JP6305227B2 - Cogeneration system and operation control method thereof - Google Patents

Cogeneration system and operation control method thereof Download PDF

Info

Publication number
JP6305227B2
JP6305227B2 JP2014119759A JP2014119759A JP6305227B2 JP 6305227 B2 JP6305227 B2 JP 6305227B2 JP 2014119759 A JP2014119759 A JP 2014119759A JP 2014119759 A JP2014119759 A JP 2014119759A JP 6305227 B2 JP6305227 B2 JP 6305227B2
Authority
JP
Japan
Prior art keywords
power
output
heat
load
combined heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014119759A
Other languages
Japanese (ja)
Other versions
JP2015063989A (en
Inventor
智史 片山
智史 片山
早川 秀樹
秀樹 早川
輝 森田
輝 森田
善隆 柴田
善隆 柴田
将輝 ▲高▼溝
将輝 ▲高▼溝
山本 幸司
山本  幸司
歩 小椋
歩 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014119759A priority Critical patent/JP6305227B2/en
Publication of JP2015063989A publication Critical patent/JP2015063989A/en
Application granted granted Critical
Publication of JP6305227B2 publication Critical patent/JP6305227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、熱と電力とを併せて発生する熱電併給装置と、
前記熱電併給装置の排熱により生成した温水を貯留する貯湯槽と、
熱負荷に応じて前記熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、前記熱電併給装置の運転を制御する運転制御手段とを備えたコージェネレーションシステム及びその運転方法に関する。
The present invention is a combined heat and power device that generates heat and power together,
A hot water storage tank for storing hot water generated by exhaust heat of the cogeneration device;
Operation control for controlling the operation of the cogeneration device in a form in which the cogeneration device is operated according to the heat load and the output during operation of the cogeneration device is made to follow the power load within a predetermined output setting range. A cogeneration system including the means and an operation method thereof.

従来のコージェネレーションシステムとして、熱負荷に応じて熱電併給装置を稼働させるものが知られている(例えば特許文献1を参照)。
かかるコージェネレーションシステムは、熱電併給装置が発生する排熱により生成した温水を貯湯槽に貯留するにあたり、貯湯槽の貯湯量が上限量に達して当該貯湯槽が温水で満杯になると、その熱電併給装置の運転を停止するように構成されている。
そして、このように熱負荷に応じて熱電併給装置を稼働することで、熱電併給装置の排熱の有効利用を図ることができる。
As a conventional cogeneration system, one that operates a combined heat and power supply device according to a heat load is known (see, for example, Patent Document 1).
In such a cogeneration system, when the hot water generated by the exhaust heat generated by the combined heat and power supply device is stored in the hot water storage tank, when the hot water storage capacity of the hot water storage tank reaches the upper limit and the hot water storage tank is full of hot water, the combined heat and power supply is performed. The apparatus is configured to stop operation.
And by operating the combined heat and power supply device according to the heat load in this way, it is possible to effectively use the exhaust heat of the combined heat and power supply device.

また、別の従来のコージェネレーションシステムとして、熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、その熱電併給装置の運転を制御するものが知られている(例えば特許文献2を参照)。
かかるコージェネレーションシステムは、熱電併給装置の稼働時における出力を例えば出力設定範囲の下限出力として設定された所定の部分出力から出力設定範囲の上限出力として設定された所定の定格出力までの出力設定範囲において変更可能に構成し、電力負荷が定格出力以上である場合には、熱電併給装置の出力を定格出力に設定し、電力負荷が定格出力未満且つ部分出力以上である場合には、熱電併給装置の出力を電力負荷に追従する出力に設定し、電力負荷が部分出力未満である場合には、熱電併給装置の出力を部分出力に設定する。
また、電力負荷が部分出力未満であるときに熱電併給装置の出力を部分出力に設定したときには、電力負荷に対する熱電併給装置の発電電力の余剰分である余剰電力が発生するが、この余剰電力は、電気ヒータに供給して貯湯槽に貯留される温水の生成に利用したり、商用電力系統に逆潮流して売却することができる。
そして、このように熱電併給装置の稼働時における出力を出力設定範囲内で電力負荷に追従させることで、電力負荷が小さいときでも熱電併給装置の出力を低下させて、余剰電力をできるだけ発生させないようにして、余剰電力の増加による発電電力の利用効率の悪化を抑制することができる。
Further, another conventional cogeneration system is known that controls the operation of the cogeneration device in a form in which the output during operation of the cogeneration device is made to follow the electric power load within a predetermined output setting range. (For example, refer to Patent Document 2).
Such a cogeneration system has an output setting range from a predetermined partial output set as the lower limit output of the output setting range to a predetermined rated output set as the upper limit output of the output setting range, for example, when the cogeneration system is operating. If the power load is more than the rated output, set the output of the combined heat and power device to the rated output, and if the power load is less than the rated output and greater than or equal to the partial output, the combined heat and power device Is set to an output that follows the power load, and when the power load is less than the partial output, the output of the combined heat and power supply device is set to the partial output.
In addition, when the output of the combined heat and power device is set to the partial output when the power load is less than the partial output, surplus power that is a surplus of the generated power of the combined heat and power device with respect to the power load is generated. It can be used to generate hot water that is supplied to an electric heater and stored in a hot water tank, or sold back to a commercial power system.
And by making the output at the time of operation of the combined heat and power supply device follow the power load within the output setting range in this way, even when the power load is small, the output of the combined heat and power supply device is reduced so that surplus power is not generated as much as possible. Thus, it is possible to suppress the deterioration of the utilization efficiency of generated power due to the increase in surplus power.

特開2004−263942号公報Japanese Patent Laid-Open No. 2004-263942 特開2006−275478号公報JP 2006-275478 A

このようなコージェネレーションシステムの寿命は、一般的に運転頻度が標準的なものよりやや高いと仮定した上で想定されているが、実際の運転頻度が標準的なものを大きく超える場合には、実際の寿命が想定したものよりも短くなるという問題がある。ここで、本願において運転頻度とは、1年間など単位期間あたりの積算運転時間などのように、熱電併給装置がどの程度の頻度で運転されたかを表す値を示す。
特に、熱負荷(単位時間あたりの消費熱量)に応じて熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を出力設定範囲内で電力負荷(単位時間あたりの消費電力)に追従させる形態で、熱電併給装置の運転を制御するコージェネレーションシステムは、電力負荷が小さい時間帯でも、その電力負荷に合わせて熱電併給装置の出力を低下させて運転するため、特に、熱負荷の大きい世帯では、熱負荷に対して充分な熱を発生するべく熱電併給装置を長時間運転する場合があり、結果、実際の寿命が想定したものよりも短縮されるという問題があった。
The life of such a cogeneration system is generally assumed on the assumption that the operation frequency is slightly higher than the standard one, but if the actual operation frequency greatly exceeds the standard one, There is a problem that the actual life is shorter than expected. Here, in the present application, the operation frequency indicates a value indicating how often the combined heat and power unit is operated, such as an integrated operation time per unit period such as one year.
In particular, the combined heat and power unit is operated according to the heat load (heat consumption per unit time), and the output during operation of the combined heat and power unit follows the power load (power consumption per unit time) within the output setting range. The cogeneration system that controls the operation of the combined heat and power device is operated by reducing the output of the combined heat and power device in accordance with the power load even when the power load is small. In households, there are cases where the combined heat and power supply device is operated for a long time to generate sufficient heat for the heat load, and as a result, there has been a problem that the actual life is shortened from that assumed.

本発明は、かかる点に着目してなされたものであり、その目的は、熱負荷に応じて熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を出力設定範囲内で電力負荷に追従させる形態で、熱電併給装置の運転を制御するコージェネレーションシステムにおいて、熱電併給装置の発電電力と排熱とを有効に利用しながら、想定外の寿命の短縮を抑制することができる技術を提供する点にある。   The present invention has been made paying attention to such a point, and its purpose is to operate the cogeneration device according to the heat load, and to output the output during operation of the cogeneration device within the output setting range. In a cogeneration system that controls the operation of a combined heat and power device in a form that follows the above, a technology that can suppress the shortening of the unexpected life while effectively using the generated power and exhaust heat of the combined heat and power device The point is to provide.

この目的を達成するための本発明に係るコージェネレーションシステムは、
熱と電力とを併せて発生する熱電併給装置と、
前記熱電併給装置の排熱により生成した温水を貯留する貯湯槽と、
熱負荷に応じて前記熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、前記熱電併給装置の運転を制御する運転制御手段とを備えたコージェネレーションシステムであって、
その特徴構成は、
前記運転制御手段が、前記出力設定範囲の上限出力及び下限出力の少なくとも一方の限界出力を変更することで、前記熱電併給装置の運転頻度を調整する運転頻度調整処理を実行すると共に、
当該運転頻度調整処理において、前記熱電併給装置の運転頻度の所定の目標運転頻度に対する乖離状態に基づき、前記熱電併給装置の運転頻度を減少側に調整する場合には前記出力設定範囲の限界出力を上昇させ、前記熱電併給装置の運転頻度を増加側に調整する場合には前記出力設定範囲の限界出力を低下させる点にある。
To achieve this object, the cogeneration system according to the present invention is:
A combined heat and power device that generates heat and electricity together;
A hot water storage tank for storing hot water generated by exhaust heat of the cogeneration device;
Operation control for controlling the operation of the cogeneration device in a form in which the cogeneration device is operated according to the heat load and the output during operation of the cogeneration device is made to follow the power load within a predetermined output setting range. A cogeneration system comprising means,
Its feature configuration is
The operation control means performs an operation frequency adjustment process for adjusting the operation frequency of the cogeneration device by changing at least one of the upper limit output and the lower limit output of the output setting range, and
In the operation frequency adjustment process, when adjusting the operation frequency of the combined heat and power device to the decreasing side based on a deviation state of the operation frequency of the combined heat and power device with respect to a predetermined target operation frequency , the limit output of the output setting range is set. When the operating frequency of the combined heat and power supply device is adjusted to increase, the limit output of the output setting range is reduced.

また、この目的を達成するための本発明に係るコージェネレーションシステムの運転制御方法は、
熱と電力とを併せて発生する熱電併給装置と、
前記熱電併給装置が発生した熱により加熱された温水を貯留する貯湯槽と、
熱負荷に応じて前記熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、前記熱電併給装置の運転を制御するコージェネレーションシステムの運転制御方法であって、
その特徴構成は、
前記出力設定範囲の上限出力及び下限出力の少なくとも一方の限界出力を変更することで、前記熱電併給装置の運転頻度を調整する運転頻度調整処理を実行すると共に、
当該運転頻度調整処理において、前記熱電併給装置の運転頻度の所定の目標運転頻度に対する乖離状態に基づき、前記熱電併給装置の運転頻度を減少側に調整する場合には前記出力設定範囲の限界出力を上昇させ、前記熱電併給装置の運転頻度を増加側に調整する場合には前記出力設定範囲の限界出力を低下させる点にある。
Moreover, the operation control method of the cogeneration system according to the present invention for achieving this object is as follows:
A combined heat and power device that generates heat and electricity together;
A hot water storage tank for storing hot water heated by the heat generated by the cogeneration apparatus;
Cogeneration that controls the operation of the cogeneration device in a form that causes the cogeneration device to operate according to the heat load and causes the output during operation of the cogeneration device to follow the power load within a predetermined output setting range A system operation control method comprising:
Its feature configuration is
By changing the limit output of at least one of the upper limit output and the lower limit output of the output setting range, and performing an operation frequency adjustment process for adjusting the operation frequency of the cogeneration device,
In the operation frequency adjustment process, when adjusting the operation frequency of the combined heat and power device to the decreasing side based on a deviation state of the operation frequency of the combined heat and power device with respect to a predetermined target operation frequency , the limit output of the output setting range is set. When the operating frequency of the combined heat and power supply device is adjusted to increase, the limit output of the output setting range is reduced.

本特徴構成によれば、熱負荷に応じて熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を出力設定範囲内で電力負荷に追従させる形態で、熱電併給装置の運転を制御するコージェネレーションシステムにおいて、上記運転頻度調整処理を実行することで、熱電併給装置の出力設定範囲の限界出力を変更するという合理的且つ簡単な処理で、熱電併給装置の運転頻度を調整することができる。
即ち、熱電併給装置の出力設定範囲の限界出力を上昇させると、電力負荷に追従して変化する熱電併給装置の出力が比較的高めの出力設定範囲内で推移することになり、熱電併給装置の排熱が増加する。そして、熱電併給装置は熱負荷に応じて稼働されるため、排熱が増加することで稼働頻度が少なくなり、結果、将来の運転頻度を減少側に調整して、当該運転頻度の想定を超える増加による寿命の短縮を抑制することができる。
一方、熱電併給装置の出力設定範囲の限界出力を低下させると、電力負荷に追従して変化する熱電併給装置の出力が比較的低めの出力設定範囲内で推移することになるので、熱電併給装置の排熱が減少する。そして、熱電併給装置は熱負荷に応じて稼働されるため、排熱が減少することで稼働頻度が多くなり、結果、将来の運転頻度を増加側に調整して、当該運転頻度の想定を下回る減少による電力負荷及び熱負荷の利用効率の低下を抑制することができる。
従って、本発明により、熱負荷に応じて熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を出力設定範囲内で電力負荷に追従させる形態で、熱電併給装置の運転を制御するコージェネレーションシステムにおいて、熱電併給装置の発電電力と排熱とを有効に利用しながら、想定外の寿命の短縮を抑制することができる技術を提供することができる。
According to this characteristic configuration, the operation of the cogeneration device is controlled in such a manner that the cogeneration device is operated according to the heat load and the output during operation of the cogeneration device is made to follow the power load within the output setting range. In the cogeneration system that performs the above operation frequency adjustment process, the operation frequency of the combined heat and power device can be adjusted with a rational and simple process of changing the limit output of the output setting range of the combined heat and power device. it can.
That is, when the limit output of the output setting range of the combined heat and power device is increased, the output of the combined heat and power device that changes following the power load changes within a relatively high output setting range. Waste heat increases. And since the combined heat and power unit is operated according to the heat load, the operating frequency decreases as the exhaust heat increases, and as a result, the future operating frequency is adjusted to the decreasing side and exceeds the assumed operating frequency. The shortening of the lifetime due to the increase can be suppressed.
On the other hand, if the limit output of the output setting range of the combined heat and power device is reduced, the output of the combined heat and power device that changes following the power load will move within a relatively low output setting range. Reduces exhaust heat. And since the combined heat and power unit is operated according to the heat load, the operating frequency increases due to the reduction of exhaust heat, and as a result, the future operating frequency is adjusted to the increasing side, which is lower than the expected operating frequency. A decrease in utilization efficiency of the power load and the heat load due to the decrease can be suppressed.
Therefore, according to the present invention, the operation of the cogeneration device is controlled in such a manner that the cogeneration device is operated according to the heat load and the output during operation of the cogeneration device is made to follow the power load within the output setting range. In the cogeneration system, it is possible to provide a technology capable of suppressing an unexpected shortening of the life while effectively using the generated power and exhaust heat of the combined heat and power supply device.

本発明に係るコージェネレーションシステムの更なる特徴構成は、
電力負荷に対する前記熱電併給装置の発電電力の余剰分である余剰電力により前記貯湯槽に貯留される温水を生成する電気ヒータを備え、
前記運転制御手段が、前記運転頻度調整処理において、前記出力設定範囲の下限出力を前記限界出力として変更する点にある。
A further characteristic configuration of the cogeneration system according to the present invention is as follows.
An electric heater that generates hot water stored in the hot water storage tank by surplus power that is surplus power generated by the combined heat and power supply device with respect to an electric power load;
The operation control means changes the lower limit output of the output setting range as the limit output in the operation frequency adjustment process.

本特徴構成によれば、電力負荷が低下して熱電併給装置の出力設定範囲の下限出力を下回った時点で余剰電力が発生し始めることになり、その余剰電力が上記電気ヒータに供給されて貯湯槽に貯留される温水が生成されることになる。よって、その下限出力を変化させれば、その電気ヒータによる温水の生成量が変化することになり、結果、熱電併給装置の排熱により賄う熱負荷が変化することになる。
具体的には、熱電併給装置の出力設定範囲の下限出力を上昇させることで、積極的に余剰電力を発生させて、電気ヒータによる温水の生成量を増加させ、熱電併給装置の排熱で賄う熱負荷を減少させることができ、結果、熱負荷に応じて稼働される熱電併給装置の将来の運転頻度を減少側に調整することができる。一方、熱電併給装置の出力設定範囲の下限出力を低下させることで、余剰電力の発生を抑制して、電気ヒータによる温水の生成量を減少させ、熱電併給装置で賄う熱負荷を増加させることができ、結果、熱負荷に応じて稼働される熱電併給装置の将来の運転頻度を増加側に調整することができる。
従って、運転頻度調整処理において、熱電併給装置の出力設定範囲の下限出力を調整することで、その熱電併給装置の排熱を変化させるのに加えて、その排熱により賄う熱負荷も変化させることができる。よって、熱負荷に応じて稼働される熱電併給装置の稼働頻度を確実に変化させて、将来の運転頻度を合理的に調整することができる。
According to this characteristic configuration, surplus power starts to be generated when the power load decreases and falls below the lower limit output of the output setting range of the combined heat and power supply device, and the surplus power is supplied to the electric heater to store hot water. Hot water stored in the tank will be generated. Therefore, if the lower limit output is changed, the amount of hot water generated by the electric heater will change, and as a result, the heat load provided by the exhaust heat of the combined heat and power supply device will change.
Specifically, by raising the lower limit output of the output setting range of the combined heat and power device, surplus power is actively generated, the amount of hot water generated by the electric heater is increased, and the exhaust heat of the combined heat and power device is covered The heat load can be reduced, and as a result, the future operation frequency of the combined heat and power device operated according to the heat load can be adjusted to the decreasing side. On the other hand, by reducing the lower limit output of the output setting range of the combined heat and power device, it is possible to suppress the generation of surplus power, reduce the amount of hot water generated by the electric heater, and increase the thermal load covered by the combined heat and power device. As a result, it is possible to adjust the future operation frequency of the combined heat and power unit operated according to the heat load to the increasing side.
Therefore, in the operation frequency adjustment process, by adjusting the lower limit output of the output setting range of the combined heat and power device, in addition to changing the exhaust heat of the combined heat and power device, the thermal load covered by the exhaust heat can also be changed. Can do. Therefore, the operation frequency of the combined heat and power device that is operated according to the heat load can be reliably changed, and the future operation frequency can be rationally adjusted.

本発明に係るコージェネレーションシステムの更なる特徴構成は、
前記運転制御手段が、前記運転頻度調整処理において、前記出力設定範囲の限界出力を変更するにあたり、所定の定格出力から当該定格出力よりも小さい部分出力までの範囲を前記出力設定範囲とする状態と、前記定格出力のみを前記出力設定範囲とする状態とを切り替える点にある。
A further characteristic configuration of the cogeneration system according to the present invention is as follows.
In the operation frequency adjustment process, when the operation control means changes the limit output of the output setting range, a state from a predetermined rated output to a partial output smaller than the rated output is set as the output setting range; The point is to switch the state where only the rated output is within the output setting range.

本特徴構成によれば、運転頻度調整処理において、定格出力から部分出力までの範囲を熱電併給装置の出力設定範囲とすれば、熱電併給装置の稼働時における出力をその定格出力から部分出力までの範囲内で電力負荷に追従させて、当該熱電併給装置の出力を比較的低めに推移させることができ、結果、排熱の減少に伴って、熱負荷に応じて稼働される熱電併給装置の将来の運転頻度を増加側に調整することができる。
一方、出力設定範囲の下限出力を上限出力と同じ定格出力まで上昇させて、定格出力のみを熱電併給装置の出力設定範囲とすれば、熱電併給装置の稼働時における出力を高めの定格出力に維持することができ、結果、排熱の増加に伴って、熱負荷に応じて稼働される熱電併給装置の将来の運転頻度を減少側に調整することができる。
According to this feature configuration, in the operation frequency adjustment process, if the range from the rated output to the partial output is set as the output setting range of the combined heat and power device, the output during operation of the combined heat and power device is changed from the rated output to the partial output. The output of the combined heat and power device can be made relatively low by following the power load within the range, and as a result, the future of the combined heat and power device that operates according to the heat load as the exhaust heat decreases. Can be adjusted to increase.
On the other hand, if the lower limit output of the output setting range is increased to the same rated output as the upper limit output, and only the rated output is used as the output setting range of the combined heat and power unit, the output during operation of the combined heat and power unit is maintained at a higher rated output. As a result, as the exhaust heat increases, it is possible to adjust the future operation frequency of the combined heat and power unit operated according to the heat load to the decreasing side.

本発明に係るコージェネレーションシステムの更なる特徴構成は、
前記電気ヒータの定格入力が前記熱電併給装置の定格出力未満であり、
前記運転制御手段が、前記運転頻度調整処理において、
前記熱電併給装置の運転頻度を増加側に調整する場合には、
前記電力負荷が零値以上で、前記電気ヒータの定格入力と等しい電力負荷となる部分負荷値未満の範囲では前記発電電力を前記電気ヒータの定格入力と等しくなるように、
前記電力負荷が前記部分負荷値以上で、前記熱電併給装置の定格出力と等しい電力負荷となる定格負荷値未満の範囲では前記発電電力を当該電力負荷と等しくなるように、
前記電力負荷が前記定格負荷値以上の範囲では前記発電電力を前記熱電併給装置の定格出力と等しくなるように、それぞれ制御し、
前記熱電併給装置の運転頻度を減少側に調整する場合には、
前記電力負荷が零値以上で前記定格負荷値と前記部分負荷値との差分値未満の範囲では前記発電電力を当該発電電力の余剰電力が前記電気ヒータの定格入力と等しくなるように、
前記電力負荷が前記定格負荷値と前記部分負荷値との差分値以上の範囲では前記発電電力を前記熱電併給装置の定格出力と等しくなるように、それぞれ制御する点にある。
A further characteristic configuration of the cogeneration system according to the present invention is as follows.
The rated input of the electric heater is less than the rated output of the combined heat and power device,
Said operation control means, Te the operation frequency adjustment process smell,
When adjusting the operation frequency of the combined heat and power unit to the increase side,
In the range where the power load is equal to or greater than zero and less than the partial load value at which the power load is equal to the rated input of the electric heater , the generated power is equal to the rated input of the electric heater.
In the range where the power load is equal to or greater than the partial load value and less than the rated load value at which the power load is equal to the rated output of the combined heat and power device , the generated power is equal to the power load.
In the range where the power load is equal to or higher than the rated load value , the generated power is controlled to be equal to the rated output of the combined heat and power device, respectively.
When adjusting the operation frequency of the combined heat and power unit to the decreasing side,
Wherein the power load is zero or more values, in the range of less than the difference value between the partial load value and the rated load value, the generated power as surplus power of the generated power is equal to the rated input of the electric heater,
In the range above difference value between the power load is the partial load value and the rated load value, the generated power to be equal to the rated output of the cogeneration device is that a control, respectively.

本特徴構成によれば、電気ヒータの定格入力が熱電併給装置の定格出力未満とされる比較的小さな容量の電気ヒータを使用することができるので、装置コストを安価にすることができる。また、熱電併給装置の運転頻度を減少側に調整する場合では、電力負荷が零値以上で定格負荷値と部分負荷値との差分値未満の範囲において、電気ヒータを定格入力で運転するので、電気ヒータの加熱性能を無駄なく発揮することができる。   According to this characteristic configuration, it is possible to use an electric heater having a relatively small capacity in which the rated input of the electric heater is less than the rated output of the combined heat and power supply apparatus, and thus the apparatus cost can be reduced. Also, when adjusting the operating frequency of the combined heat and power unit to the decreasing side, the electric load is operated at the rated input in the range where the power load is zero or more and less than the difference value between the rated load value and the partial load value. The heating performance of the electric heater can be exhibited without waste.

本発明に係るコージェネレーションシステムの更なる特徴構成は、
前記運転制御手段が、前記熱電併給装置の運転頻度を予測する運転頻度予測処理を実行すると共に、前記熱電併給装置の運転頻度は、前記運転頻度予測処理で予測した運転頻度である点にある。
A further characteristic configuration of the cogeneration system according to the present invention is as follows.
Said operation control means, and executes the operation frequency prediction process of predicting the operating frequency of the cogeneration system, the operating frequency of the cogeneration device is that it is operating frequencies predicted by the operating frequency prediction process.

本特徴構成によれば、運転制御手段は、運転頻度予測処理を実行して予測した将来の運転頻度が目標運転頻度に対して乖離している場合には、将来における実際の運転頻度がその目標運転頻度に近づくように、熱電併給装置の出力設定範囲の限界出力を調整することができる。
具体的には、予測した運転頻度が目標運転頻度よりも小さい場合には、熱電併給装置の出力設定範囲の限界出力を低下させて、実際の運転頻度を目標運転頻度に近づくように増加させることができる。
一方、予測した運転頻度が目標運転頻度よりも大きい場合には、熱電併給装置の出力設定範囲の限界出力を上昇させて、実際の運転頻度を目標運転頻度に近づくように減少させることができる。
According to this feature configuration, when the future driving frequency predicted by executing the driving frequency prediction process deviates from the target driving frequency, the actual driving frequency in the future is the target driving frequency. The limit output of the output setting range of the combined heat and power device can be adjusted so as to approach the operation frequency.
Specifically, when the predicted operation frequency is smaller than the target operation frequency, the limit output of the output setting range of the combined heat and power supply device is reduced, and the actual operation frequency is increased so as to approach the target operation frequency. Can do.
On the other hand, when the predicted operation frequency is larger than the target operation frequency, the limit output of the output setting range of the combined heat and power supply device can be increased, and the actual operation frequency can be decreased so as to approach the target operation frequency.

本発明に係るコージェネレーションシステムの更なる特徴構成は、
前記運転制御手段が、前記運転頻度予測処理において、予め記憶されている標準的な運転頻度を、利用者により入力された家族構成情報に基づいて補正する形態で、前記運転頻度を予測する点にある。
A further characteristic configuration of the cogeneration system according to the present invention is as follows.
The driving control means predicts the driving frequency in the driving frequency prediction process by correcting the standard driving frequency stored in advance based on the family structure information input by the user. is there.

本特徴構成によれば、運転頻度予測処理において、標準的な運転頻度を予め記憶しておき、その運転頻度を利用者が入力した家族構成情報に基づいて補正して、利用者特有の将来の運転頻度をより正確に予測することができる。
例えば、利用者の家族が標準的なものよりも人数が多いほど、標準的な運転頻度を増加側に補正して、その補正後の運転頻度を利用者特有の将来の運転頻度とすることができる。
According to this feature configuration, in the driving frequency prediction process, a standard driving frequency is stored in advance, the driving frequency is corrected based on the family configuration information input by the user, and a user-specific future Driving frequency can be predicted more accurately.
For example, as the number of users in the family is larger than the standard one, the standard driving frequency may be corrected to the increasing side, and the corrected driving frequency may be the future driving frequency specific to the user. it can.

コージェネレーションシステムの実施の形態を示す概略構成図Schematic configuration diagram showing an embodiment of a cogeneration system 電力負荷と発電電力の関係並びに下限出力の変更状態を示す図The figure which shows the relation between electric power load and generated electric power, and the change state of the lower limit output 予測電力負荷及び予測熱負荷の時系列変化を示す図The figure which shows the time series change of the prediction electric power load and the prediction heat load 別実施形態における電力負荷と発電電力の関係並びに下限出力の変更状態を示す図The figure which shows the change state of the relationship between the electric power load and generated electric power in another embodiment, and a lower limit output 別実施形態における電力負荷と発電電力の関係並びに上限出力の変更状態を示す図The figure which shows the change state of the relationship between the electric power load and generated electric power in another embodiment, and an upper limit output 別実施形態における電力負荷と発電電力の関係並びに下限出力の変更状態を示す図The figure which shows the change state of the relationship between the electric power load and generated electric power in another embodiment, and a lower limit output 別実施形態における電力負荷に対する発電電力の追従状態を示す図The figure which shows the tracking state of the generated electric power with respect to the electric power load in another embodiment.

本発明に係るコージェネレーションシステムについて図面に基づいて説明する。
図1に示すコージェネレーションシステムは、熱電併給装置7を備え、その熱電併給装置7は、詳細な図示は省略するが、例えば発電機をエンジンにより回転駆動して発電を行うと共に冷却水でエンジンの排熱を回収する形態で、熱と電力とを併せて発生するエンジン駆動式発電機などで構成される。
その熱電併給装置7の発電電力は、電力消費部4に供給されると共に、熱電併給装置7の排熱により加熱された温水は、貯湯槽10に一旦貯留されて給湯部16への給湯に利用されると共に、床暖房装置や浴室暖房装置などの暖房端末38での放熱に利用される。
即ち、コージェネレーションシステムは、熱電併給装置7に加えて、その熱電併給装置7の排熱により生成した温水を貯留する貯湯槽10を備え、更には、運転制御を行う運転制御装置50(運転制御手段の一例)を備える。
A cogeneration system according to the present invention will be described with reference to the drawings.
The cogeneration system shown in FIG. 1 includes a combined heat and power supply device 7. The combined heat and power supply device 7 is not shown in detail, but for example, a generator is rotated by an engine to generate power and the cooling water supplies the engine. It is composed of an engine-driven generator that generates heat and electric power in a form that collects exhaust heat.
The generated power of the combined heat and power supply device 7 is supplied to the power consuming unit 4, and the hot water heated by the exhaust heat of the combined heat and power supply device 7 is temporarily stored in the hot water storage tank 10 and used to supply hot water to the hot water supply unit 16. At the same time, it is used for heat radiation at a heating terminal 38 such as a floor heating device or a bathroom heating device.
That is, the cogeneration system includes a hot water storage tank 10 for storing hot water generated by exhaust heat of the combined heat and power supply device 7 in addition to the combined heat and power supply device 7, and an operation control device 50 (operation control for performing operation control). An example of means).

熱電併給装置7は、例えば250Wから1000Wまでの範囲内で発電出力を変更可能に構成されており、その熱電併給装置7の電力の出力側には、系統連系用のインバータ6が設けられている。そのインバータ6は、熱電併給装置7の発電電力を商用電力系統1から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
商用電力系統1は、例えば、単相3線式100/200Vであり、消費電力供給ライン3を介して、テレビ、冷蔵庫、洗濯機などの電力消費部4に電気的に接続されている。
また、インバータ6は、発電電力供給ライン5を介して消費電力供給ライン3に電気的に接続され、熱電併給装置7からの発電電力がインバータ6及び発電電力供給ライン5を介して電力消費部4に供給されるように構成されている。
The combined heat and power device 7 is configured to be able to change the power generation output within a range of, for example, 250 W to 1000 W, and an inverter 6 for grid connection is provided on the power output side of the combined heat and power device 7. Yes. The inverter 6 is configured to have the same voltage and the same frequency as the received power received from the commercial power system 1 by the generated power of the combined heat and power supply device 7.
The commercial power system 1 is, for example, a single-phase three-wire system 100/200 V, and is electrically connected to a power consumption unit 4 such as a television, a refrigerator, or a washing machine via a power consumption supply line 3.
The inverter 6 is electrically connected to the power consumption supply line 3 via the generated power supply line 5, and the generated power from the combined heat and power supply device 7 is supplied to the power consumption unit 4 via the inverter 6 and the generated power supply line 5. It is comprised so that it may be supplied to.

消費電力供給ライン3には、商用電力系統1から受電される受電電力を計測する電力計測器2が設けられており、この電力計測器2は、商用電力系統1に向けて電力が供給される所謂逆潮流が発生するか否かをも検出するように構成されている。
そして、運転制御装置50は、逆潮流が生じないように、インバータ6により熱電併給装置7から消費電力供給ライン3に供給される電力が制御され、発電電力のうち電力消費部4で消費されない分の余剰電力は、電気ヒータ8に供給されて熱に変換される。
The power consumption supply line 3 is provided with a power meter 2 for measuring the received power received from the commercial power system 1, and the power meter 2 is supplied with power toward the commercial power system 1. It is also configured to detect whether or not so-called reverse power flow occurs.
The operation control device 50 controls the power supplied from the thermoelectric power supply device 7 to the power consumption supply line 3 by the inverter 6 so that a reverse power flow does not occur, and the power consumption unit 4 does not consume the generated power. The surplus power is supplied to the electric heater 8 and converted into heat.

電気ヒータ8は、冷却水循環ポンプ25の作動により冷却水循環路26を通流する熱電併給装置7の冷却水を加熱するように設けられ、インバータ6の出力側に接続された作動スイッチ9によりON/OFFが切り換えられている。
作動スイッチ9は、余剰電力の大きさが大きくなるほど、電気ヒータ8の消費電力が大きくなるように、余剰電力の大きさに応じて電気ヒータ8への供給電力を調整するように作動する。
尚、電気ヒータ8の消費電力を調整する構成については、上記のように複数の電気ヒータ8のON/OFFを切り換える構成以外に、その電気ヒータ8の出力を例えば位相制御等により調整する構成を採用しても構わない。
The electric heater 8 is provided so as to heat the cooling water of the cogeneration device 7 that flows through the cooling water circulation path 26 by the operation of the cooling water circulation pump 25, and is turned on / off by an operation switch 9 connected to the output side of the inverter 6. OFF is switched.
The operation switch 9 operates so as to adjust the power supplied to the electric heater 8 in accordance with the amount of surplus power so that the power consumption of the electric heater 8 increases as the amount of surplus power increases.
The configuration for adjusting the power consumption of the electric heater 8 is a configuration for adjusting the output of the electric heater 8 by, for example, phase control or the like in addition to the configuration for switching ON / OFF of the plurality of electric heaters 8 as described above. You may adopt.

熱電併給装置7の排熱を冷却水にて回収し、その排熱を回収して高温となった冷却水を利用して貯湯槽10への貯湯や暖房端末38の放熱を行う貯湯ユニットが設けられている。この貯湯ユニットには、温度成層を形成する状態で湯水を貯湯する貯湯槽10、湯水循環路21を通して貯湯槽10内の湯水を循環させる湯水循環ポンプ22、熱源用循環路35を通して熱源用湯水を循環させる熱源用循環ポンプ32、熱媒循環路36を通して熱媒を暖房端末38に循環供給させる熱媒循環ポンプ37、湯水循環路21を通流する湯水を加熱させる貯湯用熱交換器20、熱源用循環路35を通流する熱源用湯水を加熱させる熱源用熱交換器31、熱媒循環路36を通流する熱媒を加熱させる熱媒加熱用熱交換器33、貯湯槽10内から取り出した湯水及び熱源用循環路35を通流する熱源用湯水をバーナ燃焼により加熱する補助熱源機11などが備えられている。   There is provided a hot water storage unit that collects the exhaust heat of the combined heat and power supply device 7 with cooling water, collects the exhaust heat, and stores the hot water in the hot water storage tank 10 and radiates heat from the heating terminal 38 using the high-temperature cooling water. It has been. In this hot water storage unit, hot water hot water is stored in a state where temperature stratification is formed, hot water circulation pump 22 for circulating hot water in hot water tank 10 through hot water circulation path 21, and hot water for heat source through heat source circulation path 35. A heat source circulation pump 32 for circulation, a heat medium circulation pump 37 for circulating supply of the heat medium to the heating terminal 38 through the heat medium circulation path 36, a hot water storage heat exchanger 20 for heating hot water flowing through the hot water circulation path 21, and a heat source The heat source heat exchanger 31 for heating the hot water for the heat source flowing through the circulation path 35, the heat exchanger 33 for heating the heat medium for heating the heat medium flowing through the heat medium circulation path 36, and the hot water storage tank 10 are taken out. An auxiliary heat source device 11 for heating the hot water and the hot water for heat source flowing through the heat source circulation path 35 by burner combustion is provided.

湯水循環路21は、その一部が並列になるように分岐接続され、その接続箇所に三方弁23が設けられており、分岐された一方側の流路には、ラジエータ24が設けられている。
そして、三方弁23を切り換えることにより、貯湯槽10の下部から取り出した湯水がラジエータ24を通過するように循環させる状態と、貯湯槽10の下部から取り出した湯水がラジエータ24をバイパスするように循環させる状態とに切り換えられる。
The hot water circulation path 21 is branched and connected so that a part thereof is in parallel, a three-way valve 23 is provided at the connection location, and a radiator 24 is provided in the branched flow path. .
Then, by switching the three-way valve 23, the hot water taken out from the lower part of the hot water tank 10 is circulated so as to pass through the radiator 24, and the hot water taken out from the lower part of the hot water tank 10 is circulated so as to bypass the radiator 24. The state is switched to

貯湯用熱交換器20は、熱電併給装置7の排熱を回収し冷却水循環路26を通流する高温の冷却水との熱交換により、湯水循環路21を通流する湯水を加熱するように構成されている。
熱源用熱交換器31は、熱電併給装置7の排熱を回収し冷却水循環路26を通流する高温の冷却水との熱交換により、熱源用循環路35を通流する熱源用湯水を加熱するように構成されている。
補助熱源機11は、ファン14により供給された燃焼用空気を利用して燃料を燃焼させるバーナ13と、そのバーナ13で発生する燃焼排ガスとの熱交換により貯湯槽10内から取り出した湯水及び熱源用循環路35を通流する湯水を加熱する補助加熱用熱交換器12を備えて構成された一般的な給湯器で構成されている。
熱源用循環路35には、熱源用湯水の通流を断続させる熱源用断続弁34が設けられている。
The hot water storage heat exchanger 20 collects the exhaust heat of the combined heat and power supply device 7 and heats the hot water flowing through the hot water circulation path 21 by heat exchange with the high-temperature cooling water flowing through the cooling water circulation path 26. It is configured.
The heat source heat exchanger 31 heats the hot water for the heat source flowing through the heat source circulation path 35 by recovering the exhaust heat of the combined heat and power supply device 7 and exchanging heat with the high-temperature cooling water flowing through the cooling water circulation path 26. Is configured to do.
The auxiliary heat source unit 11 uses hot water and a heat source extracted from the hot water storage tank 10 by heat exchange between a burner 13 for burning fuel using combustion air supplied by a fan 14 and combustion exhaust gas generated in the burner 13. It is comprised with the general hot water heater provided with the heat exchanger 12 for auxiliary heating which heats the hot water flowing through the circulation path 35 for water.
The heat source circulation path 35 is provided with a heat source intermittent valve 34 for intermittently flowing the heat source hot water.

冷却水循環路26は、貯湯用熱交換器20側と熱源用熱交換器31側とに分岐され、その分岐箇所に、貯湯用熱交換器20側に通流させる冷却水の流量と熱源用熱交換器31側に通流させる冷却水の流量との割合を調整する分流弁30が設けられている。
そして、分流弁30は、冷却水循環路26の冷却水の全量を貯湯用熱交換器20側に通流させる状態と、冷却水循環路26の冷却水の全量を熱源用熱交換器31側に通流させる状態との間で、冷却水の通流状態を切り替えることができる。
The cooling water circulation path 26 is branched into the hot water storage heat exchanger 20 side and the heat source heat exchanger 31 side, and the flow rate of cooling water and the heat source heat to be passed to the hot water storage heat exchanger 20 side at the branch point. A diversion valve 30 is provided for adjusting the ratio of the flow rate of the cooling water to be passed to the exchanger 31 side.
The diversion valve 30 allows the entire amount of cooling water in the cooling water circulation path 26 to flow to the hot water storage heat exchanger 20 side and the entire amount of cooling water in the cooling water circulation path 26 to the heat source heat exchanger 31 side. The cooling water flow state can be switched between the flow state and the flow state.

熱媒加熱用熱交換器33は、熱源用熱交換器31や補助加熱用熱交換器12にて加熱された高温の熱源用湯水との熱交換により、熱媒循環路36を通流する熱媒を加熱するように構成されている。
暖房端末38は、熱媒循環路36を通流する熱媒を放熱させて暖房を行う床暖房装置や浴室暖房装置などで構成されている。
The heat exchanger 33 for heat medium heating is heat that flows through the heat medium circulation path 36 by heat exchange with the hot water for high temperature heat source heated by the heat exchanger 31 for heat source or the heat exchanger 12 for auxiliary heating. The medium is configured to be heated.
The heating terminal 38 is configured by a floor heating device, a bathroom heating device, or the like that performs heating by dissipating the heat medium flowing through the heat medium circulation path 36.

また、給湯部16に供給される温水を生成するために必要な熱量に相当する給湯負荷を計測する給湯負荷計測器15が設けられ、暖房端末38で放熱される熱量に相当する暖房負荷を計測する暖房負荷計測器39も設けられている。   In addition, a hot water supply load measuring device 15 for measuring a hot water supply load corresponding to the amount of heat necessary for generating hot water supplied to the hot water supply unit 16 is provided, and the heating load corresponding to the amount of heat radiated from the heating terminal 38 is measured. A heating load measuring device 39 is also provided.

運転制御装置50は、熱電併給装置7の運転中には冷却水循環ポンプ25を作動させる状態で、熱電併給装置7の運転及び冷却水循環ポンプ25の作動状態を制御すると共に、湯水循環ポンプ22、熱源用循環ポンプ32、熱媒循環ポンプ37の作動状態を制御することによって、貯湯槽10内に湯水を貯湯する貯湯運転や、暖房端末38に熱媒を供給する熱媒供給運転を行うように構成されている。   The operation control device 50 controls the operation of the combined heat and power supply device 7 and the operating state of the cooling water circulation pump 25 while operating the cooling water circulation pump 25 during the operation of the combined heat and power supply device 7, the hot water circulation pump 22, and the heat source. The hot water storage operation for storing hot water in the hot water storage tank 10 and the heat medium supply operation for supplying the heat medium to the heating terminal 38 are performed by controlling the operation states of the circulation pump 32 and the heat medium circulation pump 37. Has been.

尚、給湯時には、熱源用断続弁34を閉弁した状態で貯湯槽10から取り出された温水を給湯部16に供給するように構成され、更に、貯湯槽10から取り出された温水を補助熱源機11にて再加熱したり、貯湯槽10から取り出された温水に給水を混合することで、給湯部16に供給される温水の温度が、図外のリモコンにて設定されている給湯設定温度に調整される。
従って、貯湯槽10では、貯湯槽10の容量の範囲内で、熱電併給装置7の出力に応じて追加された温水から、給湯用として取り出された温水を差し引いた分の温水が貯湯されていることになる。
During hot water supply, the hot water taken out from the hot water storage tank 10 is supplied to the hot water supply section 16 with the heat source interrupting valve 34 closed, and the hot water taken out from the hot water storage tank 10 is further supplied to the auxiliary heat source unit. 11, the temperature of the hot water supplied to the hot water supply unit 16 is set to a hot water supply set temperature set by a remote controller (not shown) by mixing the hot water taken out from the hot water storage tank 10 with hot water. Adjusted.
Therefore, in the hot water storage tank 10, hot water is stored in the capacity range of the hot water storage tank 10 by subtracting the hot water taken out for hot water supply from the hot water added according to the output of the combined heat and power supply device 7. It will be.

次に、運転制御装置50による熱電併給装置7の運転の制御について説明を加える。
運転制御装置50は、熱電併給装置7の稼動時において、当該熱電併給装置7の出力を、所定の出力設定範囲内で、現在要求されている電力負荷に追従させる運転を実行する。
詳しくは、運転制御装置50は、5分等の比較的短い所定の出力調整周期毎に電力負荷を求め、熱電併給装置7の発電電力が、所定の下限出力Pminからそれよりも大きい所定の上限出力Pmaxまでの出力設定範囲内において、連続的又は段階的に上記電力負荷に沿って変化するように、熱電併給装置7の出力を決定する。
尚、上記電力負荷は、電力消費部4の消費電力を示し、電力計測器2で計測された受電電力とインバータ6で計測された発電電力との合計から、電気ヒータ8の消費電力を差し引いた値として求めることができる。
Next, a description will be given of the control of the operation of the cogeneration apparatus 7 by the operation control device 50.
The operation control device 50 executes an operation of causing the output of the cogeneration device 7 to follow the currently requested power load within a predetermined output setting range when the cogeneration device 7 is in operation.
Specifically, the operation control device 50 obtains a power load for each relatively short predetermined output adjustment period such as 5 minutes, and the generated power of the combined heat and power supply device 7 is larger than the predetermined lower limit output Pmin by a predetermined upper limit. Within the output setting range up to the output Pmax, the output of the cogeneration apparatus 7 is determined so as to change along the power load continuously or stepwise.
The power load indicates the power consumption of the power consumption unit 4, and the power consumption of the electric heater 8 is subtracted from the total of the received power measured by the power meter 2 and the generated power measured by the inverter 6. It can be obtained as a value.

このような運転が行われることで、電力負荷に対して熱電併給装置7の発電電力は、例えば図2(a)に示すような状態で調整されることになる。
即ち、電力負荷が上限出力Pmax以上である場合には、熱電併給装置7の発電電力が上限出力Pmaxに設定され、電力負荷が上限出力Pmax未満且つ下限出力Pmin以上である場合には、熱電併給装置7の発電電力は電力負荷に追従する出力に設定され、電力負荷が下限出力Pmin未満である場合には、熱電併給装置7の発電電力が下限出力Pminに設定される。
また、電力負荷が下限出力Pmin未満であるときに熱電併給装置7の発電電力を下限出力Pminに設定したときには、電力負荷に対する熱電併給装置7の発電電力の余剰分である余剰電力が発生するが、この余剰電力は電気ヒータ8に供給されることで熱に変換され、その熱により貯湯槽10に貯留される温水が生成される。
By performing such an operation, the generated power of the combined heat and power supply device 7 is adjusted with respect to the power load in a state as shown in FIG. 2A, for example.
That is, when the power load is equal to or higher than the upper limit output Pmax, the generated power of the combined heat and power supply device 7 is set to the upper limit output Pmax, and when the power load is less than the upper limit output Pmax and equal to or higher than the lower limit output Pmin, The generated power of the device 7 is set to an output that follows the power load. When the power load is less than the lower limit output Pmin, the generated power of the combined heat and power supply device 7 is set to the lower limit output Pmin.
Further, when the electric power load is less than the lower limit output Pmin and the generated power of the combined heat and power supply device 7 is set to the lower limit output Pmin, surplus power that is a surplus of the generated power of the combined heat and power supply device 7 with respect to the electric power load is generated. The surplus power is converted into heat by being supplied to the electric heater 8, and hot water stored in the hot water storage tank 10 is generated by the heat.

更に、運転制御装置50は、熱電併給装置7を熱負荷に応じて起動及び停止を行って断続的に稼働させ、その稼働時に上述した運転制御を実行する。
即ち、運転制御装置50は、ある熱電併給装置7の運転パターンに対して、予測電力負荷及び予測熱負荷についてのエネルギの削減量である予測エネルギ削減量を演算可能に構成されており、その予測エネルギ削減量の演算方法について、説明を加える。尚、本願において、エネルギとは、電力負荷及び熱負荷を賄うのに必要な一次エネルギを示す。よって、商用電力系統1からの受電電力については、その受電電力を発生するのに消費した燃料消費量に相当する値が用いられ、熱電併給装置7の発電電力及び排熱については、その熱電併給装置7の燃料消費量に相当する値が用いられ、補助熱源機11の発生熱については、その補助熱源機11の燃料消費量に相当する値が用いられる。
Further, the operation control device 50 starts and stops the combined heat and power supply device 7 according to the heat load, operates intermittently, and executes the above-described operation control during the operation.
That is, the operation control device 50 is configured to be able to calculate a predicted energy reduction amount, which is a reduction amount of energy for the predicted power load and the predicted heat load, with respect to an operation pattern of a certain heat and power supply device 7. A description will be given of a method for calculating the amount of energy reduction. In addition, in this application, energy shows the primary energy required in order to cover an electric power load and a heat load. Therefore, as the received power from the commercial power system 1, a value corresponding to the fuel consumption consumed to generate the received power is used, and the generated power and exhaust heat of the combined heat and power supply device 7 are used in the combined heat and power supply. A value corresponding to the fuel consumption of the device 7 is used, and a value corresponding to the fuel consumption of the auxiliary heat source unit 11 is used for the heat generated by the auxiliary heat source unit 11.

運転制御装置50は、先ず、時系列的な過去の電力負荷及び熱負荷に基づいて、図3に示すような、午前0時の判定時点から24時間の判定対象期間の時系列的な予測電力負荷及び予測熱負荷を予測するように構成されている。   First, the operation control device 50, based on the time-series past power load and heat load, as shown in FIG. 3, the time-series predicted power of the determination target period of 24 hours from the determination time of midnight. It is configured to predict the load and the predicted heat load.

次に、運転制御装置50は、予め設定された仮運転パターンにおける稼動時間帯において熱電併給装置7を稼動させる形態で上記予測電力負荷に対して運転制御を実行すると仮定して、熱電併給装置7の時系列的な予測発電電力及び予測発生熱を演算する。   Next, it is assumed that the operation control device 50 executes the operation control on the predicted power load in a mode in which the combined heat and power supply device 7 is operated in the operation time zone in the preset temporary operation pattern. The time-series predicted generated power and predicted generated heat are calculated.

そして、運転制御装置50は、例えば下記の[数1]に示すように、熱電併給装置7を稼動させない場合のエネルギ消費量E1を基準に、熱電併給装置7を上記仮運転パターンで稼動させた場合のエネルギ消費量E2の削減量を、上記予測エネルギ削減量ΔEとして演算する。   Then, for example, as shown in [Equation 1] below, the operation control device 50 operates the combined heat and power supply device 7 with the above temporary operation pattern on the basis of the energy consumption E1 when the combined heat and power supply device 7 is not operated. In this case, the reduction amount of the energy consumption amount E2 is calculated as the predicted energy reduction amount ΔE.

[数1]
ΔE=E1−E2
ΔE:予測エネルギ削減量
E1:熱電併給装置7を稼動しない場合のエネルギ消費量
E2:熱電併給装置7を稼動した場合のエネルギ消費量
[Equation 1]
ΔE = E1-E2
ΔE: Predicted energy reduction amount E1: Energy consumption amount when the cogeneration device 7 is not operated E2: Energy consumption amount when the cogeneration device 7 is operated

また、時系列的な電力負荷及び時系列的な熱負荷は、運転制御装置50により以下に示すように管理される。
即ち、運転制御装置50は、例えば、熱負荷を給湯負荷と暖房負荷として、単位時間あたりの実電力負荷、実給湯負荷及び実暖房負荷の夫々を、電力計測器2の計測値及びインバータ6の出力値、電気ヒータ8の消費電力、給湯負荷計測器15及び暖房負荷計測器39の計測値を用いて演算する。
そして、運転制御装置50は、電力計測器2の計測値及びインバータ6の出力値、電気ヒータ8の消費電力、給湯負荷計測器15及び暖房負荷計測器39の計測値を用いて演算された値を記憶することにより、時系列的な電力負荷及び時系列的な熱負荷を1時間毎に管理するように構成されている。
また、運転制御装置50は、実際の使用状況に応じて時系列的な電力負荷及び時系列的な熱負荷を更新する場合には、電力計測器2の計測値及びインバータ6の出力値、電気ヒータ8の消費電力、給湯負荷計測器15及び暖房負荷計測器39の計測値を用いて演算された値と、既に記憶されている値とを所定の割合で足し合わせ、その足し合わせた値を記憶するように構成されている。
Further, the time-series power load and the time-series heat load are managed by the operation control device 50 as described below.
That is, the operation control device 50 uses, for example, the heat load as the hot water supply load and the heating load, the actual power load per unit time, the actual hot water load, and the actual heating load as the measured value of the power meter 2 and the inverter 6. Calculation is performed using the output values, the power consumption of the electric heater 8, and the measured values of the hot water supply load measuring device 15 and the heating load measuring device 39.
Then, the operation control device 50 is a value calculated using the measured value of the power meter 2, the output value of the inverter 6, the power consumption of the electric heater 8, the measured values of the hot water supply load meter 15 and the heating load meter 39. Is stored so that the time-series power load and the time-series heat load are managed every hour.
In addition, when the operation control device 50 updates the time-series power load and the time-series heat load according to the actual usage situation, the operation value of the power meter 2, the output value of the inverter 6, The power consumption of the heater 8, the value calculated using the measured values of the hot water supply load measuring device 15 and the heating load measuring device 39, and the already stored value are added together at a predetermined ratio, and the added value is obtained. It is configured to memorize.

そして、運転制御装置50は、午前0時の判定時点から24時間の判定対象期間において上述した予測エネルギ削減量ΔEが最大となるように、熱電併給装置7の稼動時間帯を設定する。
具体的に、24時間等の判定対象期間において熱電併給装置7の稼動時間帯が異なる複数の仮運転パターンの夫々についての予測エネルギ削減量ΔEを、判定対象期間における予測電力負荷と判定対象期間における予測熱負荷とに基づいて演算して、その予測エネルギ削減量ΔEが最大となるように、判定対象期間において熱電併給装置7の起動時間と停止時間を設定する。
即ち、運転制御装置50は、上記複数の仮運転パターンとしての、判定対象期間において熱電併給装置7の起動時間と停止時間との組み合わせが互いに異なる全ての仮運転パターンについて、その起動時間から停止時間までの稼動時間帯において熱電併給装置7に対して運転制御を実行することによる予測エネルギ削減量ΔEを、上述した[数1]等を用いて、演算する。
Then, the operation control device 50 sets the operation time zone of the combined heat and power supply device 7 so that the above-described predicted energy reduction amount ΔE becomes maximum in the determination target period of 24 hours from the determination time of midnight.
Specifically, the predicted energy reduction amount ΔE for each of a plurality of temporary operation patterns in which the operation time zone of the combined heat and power supply device 7 is different in the determination target period such as 24 hours is calculated based on the predicted power load in the determination target period and the determination target period. Calculation is made based on the predicted heat load, and the start time and stop time of the combined heat and power supply device 7 are set in the determination target period so that the predicted energy reduction amount ΔE is maximized.
In other words, the operation control device 50 determines from the start time to the stop time for all the temporary operation patterns in which the combination of the start time and the stop time of the cogeneration device 7 is different from each other in the determination target period as the plurality of temporary operation patterns. The predicted energy reduction amount ΔE by performing the operation control on the combined heat and power supply device 7 in the operation time period up to is calculated using the above-described [Equation 1] and the like.

そして、その複数の仮運転パターンのうち、上記のように求めた予測エネルギ削減量ΔEが最も優れた即ち最大である仮運転パターンを、その判定対象期間における正式な運転パターンとして決定し、その運転パターンで定義される運転時間帯で熱電併給装置7を運転するように、判定時間帯における熱電併給装置7の起動時間と停止時間とを設定する。   Then, among the plurality of temporary operation patterns, the temporary operation pattern having the best predicted energy reduction amount ΔE obtained as described above, that is, the maximum is determined as the formal operation pattern in the determination target period, and the operation is performed. The start time and the stop time of the cogeneration device 7 in the determination time zone are set so that the cogeneration device 7 is operated in the operation time zone defined by the pattern.

尚、予測エネルギ削減量ΔEが最大となるように判定対象期間において熱電併給装置7の起動時間と停止時間を設定するのではなく、例えば、熱電併給装置7の発生熱により熱負荷の全てを賄うように熱電併給装置7の起動時間と停止時間とを設定するように構成する、又は、一定の出力調整周期毎に、予測エネルギ削減量ΔEを再計算して、熱電併給装置7を起動するか停止するかを判定するように構成しても構わない。
尚、上記実施形態では、出力調整周期を5分、判定対象時間帯を24時間とした例を示したが、それらをどのように設定するかについては適宜変更が可能である。
In addition, instead of setting the start time and the stop time of the combined heat and power supply device 7 in the determination target period so that the predicted energy reduction amount ΔE is maximized, for example, the heat generated by the combined heat and power supply device 7 covers all of the heat load. Whether the start time and the stop time of the combined heat and power supply device 7 are set as described above, or the predicted energy reduction amount ΔE is recalculated and the combined heat and power supply device 7 is started every fixed output adjustment period. You may comprise so that it may determine whether to stop.
In the above-described embodiment, an example in which the output adjustment period is 5 minutes and the determination target time zone is 24 hours is shown, but how to set them can be changed as appropriate.

更に、熱電併給装置7は、図2に示すように、熱電併給装置7の出力設定範囲の下限出力Pminを熱電併給装置7の運転が継続できる範囲内において低下側下限出力L1とそれよりも大きい上昇側下限出力L2との間で変更可能に構成されている。尚、熱電併給装置7の出力設定範囲の上限出力Pmaxは、熱電併給装置7の定格出力Hに固定する。
そして、運転制御装置50は、熱電併給装置7の想定外の寿命短縮を抑制するべく、出力設定範囲の下限出力Pminを変更することで、熱電併給装置7の1年間の積算運転時間などの運転頻度を調整する運転頻度調整処理を実行する。
即ち、図2(a)の状態から図2(b)の状態に変移させる形態で、熱電併給装置7の下限出力Pminを上昇側下限出力L2に上昇させると、電力負荷に追従して変化する熱電併給装置7の出力が比較的高めの出力設定範囲内で推移することになって、熱電併給装置7の排熱が増加する。
更に、下限出力Pminを上昇させると、電力負荷が低下側下限出力L1以上であっても上昇側下限出力L2未満であることで、積極的に余剰電力が発生することになり、その余剰電力が供給される電気ヒータ8の発生熱量が増加する。
従って、下限出力Pminを上昇させると、熱電併給装置7の排熱で賄う熱負荷の程度が小さくなり、結果、その熱負荷に応じて起動時間と停止時間とが設定される形態で稼働する熱電併給装置7の積算運転時間が短縮されて、熱電併給装置7がどの程度の頻度で運転されるかを示す将来の運転頻度が減少側に調整されることになる。
そして、熱電併給装置7の将来の運転頻度を減少側に調整すれば、当該運転頻度の想定を超える増加による熱電併給装置7の寿命の短縮が抑制されることになる。
Further, as shown in FIG. 2, the combined heat and power device 7 has a lower limit output Pmin of the output setting range of the combined heat and power device 7 within the range in which the operation of the combined heat and power device 7 can be continued, and is larger than the lower limit output L1. It is configured to be changeable with the ascending side lower limit output L2. The upper limit output Pmax of the output setting range of the combined heat and power device 7 is fixed to the rated output H of the combined heat and power device 7.
Then, the operation control device 50 changes the lower limit output Pmin of the output setting range in order to suppress the unexpected shortening of the life of the combined heat and power supply device 7, thereby operating the combined heat and power supply device 7 such as the accumulated operation time for one year. An operation frequency adjustment process for adjusting the frequency is executed.
That is, when the lower limit output Pmin of the combined heat and power supply device 7 is increased to the rising side lower limit output L2 in the form of transition from the state of FIG. 2 (a) to the state of FIG. 2 (b), it changes following the power load. Since the output of the combined heat and power device 7 changes within a relatively high output setting range, the exhaust heat of the combined heat and power device 7 increases.
Furthermore, when the lower limit output Pmin is increased, even if the power load is equal to or higher than the lower limit lower limit output L1, the surplus power is positively generated because the power load is less than the upper limit lower limit output L2. The amount of heat generated by the supplied electric heater 8 increases.
Therefore, when the lower limit output Pmin is increased, the degree of the thermal load that is covered by the exhaust heat of the combined heat and power supply device 7 is reduced, and as a result, the thermoelectric that operates in a form in which the start time and the stop time are set according to the thermal load. The accumulated operation time of the cogeneration device 7 is shortened, and the future operation frequency indicating how often the cogeneration device 7 is operated is adjusted to the decreasing side.
And if the future operation frequency of the combined heat and power supply device 7 is adjusted to the decreasing side, the shortening of the life of the combined heat and power supply device 7 due to the increase exceeding the assumed operation frequency is suppressed.

更に、運転制御装置50は、熱電併給装置7の運転頻度を予測する運転頻度予測処理を実行する。
具体的には、運転制御装置50は、例えば標準的な家族構成の家族が居住する住居にかかるコージェネレーションシステムを設置した場合に、そのコージェネレーションシステムの熱電併給装置7の単位期間としての1年間の積算運転時間を標準的な運転頻度として予め記憶している。
そして、運転制御装置50は、運転頻度予測処理において、実際にコージェネレーションシステムを設置する住居における実際の家族構成を示す大人の人数や子供の人数などの家族構成情報についての入力を、利用者により受け付ける。
このことにより、運転制御装置50は、標準的な家族構成に対する実際の家族構成の乖離状態を認識し、その実際の家族構成に基づいて、熱電併給装置7の運転頻度が標準的な運転頻度に対してどの程度増減するかを判断して、その判断結果に基づいて標準的な運転頻度を補正する形態で、熱電併給装置7の将来の運転頻度を予測する。
また、運転制御装置50は、コージェネレーションシステムを設置して1年が経過した後には、その時点までの過去の1年間において実際に計測した熱電併給装置7の積算運転時間により、この予測した将来の運転頻度を適宜補正することができる。
Further, the operation control device 50 executes an operation frequency prediction process for predicting the operation frequency of the combined heat and power supply device 7.
Specifically, for example, when the operation control device 50 is installed with a cogeneration system for a residence in which a family having a standard family structure resides, it is one year as a unit period of the cogeneration system 7 of the cogeneration system. The accumulated operation time is stored in advance as a standard operation frequency.
Then, in the driving frequency prediction process, the operation control device 50 receives input about family configuration information such as the number of adults and the number of children indicating the actual family configuration in the residence where the cogeneration system is actually installed by the user. Accept.
As a result, the operation control device 50 recognizes the deviation state of the actual family structure from the standard family structure, and based on the actual family structure, the operation frequency of the combined heat and power supply device 7 is changed to the standard operation frequency. On the other hand, the degree of increase / decrease is determined, and the future operation frequency of the combined heat and power unit 7 is predicted in a form in which the standard operation frequency is corrected based on the determination result.
In addition, after one year has passed since the operation control device 50 was installed, the predicted future based on the accumulated operation time of the combined heat and power supply device 7 actually measured in the past year up to that point. The operation frequency can be corrected as appropriate.

更に、運転制御装置50は、運転頻度調整処理において、上記運転頻度予測処理で予測した実際の運転頻度と、上記標準的な運転頻度等として設定された目標運転頻度とを比較し、それらの乖離状態に基づいて、出力設定範囲の下限出力Pminを調整することで、実際の運転頻度を目標運転頻度に近づけて、熱電併給装置7の寿命を想定したものに近づけることができる。   Furthermore, the operation control device 50 compares the actual operation frequency predicted in the operation frequency prediction process with the target operation frequency set as the standard operation frequency in the operation frequency adjustment process, By adjusting the lower limit output Pmin of the output setting range based on the state, the actual operation frequency can be brought close to the target operation frequency, and the life of the combined heat and power supply device 7 can be brought close to that assumed.

〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限らず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.

(1)
上記実施形態では、運転制御装置50は、運転頻度調整処理において、熱電併給装置7の出力設定範囲の下限出力Pminを、図2に示すように、低下側下限出力L1と上昇側下限出力L2との間で変更することで、熱電併給装置7の運転頻度を調整したが、図4及び図5に示すように、別の形態で熱電併給装置7の出力設定範囲の限界出力を変更することで、熱電併給装置7の運転頻度を調整するように構成しても構わない。
(1)
In the above-described embodiment, the operation control device 50 sets the lower limit output Pmin of the output setting range of the combined heat and power supply device 7 to the decrease-side lower limit output L1 and the increase-side lower limit output L2, as shown in FIG. However, as shown in FIGS. 4 and 5, the limit output of the output setting range of the combined heat and power unit 7 can be changed in another form as shown in FIGS. 4 and 5. The operation frequency of the combined heat and power supply device 7 may be adjusted.

即ち、図4に示す別実施形態では、熱電併給装置7を定格出力Hとそれよりも小さい部分出力Lまでの範囲内で出力変更可能に構成した場合に、運転頻度調整処理において、出力設定範囲の限界出力を変更するにあたり、定格出力Hから部分出力Lまでの範囲を出力設定範囲とする状態(図4(a)の状態)と、定格出力Hのみを出力設定範囲とする状態(図4(b)の状態)とを切り替える。
即ち、図4(a)の状態から図4(b)の状態に変移させることで、熱電併給装置7の下限出力Pminが、部分出力Lから定格出力Hに上昇することになる。
よって、上記実施形態と同様に、熱電併給装置7の下限出力Pminを定格出力Hまで上昇させると、熱電併給装置7の排熱が一層増加すると共に、余剰電力が供給される電気ヒータ8の発生熱量が一層増加することになり、結果、熱電併給装置7の運転頻度が一層減少側に調整されることになる。
That is, in another embodiment shown in FIG. 4, when the cogeneration device 7 is configured to be able to change the output within the range up to the rated output H and a partial output L smaller than the rated output H, in the operation frequency adjustment process, the output setting range When changing the limit output, the state where the range from the rated output H to the partial output L is set as the output setting range (the state of FIG. 4A), and the state where only the rated output H is set as the output setting range (FIG. 4). (B) state).
That is, the lower limit output Pmin of the combined heat and power unit 7 increases from the partial output L to the rated output H by changing the state of FIG. 4A to the state of FIG.
Therefore, as in the above embodiment, when the lower limit output Pmin of the combined heat and power supply device 7 is increased to the rated output H, the exhaust heat of the combined heat and power supply device 7 is further increased and the generation of the electric heater 8 to which surplus power is supplied is generated. The amount of heat is further increased, and as a result, the operation frequency of the combined heat and power supply device 7 is further adjusted to the decreasing side.

また、図5に示す別実施形態では、熱電併給装置7の出力設定範囲の上限出力Pmaxを熱電併給装置7の運転が継続できる範囲内において低下側上限出力H1とそれよりも大きい上昇側上限出力H2との間で変更可能に構成されている。尚、熱電併給装置7の出力設定範囲の下限出力Pminは、熱電併給装置7の部分出力Lに固定する。
即ち、図5(a)の状態から図5(b)の状態に変移させることで、熱電併給装置7の上限出力Pmaxが、低下側上限出力H1から上昇側上限出力H2に上昇することになる。
そして、熱電併給装置7の上限出力Pmaxを上昇させると、余剰電力の増減は発生しないが、上記実施形態と同様に、電力負荷に追従して変化する熱電併給装置7の出力が比較的高めの出力設定範囲内で推移することになって、熱電併給装置7の排熱が増加する。よって、熱電併給装置7の運転頻度が減少側に調整されることになる。
Further, in another embodiment shown in FIG. 5, the upper limit output Pmax of the output setting range of the combined heat and power supply device 7 is within the range in which the operation of the combined heat and power supply device 7 can be continued, and the reduced upper limit output H1 and the higher increased upper limit output. It can be changed with H2. The lower limit output Pmin of the output setting range of the combined heat and power device 7 is fixed to the partial output L of the combined heat and power device 7.
That is, by changing from the state of FIG. 5A to the state of FIG. 5B, the upper limit output Pmax of the combined heat and power supply device 7 increases from the lower-side upper limit output H1 to the higher-side upper limit output H2. .
When the upper limit output Pmax of the combined heat and power device 7 is increased, the surplus power does not increase or decrease, but the output of the combined heat and power device 7 that changes following the power load is relatively high as in the above embodiment. It will change within the output setting range, and the exhaust heat of the combined heat and power supply device 7 will increase. Therefore, the operation frequency of the combined heat and power supply device 7 is adjusted to the decreasing side.

(2)
上記実施形態では、熱電併給装置7をエンジン駆動式発電機として構成したが、燃料電池やその他熱と電力とを併せて発生する別の形式の熱電併給装置を設けても構わない。
(2)
In the said embodiment, although the cogeneration apparatus 7 was comprised as an engine drive type generator, you may provide the other type cogeneration apparatus which produces | generates a fuel cell and other heat and electric power together.

(3)
上記実施形態では、暖房端末38を設けて、熱負荷を給湯負荷と暖房負荷としたコージェネレーションシステムを例示したが、暖房端末38を設けずに、給湯負荷のみを熱負荷とするコージェネレーションシステムとしてもよい。
(3)
In the above embodiment, the heating terminal 38 is provided, and the cogeneration system in which the heat load is the hot water supply load and the heating load is illustrated. However, as the cogeneration system in which only the hot water supply load is the heat load without providing the heating terminal 38, Also good.

(4)
上記実施形態では、電気ヒータ8が熱電併給装置7の冷却水を加熱するように構成されているが、電気ヒータ8を省略したり、電気ヒータ8にて貯湯槽10内の湯水を加熱するように構成しても構わない。また、電気ヒータ8に代えて、ヒートポンプなど別の湯水加熱装置を設けても構わない。
(4)
In the said embodiment, although the electric heater 8 is comprised so that the cooling water of the cogeneration apparatus 7 may be heated, the electric heater 8 may be abbreviate | omitted or the hot water in the hot water storage tank 10 may be heated with the electric heater 8. You may comprise. Further, in place of the electric heater 8, another hot water heater such as a heat pump may be provided.

(5)
熱電併給装置7の定格出力Hから部分出力Lまでの範囲を出力設定範囲とする状態と、定格出力Hのみを出力設定範囲とする状態とを切り替えるように構成した図4の実施形態では、熱電併給装置7の定格出力Hを定格入力とする電気ヒータ8が必要であったが、より小さな定格入力の電気ヒータ8を使用するため、図6に示すように、熱電併給装置7の発電電力を制御しても構わない。
即ち、図6に示す別実施形態では、まず、電気ヒータ8の定格入力と等しい電力負荷となる部分負荷値Lと、熱電併給装置7の定格出力Hと等しい電力負荷となる定格負荷値Hを設定する。
そして、図6(a)に示すように、熱電併給装置7の運転頻度を増加側に調整する場合、つまり、熱電併給装置7の下限出力Pminを低下させる場合には、電力負荷が零値以上で部分負荷値L未満の範囲では熱電併給装置7の発電電力を下限出力Pminとしての電気ヒータ8の定格入力と等しくなるように制御し、電力負荷が部分負荷値L以上で定格負荷値H未満の範囲では熱電併給装置7の発電電力を電力負荷と等しくなるように制御し、電力負荷が定格負荷値H以上の範囲では、熱電併給装置7の発電電力を上限出力Pmaxとしての定格出力Hと等しくなるように制御する。このように下限出力Pminを低下させる場合、下限出力Pminとしての電気ヒータ8の定格入力から上限出力Pmaxとしての熱電併給装置7の定格出力Hまでの発電電力の範囲が出力設定範囲となる。
一方、図6(b)に示すように、熱電併給装置7の運転頻度を減少側に調整する場合、つまり、熱電併給装置7の下限出力Pminを定格出力Hにまで上昇させる場合には、電力負荷が零値以上で定格負荷値Hと部分負荷値Lとの差分値(H−L)未満の範囲では、熱電併給装置7の発電電力の余剰電力を電気ヒータ8の定格入力と等しくなるように制御し、電力負荷が定格負荷値Hと部分負荷値Lとの差分値(H−L)以上の範囲では、熱電併給装置7の発電電力を熱電併給装置7の定格出力Hと等しくなるように制御する。
このように、下限出力Pminを上昇させる場合には、電力負荷が、零値から定格負荷値Hまでの範囲内全体ではなく、差分値(H−L)から定格負荷値Hまでの一部の範囲内において、熱電併給装置7の下限出力Pminを定格出力Hに設定して、熱電併給装置7の定格出力Hのみが出力設定範囲となる。
これにより、電気ヒータ8の定格入力が熱電併給装置7の定格出力H未満とされる比較的小さな容量の電気ヒータ8を使用することができるので、装置コストを安価にすることができる。また、熱電併給装置7の運転頻度を減少側に調整する場合では、電力負荷が零値以上で定格負荷値Hと部分負荷値Lとの差分値(H−L)未満の範囲において、電気ヒータ8を定格入力において運転するので、電気ヒータ8の加熱性能を無駄なく発揮することができる。
(5)
In the embodiment of FIG. 4 configured to switch between a state in which the range from the rated output H to the partial output L of the cogeneration device 7 is an output setting range and a state in which only the rated output H is an output setting range, Although the electric heater 8 which uses the rated output H of the co-feeder 7 as the rated input is required, the electric power generated by the cogeneration device 7 is reduced as shown in FIG. You may control.
That is, in another embodiment shown in FIG. 6, first, a partial load value L that becomes a power load equal to the rated input of the electric heater 8 and a rated load value H that becomes a power load equal to the rated output H of the combined heat and power supply device 7 are obtained. Set.
And as shown to Fig.6 (a), when adjusting the operation frequency of the cogeneration apparatus 7 to the increase side, ie, when lowering the minimum output Pmin of the cogeneration apparatus 7, electric power load is zero value or more. In the range below the partial load value L, the generated power of the cogeneration device 7 is controlled to be equal to the rated input of the electric heater 8 as the lower limit output Pmin, and the power load is equal to or greater than the partial load value L and less than the rated load value H. In this range, the generated power of the combined heat and power unit 7 is controlled to be equal to the power load. In the range where the power load is equal to or higher than the rated load value H, the generated power of the combined heat and power unit 7 is set to the rated output H as the upper limit output Pmax. Control to be equal. Thus, when lowering the lower limit output Pmin, the range of the generated power from the rated input of the electric heater 8 as the lower limit output Pmin to the rated output H of the cogeneration device 7 as the upper limit output Pmax becomes the output setting range.
On the other hand, as shown in FIG. 6B, when adjusting the operation frequency of the combined heat and power device 7 to the decreasing side, that is, when raising the lower limit output Pmin of the combined heat and power device 7 to the rated output H, the power In the range where the load is equal to or greater than zero and less than the difference value (HL) between the rated load value H and the partial load value L, the surplus power of the generated power of the combined heat and power supply device 7 is made equal to the rated input of the electric heater 8. In the range where the power load is not less than the difference value (HL) between the rated load value H and the partial load value L, the generated power of the combined heat and power supply device 7 is made equal to the rated output H of the combined heat and power supply device 7. To control.
As described above, when the lower limit output Pmin is increased, the power load is not the entire range from the zero value to the rated load value H, but a part from the difference value (HL) to the rated load value H. Within the range, the lower limit output Pmin of the combined heat and power supply device 7 is set to the rated output H, and only the rated output H of the combined heat and power supply device 7 becomes the output setting range.
As a result, it is possible to use the electric heater 8 having a relatively small capacity in which the rated input of the electric heater 8 is less than the rated output H of the combined heat and power supply device 7, so that the device cost can be reduced. Further, in the case of adjusting the operation frequency of the combined heat and power supply device 7 to the decreasing side, the electric heater is in a range where the power load is equal to or greater than zero and less than the difference value (HL) between the rated load value H and the partial load value L. Since 8 is operated at the rated input, the heating performance of the electric heater 8 can be exhibited without waste.

(6)
上記実施形態では、熱電併給装置7の発電電力を電力負荷に追従させるにあたり、発電電力と電力負荷とを合致させるように構成したが、例えば図7に示すように、発電電力を電力負荷よりも若干高めに構成したり、その差を電力負荷によって漸次変化させるなどのように、発電電力と電力負荷とを完全に合致させなくても構わない。
(6)
In the embodiment described above, the generated power of the combined heat and power supply device 7 is configured to match the power load when following the power load. For example, as shown in FIG. It is not necessary to make the generated power and the power load completely coincide with each other, for example, the configuration is slightly higher, or the difference is gradually changed depending on the power load.

本発明は、熱と電力とを併せて発生する熱電併給装置と、
前記熱電併給装置の排熱により生成した温水を貯留する貯湯槽と、
熱負荷に応じて前記熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、前記熱電併給装置の運転を制御する運転制御手段とを備えたコージェネレーションシステムとして好適に利用可能である。
The present invention is a combined heat and power device that generates heat and power together,
A hot water storage tank for storing hot water generated by exhaust heat of the cogeneration device;
Operation control for controlling the operation of the cogeneration device in a form in which the cogeneration device is operated according to the heat load and the output during operation of the cogeneration device is made to follow the power load within a predetermined output setting range. Can be suitably used as a cogeneration system provided with a means.

7 :熱電併給装置
8 :電気ヒータ
10 :貯湯槽
50 :運転制御装置(運転制御手段)
H :定格出力
L :部分出力
Pmax :上限出力
Pmin :下限出力
7: Combined heat and power supply device 8: Electric heater 10: Hot water storage tank 50: Operation control device (operation control means)
H: Rated output L: Partial output Pmax: Upper limit output Pmin: Lower limit output

Claims (7)

熱と電力とを併せて発生する熱電併給装置と、
前記熱電併給装置の排熱により生成した温水を貯留する貯湯槽と、
熱負荷に応じて前記熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、前記熱電併給装置の運転を制御する運転制御手段とを備えたコージェネレーションシステムであって、
前記運転制御手段が、前記出力設定範囲の上限出力及び下限出力の少なくとも一方の限界出力を変更することで、前記熱電併給装置の運転頻度を調整する運転頻度調整処理を実行すると共に、
当該運転頻度調整処理において、前記熱電併給装置の運転頻度の所定の目標運転頻度に対する乖離状態に基づき、前記熱電併給装置の運転頻度を減少側に調整する場合には前記出力設定範囲の限界出力を上昇させ、前記熱電併給装置の運転頻度を増加側に調整する場合には前記出力設定範囲の限界出力を低下させるコージェネレーションシステム。
A combined heat and power device that generates heat and electricity together;
A hot water storage tank for storing hot water generated by exhaust heat of the cogeneration device;
Operation control for controlling the operation of the cogeneration device in a form in which the cogeneration device is operated according to the heat load and the output during operation of the cogeneration device is made to follow the power load within a predetermined output setting range. A cogeneration system comprising means,
The operation control means performs an operation frequency adjustment process for adjusting the operation frequency of the cogeneration device by changing at least one of the upper limit output and the lower limit output of the output setting range, and
In the operation frequency adjustment process, when adjusting the operation frequency of the combined heat and power device to the decreasing side based on a deviation state of the operation frequency of the combined heat and power device with respect to a predetermined target operation frequency , the limit output of the output setting range is set. A cogeneration system that raises and reduces the limit output of the output setting range when adjusting the operation frequency of the combined heat and power supply device to the increase side.
電力負荷に対する前記熱電併給装置の発電電力の余剰分である余剰電力により前記貯湯槽に貯留される温水を生成する電気ヒータを備え、
前記運転制御手段が、前記運転頻度調整処理において、前記出力設定範囲の下限出力を前記限界出力として変更する請求項1に記載のコージェネレーションシステム。
An electric heater that generates hot water stored in the hot water storage tank by surplus power that is surplus power generated by the combined heat and power supply device with respect to an electric power load;
The cogeneration system according to claim 1, wherein the operation control means changes a lower limit output of the output setting range as the limit output in the operation frequency adjustment process.
前記運転制御手段が、前記運転頻度調整処理において、前記出力設定範囲の限界出力を変更するにあたり、所定の定格出力から当該定格出力よりも小さい部分出力までの範囲を前記出力設定範囲とする状態と、前記定格出力のみを前記出力設定範囲とする状態とを切り替える請求項2に記載のコージェネレーションシステム。   In the operation frequency adjustment process, when the operation control means changes the limit output of the output setting range, a state from a predetermined rated output to a partial output smaller than the rated output is set as the output setting range; The cogeneration system according to claim 2, wherein a state where only the rated output is within the output setting range is switched. 前記電気ヒータの定格入力が前記熱電併給装置の定格出力未満であり、
前記運転制御手段が、前記運転頻度調整処理において、
前記熱電併給装置の運転頻度を増加側に調整する場合には、
前記電力負荷が零値以上で、前記電気ヒータの定格入力と等しい電力負荷となる部分負荷値未満の範囲では前記発電電力を前記電気ヒータの定格入力と等しくなるように、
前記電力負荷が前記部分負荷値以上で、前記熱電併給装置の定格出力と等しい電力負荷となる定格負荷値未満の範囲では前記発電電力を当該電力負荷と等しくなるように、
前記電力負荷が前記定格負荷値以上の範囲では前記発電電力を前記熱電併給装置の定格出力と等しくなるように、それぞれ制御し、
前記熱電併給装置の運転頻度を減少側に調整する場合には、
前記電力負荷が零値以上で前記定格負荷値と前記部分負荷値との差分値未満の範囲では前記発電電力を当該発電電力の余剰電力が前記電気ヒータの定格入力と等しくなるように、
前記電力負荷が前記定格負荷値と前記部分負荷値との差分値以上の範囲では前記発電電力を前記熱電併給装置の定格出力と等しくなるように、それぞれ制御する請求項3に記載のコージェネレーションシステム。
The rated input of the electric heater is less than the rated output of the combined heat and power device,
Said operation control means, Te the operation frequency adjustment process smell,
When adjusting the operation frequency of the combined heat and power unit to the increase side,
In the range where the power load is equal to or greater than zero and less than the partial load value at which the power load is equal to the rated input of the electric heater , the generated power is equal to the rated input of the electric heater.
In the range where the power load is equal to or greater than the partial load value and less than the rated load value at which the power load is equal to the rated output of the combined heat and power device , the generated power is equal to the power load.
In the range where the power load is equal to or higher than the rated load value , the generated power is controlled to be equal to the rated output of the combined heat and power device, respectively.
When adjusting the operation frequency of the combined heat and power unit to the decreasing side,
Wherein the power load is zero or more values, in the range of less than the difference value between the partial load value and the rated load value, the generated power as surplus power of the generated power is equal to the rated input of the electric heater,
The cogeneration according to claim 3 , wherein the generated power is controlled so as to be equal to a rated output of the combined heat and power device in a range where the power load is equal to or greater than a difference value between the rated load value and the partial load value. system.
前記運転制御手段が、前記熱電併給装置の運転頻度を予測する運転頻度予測処理を実行すると共に、前記熱電併給装置の運転頻度は、前記運転頻度予測処理で予測した運転頻度である請求項1〜4の何れか1項に記載のコージェネレーションシステム。 Said operation control means, and executes the operation frequency prediction process of predicting the operating frequency of the cogeneration system, the operating frequency of the cogeneration system, according to claim 1 is an operating frequency predicted by the operating frequency prediction process 5. The cogeneration system according to any one of 4 above. 前記運転制御手段が、前記運転頻度予測処理において、予め記憶されている標準的な運転頻度を、利用者により入力された家族構成情報に基づいて補正する形態で、前記運転頻度を予測する請求項5に記載のコージェネレーションシステム。   The operation control means predicts the operation frequency in a form in which the operation frequency prediction process corrects a standard operation frequency stored in advance based on family configuration information input by a user. 5. The cogeneration system according to 5. 熱と電力とを併せて発生する熱電併給装置と、
前記熱電併給装置が発生した熱により加熱された温水を貯留する貯湯槽と、
熱負荷に応じて前記熱電併給装置を稼働させると共に、当該熱電併給装置の稼働時における出力を所定の出力設定範囲内で電力負荷に追従させる形態で、前記熱電併給装置の運転を制御するコージェネレーションシステムの運転制御方法であって、
前記出力設定範囲の上限出力及び下限出力の少なくとも一方の限界出力を変更することで、前記熱電併給装置の運転頻度を調整する運転頻度調整処理を実行すると共に、
当該運転頻度調整処理において、前記熱電併給装置の運転頻度の所定の目標運転頻度に対する乖離状態に基づき、前記熱電併給装置の運転頻度を減少側に調整する場合には前記出力設定範囲の限界出力を上昇させ、前記熱電併給装置の運転頻度を増加側に調整する場合には前記出力設定範囲の限界出力を低下させるコージェネレーションシステムの運転制御方法。
A combined heat and power device that generates heat and electricity together;
A hot water storage tank for storing hot water heated by the heat generated by the cogeneration apparatus;
Cogeneration that controls the operation of the cogeneration device in a form that causes the cogeneration device to operate according to the heat load and causes the output during operation of the cogeneration device to follow the power load within a predetermined output setting range A system operation control method comprising:
By changing the limit output of at least one of the upper limit output and the lower limit output of the output setting range, and performing an operation frequency adjustment process for adjusting the operation frequency of the cogeneration device,
In the operation frequency adjustment process, when adjusting the operation frequency of the combined heat and power device to the decreasing side based on a deviation state of the operation frequency of the combined heat and power device with respect to a predetermined target operation frequency , the limit output of the output setting range is set. An operation control method for a cogeneration system in which the limit output of the output setting range is reduced when the operation frequency of the combined heat and power supply device is adjusted to be increased.
JP2014119759A 2013-08-27 2014-06-10 Cogeneration system and operation control method thereof Expired - Fee Related JP6305227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119759A JP6305227B2 (en) 2013-08-27 2014-06-10 Cogeneration system and operation control method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013175893 2013-08-27
JP2013175893 2013-08-27
JP2014119759A JP6305227B2 (en) 2013-08-27 2014-06-10 Cogeneration system and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2015063989A JP2015063989A (en) 2015-04-09
JP6305227B2 true JP6305227B2 (en) 2018-04-04

Family

ID=52832062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119759A Expired - Fee Related JP6305227B2 (en) 2013-08-27 2014-06-10 Cogeneration system and operation control method thereof

Country Status (1)

Country Link
JP (1) JP6305227B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814104A (en) * 1994-06-27 1996-01-16 Tokyo Gas Co Ltd Cogeneration system
JP2000045869A (en) * 1998-07-29 2000-02-15 Hitachi Ltd Energy supply system
JP4030446B2 (en) * 2003-03-06 2008-01-09 大阪瓦斯株式会社 Cogeneration system
JP4465168B2 (en) * 2003-03-06 2010-05-19 大阪瓦斯株式会社 Cogeneration system
JP4912837B2 (en) * 2006-11-02 2012-04-11 大阪瓦斯株式会社 Cogeneration system

Also Published As

Publication number Publication date
JP2015063989A (en) 2015-04-09

Similar Documents

Publication Publication Date Title
JP4465168B2 (en) Cogeneration system
JP5048820B2 (en) Cogeneration system
JP2004271006A (en) Co-generation system
JP4897855B2 (en) Cogeneration system
JP4330542B2 (en) Cogeneration system
JP6305227B2 (en) Cogeneration system and operation control method thereof
JP4889214B2 (en) Cogeneration system
JP4672046B2 (en) Water heater
JP4180042B2 (en) Cogeneration system
JP4036774B2 (en) Cogeneration system
JP4549308B2 (en) Cogeneration system
JP2004297905A (en) Cogeneration system and operation method therefor
JP4359248B2 (en) Cogeneration system
JP6899682B2 (en) Hot water supply system
JP4148885B2 (en) Water heater
JP2004093101A (en) Cogeneration system
JP4180041B2 (en) Cogeneration system
JP2006125702A (en) Cogeneration system
JP4838617B2 (en) Cogeneration system
JP2004296267A (en) Cogeneration system and its operation method
JP5044708B2 (en) Cogeneration system
JP2011163709A (en) Cogeneration system
JP2009236411A (en) Cogeneration system
JP2009243851A (en) Cogeneration system
JP6522948B2 (en) Hot water storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R150 Certificate of patent or registration of utility model

Ref document number: 6305227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees