信号の電圧の大きさに応じて前記遅延信号の立ち上がりをさらに遅らせる。この遅延信号遅延化部15bは、直列接続された第2の抵抗素子23および整流素子24を有する。これら第2の抵抗素子23および整流素子24は、積分回路15aにおける第1の抵抗素子19と容量素子20との間と、交流電源電圧信号生成手段10とにわたって接続される。第2の抵抗素子23および整流素子24から交流電源電圧信号生成手段10に至る交流電源電圧信号(商用電力系統電圧信号※2)は、交流電源電圧信号生成手段10から制御信号生成部14(図2)に至る交流電源電圧信号(商用電力系統電圧信号※1)を反転したものである。
なお、商用電力系統電圧信号※2は商用電力系統電圧信号※1を反転させるので、位相は180°ずれている。振幅は、調整して決める。
商用電力系統電圧信号※1は正弦波を全波整流した波形である。商用電力系統電圧信号※2は、これを反転させるので、商用電力系統電圧信号※2は負の側全波整流した波形になる。したがって商用電力系統電圧信号※1が高い(値は正)ほど、商用電力系統電圧信号※2の値は小さく(値は負)なる。そのため、商用電力系統電圧信号※1が高いほど遅延信号遅延化部が引き込む電流が大きくなり、遅延時間を大きくすることができる。
The delay signal delay unit 15b further delays the rise of the delay signal according to the voltage level of the AC power supply voltage signal generated by the AC power supply voltage signal generation means 10. The delay signal delay unit 15b includes a second resistance element 23 and a rectifying element 24 connected in series. The second resistance element 23 and the rectifying element 24 are connected between the first resistance element 19 and the capacitive element 20 in the integrating circuit 15 a and across the AC power supply voltage signal generating means 10. The AC power supply voltage signal (commercial power system voltage signal * 2) from the second resistance element 23 and the rectifying element 24 to the AC power supply voltage signal generation means 10 is transmitted from the AC power supply voltage signal generation means 10 to the control signal generation unit 14 (FIG. This is an inversion of the AC power supply voltage signal (commercial power system voltage signal * 1) leading to 2).
Since the commercial power system voltage signal * 2 inverts the commercial power system voltage signal * 1, the phase is shifted by 180 °. The amplitude is determined by adjustment.
The commercial power system voltage signal * 1 is a waveform obtained by full-wave rectification of a sine wave. Since the commercial power system voltage signal * 2 is inverted, the commercial power system voltage signal * 2 has a waveform obtained by full-wave rectification on the negative side. Accordingly, as the commercial power system voltage signal * 1 is higher (value is positive), the value of the commercial power system voltage signal * 2 is smaller (value is negative). Therefore, the higher the commercial power system voltage signal * 1 is, the larger the current drawn by the delay signal delay unit is, and the delay time can be increased.

前記制御信号の立ち上がりでは、第1の抵抗素子19を流れる容量素子20の充電電流の一部が、第2の抵抗素子23に流れることで、第2の抵抗素子23および整流素子24が無い場合よりも、容量素子20の充電電流が小さくなり制御信号の立ち上がりが遅くなる。前記制御信号の立ち下がりでは、容量素子20の放電電流が第1および第2の抵抗素子19,23に流れることで、第2の抵抗素子23および整流素子24が無い場合よりも、容量素子20の放電電流が大きくなり制御信号の立ち下がりが速くなる。   At the rise of the control signal, a part of the charging current of the capacitive element 20 flowing through the first resistive element 19 flows to the second resistive element 23, so that the second resistive element 23 and the rectifying element 24 are absent. As a result, the charging current of the capacitive element 20 becomes smaller and the rise of the control signal is delayed. At the falling edge of the control signal, the discharge current of the capacitive element 20 flows through the first and second resistive elements 19 and 23, so that the capacitive element 20 can be obtained more than when the second resistive element 23 and the rectifying element 24 are not provided. Discharge current increases and the fall of the control signal becomes faster.

図2に示すように、パルス幅決定手段16は、遅延信号生成手段15で生成される遅延信号が交流電源電圧信号の電圧の大きさに対応する値となると、制御信号を立ち下がらせて前記制御信号をスイッチ開閉信号とする。このパルス幅決定手段16は、交流電源電圧信号の電圧が低いときはパルス幅を小さくし、交流電源電圧信号の電圧が高いときはパルス幅を大きくするPWM制御を行って、交流電源3(図1)の電圧に合わせた大きさの電流を逆潮流させる。   As shown in FIG. 2, the pulse width determining unit 16 causes the control signal to fall when the delay signal generated by the delay signal generating unit 15 has a value corresponding to the magnitude of the voltage of the AC power supply voltage signal. The control signal is a switch open / close signal. The pulse width determining means 16 performs PWM control to reduce the pulse width when the voltage of the AC power supply voltage signal is low, and to increase the pulse width when the voltage of the AC power supply voltage signal is high, so that the AC power supply 3 (FIG. A current having a magnitude corresponding to the voltage of 1) is reversed.

パルス幅決定手段16は、比較部17と、処理部18とを有する。
図4は、この送電装置により、遅延信号と交流電源電圧信号の電圧の大きさとを比較してスイッチ開閉信号を生成する状態を説明する図である。図2および図4に示すように、比較部17は、遅延信号遅延化部15bで生成した遅延信号と、交流電源電圧信号の電圧の大きさとを比較する。処理部18は、比較部17で交流電源電圧信号の電圧よりも遅延信号が大きいと判断されたとき、制御信号を立ち下がらせて前記制御信号をスイッチ開閉信号とする。
The pulse width determination unit 16 includes a comparison unit 17 and a processing unit 18.
FIG. 4 is a diagram illustrating a state in which a switch open / close signal is generated by comparing the delay signal and the voltage level of the AC power supply voltage signal by the power transmission device. As shown in FIGS. 2 and 4, the comparison unit 17 compares the delay signal generated by the delay signal delay unit 15 b with the voltage level of the AC power supply voltage signal. When the comparison unit 17 determines that the delay signal is larger than the voltage of the AC power supply voltage signal, the processing unit 18 causes the control signal to fall and use the control signal as a switch open / close signal.

以上説明した送電装置によれば、遅延信号生成手段15における積分回路15aは、制御信号の立ち上がりが遅くなった遅延信号を生成する。遅延信号生成手段15における遅延信号遅延化部15bにより、前記制御信号の立ち上がりがさらに遅くなり、前記制御信号の立ち下がりが速くなる。その結果、必要なパルス幅を確保しつつ、図5に示すように電流波形25の歪みを低減して装置の力率の改善を図ることができる。   According to the power transmission apparatus described above, the integration circuit 15a in the delay signal generation unit 15 generates a delay signal whose rise of the control signal is delayed. Due to the delay signal delay unit 15b in the delay signal generation means 15, the rise of the control signal is further delayed and the fall of the control signal is accelerated. As a result, while ensuring the necessary pulse width, it is possible to reduce the distortion of the current waveform 25 and improve the power factor of the apparatus as shown in FIG.

図1に示すように、直流電源1で発電した直流電力を交流電力に変換し、負荷設備5に供給して住宅内で消費することができるため、例えば、電力会社等から請求される電気料金を低減することができる。前記直流電圧変換部6や電力変換手段7等を簡易に構成にすることができるため、例えば、パワーコンディショナを用いるよりも、送電装置のコスト低減を図ることができる。   As shown in FIG. 1, since the DC power generated by the DC power source 1 can be converted into AC power, supplied to the load facility 5 and consumed in the house, for example, an electricity bill charged by a power company or the like Can be reduced. Since the DC voltage conversion unit 6 and the power conversion unit 7 can be easily configured, for example, the cost of the power transmission device can be reduced rather than using a power conditioner.

この発明の送電装置は、法令上で問題がなければ、直流電源で発電した電力を住宅外の交流商用電源に供給して電力会社等に買取りを求めることも可能である。   As long as there is no problem in law, the power transmission device of the present invention can supply electric power generated by a DC power source to an AC commercial power source outside the house and ask an electric power company to purchase it.

1…直流電源
2…交流配線系統
3…交流電源
6…直流電圧変換部
7…電力変換手段
10…交流電源電圧信号生成手段
11…スイッチング素子
12…スイッチ開閉信号生成手段
14…制御信号生成部
15…遅延信号生成手段
15a…積分回路
15b…遅延信号遅延化部
16…パルス幅決定手段
19…第1の抵抗素子
20…容量素子
23…第2の抵抗素子
24…整流素子
DESCRIPTION OF SYMBOLS 1 ... DC power supply 2 ... AC wiring system 3 ... AC power supply 6 ... DC voltage conversion part 7 ... Power conversion means 10 ... AC power supply voltage signal generation means 11 ... Switching element 12 ... Switch opening / closing signal generation means 14 ... Control signal generation part 15 ... delay signal generation means 15a ... integration circuit 15b ... delay signal delay unit 16 ... pulse width determination means 19 ... first resistance element 20 ... capacitance element 23 ... second resistance element 24 ... rectifier element

Claims (5)

交流電源に接続された交流配線系統と直流電源との間に接続され、前記直流電源から前記交流配線系統に電力を送電する送電装置であって、
前記交流配線系統に接続され、前記交流配線系統における電圧の極性および大きさを検出して交流電源電圧信号を生成する交流電源電圧信号生成手段と、
この交流電源電圧信号生成手段で検出される電圧の極性および大きさの変化に従って、前記直流電源と前記交流配線系統との接続の開閉を繰り返し、前記直流電源から出力される直流電力を交流電力に変換する電力変換手段と、
入力側と出力側を絶縁する絶縁トランスを含み、前記直流電源の直流電圧を電圧変換して前記電力変換手段に印加する直流電圧変換部と、
前記直流電源の直流電圧を前記直流電圧変換部の入力側に印加する閉状態と印加しない開状態とに切り替えるスイッチング素子と、
このスイッチング素子を開閉させるスイッチ開閉信号を生成するスイッチ開閉信号生成手段とを備え、
このスイッチ開閉信号生成手段は、
所定のパルス信号からなる制御信号を生成する制御信号生成部と、
前記制御信号が入力されてこの制御信号の立ち上がりが遅くなった遅延信号を生成する遅延信号生成手段と、
この遅延信号生成手段で生成される遅延信号が前記交流電源電圧信号の電圧の大きさに対応する値となると、前記制御信号を立ち下がらせて前記制御信号を前記スイッチ開閉信号とするパルス幅決定手段とを有し、
前記遅延信号生成手段は、前記交流電源電圧信号生成手段が生成する交流電源電圧信号の電圧の大きさに応じて前記遅延信号の立ち上がりをさらに遅らせる遅延信号遅延化部を含むことを特徴とする送電装置。
A power transmission device connected between an AC wiring system connected to an AC power source and a DC power source, and transmits power from the DC power source to the AC wiring system,
AC power supply voltage signal generating means connected to the AC wiring system and detecting the polarity and magnitude of the voltage in the AC wiring system to generate an AC power supply voltage signal;
According to the change in polarity and magnitude of the voltage detected by the AC power supply voltage signal generating means, the connection between the DC power supply and the AC wiring system is repeatedly opened and closed, and the DC power output from the DC power supply is changed to AC power. Power conversion means for converting;
A DC voltage conversion unit that includes an insulating transformer that insulates the input side and the output side, converts the DC voltage of the DC power supply to be applied to the power conversion unit, and
A switching element that switches between a closed state in which the DC voltage of the DC power supply is applied to the input side of the DC voltage converter and an open state in which the DC voltage is not applied
A switch opening / closing signal generating means for generating a switch opening / closing signal for opening / closing the switching element,
This switch open / close signal generating means
A control signal generator for generating a control signal composed of a predetermined pulse signal;
A delay signal generating means for generating a delay signal in which the rising edge of the control signal is delayed when the control signal is input;
When the delay signal generated by the delay signal generating means has a value corresponding to the voltage level of the AC power supply voltage signal, the control signal is caused to fall so that the control signal becomes the switch open / close signal. Means,
The delay signal generation unit includes a delay signal delay unit that further delays the rising edge of the delay signal according to the magnitude of the voltage of the AC power supply voltage signal generated by the AC power supply voltage signal generation unit. apparatus.
請求項1記載の送電装置において、前記交流電源電圧信号は、絶縁トランスを用いて前記交流電源と絶縁して生成される送電装置。   The power transmission apparatus according to claim 1, wherein the AC power supply voltage signal is generated by being insulated from the AC power supply using an insulating transformer. 請求項1または請求項2記載の送電装置において、前記遅延信号生成手段は、入力された制御信号の立ち上がりが遅くなった遅延信号を生成する積分回路を有する送電装置。   3. The power transmission device according to claim 1, wherein the delay signal generation unit includes an integration circuit that generates a delay signal in which a rising edge of an input control signal is delayed. 請求項3記載の送電装置において、前記積分回路は、第1の抵抗素子と容量素子とを直列に接続したものである送電装置。   4. The power transmission device according to claim 3, wherein the integration circuit includes a first resistance element and a capacitance element connected in series. 5. 請求項4記載の送電装置において、前記遅延信号遅延化部は、前記容量素子の充電電流を第1の閾値よりも小さくし、前記容量素子の放電電流を第2の閾値よりも大きくする第2の抵抗素子および整流素子を有する送電装置。   5. The power transmission device according to claim 4, wherein the delay signal delay unit is configured to reduce a charging current of the capacitive element to be smaller than a first threshold value and to increase a discharging current of the capacitive element to be larger than a second threshold value. Power transmission device having a resistance element and a rectifying element.
JP2014151622A 2014-07-24 2014-07-25 Power transmission equipment Expired - Fee Related JP6305861B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014151622A JP6305861B2 (en) 2014-07-25 2014-07-25 Power transmission equipment
PCT/JP2015/070739 WO2016013549A1 (en) 2014-07-24 2015-07-21 Power transmission device
CN201580039581.2A CN106537745B (en) 2014-07-24 2015-07-21 Power transmission device
EP15824570.4A EP3174189B1 (en) 2014-07-24 2015-07-21 Power transmission device
US15/412,970 US10033291B2 (en) 2014-07-24 2017-01-23 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151622A JP6305861B2 (en) 2014-07-25 2014-07-25 Power transmission equipment

Publications (2)

Publication Number Publication Date
JP2016029869A JP2016029869A (en) 2016-03-03
JP6305861B2 true JP6305861B2 (en) 2018-04-04

Family

ID=55435542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151622A Expired - Fee Related JP6305861B2 (en) 2014-07-24 2014-07-25 Power transmission equipment

Country Status (1)

Country Link
JP (1) JP6305861B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074199A1 (en) * 1999-05-27 2000-12-07 Ntt Data Corporation Power transmission apparatus and method for power transmission
JP2004334704A (en) * 2003-05-09 2004-11-25 Canon Inc Power converter, its control method, and photovoltaic generator
JP2005218151A (en) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd Power conversion device
US7916505B2 (en) * 2008-03-06 2011-03-29 Enphase Energy, Inc. Method and apparatus for a leakage energy recovery circuit

Also Published As

Publication number Publication date
JP2016029869A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
KR101509925B1 (en) Method and system for controlling battery recharge
US20160099649A1 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US10044278B2 (en) Power conversion device
CN105991050A (en) Method and device for high-power-factor flyback converter
JP5850164B2 (en) Power storage device
US20130308358A1 (en) Power conversion apparatus
US20150333525A1 (en) High-voltage direct current transmission system control device
JP6660253B2 (en) Battery charger
EP2608381B1 (en) AC-DC converter
CN105529799A (en) Charging system based on secondary control and secondary control device thereof
CN105591556A (en) Input Overvoltage Protection Using Current Limit
CN111064356B (en) Power supply circuit capable of improving power factor
TWI533556B (en) Battery charger having battery voltage detector and controlling method thereof
JP2008193815A (en) Power supply system
JP5828774B2 (en) Charge / discharge device for secondary battery and charge / discharge inspection device using the same
JP6305861B2 (en) Power transmission equipment
WO2016013549A1 (en) Power transmission device
KR101693700B1 (en) Bidirectional Power Converter
JP6301213B2 (en) Power transmission equipment
JP2012010558A (en) System interconnection power converter and method for controlling system interconnection power converter
KR20150070590A (en) Circuit for driving synchronous rectifier and power supply apparatus including the same
JP2014220876A (en) Electronic transformer
US9590519B2 (en) Power adapter with a step-down transformer and a voltage step-up circuit
KR20150112838A (en) Power supply device comprising the same
JP6347389B2 (en) Non-contact power feeding device, non-contact power receiving device, and non-contact power feeding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180307

R150 Certificate of patent or registration of utility model

Ref document number: 6305861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees