JP2009236411A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2009236411A
JP2009236411A JP2008083810A JP2008083810A JP2009236411A JP 2009236411 A JP2009236411 A JP 2009236411A JP 2008083810 A JP2008083810 A JP 2008083810A JP 2008083810 A JP2008083810 A JP 2008083810A JP 2009236411 A JP2009236411 A JP 2009236411A
Authority
JP
Japan
Prior art keywords
operation mode
predicted
heat
predicted energy
energy consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008083810A
Other languages
Japanese (ja)
Other versions
JP5143603B2 (en
Inventor
Yukitsugu Masumoto
幸嗣 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2008083810A priority Critical patent/JP5143603B2/en
Publication of JP2009236411A publication Critical patent/JP2009236411A/en
Application granted granted Critical
Publication of JP5143603B2 publication Critical patent/JP5143603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system improving durability and capable of reducing a carbon dioxide generation amount. <P>SOLUTION: The cogeneration system is composed such that in an operation control means, at periodic operation form selecting timing, an operation form selecting process is executed determining an operation form of a cogeneration device 1 in any one of a continuous operation form, an intermittent operation form, or a standby form on the basis of a predicted energy consumption during continuous operation, a predicted energy consumption during intermittent operation, and an operation form selecting condition determined on the basis of predicted load power in time sequence and heating efficiency of an auxiliary heating means 28. The operation control means is composed to determine the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation as the heating efficiency of the auxiliary heating means 28 by using heating efficiency for operation form selection determined at a value lower than heating efficiency a latent heat recovery type auxiliary heating means 28 in the operation form selecting process. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力と熱とを併せて発生する熱電併給装置と、燃焼式で潜熱回収型の補助加熱手段と、運転を制御する運転制御手段とが設けられ、
その運転制御手段が、周期的な運転形態選定タイミングにおいて、時系列的な予測負荷電力及び時系列的な予測負荷熱量並びに前記補助加熱手段の発熱効率に基づいて、前記熱電併給装置を連続運転すると仮定したときの連続運転時の予測エネルギ消費量、及び、前記熱電併給装置を断続運転すると仮定したときの断続運転時の予測エネルギ消費量を求めて、その求めた連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量並びに運転形態選定条件に基づいて、前記熱電併給装置の運転形態を連続運転形態、断続運転形態及び前記熱電併給装置を停止させて運転を待機させる待機形態のいずれかに定める運転形態選定処理を実行するように構成されたコージェネレーションシステムに関する。
The present invention is provided with a combined heat and power device that generates both electric power and heat, a combustion type latent heat recovery type auxiliary heating means, and an operation control means for controlling operation,
When the operation control means continuously operates the cogeneration device based on the time-series predicted load power, the time-series predicted load heat amount, and the heat generation efficiency of the auxiliary heating means at the periodic operation mode selection timing. The predicted energy consumption during continuous operation when it is assumed and the predicted energy consumption during intermittent operation when it is assumed that the combined heat and power supply device is intermittently operated are obtained. Based on the predicted energy consumption at the time of intermittent operation and the operation mode selection condition, any of the operation mode of the combined heat and power supply device is a continuous operation mode, the intermittent operation mode or the standby mode in which the combined heat and power supply device is stopped and waits for the operation. The present invention relates to a cogeneration system configured to execute an operation mode selection process defined in the above.

かかるコージェネレーションシステムは、一般家庭等に設置して、熱電併給装置の発電電力を電気機器等にて消費し、熱電併給装置から発生する熱を貯湯槽に貯湯するために消費したり、暖房端末にて暖房対象空間を暖房するために消費するものであり、貯湯槽に貯湯される湯水は台所や風呂等の給湯先に給湯されることになる。
又、給湯先の給湯負荷熱量を貯湯槽の湯水では賄えない分や、暖房対象空間の暖房負荷熱量を暖房端末に供給される熱電併給装置の発生熱では賄えない分が燃焼式の補助加熱手段にて補われることになる。
Such a cogeneration system is installed in a general household, consumes the generated power of the combined heat and power device in an electrical device, etc., and consumes the heat generated from the combined heat and power supply device in a hot water storage tank, or a heating terminal The hot water stored in the hot water tank is supplied to a hot water supply destination such as a kitchen or a bath.
In addition, the amount of heat supplied by the hot water supply destination cannot be covered by the hot water in the hot water storage tank, and the amount of heat generated by the combined heat and power supply device that supplies the heating load in the space to be heated to the heating terminal cannot be covered by the combustion type auxiliary. It will be supplemented by heating means.

そして、周期的な運転形態選定タイミングにおいて運転形態選定処理が実行され、その運転形態選定処理では、時系列的な予測負荷電力及び時系列的な予測負荷熱量並びに補助加熱手段の発熱効率に基づいて、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量が求められ、その求められた連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量並びに運転形態選定条件に基づいて、熱電併給装置の運転形態が連続運転形態、断続運転形態及び待熱形態のいずれかに定められるように構成されている(例えば、特許文献1参照。)。   Then, an operation mode selection process is executed at a periodic operation mode selection timing. In the operation mode selection process, the time-series predicted load power, the time-series predicted load heat amount, and the heat generation efficiency of the auxiliary heating means are used. The predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation are obtained, and based on the obtained predicted energy consumption during continuous operation, predicted energy consumption during intermittent operation, and operation mode selection conditions The operation mode of the combined heat and power supply apparatus is configured to be determined as one of a continuous operation mode, an intermittent operation mode, and a heat standby mode (see, for example, Patent Document 1).

ところで、前記特許文献1には明確に記載されていないが、前記特許文献1においては、補助加熱手段として非潜熱回収型のものが設けられていると考えられるが、近年では、省エネルギ化を図るために、補助加熱手段として、非潜熱回収型のものに比べて発熱効率が高い潜熱回収型のものが設けられる場合がある。   By the way, although it is not clearly described in the Patent Document 1, it is considered that a non-latent heat recovery type is provided as an auxiliary heating means in the Patent Document 1, but in recent years, energy saving has been reduced. For this purpose, there may be provided a latent heat recovery type auxiliary heating means having higher heat generation efficiency than the non-latent heat recovery type.

特開2006−125701号公報JP 2006-125701 A

しかしながら、従来では、潜熱回収型の補助加熱手段が設けられた場合、運転形態選定処理において、補助加熱手段の発熱効率として潜熱回収型の補助加熱手段の発熱効率を用いて、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量を求めることになるが、潜熱回収型の補助加熱手段の発熱効率が非潜熱回収型の補助加熱手段の発熱効率に比べて高い分、潜熱回収型の補助加熱手段の発熱効率を用いて求める方が非潜熱回収型の補助加熱手段の発熱効率を用いて求めるのに比べて、時系列的な予測負荷熱量に対して熱電併給装置の発生熱量では賄えない分を賄うための補助加熱手段の予測エネルギ消費量が少なく見込まれることになる。
そして、断続運転形態の方が連続運転形態よりも熱電併給装置の発生熱量が少ないため、断続運転形態の方が補助加熱手段の予測エネルギ消費量が多くなるものの、潜熱回収型の補助加熱手段の発熱効率を用いることにより、補助加熱手段の予測エネルギ消費量が少なく見込まれることになるため、断続運転時の方が連続運転形態に比べて予測エネルギ消費量が少なく求められ易い傾向となり、運転形態選定条件が、例えば、連続運転形態及び断続運転形態のうちで熱電併給装置を運転することにより削減されると予測される予測エネルギ削減量が多い方の運転形態に熱電併給装置の運転形態を定める等の条件に設定されるような場合、熱電併給装置の運転形態が断続運転形態に定められる可能性が高くなる。
又、潜熱回収型の補助加熱手段の発熱効率を用いて求められた連続運転時及び断続運転時夫々の予測エネルギ消費量に基づいて、熱電併給装置の運転形態が断続運転形態に定められると、熱電併給装置の運転時間が短く設定される可能性が高くなる。
However, conventionally, when a latent heat recovery type auxiliary heating means is provided, the operation mode selection process uses the heat generation efficiency of the latent heat recovery type auxiliary heating means as the heat generation efficiency of the auxiliary heating means to predict the continuous operation. The energy consumption and the predicted energy consumption during intermittent operation will be calculated, but the latent heat recovery type is equivalent to the fact that the heat generation efficiency of the latent heat recovery type auxiliary heating means is higher than that of the non-latent heat recovery type auxiliary heating means. Compared with the heat generation efficiency of the non-latent heat recovery type auxiliary heating means, the amount of heat generated by the combined heat and power unit is calculated with respect to the time-series predicted load heat amount. The predicted energy consumption of the auxiliary heating means to cover the amount that cannot be covered is expected to be small.
Since the intermittent operation mode generates less heat in the combined heat and power device than the continuous operation mode, the intermittent operation mode increases the predicted energy consumption of the auxiliary heating unit, but the latent heat recovery type auxiliary heating unit By using the heat generation efficiency, the predicted energy consumption of the auxiliary heating means is expected to be small. Therefore, the intermittent energy operation tends to be less demanded than the continuous operation mode, and the operation mode For example, the operation mode of the combined heat and power device is determined as the operation mode with the larger amount of predicted energy reduction predicted to be reduced by operating the combined heat and power device among the continuous operation mode and the intermittent operation mode. In such a case, there is a high possibility that the operation mode of the combined heat and power supply apparatus is set to the intermittent operation mode.
Further, based on the predicted energy consumption during continuous operation and intermittent operation obtained using the heat generation efficiency of the latent heat recovery type auxiliary heating means, the operation mode of the combined heat and power supply device is determined as the intermittent operation mode. The possibility that the operation time of the combined heat and power supply apparatus is set short is increased.

ところで、熱電併給装置や補機の起動及び停止回数を少なくしてコージェネレーションシステムの耐久性の向上を図るには、熱電併給装置の運転形態が連続運転形態に定められる可能性を高くするのが好ましく、又、二酸化炭素発生量の低減を図るには、負荷電力を熱電併給装置にて賄う時間を長くすべく、熱電併給装置の運転形態が連続運転形態に定められる可能性を高くするのが好ましいが、従来では、熱電併給装置の運転形態が断続運転形態に定められる可能性が高いという問題があった。
又、熱電併給装置の運転形態が断続運転形態に定められた場合は、二酸化炭素発生量の低減を図るには、熱電併給装置の運転時間を長くするのが好ましいが、従来では、熱電併給装置の運転形態が断続運転形態に定められると、熱電併給装置の運転時間が短く設定される可能性が高いという問題があった。
By the way, in order to improve the durability of the cogeneration system by reducing the number of start and stop times of the combined heat and power device and auxiliary equipment, the possibility that the operation mode of the combined heat and power device is determined to be the continuous operation mode is increased. Preferably, in order to reduce the amount of carbon dioxide generated, the possibility that the operation mode of the combined heat and power device is determined to be the continuous operation mode is increased in order to increase the time to cover the load power with the combined heat and power device. Although preferable, conventionally, there has been a problem that the operation mode of the combined heat and power supply apparatus is likely to be determined as an intermittent operation mode.
In addition, when the operation mode of the combined heat and power device is set to the intermittent operation mode, it is preferable to lengthen the operation time of the combined heat and power device in order to reduce the amount of carbon dioxide generated. When the operation mode is determined as the intermittent operation mode, there is a problem that the operation time of the combined heat and power supply apparatus is likely to be set short.

以下、熱電併給装置の運転時間を長くするほど、二酸化炭素発生量を低減することができる点について、説明を加える。
即ち、火力発電所の二酸化炭素発生における原単位は、例えば0.69kg/kWhであり、都市ガス(例えば、天然ガスを主成分とする13A)の二酸化炭素発生における原単位は、例えば、0.0509kg/MJである。
そして、負荷電力を商用電力で賄う場合の二酸化炭素発生量Q1、負荷電力を熱電併給装置としての燃料電池で賄う場合の二酸化炭素発生量は、夫々、下記の式1、式2にて求められる。
Q1=負荷電力×火力発電所の二酸化炭素発生原単位……………(式1)
Q2=(負荷電力÷発電効率)×3.6×都市ガスの二酸化炭素発生原単位……………(式2)
但し、上記式2における「3.6」は、kWhからMJへの換算係数である。
Hereinafter, an explanation will be given on the point that the carbon dioxide generation amount can be reduced as the operating time of the combined heat and power supply device is lengthened.
That is, the basic unit in the carbon dioxide generation of the thermal power plant is, for example, 0.69 kg / kWh, and the basic unit in the carbon dioxide generation of city gas (for example, 13A mainly composed of natural gas) is, for example, 0.00. 0509 kg / MJ.
The carbon dioxide generation amount Q1 when the load power is supplied by commercial power, and the carbon dioxide generation amount when the load power is supplied by a fuel cell as a combined heat and power supply device are obtained by the following formulas 1 and 2, respectively. .
Q1 = Load power x CO2 emission intensity of thermal power plant ......... (Formula 1)
Q2 = (Load power / Power generation efficiency) x 3.6 x City gas CO2 emission intensity ............... (Formula 2)
However, “3.6” in Equation 2 is a conversion factor from kWh to MJ.

負荷電力が0.75kWhである場合、負荷電力を商用電力で賄う場合の二酸化炭素発生量Q1は0.518kgであり、負荷電力を熱電併給装置で発電するときの二酸化炭素発生量は、発電効率を0.32とすると0.429kgとなり、熱電併給装置で負荷電力のみを賄うとしても、負荷電力を熱電併給装置にて賄う方が負荷電力を商用電力で賄うのに比べて、二酸化炭素発生量が少なくなり、熱電併給装置の運転時間を長くするほど二酸化炭素発生量を低減することができる。   When the load power is 0.75 kWh, the carbon dioxide generation amount Q1 when the load power is covered by commercial power is 0.518 kg, and the carbon dioxide generation amount when the load power is generated by the combined heat and power device is the power generation efficiency. 0.32 becomes 0.429 kg, and even if only the load power is covered by the combined heat and power device, the amount of generated carbon dioxide is better when the load power is covered by the combined heat and power device than when the load power is covered by the commercial power. The amount of carbon dioxide generated can be reduced as the operating time of the combined heat and power supply device is increased.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、耐久性を向上し且つ二酸化炭素発生量を低減し得るコージェネレーションシステムを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a cogeneration system capable of improving durability and reducing the amount of carbon dioxide generated.

本発明のコージェネレーションシステムは、電力と熱とを併せて発生する熱電併給装置と、燃焼式で潜熱回収型の補助加熱手段と、運転を制御する運転制御手段とが設けられ、
その運転制御手段が、周期的な運転形態選定タイミングにおいて、時系列的な予測負荷電力及び時系列的な予測負荷熱量並びに前記補助加熱手段の発熱効率に基づいて、前記熱電併給装置を連続運転すると仮定したときの連続運転時の予測エネルギ消費量、及び、前記熱電併給装置を断続運転すると仮定したときの断続運転時の予測エネルギ消費量を求めて、その求めた連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量並びに運転形態選定条件に基づいて、前記熱電併給装置の運転形態を連続運転形態、断続運転形態及び前記熱電併給装置を停止させて運転を待機させる待機形態のいずれかに定める運転形態選定処理を実行するように構成されたものであって、
第1特徴構成は、前記運転制御手段が、前記運転形態選定処理において、前記補助加熱手段の発熱効率として、前記潜熱回収型の補助加熱手段の発熱効率よりも低い値に定めた運転形態選定用の発熱効率を用いて、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量を求めるように構成されている点にある。
The cogeneration system of the present invention is provided with a combined heat and power device that generates both electric power and heat, a combustion type latent heat recovery type auxiliary heating means, and an operation control means for controlling operation,
When the operation control means continuously operates the cogeneration device based on the time-series predicted load power, the time-series predicted load heat amount, and the heat generation efficiency of the auxiliary heating means at the periodic operation mode selection timing. The predicted energy consumption during continuous operation when it is assumed and the predicted energy consumption during intermittent operation when it is assumed that the combined heat and power supply device is intermittently operated are obtained. Based on the predicted energy consumption at the time of intermittent operation and the operation mode selection condition, any of the operation mode of the combined heat and power supply device is a continuous operation mode, the intermittent operation mode or the standby mode in which the combined heat and power supply device is stopped and waits for the operation. It is configured to execute the operation type selection process defined in
In the first characteristic configuration, the operation control means is for selecting an operation mode in which the heat generation efficiency of the auxiliary heating unit is set to a value lower than the heat generation efficiency of the latent heat recovery type auxiliary heating unit in the operation mode selection process. The predicted energy consumption amount during the continuous operation and the predicted energy consumption amount during the intermittent operation are obtained using the heat generation efficiency.

即ち、運転制御手段は、運転形態選定処理において、補助加熱手段の発熱効率として、潜熱回収型の補助加熱手段の発熱効率よりも低い値に定めた運転形態選定用の発熱効率を用いて、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量を求めることになる。   That is, the operation control means continuously uses the heat generation efficiency for selecting the operation form determined to be lower than the heat generation efficiency of the latent heat recovery type auxiliary heating means as the heat generation efficiency of the auxiliary heating means in the operation form selection process. The predicted energy consumption during operation and the predicted energy consumption during intermittent operation are obtained.

つまり、運転形態選定用の発熱効率が潜熱回収型の補助加熱手段の発熱効率よりも低いので、運転形態選定用の発熱効率を用いて求める方が潜熱回収型の補助加熱手段の発熱効率を用いて求めるのに比べて、時系列的な予測負荷熱量に対して熱電併給装置の発生熱量では賄えない分を賄うための補助加熱手段のエネルギ消費量が多く見込まれることなって、断続運転時の予測エネルギ消費量が多く求められることになり、熱電併給装置の運転形態が連続運転形態に定められる可能性を高くすることが可能となる。
熱電併給装置の運転形態が連続運転形態に定められる可能性が高くなると、熱電併給装置や補機の起動及び停止回数を少なくすることができるので、耐久性の向上を図ることができる。
又、熱電併給装置の運転形態が連続運転形態に定められる可能性が高くなると、熱電併給装置の運転時間が長くすることができるので、二酸化炭素発生量を低減することができるようになる。
従って、耐久性を向上し且つ二酸化炭素発生量を低減し得るコージェネレーションシステムを提供するができるようになった。
In other words, the heat generation efficiency for selecting the operation mode is lower than the heat generation efficiency of the auxiliary heating means for latent heat recovery type. Compared to the amount of heat that is calculated, the amount of energy consumed by the auxiliary heating means to cover the time series predicted load heat amount that cannot be covered by the heat generation amount of the combined heat and power unit is expected. Therefore, it is possible to increase the possibility that the operation mode of the combined heat and power supply apparatus is determined as the continuous operation mode.
When the possibility that the operation mode of the combined heat and power device is determined as the continuous operation mode increases, the number of times of starting and stopping the combined heat and power supply device and auxiliary equipment can be reduced, so that the durability can be improved.
Further, when the possibility that the operation mode of the combined heat and power device is determined to be the continuous operation mode becomes high, the operation time of the combined heat and power supply device can be lengthened, so that the amount of carbon dioxide generated can be reduced.
Therefore, it has become possible to provide a cogeneration system that can improve durability and reduce the amount of carbon dioxide generated.

第2特徴構成は、上記第1特徴構成に加えて、
前記運転形態選定用の発熱効率を非潜熱回収型の補助加熱手段の発熱効率に定める点にある。
In addition to the first feature configuration, the second feature configuration is
The heat generation efficiency for selecting the operation mode is determined by the heat generation efficiency of the non-latent heat recovery type auxiliary heating means.

即ち、運転形態選定用の発熱効率を用いて連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量を求めて、その求めた連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量に基づいて、熱電併給装置の運転形態を定めるので、本来の潜熱回収型の補助加熱手段の発熱効率を用いて連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量を求める場合に比べて、予測エネルギ消費量が多少多くなっても熱電併給装置の運転形態が連続運転形態に定められる傾向となるが、運転形態選定用の発熱効率を非潜熱回収型の補助加熱手段の発熱効率に定めるので、補助加熱手段として非潜熱回収型のものを用いる場合と同等の予測エネルギ消費量の連続運転形態を熱電併給装置の運転形態として定めることが可能となり、熱電併給装置の運転形態を連続運転形態に定めるにしてもエネルギ消費量が多くなるのを抑制することができる。
従って、エネルギ消費量が増加するのを抑制しながら、耐久性を向上し且つ二酸化炭素発生量を低減することができるようになった。
In other words, the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation are obtained using the heat generation efficiency for operation mode selection, and the calculated predicted energy consumption during intermittent operation and prediction during intermittent operation are obtained. Since the operation mode of the combined heat and power unit is determined based on the energy consumption, the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation are calculated using the heat generation efficiency of the original latent heat recovery type auxiliary heating means. Compared to the required case, even if the predicted energy consumption is somewhat higher, the operation mode of the combined heat and power device tends to be determined as the continuous operation mode, but the heat generation efficiency for selecting the operation mode is a non-latent heat recovery type auxiliary heating means Therefore, the continuous operation mode with the predicted energy consumption equivalent to the case of using the non-latent heat recovery type as the auxiliary heating means is determined as the operation mode of the combined heat and power supply device. Doo is possible, even in the prescribed continuous operation mode the operating mode of the cogeneration device can be prevented from being much energy consumption.
Accordingly, it is possible to improve durability and reduce the amount of generated carbon dioxide while suppressing an increase in energy consumption.

第3特徴構成は、上記第1又は第2特徴構成に加えて、
前記運転制御手段が、前記運転形態選定処理において前記熱電併給装置の運転形態を前記断続運転形態に定めたときは、運転時間帯を異ならせて前記熱電併給装置を前記断続運転形態にて運転する場合の夫々について、前記運転形態選定用の発熱効率を用いて前記断続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量の少ない運転時間帯を前記熱電併給装置の運転時間帯に定めるように構成されている点にある。
In addition to the first or second feature configuration, the third feature configuration is
When the operation control means sets the operation mode of the combined heat and power device to the intermittent operation mode in the operation mode selection process, the operation and power supply device is operated in the intermittent operation mode with different operation time zones. For each of the cases, the predicted energy consumption during the intermittent operation is obtained using the heat generation efficiency for selecting the operation mode, and an operation time zone with a small predicted energy consumption is determined as the operation time zone of the combined heat and power unit. It is in the point comprised as follows.

即ち、運転制御手段は、運転形態選定処理において熱電併給装置の運転形態を断続運転形態に定めたときは、運転時間帯を異ならせて熱電併給装置を断続運転形態にて運転する場合の夫々について、運転形態選定用の発熱効率を用いて断続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量の少ない運転時間帯を前記熱電併給装置の運転時間帯に定める。
つまり、運転時間帯を異ならせて熱電併給装置を断続運転形態にて運転する場合の夫々について断続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない運転時間帯を熱電併給装置の運転時間帯に定めるに当たって、運転形態選定用の発熱効率を用いて断続運転時の予測エネルギ消費量を求めると、潜熱回収型の補助加熱手段の発熱効率を用いて断続運転時の予測エネルギ消費量を求める場合に比べて、補助加熱手段の発熱効率が低い分、予測不足熱量が多くなるほど、補助加熱手段の予測エネルギ消費量が多くなって断続運転時の予測エネルギ消費量が多く求められることとなるので、予測不足熱量を少なくして断続運転時の予測エネルギ消費量を少なくするように、熱電併給装置の運転時間帯が長くなるように定められることになる。尚、前記予測不足熱量とは、予測負荷熱量のうち熱電併給装置の発生熱量で賄えない熱量のことである。
そして、熱電併給装置の運転形態が断続運転形態に定められても、熱電併給装置の運転時間帯を長くすることができるので、二酸化炭素発生量を低減することができる。
従って、熱電併給装置の運転形態が断続運転形態に定められても二酸化炭素発生量を低減することができるので、二酸化炭素発生量をより一層低減することができるようになった。
That is, when the operation control means sets the operation mode of the combined heat and power device to the intermittent operation mode in the operation type selection process, each of the cases where the combined heat and power device is operated in the intermittent operation mode with different operation time zones. Then, the predicted energy consumption during intermittent operation is obtained using the heat generation efficiency for selecting the operation mode, and an operation time zone with a small predicted energy consumption is determined as the operation time zone of the cogeneration device.
In other words, for each of the cases where the combined heat and power device is operated in the intermittent operation mode with different operation time zones, the predicted energy consumption during the intermittent operation is obtained, and the operation time zone where the predicted energy consumption is small is determined as the combined heat and power device. When determining the predicted energy consumption during intermittent operation using the heat generation efficiency for selecting the operation mode, the predicted energy consumption during intermittent operation is calculated using the heat generation efficiency of the latent heat recovery type auxiliary heating means. The amount of predicted energy consumption of the auxiliary heating means increases and the predicted energy consumption during intermittent operation increases as the amount of predicted insufficient heat increases because the heat generation efficiency of the auxiliary heating means is lower than when the amount is calculated. Therefore, it is determined that the operating time zone of the combined heat and power unit should be longer so that the predicted shortage of heat is reduced and the predicted energy consumption during intermittent operation is reduced. It becomes Rukoto. The predicted insufficient heat quantity is a quantity of heat that cannot be covered by the generated heat quantity of the combined heat and power supply device in the predicted load heat quantity.
And even if the operation mode of the combined heat and power unit is determined to be an intermittent operation mode, the operation time zone of the combined heat and power unit can be lengthened, so that the amount of carbon dioxide generated can be reduced.
Therefore, since the carbon dioxide generation amount can be reduced even when the operation mode of the combined heat and power supply apparatus is set to the intermittent operation mode, the carbon dioxide generation amount can be further reduced.

第4特徴構成は、上記第1〜第3特徴構成のいずれか1つに加えて、
前記運転制御手段が、前記運転形態選定処理において前記熱電併給装置の運転形態を前記連続運転形態に定めたときは、発電出力を異ならせて前記熱電併給装置を前記連続運転形態にて運転する場合の夫々について、前記潜熱回収型の補助加熱手段の発熱効率を用いて前記連続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない発電出力を前記熱電併給装置の発電出力に定めるように構成されている点にある。
The fourth feature configuration is in addition to any one of the first to third feature configurations,
When the operation control means sets the operation mode of the cogeneration device to the continuous operation mode in the operation mode selection process, and operates the cogeneration device in the continuous operation mode with different power generation outputs. For each of the above, the predicted energy consumption during the continuous operation is obtained using the heat generation efficiency of the auxiliary heating means of the latent heat recovery type, and the power generation output with the small predicted energy consumption is determined as the power generation output of the cogeneration device. It is in the point comprised as follows.

即ち、運転制御手段は、運転形態選定処理において熱電併給装置の運転形態を連続運転形態に定めたときは、発電出力を異ならせて熱電併給装置を連続運転形態にて運転する場合の夫々について、潜熱回収型の補助加熱手段の発熱効率を用いて連続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない発電出力を熱電併給装置の発電出力に定める。
つまり、発電出力を異ならせて熱電併給装置を連続運転形態にて運転する場合の夫々について連続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない発電出力を熱電併給装置の発電出力に定めるに当たって、潜熱回収型の補助加熱手段の発熱効率を用いて連続運転時の予測エネルギ消費量を求めると、運転形態選定用の発熱効率を用いて連続運転時の予測エネルギ消費量を求める場合に比べて、補助加熱手段の発熱効率が高くなる分、予測不足熱量が生じても、補助加熱手段の予測エネルギ消費量が少なくなって連続運転時の予測エネルギ消費量が少なく求められることとなるので、熱電併給装置からの発生熱量を抑制すべく、熱電併給装置の発電出力が低くなるように設定されることになる。
そして、熱電併給装置が連続運転形態にて運転されると、断続運転形態にて運転される場合に比べて、熱電併給装置の運転時間が長くなって、熱電併給装置の発生熱量を積算した積算発生熱量が多くなる傾向となるので、熱余りが生じ易くなるが、潜熱回収型の補助加熱手段の発熱効率を用いて発電出力を定めて熱電併給装置を運転した方が運転形態選定用の発熱効率を用いて発電出力を定めて熱電併給装置を運転した場合よりも、熱電併給装置の発電出力が低く設定されて熱電併給装置の発生熱量が抑制される傾向となるので、その発生熱量を積算した積算発生熱量が抑制される傾向となり、熱余りを抑制することができる。
従って、熱余りを抑制しながら、耐久性を向上し且つ二酸化炭素発生量を低減することができるようになった。
That is, the operation control means, when the operation mode of the combined heat and power device is set to the continuous operation mode in the operation mode selection process, for each of the cases where the combined heat and power device is operated in the continuous operation mode with different power generation outputs, Using the heat generation efficiency of the latent heat recovery type auxiliary heating means, the predicted energy consumption during continuous operation is obtained, and the power generation output with the small predicted energy consumption is determined as the power generation output of the combined heat and power supply device.
That is, for each of the cases where the combined heat and power device is operated in the continuous operation mode with different power generation outputs, the predicted energy consumption during the continuous operation is obtained, and the power generation output with a small predicted energy consumption is generated by the combined power and power generation device. In determining the output, when the predicted energy consumption during continuous operation is obtained using the heat generation efficiency of the auxiliary heating means of the latent heat recovery type, the predicted energy consumption during continuous operation is obtained using the heat generation efficiency for operation mode selection. Compared to the case, the heat generation efficiency of the auxiliary heating means is increased, and even if a predicted shortage of heat occurs, the predicted energy consumption of the auxiliary heating means is reduced and the predicted energy consumption during continuous operation is required to be reduced. Therefore, in order to suppress the amount of heat generated from the combined heat and power supply device, the power generation output of the combined heat and power supply device is set to be low.
And, when the combined heat and power unit is operated in the continuous operation mode, the operation time of the combined heat and power unit becomes longer than in the case of operating in the intermittent operation mode, and the integration of integrating the generated heat amount of the combined heat and power unit The amount of generated heat tends to increase, so it is easy to generate excess heat. However, it is better to operate the combined heat and power supply device with the power generation output determined using the heat generation efficiency of the latent heat recovery type auxiliary heating means. Since the power generation output of the combined heat and power unit tends to be suppressed by setting the power generation output using efficiency and the combined heat and power unit is operated, the amount of generated heat is integrated. The accumulated amount of generated heat tends to be suppressed, and the excess heat can be suppressed.
Accordingly, it is possible to improve durability and reduce the amount of carbon dioxide generated while suppressing excess heat.

第5特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記運転形態選定条件が、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量夫々についての、予測二酸化炭素排出量、予測光熱費及び予測運転メリットのうちのいずれか1つを運転形態選定用指標として、その運転形態選定用指標に基づいて前記熱電併給装置の運転形態を定める条件に設定されている点にある。
In addition to any one of the first to fourth feature configurations described above, the fifth feature configuration is
The operation mode selection condition is any one of a predicted carbon dioxide emission amount, a predicted utility cost, and a predicted operation merit for each of the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation. Is set as a condition for determining the operation mode of the cogeneration apparatus based on the operation mode selection index.

即ち、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての予測二酸化炭素排出量を運転形態選定用指標として、その運転形態選定用指標に基づいて熱電併給装置の運転形態が定められると、二酸化炭素排出量を低減するように熱電併給装置の運転形態を定めることができるので、環境性を向上することができる。
又、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての予測光熱費を運転形態選定用指標として、その運転形態選定用指標に基づいて熱電併給装置の運転形態が定められると、光熱費を低減するように熱電併給装置の運転形態を定めることができるので、経済性を向上することができる。
That is, using the predicted carbon dioxide emissions for the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation as the operation mode selection index, the operation mode of the combined heat and power unit based on the operation mode selection index Since the operation mode of the combined heat and power supply device can be determined so as to reduce the carbon dioxide emission, the environmental performance can be improved.
Further, the predicted energy consumption during the continuous operation and the predicted energy consumption for the predicted energy consumption during the intermittent operation are used as the operation mode selection index, and the operation mode of the combined heat and power unit is determined based on the operation mode selection index. If this is done, the operating mode of the combined heat and power supply device can be determined so as to reduce the utility cost, so the economic efficiency can be improved.

運転形態選定用指標としての予測運転メリットには、例えば、予測エネルギ削減量、予測光熱費削減量、又は、予測二酸化炭素削減量がある。
連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての予測エネルギ削減量や予測光熱費削減量を運転形態選定用指標として、その運転形態選定用指標に基づいて熱電併給装置の運転形態が定められると、予測エネルギ削減量や予測光熱費削減量を大きくするように熱電併給装置の運転形態を定めることができるので、経済性を向上することができる。
又、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての予測二酸化炭素削減量を運転形態選定用指標として、その運転形態選定用指標に基づいて熱電併給装置の運転形態が定められると、予測二酸化炭素削減量を大きくするように熱電併給装置の運転形態を定めることができるので、環境性を向上することができる。
そして、運転形態選定条件を上述のように環境性を向上することができる条件に定めると、熱電併給装置の運転形態が連続運転形態に定められる可能性が高くなることにより二酸化炭素発生量を低減できることと相俟って、環境性を効果的に向上することができる。
従って、耐久性を向上し且つ環境性を効果的に向上することができる、又は、耐久性を向上し且つ環境性を向上し、しかも経済性を向上することができるようになった。
The predicted driving merit as the operation mode selection index includes, for example, a predicted energy reduction amount, a predicted utility cost reduction amount, or a predicted carbon dioxide reduction amount.
The predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation are estimated energy reduction amount and predicted utility cost reduction amount as an operation mode selection index, and a combined heat and power generation device based on the operation mode selection index When the operation mode is determined, the operation mode of the combined heat and power supply apparatus can be determined so as to increase the predicted energy reduction amount and the predicted utility cost reduction amount, so that the economy can be improved.
Moreover, the predicted CO2 reduction amount for the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation is used as an operation mode selection index, and the operation mode of the combined heat and power unit is based on the operation mode selection index. Is determined, the operation mode of the combined heat and power supply apparatus can be determined so as to increase the predicted amount of carbon dioxide reduction, so that the environmental performance can be improved.
And, if the operation mode selection condition is set to a condition that can improve the environmental performance as described above, the operation mode of the combined heat and power supply apparatus is more likely to be set to the continuous operation mode, thereby reducing the carbon dioxide generation amount. Combined with what can be done, environmental performance can be improved effectively.
Therefore, durability can be improved and environmental performance can be improved effectively, or durability can be improved and environmental performance can be improved, and economic efficiency can be improved.

以下、図面に基づいて、本発明の実施の形態を説明する。
〔第1実施形態〕
先ず、第1実施形態を説明する。
コージェネレーションシステムは、図1及び図2に示すように、電力と熱とを発生する熱電併給装置としての燃料電池1と、その燃料電池1が発生する熱を冷却水にて回収し、その冷却水を利用して、貯湯槽2への貯湯及び熱消費端末3への熱媒供給を行う貯湯ユニット4と、燃料電池1及び貯湯ユニット4の運転を制御する運転制御手段としての運転制御部5などから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
First, the first embodiment will be described.
As shown in FIGS. 1 and 2, the cogeneration system recovers the heat generated by the fuel cell 1 as a combined heat and power generation apparatus that generates electric power and heat with cooling water, and cools the cooling. A hot water storage unit 4 that uses water to store hot water in the hot water tank 2 and supply a heat medium to the heat consuming terminal 3, and an operation control unit 5 as operation control means that controls the operation of the fuel cell 1 and the hot water storage unit 4. Etc.

前記燃料電池1は、周知であるので、詳細な説明及び図示を省略して簡単に説明すると、燃料電池1は、水素を含有する燃料ガス及び酸素含有ガスが供給されて発電するセルスタック、そのセルスタックに供給する燃料ガスを生成する燃料ガス生成部、前記セルスタックに酸素含有ガスとして空気を供給するブロア等を備えて構成されている。
前記燃料ガス生成部は、供給される都市ガス(例えば、天然ガスベースの都市ガス)等の炭化水素系の原燃料ガスを脱硫処理する脱硫器、その脱硫器から供給される脱硫原燃料ガスと別途供給される水蒸気とを改質反応させて水素を主成分とする改質ガスを生成する改質器、その改質器から供給される改質ガス中の一酸化炭素を水蒸気にて二酸化炭素に変成処理する変成器、その変成器から供給される改質ガス中の一酸化炭素を別途供給される選択酸化用空気にて選択酸化する一酸化炭素除去器等から構成され、一酸化炭素を変成処理及び選択酸化処理により低減した改質ガスを前記燃料ガスとして前記セルスタックに供給するように構成されている。
Since the fuel cell 1 is well-known, a detailed description and illustration thereof will be omitted. Briefly, the fuel cell 1 includes a cell stack that generates power by being supplied with a fuel gas containing hydrogen and an oxygen-containing gas. A fuel gas generation unit that generates fuel gas to be supplied to the cell stack, a blower that supplies air as an oxygen-containing gas to the cell stack, and the like are provided.
The fuel gas generation unit includes a desulfurizer for desulfurizing a hydrocarbon-based raw fuel gas such as a supplied city gas (for example, a natural gas-based city gas), a desulfurized raw fuel gas supplied from the desulfurizer, A reformer that generates a reformed gas mainly composed of hydrogen by reforming reaction with steam supplied separately, and carbon monoxide in the reformed gas supplied from the reformer with carbon dioxide. A carbon monoxide remover that selectively oxidizes carbon monoxide in the reformed gas supplied from the transformer with selective oxidation air supplied separately. The reformed gas reduced by the shift treatment and the selective oxidation treatment is supplied to the cell stack as the fuel gas.

そして、前記燃料ガス生成部への原燃料ガスの供給量を調節することにより、前記燃料電池1の発電出力を調節するように構成されている。
前記燃料電池1の電力の出力側には、系統連系用のインバータ6が設けられ、そのインバータ6は、燃料電池1の発電電力を商用電源7から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
前記商用電源7は受電電力供給ライン8を介して、テレビ、冷蔵庫、洗濯機などの電力負荷9に電気的に接続されている。
また、インバータ6は、発電電力供給ライン10を介して受電電力供給ライン8に電気的に接続され、燃料電池1の発電電力がインバータ6及び発電電力供給ライン10を介して電力負荷9に供給するように構成されている。
And it is comprised so that the electric power generation output of the said fuel cell 1 may be adjusted by adjusting the supply amount of the raw fuel gas to the said fuel gas production | generation part.
A grid interconnection inverter 6 is provided on the power output side of the fuel cell 1, and the inverter 6 has the same voltage and the same frequency as the received power for receiving the generated power of the fuel cell 1 from the commercial power supply 7. It is configured to.
The commercial power supply 7 is electrically connected to a power load 9 such as a television, a refrigerator, or a washing machine via a received power supply line 8.
The inverter 6 is electrically connected to the received power supply line 8 via the generated power supply line 10, and the generated power of the fuel cell 1 is supplied to the power load 9 via the inverter 6 and the generated power supply line 10. It is configured as follows.

前記受電電力供給ライン8には、電力負荷9の負荷電力を計測する負荷電力計測手段11が設けられ、この負荷電力計測手段11は、受電電力供給ライン8を通して流れる電流に逆潮流が発生するか否かをも検出するように構成されている。
そして、逆潮流が生じないように、インバータ6により燃料電池1から受電電力供給ライン8に供給される電力が制御され、発電出力の余剰電力は、その余剰電力を熱に代えて回収する電気ヒータ12に供給されるように構成されている。
The received power supply line 8 is provided with load power measuring means 11 for measuring the load power of the power load 9. Does this load power measuring means 11 generate a reverse power flow in the current flowing through the received power supply line 8? It is also configured to detect whether or not.
The electric power supplied from the fuel cell 1 to the received power supply line 8 is controlled by the inverter 6 so that a reverse power flow does not occur, and the surplus power of the power generation output is recovered by replacing the surplus power with heat. 12 is configured to be supplied.

前記電気ヒータ12は、複数の電気ヒータから構成されて、冷却水循環ポンプ15の作動により冷却水循環路13を通流する燃料電池1の冷却水を加熱するように設けられ、インバータ6の出力側に接続された作動スイッチ14により各別にON/OFFが切り換えられている。
又、作動スイッチ14は、余剰電力の大きさが大きくなるほど、電気ヒータ12の消費電力が大きくなるように、余剰電力の大きさに応じて電気ヒータ12の消費電力を調整するように構成されている。
尚、電気ヒータ12の消費電力を調整する構成については、上記のように複数の電気ヒータ12のON/OFFを切り換える構成以外に、その電気ヒータ12の出力を例えば位相制御等により調整する構成を採用しても構わない。
The electric heater 12 is composed of a plurality of electric heaters and is provided so as to heat the cooling water of the fuel cell 1 flowing through the cooling water circulation path 13 by the operation of the cooling water circulation pump 15. ON / OFF is individually switched by the connected operation switch 14.
The operation switch 14 is configured to adjust the power consumption of the electric heater 12 according to the amount of surplus power so that the power consumption of the electric heater 12 increases as the amount of surplus power increases. Yes.
The configuration for adjusting the power consumption of the electric heater 12 is a configuration for adjusting the output of the electric heater 12 by, for example, phase control or the like in addition to the configuration for switching ON / OFF of the plurality of electric heaters 12 as described above. You may adopt.

前記貯湯ユニット4は、温度成層を形成する状態で湯水を貯湯する前記貯湯槽2、湯水循環路16を通して貯湯槽2内の湯水を循環させる湯水循環ポンプ17、熱源用循環路20を通して熱源用湯水を循環させる熱源用循環ポンプ21、熱媒循環路22を通して熱媒を前記熱消費端末3に循環供給させる熱媒循環ポンプ23、前記湯水循環路16を通流する湯水を加熱させる貯湯用熱交換器24、前記熱源用循環路20を通流する熱源用湯水を加熱させる熱源用熱交換器25、前記熱媒循環路22を通流する熱媒を加熱させる熱媒加熱用熱交換器26、前記貯湯槽2から取り出されて給湯路27を通流する湯水及び前記熱源用循環路20を通流する熱源用湯水を加熱させる燃焼式で潜熱回収型の補助加熱手段としての補助加熱器28などを備えて構成されている。   The hot water storage unit 4 is configured to store hot water in a state in which temperature stratification is formed, the hot water circulating pump 17 that circulates hot water in the hot water tank 2 through the hot water circulation path 16, and the hot water for heat source through the heat source circulation path 20. The heat source circulation pump 21 for circulating the heat, the heat medium circulation pump 23 for circulating and supplying the heat medium to the heat consuming terminal 3 through the heat medium circulation path 22, and the heat exchange for hot water storage for heating the hot water flowing through the hot water circulation path 16 24, a heat source heat exchanger 25 for heating the hot water for heat source flowing through the heat source circulation path 20, a heat exchanger for heat medium heating for heating the heat medium flowing through the heat medium circulation path 22, Auxiliary heater 28 as auxiliary heating means of combustion type and latent heat recovery type for heating hot water taken out from hot water tank 2 and flowing through hot water supply path 27 and hot water for heat source flowing through circulation path 20 for heat source Be equipped It is configured Te.

前記湯水循環路16は、前記貯湯槽2の底部と頂部とに接続されて、前記湯水循環ポンプ17により、貯湯槽2の底部から取り出した湯水を貯湯槽2の頂部に戻す形態で貯湯槽2の湯水を湯水循環路16を通して循環させ、そのように湯水循環路16を通して循環される湯水を前記貯湯用熱交換器24にて加熱することにより、貯湯槽2に温度成層を形成する状態で湯水が貯留されるように構成されている。
前記湯水循環路16は、その一部が並列になるように分岐接続され、その接続箇所に三方弁18が設けられており、分岐された一方側の流路には、ラジエータ19が設けられている。そして、三方弁18を切り換えることにより、貯湯槽2の下部から取り出した湯水がラジエータ19を通過するように循環させる状態と、貯湯槽2の下部から取り出した湯水がラジエータ19をバイパスするように循環させる状態とに切り換えるように構成されている。
The hot water circulation path 16 is connected to the bottom and top of the hot water tank 2, and the hot water tank 2 is configured to return hot water taken from the bottom of the hot water tank 2 to the top of the hot water tank 2 by the hot water circulation pump 17. Hot water is circulated through the hot water circulation path 16 and the hot water circulated through the hot water circulation path 16 is heated by the heat exchanger 24 for hot water storage so that the hot water tank 2 forms a temperature stratification. Is configured to be stored.
The hot water circulation path 16 is branched and connected so that a part thereof is in parallel, a three-way valve 18 is provided at the connection location, and a radiator 19 is provided in the branched flow path. Yes. Then, by switching the three-way valve 18, the hot water taken out from the lower part of the hot water tank 2 is circulated so as to pass through the radiator 19, and the hot water taken out from the lower part of the hot water tank 2 is circulated so as to bypass the radiator 19. It is comprised so that it may switch to the state to be made to.

前記給湯路27は、前記湯水循環路16における前記貯湯用熱交換器24よりも下流側の箇所を介して前記貯湯槽2に接続され、その給湯路27を通して前記貯湯槽2内の湯水が浴槽、給湯栓、シャワー等の給湯先に給湯され、そのように給湯されるのに伴って貯湯槽2に給水すべく、給水路29が貯湯槽2の底部に接続されている。   The hot water supply path 27 is connected to the hot water storage tank 2 through a location downstream of the hot water storage heat exchanger 24 in the hot water circulation path 16, and hot water in the hot water storage tank 2 is connected to the bathtub through the hot water supply path 27. A hot water supply path 29 is connected to the bottom of the hot water tank 2 so that the hot water is supplied to a hot water supply destination such as a hot water tap and a shower and the hot water tank 2 is supplied with the hot water.

前記熱源用循環路20は、前記給湯路27の一部を共用する状態で循環経路を形成するように設けられ、その熱源用循環路20には、熱源用湯水の通流を断続させる熱源用断続弁40が設けられている。   The heat source circulation path 20 is provided so as to form a circulation path in a state in which a part of the hot water supply path 27 is shared, and the heat source circulation path 20 is used for a heat source for interrupting the flow of hot water for the heat source. An intermittent valve 40 is provided.

前記潜熱回収型の補助加熱器28は、前記給湯路27における前記熱源用循環路20との共用部分に設けられた潜熱回収用熱交換器28a、顕熱回収用熱交換器28b、それら潜熱回収用熱交換器28a及び顕熱回収用熱交換器28bを加熱するバーナ28c、そのバーナ28cに燃焼用空気を供給するファン28d、前記潜熱回収用熱交換器28aに流入する湯水の流入温度を検出する流入温度センサ(図示省略)、前記顕熱回収用熱交換器28bから流出する湯水の流出温度を検出する流出温度センサ(図示省略)、前記潜熱回収用熱交換器28aに流入する湯水又は熱媒の流量を検出する流量センサ(図示省略)等を備えて構成され、この補助加熱器28の運転は前記運転制御部5により制御される。   The latent heat recovery type auxiliary heater 28 includes a latent heat recovery heat exchanger 28a, a sensible heat recovery heat exchanger 28b, and a latent heat recovery system provided in a shared portion of the hot water supply path 27 with the heat source circulation path 20. A heat exchanger 28a and a sensible heat recovery heat exchanger 28b, a fan 28d for supplying combustion air to the burner 28c, and an inflow temperature of hot water flowing into the latent heat recovery heat exchanger 28a. An inflow temperature sensor (not shown), an outflow temperature sensor (not shown) for detecting the outflow temperature of hot water flowing out from the sensible heat recovery heat exchanger 28b, hot water or heat flowing into the latent heat recovery heat exchanger 28a A flow rate sensor (not shown) for detecting the flow rate of the medium is provided, and the operation of the auxiliary heater 28 is controlled by the operation control unit 5.

前記潜熱回収用熱交換器28a及び前記顕熱回収用熱交換器28bは、前記給湯路27において潜熱回収用熱交換器28aが上流側に位置する状態で、バーナ28cの燃焼排ガスの燃焼排ガス流動方向において潜熱回収用熱交換器28aが下流側に位置する形態で、その燃焼排ガス流動方向に沿って並べて設けられている。
そして、潜熱回収用熱交換器28aにて、主としてバーナ28cの燃焼排ガスの潜熱により湯水を加熱し、顕熱回収用熱交換器28bにて、主としてバーナ28cの燃焼排ガスの顕熱により、前記潜熱回収用熱交換器28aにて加熱された湯水を加熱するように構成されている
The latent heat recovery heat exchanger 28a and the sensible heat recovery heat exchanger 28b are configured such that the combustion exhaust gas flow of the combustion exhaust gas of the burner 28c is in a state where the latent heat recovery heat exchanger 28a is located upstream in the hot water supply passage 27. The latent heat recovery heat exchangers 28a are arranged in the direction along the combustion exhaust gas flow direction in such a manner that the latent heat recovery heat exchangers 28a are located on the downstream side.
Then, in the latent heat recovery heat exchanger 28a, hot water is heated mainly by the latent heat of the combustion exhaust gas of the burner 28c, and in the sensible heat recovery heat exchanger 28b, the latent heat is mainly generated by the sensible heat of the combustion exhaust gas of the burner 28c. It is configured to heat the hot water heated by the recovery heat exchanger 28a.

前記運転制御部5による補助加熱器28の運転制御について簡単に説明すると、前記流量センサが設定流量以上の流量を検出している状態で、前記流入温度センサにて検出される流入温度が目標加熱温度未満になると前記バーナ28cを燃焼させ、且つ、前記流出温度センサにて検出される流出温度が前記目標加熱温度になるように前記バーナ28cの燃焼量を調節し、前記バーナ28cの燃焼中に前記流量センサの検出流量が前記設定流量未満になると、前記バーナ28cを消火させる。ちなみに、前記目標加熱温度は、前記熱消費端末3の運転が停止中のときは、このコージェネレーションシステムのリモコン操作部(図示省略)の温度設定部(図示省略)にて設定される目標給湯温度に基づいて設定され、前記熱消費端末3の運転中のときは、予め設定された所定の温度に設定される。   The operation control of the auxiliary heater 28 by the operation control unit 5 will be briefly described. The inflow temperature detected by the inflow temperature sensor is the target heating in a state where the flow rate sensor detects a flow rate equal to or higher than a set flow rate. When the temperature is lower than the temperature, the burner 28c is combusted, and the combustion amount of the burner 28c is adjusted so that the outflow temperature detected by the outflow temperature sensor becomes the target heating temperature. When the detected flow rate of the flow sensor becomes less than the set flow rate, the burner 28c is extinguished. Incidentally, the target heating temperature is the target hot water temperature set by the temperature setting unit (not shown) of the remote control operation unit (not shown) of the cogeneration system when the operation of the heat consuming terminal 3 is stopped. When the heat consumption terminal 3 is in operation, it is set to a predetermined temperature set in advance.

前記冷却水循環路13は、貯湯用熱交換器24側と熱源用熱交換器25側とに分岐され、その分岐箇所に、貯湯用熱交換器24側に通流させる冷却水の流量と熱源用熱交換器25側に通流させる冷却水の流量との割合を調整する分流弁30が設けられている。
そして、分流弁30は、冷却水循環路13の冷却水の全量を貯湯用熱交換器24側に通流させたり、冷却水循環路13の冷却水の全量を熱源用熱交換器25側に通流させることもできるように構成されている。
The cooling water circulation path 13 is branched into a hot water storage heat exchanger 24 side and a heat source heat exchanger 25 side, and the flow rate of the cooling water to be passed to the hot water storage heat exchanger 24 side and the heat source use are branched at the branch points. A diversion valve 30 is provided that adjusts the ratio of the flow rate of the cooling water that flows to the heat exchanger 25 side.
The diversion valve 30 allows the entire amount of cooling water in the cooling water circulation path 13 to flow to the hot water storage heat exchanger 24 side, or allows the entire amount of cooling water in the cooling water circulation path 13 to flow to the heat source heat exchanger 25 side. It is comprised so that it can also be made.

前記貯湯用熱交換器24においては、燃料電池1の発生熱を回収した冷却水循環路13の冷却水を通流させることにより、湯水循環路16を通流する湯水を加熱させるように構成されている。前記熱源用熱交換器25においては、燃料電池1の発生熱を回収した冷却水循環路13の冷却水を通流させることにより、熱源用循環路20を通流する熱源用湯水を加熱させるように構成されている。
前記熱媒加熱用熱交換器26においては、熱源用熱交換器25や補助加熱器28にて加熱された熱源用湯水を通流させることにより、熱媒循環路22を通流する熱媒を加熱させるように構成されている。ちなみに、前記熱消費端末3として、床暖房装置、浴室暖房乾燥機又はファンコンベクタ等の暖房端末が設けられる。
The hot water storage heat exchanger 24 is configured to heat the hot water flowing through the hot water circulation path 16 by passing the cooling water of the cooling water circulation path 13 that has recovered the heat generated by the fuel cell 1. Yes. In the heat source heat exchanger 25, the hot water for the heat source flowing through the heat source circulation path 20 is heated by passing the cooling water in the cooling water circulation path 13 that has recovered the heat generated by the fuel cell 1. It is configured.
In the heat exchanger 26 for heat medium heating, the heat medium flowing through the heat medium circulation path 22 is passed by flowing hot water for the heat source heated by the heat exchanger 25 for heat source or the auxiliary heater 28. It is configured to be heated. Incidentally, a heating terminal such as a floor heating device, a bathroom heating dryer or a fan convector is provided as the heat consuming terminal 3.

前記給湯路27には、前記給湯先に湯水を給湯するときの給湯負荷熱量を計測する給湯負荷熱量計測手段31が設けられ、又、前記熱消費端末3での端末負荷熱量を計測する端末負荷熱量計測手段32も設けられている。尚、図示は省略するが、これら給湯負荷熱量計測手段31及び端末負荷熱量計測手段32は、通流する湯水や熱媒の温度を検出する温度センサと、湯水や熱媒の流量を検出する流量センサとを備えて構成され、温度センサの検出温度と流量センサの検出流量とに基づいて負荷熱量を検出するように構成されている。   The hot water supply passage 27 is provided with hot water supply load calorie measuring means 31 for measuring the hot water supply load calorie when supplying hot water to the hot water supply destination, and the terminal load for measuring the terminal load calorie at the heat consuming terminal 3. A calorie measuring means 32 is also provided. In addition, although illustration is abbreviate | omitted, these hot water supply load calorie | heat_amount measurement means 31 and terminal load calorie | heat_amount measurement means 32 are the flow rate which detects the temperature sensor which detects the temperature of the flowing hot water and a heat medium, and the flow volume of a hot water and a heat medium. And a sensor, and is configured to detect the load heat quantity based on the detected temperature of the temperature sensor and the detected flow rate of the flow sensor.

前記湯水循環路16における前記貯湯用熱交換器24よりも下流側の箇所に、前記貯湯用熱交換器24にて加熱されて貯湯槽2に供給される湯水の温度を検出する貯湯温度センサShが設けられている。
又、前記貯湯槽2には、その貯湯熱量の検出用として、貯湯槽2の上端の湯水の温度を検出する上端温度センサS1、貯湯槽2を上下方向に概ね三等分した等分部分の中層部における上端部分の湯水の温度を検出する中間上位温度センサS2、貯湯槽2の中層部における下端部分の湯水の温度を検出する中間下位温度センサS3、及び、貯湯槽2の下端の湯水の温度を検出する下端温度センサS4が設けられ、更に、前記給水路29には、貯湯槽2に供給される水の給水温度を検出する給水温度センサSiが設けられている。
A hot water storage temperature sensor Sh that detects the temperature of hot water that is heated by the hot water storage heat exchanger 24 and supplied to the hot water tank 2 at a location downstream of the hot water storage heat exchanger 24 in the hot water circulation path 16. Is provided.
The hot water tank 2 has an upper end temperature sensor S1 for detecting the temperature of hot water at the upper end of the hot water tank 2, and an equally divided portion obtained by roughly dividing the hot water tank 2 into three equal parts in the vertical direction. Intermediate upper temperature sensor S2 for detecting the temperature of hot water at the upper end portion in the middle layer portion, intermediate lower temperature sensor S3 for detecting the temperature of hot water at the lower end portion in the middle layer portion of the hot water tank 2, and hot water at the lower end of the hot water tank 2 A lower end temperature sensor S4 for detecting the temperature is provided, and a water supply temperature sensor Si for detecting the temperature of the water supplied to the hot water tank 2 is provided in the water supply passage 29.

前記運転制御部5による前記貯湯槽2の貯湯熱量の演算方法について、説明する。
前記上端温度センサS1、中間上位温度センサS2、中間下位温度センサS3、下端温度センサS4夫々にて検出される貯湯槽2の湯水の温度を、夫々、T1、T2、T3、T4とし、前記給水温度センサSiにて検出される給水温度をTiとし、上層部、中層部、下層部夫々の容量をV(リットル)とする。
又、前記上層部における重み係数をA1とし、前記中層部における重み係数をA2とし、前記下層部における重み係数をA3とすると、貯湯熱量(kcal)は、下記の(式3)にて演算することができる。尚、この実施形態では、熱量の単位をkcalの単位にて示す場合があるが、1kWh=860kcalの関係に基づいて860に設定される係数αにて各値を除することにより、kWhの単位として求めることができる。
A method of calculating the amount of stored hot water in the hot water storage tank 2 by the operation control unit 5 will be described.
The temperatures of the hot water in the hot water tank 2 detected by the upper end temperature sensor S1, the intermediate upper temperature sensor S2, the intermediate lower temperature sensor S3, and the lower end temperature sensor S4 are T1, T2, T3, and T4, respectively. The water supply temperature detected by the temperature sensor Si is Ti, and the capacities of the upper layer portion, the middle layer portion, and the lower layer portion are V (liters).
Further, assuming that the weighting coefficient in the upper layer part is A1, the weighting coefficient in the middle layer part is A2, and the weighting coefficient in the lower layer part is A3, the amount of stored hot water (kcal) is calculated by the following (Equation 3). be able to. In this embodiment, the unit of calorie may be indicated by the unit of kcal, but by dividing each value by the coefficient α set to 860 based on the relationship of 1 kWh = 860 kcal, the unit of kWh Can be obtained as

貯湯熱量=(A1×T1+(1−A1)×T2−Ti)×V
+(A2×T2+(1−A2)×T3−Ti)×V
+(A3×T3+(1−A3)×T4−Ti)×V……………(式3)
Hot water storage heat amount = (A1 * T1 + (1-A1) * T2-Ti) * V
+ (A2 * T2 + (1-A2) * T3-Ti) * V
+ (A3 * T3 + (1-A3) * T4-Ti) * V (Equation 3)

重み係数A1、A2、A3は、貯湯槽2の各層における過去の温度分布データを考慮した経験値である。ここで、A1、A2、A3としては、例えば、A1=A2=0.2、A3=0.5である。A1=A2=0.2とは、上層部においては温度T2の影響が温度T1の影響よりも大きいことを示す。これは、上層部の8割の部分は温度T2に近く、2割の部分は温度T1に近いことを示す。これは、中層部においても同様である。下層部においては、温度T3とT4の影響が同じであることを示す。   The weighting factors A1, A2, A3 are empirical values considering past temperature distribution data in each layer of the hot water tank 2. Here, as A1, A2, A3, for example, A1 = A2 = 0.2 and A3 = 0.5. A1 = A2 = 0.2 indicates that the influence of the temperature T2 is larger than the influence of the temperature T1 in the upper layer portion. This indicates that 80% of the upper layer is close to the temperature T2, and 20% is close to the temperature T1. The same applies to the middle layer portion. In the lower layer part, it shows that the influence of temperature T3 and T4 is the same.

前記運転制御部5は、前記燃料電池1の運転中には前記冷却水循環ポンプ15を作動させる状態で、燃料電池1の運転を制御し、並びに、前記湯水循環ポンプ17、前記熱源用循環ポンプ21、前記熱媒循環ポンプ23、前記分流弁30及び前記熱源用断続弁40夫々の作動を制御することによって、貯湯槽2内に湯水を貯湯する貯湯運転や、熱消費端末3に熱媒を供給する熱媒供給運転を行うように構成されている。   The operation control unit 5 controls the operation of the fuel cell 1 in a state where the cooling water circulation pump 15 is operated during the operation of the fuel cell 1, and the hot water circulation pump 17 and the heat source circulation pump 21. The hot-medium storage pump 2 stores hot water in the hot-water tank 2 and supplies the heat medium to the heat-consuming terminal 3 by controlling the operation of the heat-medium circulation pump 23, the diversion valve 30 and the heat source intermittent valve 40. It is comprised so that the heat-medium supply operation to perform may be performed.

前記運転制御部5は、熱消費端末3用の端末用リモコン(図示省略)から運転の指令がされない状態では、前記貯湯運転を行い、その貯湯運転では、前記分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え且つ熱源用断続弁40を閉弁した状態で、前記貯湯温度センサShの検出情報に基づいて、前記貯湯槽2に供給される湯水の温度が予め設定された目標貯湯温度(例えば60°C)になるように湯水循環量を調節すべく、前記湯水循環ポンプ17の作動を制御するように構成されている。そして、この貯湯運転により、目標貯湯温度の湯が貯湯槽2に貯湯されることになる。   The operation control unit 5 performs the hot water storage operation in a state where no operation command is given from a terminal remote controller (not shown) for the heat consuming terminal 3, and in the hot water storage operation, the diversion valve 30 is configured to reduce the total amount of cooling water. The temperature of the hot water supplied to the hot water storage tank 2 is switched to the state of flowing through the hot water storage heat exchanger 24 and the heat source intermittent valve 40 is closed based on the detection information of the hot water storage temperature sensor Sh. Is configured to control the operation of the hot water circulation pump 17 in order to adjust the hot water circulation amount so that the temperature becomes a preset target hot water storage temperature (for example, 60 ° C.). The hot water at the target hot water temperature is stored in the hot water tank 2 by this hot water storage operation.

又、前記運転制御部5は、前記端末用リモコンから運転が指令されると、前記熱媒供給運転を行い、その熱媒供給運転では、熱源用断続弁40を開弁し、熱源用循環ポンプ21を予め設定された設定回転速度で作動させる状態で、前記熱消費端末3での端末負荷熱量に応じた量の冷却水を前記熱源用熱交換器25に通流させるように前記分流弁30を制御するように構成され、そのように熱媒供給運転を行う状態で、分流弁30が貯湯用熱交換器24側にも冷却水を通流させる状態に制御するときは、前述のように湯水循環ポンプ17の作動を制御して、熱媒供給運転に並行して貯湯運転を実行するように構成されている。
前記運転制御部5は、前記熱媒供給運転の実行中に前記端末用リモコンから運転の停止が指令されると、前記分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え、前記熱源用断続弁40を閉弁し、前記熱源用循環ポンプ21を停止させて、前記湯水循環ポンプ17を作動させることにより、前記熱媒供給運転から前記貯湯運転に切り換えるように構成されている。
In addition, when the operation is commanded from the terminal remote controller, the operation control unit 5 performs the heat medium supply operation. In the heat medium supply operation, the heat source intermittent valve 40 is opened, and the heat source circulation pump is operated. In a state in which 21 is operated at a preset rotational speed, the flow dividing valve 30 is configured to allow the coolant corresponding to the terminal load heat amount at the heat consuming terminal 3 to flow through the heat exchanger 25 for heat source. As described above, when the diverter valve 30 is controlled to allow the cooling water to flow also to the hot water storage heat exchanger 24 side in such a state that the heat medium supply operation is performed as described above. The operation of the hot water circulation pump 17 is controlled, and the hot water storage operation is executed in parallel with the heat medium supply operation.
When the operation control unit 5 is instructed to stop the operation from the terminal remote controller during the heat medium supply operation, the operation control unit 5 causes the diverter valve 30 to pass the entire amount of cooling water to the hot water storage heat exchanger 24 side. The heat source intermittent pump 40 is closed, the heat source circulation pump 21 is stopped, and the hot water circulation pump 17 is operated to switch from the heat medium supply operation to the hot water storage operation. It is configured.

そして、前記給湯路27を通して前記貯湯槽2の湯水が給湯先に給湯されるとき、及び、前記熱媒供給運転の実行中は、前記運転制御部5は、補助加熱器28に供給される湯水の温度が前記目標加熱温度よりも低いときは、補助加熱器28に供給される湯水を前記目標加熱温度に加熱して出湯すべく、前記バーナ28cへのガス燃料の供給量を調節することになる。   When the hot water in the hot water tank 2 is supplied to the hot water supply destination through the hot water supply passage 27 and during the execution of the heating medium supply operation, the operation control unit 5 supplies the hot water supplied to the auxiliary heater 28. When the temperature of the gas is lower than the target heating temperature, the amount of gas fuel supplied to the burner 28c is adjusted so that hot water supplied to the auxiliary heater 28 is heated to the target heating temperature and discharged. Become.

更に、前記運転制御部5は、前記貯湯運転の実行中に、前記下端温度センサS4の検出温度が予め設定した放熱作動用設定温度以上になると、貯湯槽2の底部にまで貯湯されて、貯湯槽2の貯湯量が満杯になったとして、貯湯槽2の下部から取り出した湯水がラジエータ19を通過するように循環させる状態に三方弁18を切り換えると共に、ラジエータ19を作動させて、貯湯槽2の下部から取り出した湯水をラジエータ19にて放熱させたのち、貯湯用熱交換器24を通過させて加熱して、貯湯槽2に供給するように構成されている。   Further, the operation control unit 5 stores hot water up to the bottom of the hot water tank 2 when the temperature detected by the lower end temperature sensor S4 is equal to or higher than a preset temperature for heat radiation operation during the hot water storage operation. Assuming that the amount of hot water stored in the tank 2 is full, the three-way valve 18 is switched to a state in which the hot water taken out from the lower part of the hot water tank 2 is circulated so as to pass through the radiator 19 and the radiator 19 is operated. After the hot water taken out from the lower part of the water is radiated by the radiator 19, the hot water is passed through the hot water storage heat exchanger 24, heated, and supplied to the hot water tank 2.

次に、運転制御部5による燃料電池1の運転の制御について説明する。
この運転制御部5は、運転周期の開始時点(周期的な運転形態選定タイミングに相当する)において、時系列的な予測負荷電力及び時系列的な予測負荷熱量並びに前記補助加熱器28の発熱効率に基づいて、前記燃料電池1を連続運転すると仮定したときの連続運転時の予測エネルギ消費量、及び、前記燃料電池1を断続運転すると仮定したときの断続運転時の予測エネルギ消費量を求めて、その求めた連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量並びに運転形態選定条件に基づいて、前記燃料電池1の運転形態を連続運転形態、断続運転形態及び前記燃料電池1を停止させて運転を待機させる待機形態のいずれかに定める運転形態選定処理を実行するように構成されている。
Next, control of the operation of the fuel cell 1 by the operation control unit 5 will be described.
The operation control unit 5 performs time-series predicted load power, time-series predicted load heat amount, and heat generation efficiency of the auxiliary heater 28 at the start point of the operation cycle (corresponding to the periodic operation mode selection timing). Based on the above, the predicted energy consumption during continuous operation when the fuel cell 1 is assumed to be operated continuously and the predicted energy consumption during intermittent operation when the fuel cell 1 is assumed to be operated intermittently are obtained. Based on the obtained predicted energy consumption during continuous operation, predicted energy consumption during intermittent operation, and operation mode selection conditions, the operation mode of the fuel cell 1 is determined as a continuous operation mode, an intermittent operation mode, and the fuel cell 1. The operation mode selection process defined in one of the standby modes for stopping the operation and waiting for the operation is executed.

そして、この実施形態では、前記運転形態選定条件が、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量夫々についての予測運転メリットを運転形態選定用指標として、その運転形態選定用指標に基づいて前記燃料電池1の運転形態を定める条件に設定されている。   And in this embodiment, the operation mode selection condition uses the predicted operation merit for each of the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation as an operation mode selection index. The conditions are set to determine the operation mode of the fuel cell 1 based on the selection index.

例えば、前記運転周期は1日に設定され、その運転周期を構成する複数の単位時間が1時間に設定されている。又、前記予測運転メリットとして、燃料電池1を運転することにより得られると予測される予測エネルギ削減量を求めるように構成されている。   For example, the operation cycle is set to 1 day, and a plurality of unit times constituting the operation cycle are set to 1 hour. Further, as the predicted operation merit, a predicted energy reduction amount predicted to be obtained by operating the fuel cell 1 is obtained.

前記運転制御部5により時系列的な予測負荷電力及び時系列的な予測負荷熱量を求める処理について、説明を加える。ちなみに、負荷熱量は、前記給湯先に湯水を給湯するときの給湯負荷熱量と、前記熱消費端末3での端末負荷熱量とからなる。
前記運転制御部5は、実負荷電力データ、実給湯負荷熱量データ及び実端末負荷熱量データを運転周期及び単位時間に対応付けてメモリに記憶することにより、過去の時系列的な負荷電力データ及び過去の時系列的な負荷熱量データを、設定期間(例えば、運転日前の4週間)にわたって、運転周期毎に単位時間毎に対応付けて管理するように構成されている。
ちなみに、実負荷電力は、前記負荷電力計測手段11の計測値及び前記インバータ6の出力値に基づいて計測され、実給湯負荷熱量は前記給湯負荷熱量計測手段31にて計測され、実端末負荷熱量は前記端末負荷熱量計測手段32にて計測される。
The processing for obtaining the time-series predicted load power and the time-series predicted load heat quantity by the operation control unit 5 will be described. By the way, the load heat amount is composed of a hot water supply load heat amount when hot water is supplied to the hot water supply destination and a terminal load heat amount at the heat consuming terminal 3.
The operation control unit 5 stores the actual load power data, the actual hot water supply load heat amount data, and the actual terminal load heat amount data in the memory in association with the operation cycle and the unit time, so that the past time-series load power data and The past time-series load calorie data is configured to be managed in association with each unit time for each operation cycle over a set period (for example, four weeks before the operation day).
Incidentally, the actual load power is measured based on the measured value of the load power measuring means 11 and the output value of the inverter 6, and the actual hot water supply load heat quantity is measured by the hot water supply load heat quantity measuring means 31, and the actual terminal load heat quantity is measured. Is measured by the terminal load calorie measuring means 32.

そして、前記運転制御部5は、運転周期の開始時点(例えば午前3時)において、時系列的な過去負荷電力データ及び時系列的な過去負荷熱量データの管理データに基づいて、連続する予測用設定回数(例えば3回)の運転周期のうちの最初の運転周期の時系列的な予測負荷熱量データ及び時系列的な予測負荷電力データ、並びに、予測用設定回数の運転周期のうちの最初の運転周期に後続する運転周期の時系列的な予測負荷熱量データを単位時間毎に区分けして求めるように構成されている。ちなみに、時系列的な予測負荷熱量データは、時系列的な予測給湯負荷熱量データと時系列的な予測端末負荷熱量データとを加えたデータであるが、この実施形態においては、熱の負荷状態としては、前記熱消費端末3での端末負荷熱量が発生しておらず、給湯負荷熱量のみが発生するとして説明する。   And the said operation control part 5 is for continuous prediction based on the management data of the time series past load electric power data and the time series past load calorie | heat amount data at the start time (for example, 3:00 am) of an operation cycle. Time-series predicted load calorie data and time-series predicted load power data of the first operation cycle of the set number of operation cycles (for example, 3 times), and the first of the operation cycles of the set number of times for prediction Time-series predicted load calorie data of the operation cycle subsequent to the operation cycle is obtained by being divided for each unit time. Incidentally, the time-series predicted load heat quantity data is data obtained by adding the time-series predicted hot water supply load heat quantity data and the time-series predicted terminal load heat quantity data, but in this embodiment, the heat load state Will be described on the assumption that the terminal load heat amount is not generated in the heat consuming terminal 3 and only the hot water supply load heat amount is generated.

例えば、運転周期の開始時点において、図3に示すように、予測用設定回数の運転周期のうちの最初の運転周期の時系列的な予測負荷電力データ及び時系列的な予測給湯負荷熱量データを単位時間毎に求め、予測用設定回数の運転周期のうちの最初の運転周期に後続する運転周期(図3では、2回目の運転周期の一部についてのみ図示)の予測給湯負荷熱量データに求める。
ちなみに、予測負荷電力データの単位はkWhであり、予測給湯負荷熱量データの単位はkcal/hである。
For example, at the start of the operation cycle, as shown in FIG. 3, the time-series predicted load power data and the time-series predicted hot water supply load heat amount data of the first operation cycle among the operation cycles of the set number of times for prediction are obtained. It is obtained every unit time, and is obtained from predicted hot water supply load calorific value data of an operation cycle (only a part of the second operation cycle is shown in FIG. 3) subsequent to the first operation cycle among the operation cycles of the set number of times for prediction. .
Incidentally, the unit of predicted load power data is kWh, and the unit of predicted hot water supply load heat amount data is kcal / h.

前記燃料電池1の運転形態について説明を加える。
前記連続運転形態は、運転周期中、燃料電池1を連続して運転する形態であり、前記断続運転形態は、運転周期中、燃料電池1を断続して運転する形態であり、更に、連続運転形態として、予測負荷電力に対する燃料電池1の電力の出力形態を異ならせた複数種の運転形態が含まれ、前記断続運転形態として、予測負荷電力に対する燃料電池1の電力の出力形態又は燃料電池1を運転する運転時間帯を異ならせた複数種の運転形態が含まれている。
The operation mode of the fuel cell 1 will be described.
The continuous operation mode is a mode in which the fuel cell 1 is continuously operated during the operation cycle, and the intermittent operation mode is a mode in which the fuel cell 1 is operated intermittently during the operation cycle. As modes, a plurality of types of operation modes in which the power output mode of the fuel cell 1 with respect to the predicted load power is made different are included. As the intermittent operation mode, the power output mode of the fuel cell 1 with respect to the predicted load power or the fuel cell 1 A plurality of types of driving modes with different driving time zones are included.

前記複数種の連続運転形態には、前記運転周期の全時間帯において燃料電池1の発電出力を予測負荷電力に追従させる負荷追従連続運転形態、前記運転周期の複数の単位時間のうちの一部の単位時間において前記燃料電池1の発電出力を前記予測負荷電力よりも小さな設定抑制出力とし且つ残りの単位時間において前記燃料電池1の発電出力を前記予測負荷電力に追従させる抑制連続運転形態、及び、前記運転周期の複数の単位時間のうちの一部の単位時間において前記燃料電池1の発電出力を前記予測負荷電力よりも大きな設定増大出力とし且つ残りの単位時間において前記燃料電池1の発電出力を前記予測負荷電力に追従させる強制連続運転形態が含まれる。   The plurality of types of continuous operation modes include a load following continuous operation mode in which the power generation output of the fuel cell 1 follows the predicted load power in the entire time period of the operation cycle, and a part of the plurality of unit times of the operation cycle. A suppressed continuous operation mode in which the power generation output of the fuel cell 1 is set to be a set suppression output smaller than the predicted load power in the unit time and the power generation output of the fuel cell 1 follows the predicted load power in the remaining unit time, and The power generation output of the fuel cell 1 is set to a set increase output larger than the predicted load power in a part of the plurality of unit times of the operation cycle, and the power generation output of the fuel cell 1 in the remaining unit time. Is included in the forced continuous operation mode that causes the following load power to follow the predicted load power.

更に、抑制連続運転形態が、前記設定抑制出力とする単位時間を、前記負荷追従連続運転形態にて前記燃料電池1を運転するときに前記運転周期の複数の単位時間のうちに前記貯湯槽2の予測貯湯熱量が貯湯槽2における予め設定された上限貯湯熱量以上になる熱余り状態が発生する単位時間が存在する場合に、前記熱余り状態が発生する単位時間よりも以前の単位時間のうちで、前記熱余り状態が解消し且つ予測エネルギ削減量が最も大きくなる単位時間に定めるものであり、前記強制連続運転形態が、前記設定増大出力とする単位時間を、前記負荷追従連続運転形態にて前記燃料電池1を運転するときに前記運転周期の複数の単位時間のうちに前記貯湯槽2の予測貯湯熱量が予測負荷熱量に対して不足する熱不足状態が発生する単位時間が存在する場合に、前記熱不足状態が発生する単位時間よりも以前の単位時間のうちで、前記熱不足状態が解消し且つ予測エネルギ削減量が最も大きくなる単位時間に定めるものである。   Further, when the fuel cell 1 is operated in the load follow-up continuous operation mode, the hot water storage tank 2 in the plurality of unit times when the suppression continuous operation mode is set as the set suppression output. Of the unit time before the unit time in which the excess heat state occurs when there is a unit time in which the excess heat state in which the predicted hot water storage amount is equal to or greater than the preset upper limit hot water storage amount in the hot water tank 2 Thus, the unit time when the excess heat state is eliminated and the predicted energy reduction amount is the largest is determined, and the forced continuous operation mode sets the unit time for the set increase output as the load following continuous operation mode. When the fuel cell 1 is operated, a unit time in which a shortage of heat occurs in which the predicted amount of stored hot water in the hot water tank 2 is insufficient with respect to the predicted load heat amount during a plurality of unit times of the operation cycle. When present, of the previous unit time than the unit time the thermal insufficiency occurs, and the predicted energy reductions the thermal insufficiency is resolved is what is provided for in most larger unit time.

前記貯湯槽2の予測貯湯熱量は、貯湯槽2に湯水にて貯えられると予測される熱量であり、各単位時間の予測貯湯熱量(kcal/h)は、下記の式4、式5にて求められる。尚、各式において、添え字「n」は、運転周期における単位時間の順序を示し、例えば、n=1のときは、運転周期の1番目の単位時間を示す。
但し、n=1のときの式2における予測貯湯熱量n-1としての予測貯湯熱量0は、運転周期の開始時点の予測貯湯熱量であり、上記の式3に基づいて求められた値とされる。
The predicted amount of stored hot water in the hot water tank 2 is the amount of heat that is predicted to be stored in the hot water tank 2 as hot water, and the predicted amount of stored hot water (kcal / h) for each unit time is expressed by the following equations 4 and 5. Desired. In each equation, the subscript “n” indicates the order of unit times in the operation cycle. For example, when n = 1, the first unit time in the operation cycle is indicated.
However, the predicted hot water storage amount 0 as the predicted hot water storage amount n-1 in Equation 2 when n = 1 is the predicted hot water storage amount at the start of the operation cycle, and is a value obtained based on Equation 3 above. The

予測貯湯熱量n=(予測貯湯熱量n-1−予測負荷熱量n+予測熱出力n)×(1−槽放熱率)……………(式4)
予測熱出力n=α×{(予測発電出力n÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量……………(式5)
Predicted hot water storage amount n = (Predicted hot water storage amount n-1 −Predicted load heat amount n + Predicted heat output n ) × (1-tank heat dissipation rate) (Equation 4)
Predicted heat output n = α × {(predicted power output n ÷ battery power generation efficiency) × battery heat efficiency} + surplus power × α × β-base heat dissipation amount (equation 5)

但し、
槽放熱率は、貯湯槽2からの放熱率であり、例えば、0.012に予め設定されて、メモリ34に記憶されている。
電池発電効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発電出力(kWh)の比率を示し、電池熱効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発生熱量(kWh)の比率を示し、これら電池発電効率及び電池熱効率は、図4に示すように発電出力に応じて設定されてメモリ34に記憶されている。
ベース放熱量は、このコージェネレーションシステムにおいて、燃料電池1の発生熱量のうち、貯湯槽2への貯湯及び熱消費端末3による暖房に用いられることなく放熱される熱量であり、予め設定されている。
余剰電力は、予測発電出力が予測負荷電力よりも大きい場合に、予測発電出力から予測負荷電力を減じることにより求められる。
例えば、予測負荷電力が燃料電池1の最小出力よりも小さいときは、余剰電力は、燃料電池1の最小出力から予測負荷電力を減じることにより求められる。又、後述するが、燃料電池1の発電出力を予測負荷電力に追従する電主出力よりも大きい設定増大出力に設定するときは、余剰電力は、その設定増大出力から予測負荷電力を減じることにより求められる。尚、予測負荷電力が発電出力調節範囲の最小出力よりも小さいときは、その最小出力が電主出力となり、予測負荷電力が発電出力調節範囲の最大出力よりも大きいときは、その最大出力が電主出力となる。
αは、上述したように860に設定される係数である。
βは、電気ヒータ12にて余剰電力(kWh)を熱(kWh)に変換するときの効率であるヒータ効率であり、予め設定されている。
However,
The tank heat release rate is the heat release rate from the hot water storage tank 2, and is preset to 0.012 and stored in the memory 34, for example.
The battery power generation efficiency indicates the ratio of the power generation output (kWh) to the unit energy consumption (kWh) in the fuel cell 1, and the battery thermal efficiency is the ratio of the generated heat amount (kWh) to the unit energy consumption (kWh) in the fuel cell 1. The battery power generation efficiency and the battery thermal efficiency are set according to the power generation output and stored in the memory 34 as shown in FIG.
In this cogeneration system, the base heat release amount is the amount of heat radiated without being used for hot water storage in the hot water storage tank 2 and heating by the heat consuming terminal 3 out of the generated heat amount of the fuel cell 1. .
The surplus power is obtained by subtracting the predicted load power from the predicted power output when the predicted power output is larger than the predicted load power.
For example, when the predicted load power is smaller than the minimum output of the fuel cell 1, the surplus power is obtained by subtracting the predicted load power from the minimum output of the fuel cell 1. As will be described later, when the power generation output of the fuel cell 1 is set to a set increase output larger than the main output following the predicted load power, the surplus power is obtained by subtracting the predicted load power from the set increase output. Desired. When the predicted load power is smaller than the minimum output of the power generation output adjustment range, the minimum output is the main output, and when the predicted load power is larger than the maximum output of the power generation output adjustment range, the maximum output is power. Main output.
α is a coefficient set to 860 as described above.
β is a heater efficiency that is an efficiency when the electric heater 12 converts surplus power (kWh) into heat (kWh), and is set in advance.

前記複数種の断続運転形態に、燃料電池1の発電出力を前記予測負荷電力に追従させる単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も予測エネルギ削減量が大きくなる単位時間に定める負荷追従断続運転形態、燃料電池1の発電出力を前記予測負荷電力よりも小さな設定抑制出力に調節する単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も予測エネルギ削減量が大きくなる単位時間に定める抑制断続運転形態、及び、燃料電池1の発電出力を前記予測負荷電力よりも大きな設定増大出力に調節する単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も予測エネルギ削減量が大きくなる単位時間に定める強制断続運転形態が含まれる。   With the unit time for causing the power generation output of the fuel cell 1 to follow the predicted load power in the plurality of types of intermittent operation modes, the predicted energy reduction amount is the largest among the plurality of unit times of the operation cycle. A plurality of unit times of the operation cycle, wherein the load follow-up intermittent operation mode defined as a unit time to be increased, and the unit time for adjusting the power generation output of the fuel cell 1 to a setting suppression output smaller than the predicted load power are set as the operation time zone. The controlled intermittent operation mode determined at the unit time in which the predicted energy reduction amount is the largest, and the unit time for adjusting the power generation output of the fuel cell 1 to a set increase output larger than the predicted load power is the operation time period. The forced intermittent operation mode defined as the unit time in which the predicted energy reduction amount is the largest among the plurality of unit times of the operation cycle is included.

更に、前記負荷追従断続運転形態に、燃料電池1の発電出力を前記予測負荷電力に追従させる単位時間を、それを定める前記運転周期における予測負荷電力及び予測負荷熱量に基づく予測エネルギ削減量が最も大きくなる単位時間に定める単周期対応型の負荷追従断続運転形態と、燃料電池1の発電出力を前記予測負荷電力に追従させる単位時間を、それを定める前記運転周期における予測負荷電力及び予測負荷熱量並びに後続する運転周期における予測負荷熱量に基づく予測エネルギ削減量が最も大きくなる単位時間に定める複数周期対応型の負荷追従断続運転形態とが含まれる。
前記抑制断続運転形態に、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測負荷電力及び予測負荷熱量に基づく予測エネルギ削減量が最も大きくなる単位時間に定める単周期対応型の抑制断続運転形態と、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測負荷電力及び予測負荷熱量並びに後続する運転周期における予測負荷熱量に基づく予測エネルギ削減量が最も大きくなる単位時間に定める複数周期対応型の抑制断続運転形態とが含まれる。
前記強制断続運転形態に、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測負荷電力及び予測負荷熱量に基づく予測エネルギ削減量が最も大きくなる単位時間に定める単周期対応型の強制断続運転形態と、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測負荷電力及び予測負荷熱量並びに後続する運転周期における予測負荷熱量に基づく予測エネルギ削減量が最も大きくなる単位時間に定める複数周期対応型の強制断続運転形態とが含まれる。
Further, in the load follow-up intermittent operation mode, the predicted energy reduction amount based on the predicted load power and the predicted load heat amount in the operation cycle that defines the unit time for causing the power generation output of the fuel cell 1 to follow the predicted load power is the largest. A single-cycle-compatible load-following intermittent operation mode that is defined as a unit time that increases, and a unit time that causes the power generation output of the fuel cell 1 to follow the predicted load power are predicted load power and predicted load heat amount in the operation cycle that defines the unit time. In addition, a load follow intermittent operation mode corresponding to a plurality of cycles, which is defined as a unit time in which the predicted energy reduction amount based on the predicted load heat amount in the subsequent operation cycle is the largest, is included.
In the suppression intermittent operation mode, a unit time for adjusting the power generation output of the fuel cell 1 to the set suppression output is a unit in which the predicted energy reduction amount based on the predicted load power and the predicted load heat amount in the operation cycle that determines the unit time is the largest. A single cycle corresponding suppression intermittent operation mode determined in time, and a unit time for adjusting the power generation output of the fuel cell 1 to the set suppression output, the predicted load power and the predicted load heat amount in the operation cycle for determining the unit time, and the subsequent operation And a multi-cycle compatible intermittent intermittent operation mode defined in a unit time in which the predicted energy reduction amount based on the predicted load heat quantity in the cycle is the largest.
In the forced intermittent operation mode, the unit time for adjusting the power generation output of the fuel cell 1 to the set increase output is a unit in which the predicted energy reduction amount based on the predicted load power and the predicted load heat amount in the operation cycle that determines the unit time is the largest. Single cycle-compatible forced intermittent operation mode determined in time, unit time for adjusting the power generation output of the fuel cell 1 to the set increase output, predicted load power and predicted load heat amount in the operation cycle for determining the unit time, and subsequent operation And a forced cycle operation mode corresponding to a plurality of cycles defined in a unit time in which the predicted energy reduction amount based on the predicted load heat amount in the cycle is the largest.

この実施形態では、運転周期が1日に設定されるので、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々の単周期対応型を1日対応型と記載する。又、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々の複数周期対応型としては、後続する運転周期が1回の2日対応型のものと、後続する運転周期が2回の3日対応型のものとが含まれる。   In this embodiment, since the operation cycle is set to one day, the single cycle correspondence type of each of the load following intermittent operation mode, the suppression intermittent operation mode, and the forced intermittent operation mode is described as a one-day correspondence type. In addition, the load following intermittent operation mode, the suppression intermittent operation mode, and the forced intermittent operation mode, each of which corresponds to a plurality of cycles, is a two-day response type in which the subsequent operation cycle is one time, and a subsequent operation cycle is two times. 3 day compatible type is included.

以下、強制連続運転形態、及び、1日対応型、2日対応型、3日対応型の各強制断続運転形態夫々における設定増大出力、並びに、抑制連続運転形態、及び、1日対応型、2日対応型、3日対応型の各抑制断続運転形態夫々における設定抑制出力の設定方法について、説明する。
図5に示すように、増大出力設定用又は抑制出力設定用の仮設定出力を前記燃料電池1の発電出力調節範囲(この実施形態では、0.25〜0.75kW)内で段階的(例えば、0.05kW間隔)に設定し、各仮設定出力について、前記燃料電池1の発電出力を仮設定出力に調節したときに燃料電池1から発生する出力増大時発生熱量(kW)を下記の式6にて求め、仮設定出力を燃料電池1にて得る場合と商用電源7にて得る場合とのエネルギ消費量の差である出力抑制時発電用エネルギ量差(kW)を下記の式7にて求めて、それら出力増大時発生熱量及び出力抑制時発電用エネルギ量差を各仮設定出力に対応付けて、メモリ34に記憶させてある。
Hereinafter, the forced continuous operation mode and the setting increase output in each of the forced intermittent operation modes of the 1 day correspondence type, the 2 day correspondence type, and the 3 day correspondence type, and the suppression continuous operation mode and the 1 day correspondence type, 2 A setting suppression output setting method in each of the suppression correspondence intermittent operation modes of the day correspondence type and the three day correspondence type will be described.
As shown in FIG. 5, the temporarily set output for increasing output setting or suppressing output setting is stepwise (for example, 0.25 to 0.75 kW in this embodiment) within the power generation output adjustment range of the fuel cell 1 (for example, , 0.05 kW interval), and for each temporarily set output, when the power generation output of the fuel cell 1 is adjusted to the temporarily set output, the amount of generated heat (kW) generated when the output of the fuel cell 1 is increased is expressed by the following equation: 6, the energy amount difference (kW) for power generation at the time of output suppression, which is the difference in energy consumption between the case where the temporarily set output is obtained by the fuel cell 1 and the case where it is obtained by the commercial power source 7, is expressed by the following equation 7. Thus, the generated heat amount at the time of output increase and the energy amount difference for power generation at the time of output suppression are associated with each temporarily set output and stored in the memory 34.

出力増大時発生熱量=(仮設定出力÷電池発電効率)×電池熱効率……………(式6)
出力抑制時発電用エネルギ量差=仮設定出力÷電池発電効率−仮設定出力÷商用電源発電効率……………(式7)
但し、商用電源発電効率は、商用電源7における単位エネルギ消費量(kWh)に対する発電出力(kWh)の比率である。
Amount of heat generated when output increases = (temporary set output ÷ battery power generation efficiency) x battery thermal efficiency (Equation 6)
Difference in energy amount for power generation when output is suppressed = Temporary setting output ÷ Battery power generation efficiency-Temporary setting output ÷ Commercial power generation efficiency ... (Equation 7)
However, the commercial power generation efficiency is the ratio of the power generation output (kWh) to the unit energy consumption (kWh) in the commercial power supply 7.

ちなみに、電池発電効率よりも商用電源発電効率の方が大きいため、出力抑制時発電用エネルギ量差は負の値として求められるので、出力抑制時発電用エネルギ量差の絶対値が小さいほど、エネルギ消費の面で有利となる。   Incidentally, since the commercial power generation efficiency is greater than the battery power generation efficiency, the difference in energy amount for power generation during output suppression is obtained as a negative value. Therefore, the smaller the absolute value of the energy amount difference during power suppression during output suppression, the smaller the energy This is advantageous in terms of consumption.

そして、前記運転制御部5は、運転周期の各単位時間について、電主出力よりも大きい仮設定出力のうち、出力増大時発生熱量が最大のものを設定増大出力として設定し、電主出力よりも小さい仮設定出力のうち、出力抑制時発電用エネルギ量差の絶対値が最小のものを設定抑制出力として設定するように構成されている。   And the said operation control part 5 sets the thing with the largest calorie | heat amount at the time of an output increase as a setting increase output among temporary setting outputs larger than an electric main output about each unit time of an operation cycle, Among the temporarily set outputs that are smaller, the output absolute value of the difference in energy amount for power generation at the time of output suppression is set as the setting suppression output.

次に、前記運転制御手段5により前記複数種の運転形態夫々についての予測エネルギ削減量を求める処理について、説明を加える。
各運転形態の予測エネルギ削減量は、下記の式8に示すように、燃料電池1を運転しない場合の予測エネルギ消費量から、燃料電池1を各運転形態にて運転した場合の予測エネルギ消費量を減じることにより演算する。
Next, a description will be given of processing for obtaining the predicted energy reduction amount for each of the plurality of types of operation modes by the operation control means 5.
As shown in the following equation 8, the predicted energy reduction amount in each operation mode is the predicted energy consumption amount when the fuel cell 1 is operated in each operation mode from the predicted energy consumption amount when the fuel cell 1 is not operated. Calculate by subtracting.

予測エネルギ削減量P=燃料電池1を運転しない場合の予測エネルギ消費量E1−燃料電池1を運転した場合の予測エネルギ消費量E2……………(式8)   Predicted energy reduction amount P = predicted energy consumption amount E1 when the fuel cell 1 is not operated E1-predicted energy consumption amount E2 when the fuel cell 1 is operated (Equation 8)

前記燃料電池1を運転しない場合の予測エネルギ消費量E1(kWh)は、下記の式9に示すように、最初の運転周期の予測負荷電力の全てを商用電源7からの受電電力で補う場合の商用電源7における予測エネルギ消費量と、最初の運転周期の予測負荷熱量の全てを補助加熱器28の発生熱で補う場合の予測エネルギ消費量との和として求められる。
つまり、どの運転形態の予測エネルギ削減量を求める場合でも、燃料電池1を運転しない場合の予測エネルギ消費量E1は、同様に求められる。
The predicted energy consumption E1 (kWh) when the fuel cell 1 is not operated is obtained when the predicted load power of the first operation cycle is supplemented with the received power from the commercial power supply 7 as shown in the following formula 9. It is obtained as the sum of the predicted energy consumption in the commercial power supply 7 and the predicted energy consumption when all of the predicted load heat amount in the first operation cycle is supplemented with the heat generated by the auxiliary heater 28.
In other words, the predicted energy consumption E1 in the case where the fuel cell 1 is not operated is obtained in the same manner regardless of the expected energy reduction amount in any operation mode.

E1=予測負荷電力/商用電源発電効率+予測負荷熱量/R……………(式9)   E1 = predicted load power / commercial power generation efficiency + predicted load calorie / R (Equation 9)

但し、
予測負荷熱量はkWhに変換した値である。
Rは、補助加熱器の発熱効率であり、補助加熱器における単位エネルギ消費量(kWh又はkcal)に対する発生熱量(kWh又はkcal)の比率である。
そして、補助加熱器の発熱効率として、このコージェネレーションシステムに設けられている潜熱回収型の補助加熱器28の発熱効率R2(以下、潜熱回収型の発熱効率R2と記載する場合がある)と、その潜熱回収型の発熱効率R2よりも低い値に定めた運転形態選定用の発熱効率R1がメモリ34に記憶されている。
ちなみに、この実施形態では、潜熱回収型の補助加熱器28の発熱効率R2として、例えば0.85に設定され、運転形態選定用の発熱効率R1が、非潜熱回収型の補助加熱器の発熱効率、例えば0.70に設定されている。
However,
The predicted load heat amount is a value converted into kWh.
R is the heat generation efficiency of the auxiliary heater, and is the ratio of the amount of heat generated (kWh or kcal) to the unit energy consumption (kWh or kcal) in the auxiliary heater.
And, as the heat generation efficiency of the auxiliary heater, the heat generation efficiency R2 of the latent heat recovery type auxiliary heater 28 provided in this cogeneration system (hereinafter sometimes referred to as the heat generation efficiency R2 of the latent heat recovery type), The memory 34 stores the heat generation efficiency R1 for selecting the operation mode set to a value lower than the heat generation efficiency R2 of the latent heat recovery type.
Incidentally, in this embodiment, the heat generation efficiency R2 of the auxiliary heater 28 of the latent heat recovery type is set to 0.85, for example, and the heat generation efficiency R1 for selecting the operation mode is the heat generation efficiency of the non-latent heat recovery type auxiliary heater 28 For example, 0.70 is set.

一方、燃料電池1を運転した場合の予測エネルギ消費量E2(kWh)は、下記の式10に示すように、最初の運転周期の予測負荷電力及び予測負荷熱量を燃料電池1の予測発電出力及び予測熱出力で補う場合の燃料電池1の消費エネルギである運転周期予測エネルギ消費量と、予測負荷電力から予測発電出力を差し引いた分に相当する予測不足電力量の全てを商用電源7からの受電電力で補う場合の商用電源7における予測エネルギ消費量と、予測不足熱量の全てを補助加熱器28の発生熱で補う場合の予測エネルギ消費量との和にて求められる。   On the other hand, the predicted energy consumption E2 (kWh) when the fuel cell 1 is operated is calculated by using the predicted load power and the predicted load heat amount in the first operation cycle as the predicted power generation output of the fuel cell 1 and Receiving from the commercial power supply 7 all of the predicted energy consumption of the operation cycle, which is the energy consumed by the fuel cell 1 when supplemented with the predicted heat output, and the predicted insufficient power corresponding to the predicted load power minus the predicted power output. It is obtained by the sum of the predicted energy consumption in the commercial power source 7 when supplemented with electric power and the predicted energy consumption when all of the predicted insufficient heat is supplemented with the heat generated by the auxiliary heater 28.

E2=運転周期予測エネルギ消費量+予測不足電力量/商用電源発電効率+予測不足熱量/R……………(式10)   E2 = Operating cycle predicted energy consumption + predicted insufficient power amount / commercial power generation efficiency + predicted insufficient heat amount / R (Equation 10)

但し、予測不足熱量は、予測不足熱量を求める対象の単位時間の予測負荷熱量からその単位時間の直前の単位時間の予測貯湯熱量を減じることにより求められ、kWhの単位に変換される。
Rは、上記式9と同様の補助加熱器の発熱効率である。
However, the predicted insufficient heat amount is obtained by subtracting the predicted hot water storage amount for the unit time immediately before the unit time from the predicted load heat amount for the unit time for which the predicted insufficient heat amount is obtained, and is converted into a unit of kWh.
R is the heat generation efficiency of the auxiliary heater similar to Equation 9 above.

運転周期予測エネルギ消費量は、下記の式11にて、各運転形態において燃料電池1を運転する単位時間当たりの予測エネルギ消費量を求めて、その求めた単位時間当たりの予測エネルギ消費量を積算することにより求める。   The operation cycle predicted energy consumption is obtained by calculating the predicted energy consumption per unit time for operating the fuel cell 1 in each operation mode according to the following formula 11, and integrating the calculated predicted energy consumption per unit time. To find out.

予測エネルギ消費量=(発電出力÷電池発電効率)……………(式11)   Predicted energy consumption = (power generation output ÷ battery power generation efficiency) ......... (Formula 11)

負荷追従連続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pc1を求め、又、補助加熱器の発熱効率として潜熱回収型の発熱効率R2を用いて、通常発熱効率時の予測エネルギ削減量P'c1を求める。
つまり、運転形態選定用の発熱効率R1を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、運転形態選定用の発熱効率R1を用いて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により、低発熱効率時の予測エネルギ削減量Pc1を求める。
又、潜熱回収型の発熱効率R2を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、潜熱回収型の発熱効率R2を用いて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により、通常発熱効率時の予測エネルギ削減量P'c1を求める。
尚、各単位時間の予測エネルギ消費量を前記式11により発電出力を電主出力として求め、求めた各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求め、その運転周期予測エネルギ消費量に基づいて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求める。
As the predicted energy reduction amount of the load following continuous operation mode, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency is obtained using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater, and the auxiliary heater Using the latent heat recovery type heat generation efficiency R2 as the heat generation efficiency, a predicted energy reduction amount P′c1 at the time of the normal heat generation efficiency is obtained.
In other words, the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9 using the heat generation efficiency R1 for operation mode selection, and according to Equation 10 using the heat generation efficiency R1 for operation mode selection. A predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained, and a predicted energy reduction amount Pc1 at the time of low heat generation efficiency is obtained by Eq.
Further, using the latent heat recovery type heat generation efficiency R2, the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9, and the latent heat recovery type heat generation efficiency R2 is used to obtain the fuel cell by Equation 10. A predicted energy consumption amount E2 when 1 is operated is obtained, and a predicted energy reduction amount P′c1 at the time of normal heat generation efficiency is obtained by Eq.
The predicted energy consumption for each unit time is obtained as the main output by the above formula 11, and the predicted energy consumption for each unit time is obtained by integrating the obtained predicted energy consumption for each unit time. Based on the operation cycle predicted energy consumption amount, a predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained by Expression 10.

強制連続運転形態の予測エネルギ削減量は、負荷追従連続運転形態にて前記燃料電池1を運転するとしたときに熱不足状態となる熱不足単位時間が存在する場合に求められるものであり、その強制連続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として潜熱回収型の発熱効率R2を用いて、通常発熱効率時の予測エネルギ削減量P'c3を求める。
即ち、運転周期における複数の単位時間のうちの熱不足単位時間(複数存在するときは、運転周期の開始時点に最も近いもの)よりも以前の単位時間のうちで、選択した1つ又は連続する複数の単位時間を発電出力を設定増大出力に調節する強制運転用時間帯とし且つ運転周期の残りの単位時間を発電出力を電主出力に調節する電主運転用時間帯とする形態で、前記強制運転用時間帯として選択する単位時間を異ならせることにより、強制運転用の仮運転パターンを全て形成する。
そして、全ての仮運転パターンについて、潜熱回収型の発熱効率R2を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、潜熱回収型の発熱効率R2を用いて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により、予測エネルギ削減量を求める。
尚、強制運転用時間帯の単位時間の予測エネルギ消費量を前記式11により発電出力を設定増大出力として求め、電主運転用時間帯の単位時間の予測エネルギ消費量を前記式11により発電出力を電主出力として求めて、求めた各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。
The predicted energy reduction amount in the forced continuous operation mode is obtained when there is a heat shortage unit time that becomes a heat shortage state when the fuel cell 1 is operated in the load following continuous operation mode. As the predicted energy reduction amount in the continuous operation mode, the predicted energy reduction amount P′c3 at the normal heat generation efficiency is obtained by using the latent heat recovery type heat generation efficiency R2 as the heat generation efficiency of the auxiliary heater.
That is, one or more selected unit times prior to the heat shortage unit time among the plurality of unit times in the operation cycle (when there are multiple units, the one closest to the start point of the operation cycle) In a form in which a plurality of unit times are set as a forced operation time zone for adjusting the power generation output to the set increase output and a remaining unit time of the operation cycle is set as a main operation time zone for adjusting the power generation output to the main output, All the temporary operation patterns for forced operation are formed by varying the unit time selected as the time zone for forced operation.
Then, for all the temporary operation patterns, using the latent heat recovery type heat generation efficiency R2, the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9, and the latent heat recovery type heat generation efficiency R2 is used. The predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained by the equation 10, and the predicted energy reduction amount is obtained by the equation 8 from the E1 and E2.
Note that the predicted energy consumption per unit time in the forced operation time zone is obtained as an increased output by setting the power generation output according to the above equation 11, and the predicted energy consumption per unit time in the main operation time zone is determined as the power generation output according to the above equation 11. Is calculated as the main output, and the predicted energy consumption for each unit time is integrated to obtain the predicted operation cycle energy consumption.

そして、全ての強制運転用の仮運転パターンのうちで熱余り状態となる熱余り単位時間が生じず且つ予測エネルギ削減量が最大の強制運転用の仮運転パターンを求め、その求めた仮運転パターンにおいて熱不足単位時間が生じない場合は、その強制運転用の仮運転パターンを強制連続運転形態の運転パターンに定め、その強制運転用の仮運転パターンの予測エネルギ削減量を強制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c3として求める。
尚、熱余り単位時間が生じず且つ予測エネルギ削減量が最大の強制運転用の仮運転パターンにおいて、未だ、熱不足単位時間が生じるときは、熱不足単位時間が生じなくなるまで、上述の処理を繰り返すことになる。
Then, a temporary operation pattern for forced operation that does not generate a surplus heat unit time and that has the maximum predicted energy reduction amount among all the temporary operation patterns for forced operation does not occur, and the calculated temporary operation pattern is obtained. If the heat shortage unit time does not occur, the temporary operation pattern for forced operation is set to the operation pattern of the forced continuous operation mode, and the predicted energy reduction amount of the temporary operation pattern for forced operation is set to the normal value of the forced continuous operation mode. Obtained as the predicted energy reduction amount P′c3 at the time of heat generation efficiency.
In the temporary operation pattern for forced operation in which the excess heat unit time does not occur and the predicted energy reduction amount is maximum, when the heat shortage unit time still occurs, the above processing is performed until the heat shortage unit time does not occur. Will repeat.

抑制連続運転形態の予測エネルギ削減量は、負荷追従連続運転形態にて前記燃料電池1を運転するとしたときに熱余り単位時間が存在する場合に求められるものであり、その抑制連続運転形態の予測エネルギ削減量としては、通常発熱効率時の予測エネルギ削減量P'c2を求める。
即ち、運転周期における複数の単位時間のうちの熱余り単位時間(複数存在するときは、運転周期の開始時点に最も近いもの)よりも以前の単位時間のうちで、選択した1つ又は連続する複数の単位時間を発電出力を設定抑制出力に調節する抑制運転用時間帯とし且つ運転周期の残りの単位時間を発電出力を電主出力に調節する電主運転用時間帯とする形態で、前記抑制運転用時間帯として選択する単位時間を異ならせることにより、抑制運転用の仮運転パターンを全て形成する。
そして、全ての仮運転パターンについて、潜熱回収型の発熱効率R2を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、潜熱回収型の発熱効率R2を用いて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により、予測エネルギ削減量を求める。
尚、抑制運転用時間帯の単位時間の予測エネルギ消費量を前記式11により発電出力を設定抑制出力として求め、電主運転用時間帯の単位時間の予測エネルギ消費量を前記式11により発電出力を電主出力として求めて、求めた各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。
The predicted energy reduction amount in the suppression continuous operation mode is obtained when a unit time of heat surplus exists when the fuel cell 1 is operated in the load following continuous operation mode. As the energy reduction amount, a predicted energy reduction amount P′c2 at the time of normal heat generation efficiency is obtained.
That is, one or more selected units of the unit time before the heat surplus unit time (the one closest to the start point of the operation cycle when there are a plurality of unit times) in the operation cycle are selected or continuous. In the form of a plurality of unit times as a suppression operation time zone for adjusting the power generation output to the set suppression output and a remaining unit time of the operation cycle as a main operation time zone for adjusting the power generation output to the main output, By changing the unit time selected as the suppression operation time zone, all temporary operation patterns for the suppression operation are formed.
Then, for all the temporary operation patterns, using the latent heat recovery type heat generation efficiency R2, the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9, and the latent heat recovery type heat generation efficiency R2 is used. The predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained by the equation 10, and the predicted energy reduction amount is obtained by the equation 8 from the E1 and E2.
Note that the predicted energy consumption per unit time in the suppression operation time zone is obtained as a set suppression output by the above equation 11, and the predicted energy consumption per unit time in the main operation time zone is determined as the power generation output by the above equation 11. Is calculated as the main output, and the predicted energy consumption for each unit time is integrated to obtain the predicted operation cycle energy consumption.

そして、全ての抑制運転用の仮運転パターンのうちで熱不足単位時間が生じず且つ予測エネルギ削減量が最大の抑制運転用の仮運転パターンを求め、その求めた仮運転パターンにおいて熱余り単位時間が生じない場合は、その抑制運転用の仮運転パターンを抑制連続運転形態の運転パターンに定め、その抑制運転用の仮運転パターンの予測エネルギ削減量を抑制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c2として求める。
尚、熱不足単位時間が生じず且つ予測エネルギ削減量が最大の抑制運転用の仮運転パターンにおいて、未だ、熱余り単位時間が生じるときは、熱余り単位時間が生じなくなるまで、上述の処理を繰り返すことになる。
Then, a temporary operation pattern for the suppressed operation that does not cause the heat shortage unit time among all the temporary operation patterns for the suppressed operation and has the maximum predicted energy reduction amount is obtained, and the unit time of the heat surplus in the obtained temporary operation pattern If the tempered operation pattern for the restraint operation does not occur, the tentative operation pattern for the restraint operation is set to the operation pattern of the restraint continuous operation mode, and the predicted energy reduction amount of the tentative operation pattern for the restraint operation is predicted for the normal heating efficiency of the restraint operation mode The energy reduction amount P′c2 is obtained.
In addition, in the temporary operation pattern for the suppression operation in which the heat shortage unit time does not occur and the predicted energy reduction amount is the maximum, when the heat surplus unit time still occurs, the above processing is performed until the heat surplus unit time does not occur. Will repeat.

1日対応型の負荷追従断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi1を求める。
即ち、運転周期の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を前記運転時間帯を構成する単位時間とし且つ運転周期の残りの単位時間を燃料電池1を停止する停止時間帯を構成する単位時間とする形態で、前記運転時間帯を構成する単位時間として選択する単位時間を異ならせることにより、全ての仮運転パターンが形成され、その全ての仮運転パターンのうち、運転周期の全単位時間を運転時間帯とするパターンを除いた全ての仮運転パターンが、1日対応型断続運転用の仮運転パターンとしてメモリ34に記憶されている。
As the predicted energy reduction amount in the one-day load following intermittent operation mode, the predicted energy reduction amount Pi1 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.
That is, among the plurality of unit times of the operation cycle, the selected one or a plurality of continuous unit times are set as unit times constituting the operation time zone, and the remaining unit time of the operation cycle is stopped. By changing the unit time selected as the unit time constituting the operation time zone in the form of the unit time constituting the stop time zone, all temporary operation patterns are formed, and among the temporary operation patterns All temporary operation patterns except for a pattern in which the entire unit time of the operation cycle is an operation time zone are stored in the memory 34 as temporary operation patterns for one-day type intermittent operation.

即ち、第1番目の単位時間から運転を開始させるパターンとして、第1番目の単位時間を運転時間帯とするパターン、第1、第2番目の単位時間を運転時間帯とするパターン、第1〜第3番目の単位時間を運転時間帯とするパターン・・・第1〜第23番目の単位時間を運転時間帯とするパターンの23種類がある。また、第2番目の単位時間から運転開始させるパターンとして、この第2番目の単位時間を運転時間帯とするパターン、第2、第3番目の単位時間を運転時間帯とするパターン・・・第2〜第24番目の単位時間を運転時間帯とするパターンの23種類がある。このように、運転周期の最後の第24番目の単位時間を運転時間帯とするパターンまで、1日対応型断続運転用の仮運転パターンは、299種類のものがある。   That is, as a pattern for starting operation from the first unit time, a pattern having the first unit time as an operation time zone, a pattern having first and second unit times as an operation time zone, There are 23 types of patterns in which the third unit time is used as an operating time zone: patterns in which the first to 23rd unit times are used as operating time zones. In addition, as a pattern for starting operation from the second unit time, a pattern using the second unit time as an operation time zone, a pattern using the second and third unit times as an operation time zone, etc. There are 23 types of patterns in which the second to 24th unit time is an operation time zone. As described above, there are 299 types of temporary operation patterns for one-day intermittent operation up to a pattern in which the last 24th unit time of the operation cycle is an operation time zone.

全ての1日対応型断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、運転形態選定用の発熱効率R1を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、式10により、運転形態選定用の発熱効率R1を用いて、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により、予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間の予測エネルギ消費量は前記式11により発電出力を電主出力として求め、運転時間帯に含まれない単位時間の予測エネルギ消費量は0として、各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。
又、運転時間帯に含まれない単位時間の予測熱出力は0になり、運転時間帯に含まれない単位時間の予測貯湯熱量は、前記式4により予測熱出力nを0として求める。
It is assumed that the fuel cell 1 is operated in a state where the power generation output is adjusted to the main output in the operation time zone set in each temporary operation pattern for each of the temporary operation patterns for all the one-day intermittent operation. The predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9 using the heat generation efficiency R1 for operation mode selection, and the heat generation efficiency R1 for operation mode selection is obtained by Equation 10 A predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained, and a predicted energy reduction amount P is obtained from the E1 and E2 by Equation 8, and further, a predicted heat output is obtained for each unit time of the first operation cycle. Calculate the predicted amount of stored hot water.
Note that the predicted energy consumption of unit time included in the operation time zone is obtained by using the power generation output as the main output by the above equation 11, and the predicted energy consumption amount of unit time not included in the operation time zone is set to 0. The predicted energy consumption amount is obtained by integrating the predicted energy consumption amount.
Further, the predicted heat output of unit time not included in the operation time zone is 0, and the predicted hot water storage amount of unit time not included in the operation time zone is obtained by setting the predicted heat output n to 0 according to the above equation 4.

そして、全ての1日対応型断続運転用の仮運転パターンのうち、予測エネルギ削減量が最大の断続運転用の仮運転パターンを求めて、その断続運転用の仮運転パターンを1日対応型の負荷追従断続運転形態の運転パターンに設定し、その断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の負荷追従断続運転形態における低発熱時の予測エネルギ削減量Pi1として求める。   Then, the temporary operation pattern for the intermittent operation having the maximum predicted energy reduction amount is obtained from all the temporary operation patterns for the daily operation type intermittent operation, and the temporary operation pattern for the intermittent operation is determined as the daily operation type. The operation pattern of the load following intermittent operation mode is set, and the predicted energy reduction amount of the temporary operation pattern for the intermittent operation is obtained as the predicted energy reduction amount Pi1 at the time of low heat generation in the one day type load following intermittent operation mode.

2日対応型の負荷追従断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi4を求める。
即ち、全ての1日対応型断続運転用の仮運転パターンに運転周期の全ての単位時間を運転時間帯とする仮運転パターンを加えた全ての仮運転パターンのうち、上述のように運転時間帯において発電出力を電主出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、最初の運転周期の最終の単位時間の予測貯湯熱量が2回目の運転周期の予測負荷熱量として利用されたとして、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測負荷熱量として利用された予測利用熱量を求める。
各単位時間の予測貯湯熱量は、前記式4により、予測熱出力nを0として求める。
又、各単位時間の予測利用熱量は、下記の式12〜式14により求める。
As the predicted energy reduction amount of the two-day load follow-up intermittent operation mode, the predicted energy reduction amount Pi4 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.
That is, among all the temporary operation patterns obtained by adding all of the temporary operation patterns for the daily operation type intermittent operation to the temporary operation pattern in which all the unit time of the operation cycle is the operation time zone, as described above. When the power generation output is adjusted to the main output in step 1, the temporary operation pattern in which the predicted hot water storage heat amount in the final unit time in the first operation cycle is larger than 0 is selected as the two-day correspondence temporary operation pattern.
Then, for all the two-day tentative operation patterns, assuming that the predicted hot water storage amount of the last unit time of the first operation cycle is used as the predicted load heat amount of the second operation cycle, a plurality of second operation cycles For each unit time, a predicted heat usage amount used as a predicted hot water storage amount and a predicted load heat amount is obtained.
The predicted amount of stored hot water for each unit time is obtained by assuming the predicted heat output n as 0 according to the above equation 4.
Further, the predicted amount of heat used for each unit time is obtained by the following equations 12 to 14.

予測貯湯熱量n-1≧予測負荷熱量nのときは、
予測利用熱量n=予測負荷熱量n……………(式12)
予測貯湯熱量n-1<予測負荷熱量nのときは、
予測利用熱量n=予測貯湯熱量n-1……………(式13)
予測貯湯熱量n-1=0のときは、
予測利用熱量n=0……………(式14)
Predicted hot water storage n-1 ≥ predicted load heat n n
Predicted heat consumption n = Predictive load heat quantity n ... (Equation 12)
Predicted hot water storage amount n-1 <predicted load heat amount n
Predicted heat consumption n = Predicted hot water storage amount n-1 (Equation 13)
When the predicted amount of stored hot water n-1 = 0,
Predicted heat consumption n = 0 ... (Equation 14)

2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた1日対応型の負荷追従断続運転形態の予測エネルギ削減量に、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合の予測エネルギ消費量(予測利用熱量の合計/R1)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期(1日)当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最大の2日対応型の仮運転パターンを、2日対応型の負荷追従断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi4として求める。
For each of the two-day tentative temporary operation patterns, the predicted use heat amount (converted into kWh) in the second operation cycle is converted into the predicted energy reduction amount of the one-day responsive load follow-up intermittent operation mode obtained as described above. The predicted energy reduction amount is calculated by adding the predicted energy consumption (total predicted utilization heat amount / R1) in the case of supplementing the total of the generated heat with the generated heat of the auxiliary heater 28, and the calculated predicted energy reduction amount is 2 The energy reduction amount per operation cycle (one day) divided by is used as the predicted energy reduction amount of the 2-day correspondence type temporary operation pattern.
Then, among all the two-day type temporary operation patterns, the two-day type temporary operation pattern having the maximum predicted energy reduction amount is set as the operation pattern of the two-day type load follow-up intermittent operation mode, The predicted energy reduction amount of the 2-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount Pi4 at the time of low heat generation efficiency in the 2-day correspondence type load follow-up intermittent operation mode.

図3に、5番目から23番目までの単位時間を運転時間帯とする仮運転パターンを例にして、1日対応型断続運転用の仮運転パターンを用いて1日対応型の負荷追従断続運転の予測エネルギ削減量を求めるときに、最初の運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求めた結果、並びに、2日対応型の負荷追従断続運転の予測エネルギ削減量を求めるときに、2回目の運転周期の各単位時間について、予測貯湯熱量及び予測利用熱量を求めた結果を示す。
但し、図3における運転周期が「最初」の欄の部分(即ち、図3における上側の表の部分)が、1日対応型の負荷追従断続運転の予測エネルギ削減量を求めるときの予測熱出力及び予測貯湯熱量の演算結果を示す。又、図3における運転周期が「2回目」の欄の部分(即ち、図3における下側の表の部分)が、2日対応型の負荷追従断続運転の予測エネルギ削減量を求めるときの予測貯湯熱量及び予測利用熱量の演算結果を示す。
FIG. 3 shows an example of a temporary operation pattern in which the fifth to 23th unit time is an operation time zone, and uses a temporary operation pattern for one-day type intermittent operation. When obtaining the predicted energy reduction amount, the result of obtaining the predicted heat output and the predicted hot water storage amount for each unit time of the first operation cycle and the predicted energy reduction amount of the load following intermittent operation corresponding to the two-day operation are obtained. The result of having calculated | required predicted hot water storage amount and prediction utilization heat amount about each unit time of the 2nd driving | operation period is shown.
However, the portion of the column in which the operation cycle is “first” in FIG. 3 (that is, the portion of the upper table in FIG. 3) is the predicted heat output when obtaining the predicted energy reduction amount of the one-day type load following intermittent operation. And the calculation result of predicted hot water storage amount is shown. Also, the portion of the column in which the operation cycle in FIG. 3 is “second time” (that is, the portion of the lower table in FIG. 3) is the prediction when the predicted energy reduction amount of the 2-day correspondence type load following intermittent operation is obtained. The calculation results of the amount of stored hot water and the predicted amount of heat used are shown.

3日対応型の負荷追従断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi7を求める。
即ち、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択し、3日対応型の仮運転パターンの全てについて、2回目の運転周期の最終の単位時間の予測貯湯熱量が3回目の運転周期の予測負荷熱量として利用されたとして、上述した2回目の運転周期におけるのと同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測利用熱量を求める。
As the predicted energy reduction amount of the three-day load follow-up intermittent operation mode, the predicted energy reduction amount Pi7 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.
That is, out of all the two-day provisional operation patterns, the temporary operation pattern in which the predicted hot water storage heat amount in the final unit time in the second operation cycle is larger than 0 is selected as the three-day correspondence temporary operation pattern, For all the three-day provisional operation patterns, assuming that the predicted hot water storage amount of the last unit time of the second operation cycle is used as the predicted load heat amount of the third operation cycle, Similarly to the above, the predicted amount of stored hot water and the predicted amount of heat used are obtained for each of a plurality of unit times in the third operation cycle.

3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた1日対応型の負荷追従断続運転形態の予測エネルギ削減量に、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合の予測エネルギ消費量(予測利用熱量の合計/R1)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最大の3日対応型の仮運転パターンを、3日対応型の負荷追従断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi7として求める。
For each of the three-day tentative temporary operation patterns, the predicted energy consumption in the second and third operation cycles (to the predicted energy reduction amount of the one-day responsive load following intermittent operation mode obtained as described above) ( The predicted energy reduction amount is obtained by adding the predicted energy consumption amount (total of the predicted use heat amount / R1) in the case where the total of the kWh is supplemented with the heat generated by the auxiliary heater 28, and the calculated predicted energy reduction amount The amount obtained by dividing the amount by 3 to obtain the energy reduction amount per one operation cycle (one day) is taken as the predicted energy reduction amount of the temporary operation pattern corresponding to the three days.
Then, among all the three-day provisional operation patterns, the three-day correspondence type temporary operation pattern having the maximum predicted energy reduction amount is set as the operation pattern of the three-day correspondence type load follow-up intermittent operation mode. The predicted energy reduction amount of the 3-day correspondence type temporary operation pattern is obtained as the predicted energy reduction amount Pi7 at the time of low heat generation efficiency in the 3-day correspondence type load follow-up intermittent operation mode.

1日対応型の強制断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi3を求める。
即ち、全ての1日対応型の続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を設定増大出力に調節する状態で燃料電池1を運転すると仮定して、運転形態選定用の発熱効率R1を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、運転形態選定用の発熱効率R1を用いて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間の予測エネルギ消費量は前記式11により発電出力を設定増大出力として求め、運転時間帯に含まれない単位時間の予測エネルギ消費量は0として、各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。
As the predicted energy reduction amount of the one-day type forced intermittent operation mode, the predicted energy reduction amount Pi3 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.
That is, the fuel cell 1 is operated in a state in which the power generation output is adjusted to the set increase output in the operation time zone set in each temporary operation pattern for each of the temporary operation patterns for the continuous operation of the one-day correspondence type. Assuming that, the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9 using the heat generation efficiency R1 for selecting the operation mode, and using the heat generation efficiency R1 for selecting the operation mode, the equation 10, the predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained, the predicted energy reduction amount P is obtained from the E1 and E2 by the equation 8, and the prediction is made for each unit time of the first operation cycle. Obtain heat output and predicted hot water storage.
Note that the predicted energy consumption per unit time included in the operation time zone is obtained by setting the power generation output as a set increase output according to the above equation 11, and the predicted energy consumption per unit time not included in the operation time zone is set to 0. The predicted energy consumption amount is obtained by integrating the predicted energy consumption amount.

そして、全ての1日対応型断続運転用の仮運転パターンのうち、予測エネルギ削減量が最大の断続運転用の仮運転パターンを求めて、その断続運転用の仮運転パターンを1日対応型の強制断続運転形態の運転パターンに設定し、その断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の強制断続運転形態における低発熱効率時の予測エネルギ削減量Pi3として求める。   Then, the temporary operation pattern for the intermittent operation having the maximum predicted energy reduction amount is obtained from all the temporary operation patterns for the daily operation type intermittent operation, and the temporary operation pattern for the intermittent operation is determined as the daily operation type. The operation pattern of the forced intermittent operation mode is set, and the predicted energy reduction amount of the temporary operation pattern for the intermittent operation is obtained as the predicted energy reduction amount Pi3 at the time of low heat generation efficiency in the one-day type forced intermittent operation mode.

2日対応型の強制断続運転形態の運転パターン及び予測エネルギ削減量は、上述した2日対応型の負荷追従断続運転形態の運転パターン及び予測エネルギ削減量を求める手順と同様の手順で求め、並びに、3日対応型の強制断続運転形態の運転パターン及び予測エネルギ削減量は、上述した3日対応型の負荷追従断続運転形態の運転パターン及び予測エネルギ削減量を求める手順と同様の手順で求めるので、それら2日対応型の強制断続運転形態の運転パターン及び予測エネルギ削減量、並びに、3日対応型の強制断続運転形態の運転パターン及び予測エネルギ削減量夫々を求める手順の説明を省略する。
即ち、2日対応型の強制断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi6を求め、3日対応型の強制断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi9を求める。
The operation pattern and the predicted energy reduction amount of the two-day type forced intermittent operation mode are obtained by the same procedure as the procedure for obtaining the operation pattern and the predicted energy reduction amount of the two-day type load follow-up intermittent operation mode, and Since the operation pattern and the predicted energy reduction amount of the three-day compatible forced intermittent operation mode are obtained in the same procedure as the procedure for calculating the operation pattern and the predicted energy reduction amount of the three-day corresponding load follow-up intermittent operation mode. Description of the operation pattern and the predicted energy reduction amount of the 2-day type forced intermittent operation mode, and the procedure for obtaining the operation pattern and the predicted energy reduction amount of the 3-day type forced intermittent operation mode will be omitted.
That is, as the predicted energy reduction amount of the two-day type forced intermittent operation mode, the predicted energy reduction amount Pi6 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater. As the predicted energy reduction amount of the three-day type forced intermittent operation mode, the predicted energy reduction amount Pi9 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.

1日対応型の抑制断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi2を求める。
即ち、全ての1日対応型断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を設定抑制出力に調節する状態で燃料電池1を運転すると仮定して、運転形態選定用の発熱効率R1を用いて、式9により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、運転形態選定用の発熱効率R1を用いて、式10により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式8により予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間の予測エネルギ消費量は前記式11により発電出力を設定抑制出力として求め、運転時間帯に含まれない単位時間の予測エネルギ消費量は0として、各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。
As the predicted energy reduction amount of the one day correspondence type suppression intermittent operation mode, the predicted energy reduction amount Pi2 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.
That is, when the fuel cell 1 is operated in a state where the power generation output is adjusted to the set suppression output in the operation time zone set in each temporary operation pattern for each of the temporary operation patterns for all day-to-day intermittent operation. Assuming that the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained by Equation 9 using the heat generation efficiency R1 for selecting the operation mode, and using the heat generation efficiency R1 for selecting the operation mode, Equation 10 Thus, the predicted energy consumption amount E2 when the fuel cell 1 is operated is obtained, and the predicted energy reduction amount P is obtained from the E1 and E2 by the equation 8, and the predicted heat is calculated for each unit time of the first operation cycle. Obtain the output and predicted hot water storage.
Note that the predicted energy consumption of unit time included in the operation time zone is obtained by setting the power generation output as a setting suppression output by the above formula 11, and the predicted energy consumption amount of unit time not included in the operation time zone is set to 0. The predicted energy consumption amount is obtained by integrating the predicted energy consumption amount.

そして、全ての1日対応型断続運転用の仮運転パターンのうち、予測エネルギ削減量が最大の断続運転用の仮運転パターンを求めて、その断続運転用の仮運転パターンを1日対応型の抑制断続運転形態の運転パターンに設定し、その断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の抑制断続運転形態における低発熱効率時の予測エネルギ削減量Pi2として求める。   Then, the temporary operation pattern for the intermittent operation having the maximum predicted energy reduction amount is obtained from all the temporary operation patterns for the daily operation type intermittent operation, and the temporary operation pattern for the intermittent operation is determined as the daily operation type. The operation pattern of the suppression intermittent operation mode is set, and the predicted energy reduction amount of the temporary operation pattern for the intermittent operation is obtained as the predicted energy reduction amount Pi2 at the time of low heat generation efficiency in the one day correspondence type suppression intermittent operation mode.

2日対応型の抑制断続運転形態の運転パターン及び予測エネルギ削減量は、上述した2日対応型の負荷追従断続運転形態の運転パターン及び予測エネルギ削減量を求める手順と同様の手順で求め、並びに、3日対応型の抑制断続運転形態の運転パターン及び予測エネルギ削減量は、上述した3日対応型の負荷追従断続運転形態の運転パターン及び予測エネルギ削減量を求める手順と同様の手順で求めるので、それら2日対応型の抑制断続運転形態の運転パターン及び予測エネルギ削減量、並びに、3日対応型の抑制断続運転形態の運転パターン及び予測エネルギ削減量夫々を求める手順の説明を省略する。
即ち、2日対応型の抑制断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi5を求め、3日対応型の抑制断続運転形態の予測エネルギ削減量としては、補助加熱器の発熱効率として運転形態選定用の発熱効率R1を用いて、低発熱効率時の予測エネルギ削減量Pi8を求める。
The operation pattern and the predicted energy reduction amount of the two-day correspondence type intermittent intermittent operation mode are obtained by the same procedure as the procedure for obtaining the operation pattern and the predicted energy reduction amount of the two-day type load follow-up intermittent operation mode, and Since the operation pattern and the predicted energy reduction amount of the 3-day response type intermittent intermittent operation mode are obtained in the same procedure as the procedure for obtaining the operation pattern and the predicted energy reduction amount of the 3-day response type load following intermittent operation mode. The description of the operation pattern and the predicted energy reduction amount of the two-day response type intermittent intermittent operation mode and the procedure for obtaining the operation pattern and the predicted energy reduction amount of the three-day type suppression intermittent operation mode are omitted.
That is, as the predicted energy reduction amount of the two-day-type suppression intermittent operation mode, the predicted energy reduction amount Pi5 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater. As the predicted energy reduction amount of the three-day-type suppression intermittent operation mode, the predicted energy reduction amount Pi8 at the time of low heat generation efficiency is obtained by using the heat generation efficiency R1 for operation mode selection as the heat generation efficiency of the auxiliary heater.

ところで、燃料電池1を停止させていても、例えば発電可能な状態に維持しておく等のために、エネルギ(電力)が消費されるものであり、運転周期内の全時間帯において燃料電池1を停止させているときにコージェネレーションシステムにて消費されるエネルギを待機時消費エネルギZとして、予め実験等により求めてある。
上記の各運転形態にて燃料電池1を運転すると仮定したときの予測エネルギ消費量が燃料電池1を運転しないときの予測エネルギ消費量よりも多くなって、各運転形態の予測エネルギ削減量が負の値として求められる場合がある。
そして、各運転形態の予測エネルギ削減量が負の値として求められたときに、その負の値として求められた予測エネルギ削減量が、待機時消費エネルギZの負の値よりも小さい場合は、燃料電池1を上記のどの運転形態で運転するよりも運転を待機させる方が省エネルギとなるので、待機時消費エネルギZを待機運転のメリットとして用いることが可能である。
そこで、運転制御部5のメモリ34に、待機形態のメリットとして待機時消費エネルギZを記憶させてある。
By the way, even if the fuel cell 1 is stopped, energy (electric power) is consumed, for example, to keep it in a state where power generation is possible, and the fuel cell 1 in all time zones within the operation cycle. The energy consumed in the cogeneration system when the power is stopped is determined as the standby energy consumption Z in advance through experiments or the like.
The predicted energy consumption when it is assumed that the fuel cell 1 is operated in each of the above operation modes becomes larger than the predicted energy consumption when the fuel cell 1 is not operated, and the predicted energy reduction amount in each operation mode is negative. May be obtained as the value of.
Then, when the predicted energy reduction amount of each operation mode is obtained as a negative value, when the predicted energy reduction amount obtained as the negative value is smaller than the negative value of the standby energy consumption Z, It is possible to use the standby energy consumption Z as a merit of the standby operation because it is more energy saving to make the fuel cell 1 stand by than to operate the fuel cell 1 in any of the above operation modes.
Therefore, standby energy consumption Z is stored in the memory 34 of the operation control unit 5 as a merit of the standby mode.

次に、燃料電池1の運転形態を定める運転形態選定処理について、説明を加える。
この第1実施形態では、前記運転形態選定条件が、連続運転形態の予測エネルギ削減量が設定削減量G(例えば580Wh)以上のときは、燃料電池1の運転形態を断続運転形態よりも優先して連続運転形態に定め、連続運転形態の予測エネルギ削減量が設定削減量Gよりも小さいときは、連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量のうちの少なくとも一方が待機時消費エネルギZの負の値「−Z」以上であれば、連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量のうちの予測エネルギ削減量が大きい方に燃料電池1の運転形態を定め、連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量のいずれも待機時消費エネルギZの負の値「−Z」よりも小さければ、燃料電池1の運転形態を待機形態に定める条件に設定されている。
Next, an explanation will be given for the operation mode selection process for determining the operation mode of the fuel cell 1.
In the first embodiment, when the operation mode selection condition is that the predicted energy reduction amount in the continuous operation mode is equal to or greater than the set reduction amount G (for example, 580 Wh), the operation mode of the fuel cell 1 is given priority over the intermittent operation mode. If the predicted energy reduction amount in the continuous operation mode is smaller than the set reduction amount G, at least one of the predicted energy reduction amount in the continuous operation mode and the predicted energy reduction amount in the intermittent operation mode is on standby. If the negative value “−Z” of the hourly consumption energy Z is greater than or equal to the predicted energy reduction amount in the continuous operation mode and the predicted energy reduction amount in the intermittent operation mode, the operation of the fuel cell 1 is larger. If the form is determined and both the predicted energy reduction amount of the continuous operation mode and the predicted energy reduction amount of the intermittent operation mode are smaller than the negative value “−Z” of the standby energy consumption Z, The operating configuration of the fuel cell 1 is set to the conditions laid down in the standby mode.

以下、図6に示すフローチャートに基づいて、運転形態選定処理における運転制御部5の制御動作を説明する。
運転制御部5は、運転周期の開始時点(例えば、午前3時)になる毎に、予測負荷データ演算処理を実行して、時系列的な予測負荷電力データ、及び、時系列的な予測負荷熱量データを求め、続いて、予測エネルギ削減量演算処理を実行して、複数種の運転形態夫々の予測エネルギ削減量を求める(ステップ#1〜3)。
Hereinafter, based on the flowchart shown in FIG. 6, the control operation of the operation control unit 5 in the operation mode selection process will be described.
The operation control unit 5 executes the predicted load data calculation process every time when the operation cycle starts (for example, 3:00 am), and performs time-series predicted load power data and time-series predicted load. The amount of heat data is obtained, and then the predicted energy reduction amount calculation process is executed to obtain the predicted energy reduction amount for each of the plurality of operation modes (steps # 1 to # 3).

予測エネルギ削減量演算処理では、負荷追従連続運転形態を行うと仮定したときに運転周期に熱余り単位時間が存在する場合は、負荷追従連続運転形態について、低発熱効率時の予測エネルギ削減量Pc1及び通常発熱効率時の予測エネルギ削減量P'c1を求め、抑制連続運転形態について、通常発熱効率時の予測エネルギ削減量P'c2を求め、更に、強制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c3を牽制用の設定値Fに定める。
負荷追従連続運転形態を行うと仮定したときに運転周期に熱不足単位時間が存在する場合は、負荷追従連続運転形態について、低発熱効率時の予測エネルギ削減量Pc1及び通常発熱効率時の予測エネルギ削減量P'c1を求め、強制連続運転形態について、通常発熱効率時の予測エネルギ削減量P'c3を求め、更に、抑制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c2を前記設定値Fに定める。
負荷追従連続運転形態を行うと仮定したときに運転周期に熱余り単位時間及び熱不足単位時間いずれも存在しない場合は、負荷追従連続運転形態について、低発熱効率時の予測エネルギ削減量Pc1及び通常発熱効率時の予測エネルギ削減量P'c1を求め、更に、抑制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c2及び強制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c3夫々を前記設定値Fに定める。
In the predicted energy reduction amount calculation processing, when it is assumed that the load following continuous operation mode is performed, if there is a surplus unit time in the operation cycle, the predicted energy reduction amount Pc1 when the heat generation efficiency is low for the load following continuous operation mode. In addition, the predicted energy reduction amount P′c1 at the time of normal heat generation efficiency is obtained, the predicted energy reduction amount P′c2 at the time of normal heat generation efficiency is obtained for the suppressed continuous operation mode, and further, the prediction at the time of normal heat generation efficiency in the forced continuous operation mode is obtained. The energy reduction amount P′c3 is set to the set value F for checking.
When it is assumed that the load following continuous operation mode is performed, if there is a heat shortage unit time in the operation cycle, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency and the predicted energy at the time of normal heat generation efficiency for the load tracking continuous operation mode The reduction amount P′c1 is obtained, the predicted energy reduction amount P′c3 at the time of normal heat generation efficiency is obtained for the forced continuous operation mode, and the predicted energy reduction amount P′c2 at the time of normal heat generation efficiency of the suppression continuous operation mode is further calculated. Set to set value F.
When it is assumed that the load following continuous operation mode is performed, if neither the excess heat unit time nor the insufficient heat unit time exists in the operation cycle, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency and the normal for the load following continuous operation mode A predicted energy reduction amount P′c1 at the time of heat generation efficiency is obtained, and further, a predicted energy reduction amount P′c2 at the time of normal heat generation efficiency in the suppressed continuous operation mode and a predicted energy reduction amount P ′ at the time of normal heat generation efficiency in the forced continuous operation mode. Each of c3 is set to the set value F.

ちなみに、前記設定値Fは、種々の予測負荷電力及び予測熱負荷に対応して負荷追従連続、抑制及び断続の各連続運転形態について求められると予測される値のうちの最小値よりも小さく設定してある。尚、その最小値が負の値として求められると予測される場合は、前記設定値Fを前記最小値よりも絶対値が大きい負の値に設定することになる。   Incidentally, the set value F is set to be smaller than the minimum value of values predicted to be obtained for each of the continuous operation modes of load following, suppression, and intermittent corresponding to various predicted load power and predicted thermal load. It is. If it is predicted that the minimum value is obtained as a negative value, the set value F is set to a negative value having an absolute value larger than the minimum value.

更に、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態について、それぞれ、低発熱効率時の予測エネルギ削減量Pi1、Pi2、Pi3を求め、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態について、それぞれ、低発熱効率時の予測エネルギ削減量Pi4、Pi5、Pi6を求め、並びに、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態、3日対応型の強制断続運転形態について、それぞれ、低発熱効率時の予測エネルギ削減量Pi7、Pi8、Pi9を求める。   Furthermore, the predicted energy reduction amounts Pi1, Pi2, and Pi3 when the heat generation efficiency is low, respectively, for the one-day type load follow-up intermittent operation mode, the one-day type suppression intermittent operation mode, and the one-day type forced intermittent operation mode, respectively. For the two-day load following intermittent operation mode, the two-day suppression intermittent operation mode, and the two-day forced intermittent operation mode, respectively, the predicted energy reduction amount Pi4, Pi5 at the time of low heat generation efficiency, respectively, Pi6 is obtained, and the predicted energy reduction amount Pi7 at the time of low heat generation efficiency is obtained for the load follow intermittent operation mode for three days, the suppressed intermittent operation mode for three days, and the forced intermittent operation mode for three days. , Pi8, Pi9.

続いて、ステップ#4にて、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が設定削減量G以上であるか否かを判断して、以上であると判断したときは、負荷追従連続運転形態、抑制連続運転形態及び強制連続運転形態のうち、通常発熱効率時の予測エネルギ削減量P'c1,P'c2,P'c3が最大の運転形態を燃料電池1の運転形態に定める(ステップ#5)。   Subsequently, in step # 4, it is determined whether or not the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is equal to or larger than the set reduction amount G. Among the load following continuous operation mode, the suppressed continuous operation mode, and the forced continuous operation mode, the operation mode in which the predicted energy reduction amount P′c1, P′c2, and P′c3 during the normal heat generation efficiency is the maximum is the operation mode of the fuel cell 1. (Step # 5).

ステップ#4にて、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が設定削減量Gよりも小さいと判断したときは、ステップ#6において、運転周期の開始時点における貯湯熱量にてその運転周期の予測給湯負荷熱量を賄える程度を示す熱負荷賄い率U/Lを求め、ステップ#7では、その求めた熱負荷賄い率U/Lと下位設定値Kとを比較して、熱負荷賄い率U/Lが下位設定値Kよりも大きいときは、待機条件を満たすと判断し、熱負荷賄い率U/Lが下位設定値K以下のときは、待機条件を満たさないと判断する。   When it is determined in step # 4 that the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is smaller than the set reduction amount G, in step # 6, the hot water storage heat amount at the start of the operation cycle is set. The heat load coverage rate U / L indicating the extent to which the predicted hot water supply load heat amount of the operation cycle can be covered is obtained, and in step # 7, the obtained heat load coverage rate U / L is compared with the lower set value K, When the thermal load coverage rate U / L is greater than the lower set value K, it is determined that the standby condition is satisfied, and when the thermal load coverage rate U / L is equal to or lower than the lower set value K, it is determined that the standby condition is not satisfied. To do.

ちなみに、熱負荷賄い率U/LのLは、最初の運転周期の各単位時間の予測給湯負荷熱量を合計することにより求めた運転周期の予測給湯負荷熱量である。
又、熱負荷賄い率U/LのUは、燃料電池1の予測出力熱量を0として、最初の運転周期の予測給湯負荷熱量のうち、最初の運転周期の開始時点における貯湯熱量にて賄えると予測される運転周期の予測利用熱量である。
即ち、最初の運転周期の開始時点における貯湯熱量がその運転周期の予測負荷熱量として利用されるとして、その運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測利用熱量を求め、各単位時間の予測利用熱量を合計することにより、運転周期の予測利用熱量Uを求めることになる。
尚、前記下位設定値Kは、例えば、0.4に設定する。
Incidentally, L of the thermal load coverage ratio U / L is the predicted hot water supply load heat amount of the operation cycle obtained by summing the predicted hot water supply load heat amount of each unit time of the first operation cycle.
Further, U of the thermal load cover rate U / L can be covered by the amount of stored hot water at the start of the first operation cycle out of the predicted hot water supply load heat amount of the first operation cycle, assuming the predicted output heat amount of the fuel cell 1 as 0. This is the predicted amount of heat used in the predicted operation cycle.
That is, assuming that the hot water storage amount at the start of the first operation cycle is used as the predicted load heat amount of the operation cycle, the predicted hot water storage amount and the predicted use heat amount are obtained for each of a plurality of unit times of the operation cycle. By summing the predicted usage heat amounts, the predicted usage heat amount U of the operation cycle is obtained.
The lower set value K is set to 0.4, for example.

そして、ステップ#7で待機条件を満たさないと判断したときは、ステップ#8において、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1と1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1とを比較して、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が負荷追従断続運転形態の低発熱効率時の予測エネルギ削減量Pi1以上のときは、ステップ#9にて、負荷追従連続運転形態の通常発熱効率時の予測エネルギ削減量P'c1、抑制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c2及び強制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c3のうち最大の通常発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」以上か否かを判断して、以上の場合は、通常発熱効率時の予測エネルギ削減量が最大の連続運転形態を燃料電池1の運転形態に定め(ステップ#5)、最大の通常発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」よりも小さい場合は、待機形態を燃料電池1の運転形態に定める(ステップ#12)。   When it is determined in step # 7 that the standby condition is not satisfied, in step # 8, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode and the one day correspondence type load follow intermittent operation mode. Compared with the predicted energy reduction amount Pi1 at the time of low heat generation efficiency, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is greater than or equal to the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the load tracking intermittent operation mode. In step # 9, the predicted energy reduction amount P′c1 at the time of normal heat generation efficiency in the load following continuous operation mode, the predicted energy reduction amount P′c2 at the time of normal heat generation efficiency in the suppression continuous operation mode, and the forced continuous operation The predicted energy reduction amount at the maximum normal heat generation efficiency among the predicted energy reduction amounts P′c3 at the normal heat generation efficiency of the configuration is greater than or equal to the negative value “−Z” of the standby energy consumption Z In the above case, the continuous operation mode having the maximum predicted energy reduction amount at the normal heat generation efficiency is determined as the operation mode of the fuel cell 1 (step # 5), and the predicted energy at the maximum normal heat generation efficiency is determined. When the reduction amount is smaller than the negative value “−Z” of standby energy consumption Z, the standby mode is determined as the operation mode of the fuel cell 1 (step # 12).

ステップ#8において、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1よりも小さいと判断したときは、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態及び3日対応型の強制断続運転形態の9種の断続運転形態の低発熱効率時の予測エネルギ削減量Pi1,Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9のうち最大の低発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」以上の場合は、低発熱効率時の予測エネルギ削減量が最大の断続運転形態を燃料電池1の運転形態に定め(ステップ#10,11)、最大の低発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」よりも小さい場合は、待機形態を燃料電池1の運転形態に定める(ステップ#12)。   When it is determined in step # 8 that the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is smaller than the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the one day type load follow-up intermittent operation mode 1-day type load follow-up intermittent operation mode, 1-day type suppression intermittent operation mode, 1-day type forced intermittent operation mode, 2-day type load-following intermittent operation mode, 2-day type suppression 9 types of intermittent operation modes: intermittent operation mode, 2-day compatible forced intermittent operation mode, 3-day load follow-up intermittent operation mode, 3-day compatible suppression intermittent operation mode, and 3-day compatible forced intermittent operation mode The predicted energy reduction amount Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, and Pi9 at the time of the low heat generation efficiency of the form is the maximum predicted energy reduction amount at the time of low heat generation efficiency of the standby energy consumption Z Is equal to or greater than “−Z”, the intermittent operation mode in which the predicted energy reduction amount at the time of the low heat generation efficiency is the maximum is determined as the operation mode of the fuel cell 1 (steps # 10 and 11). When the predicted energy reduction amount is smaller than the negative value “−Z” of the standby energy consumption Z, the standby mode is determined as the operation mode of the fuel cell 1 (step # 12).

ステップ#7で待機条件を満たすと判断したときは、ステップ#13で、燃料電池1が運転中か否かを判断して、運転中のときは、ステップ#14にて、熱負荷賄い率U/Lが前記下位設定値Kよりも大きい上位設定値M(例えば0.9)よりも大きいか否かを判断して、大きくないと判断したときは、ステップ#15において、燃料電池1の運転を継続する運転継続条件を満たすか否かを判断する。   If it is determined in step # 7 that the standby condition is satisfied, it is determined in step # 13 whether or not the fuel cell 1 is in operation. If it is in operation, in step # 14, the thermal load coverage rate U is determined. When it is determined whether / L is larger than the upper set value M (for example, 0.9) that is larger than the lower set value K and not larger, in step # 15, the operation of the fuel cell 1 is performed. It is determined whether or not the operation continuation condition for continuing is satisfied.

つまり、メモリ34に記憶されている仮運転パターンのうち、開始時点に引き続き且つ個数が1〜設定数N2(例えば10個)の単位時間からなる時間帯を運転時間帯として仮定する全ての仮運転パターンの夫々について、運転時間帯に発電出力を電主出力に調節するとして、最初の運転周期における最終の単位時間の貯湯熱量が0になるか否かを判断し、その貯湯熱量が0になる仮運転パターンが存在するときは、貯湯槽2の湯を使い切る状態で燃料電池1の運転を継続することが可能であり、運転継続条件を満たすと判断し、その貯湯熱量が0になる仮運転パターンが存在しないときは、運転継続条件を満たさないと判断する。   That is, all the temporary operation patterns that are assumed to be the operation time zone from the temporary operation patterns stored in the memory 34, which continues from the start time and is composed of unit times of 1 to the set number N2 (for example, 10). For each of the patterns, assuming that the power generation output is adjusted to the main output during the operation time period, it is determined whether or not the amount of stored hot water in the final unit time in the first operation cycle is 0, and the amount of stored hot water becomes 0. When the temporary operation pattern exists, it is possible to continue the operation of the fuel cell 1 with the hot water in the hot water tank 2 used up, and it is determined that the operation continuation condition is satisfied, and the temporary operation in which the amount of stored hot water becomes 0 When the pattern does not exist, it is determined that the operation continuation condition is not satisfied.

そして、ステップ#15において、運転継続条件を満たすと判断すると、ステップ#16において、燃料電池1の運転を負荷追従運転にて継続する負荷追従運転継続モードに定め、ステップ#17において、前記運転継続時間を設定する運転継続時間設定処理を実行する。   If it is determined in step # 15 that the operation continuation condition is satisfied, in step # 16, the operation of the fuel cell 1 is set to the load following operation continuation mode in which the operation is continued in the load following operation. In step # 17, the operation continuation is performed. The operation duration setting process for setting the time is executed.

前記運転継続時間設定処理では、ステップ#15にて最初の運転周期における最終の単位時間の貯湯熱量が0になると判断した仮運転パターンのうち、予測エネルギ削減量Pが最大となる仮運転パターンの運転時間帯を運転継続時間に設定する。
つまり、ステップ#14にて最初の運転周期における最終の単位時間の貯湯熱量が0になると判断した仮運転パターンの夫々について、燃料電池1を運転した場合の予測エネルギ消費量E2を前記式10により求めて、その求めた予測エネルギ消費量E2及び前記式9により求めた燃料電池1を運転しない場合の予測エネルギ消費量E1を前記式8に代入することにより、予測エネルギ削減量Pを求め、求めた予測エネルギ削減量Pが最大の仮運転パターンの運転時間帯を運転継続時間に設定する。
In the operation continuation time setting process, the temporary operation pattern in which the predicted energy reduction amount P is the maximum among the temporary operation patterns determined in step # 15 that the amount of stored hot water in the last unit time in the first operation cycle becomes zero. Set the operation time zone to the operation continuation time.
That is, the predicted energy consumption E2 when the fuel cell 1 is operated for each of the temporary operation patterns determined in step # 14 that the amount of stored hot water in the final unit time in the first operation cycle becomes 0 is expressed by the above equation 10. Then, by substituting the calculated predicted energy consumption E2 and the predicted energy consumption E1 obtained when the fuel cell 1 is not operated according to the equation 9 into the equation 8, the estimated energy reduction amount P is obtained and determined. The operation time zone of the temporary operation pattern having the maximum predicted energy reduction amount P is set as the operation continuation time.

ステップ#13にて、燃料電池1が停止中であると判断したとき、ステップ#14にて、熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断したとき、ステップ#15にて、運転継続条件を満たさないと判断したときは、ステップ#12にて待機形態に設定する。   When it is determined in step # 13 that the fuel cell 1 is stopped, in step # 14, when it is determined that the thermal load coverage ratio U / L is larger than the upper set value M, in step # 15 If it is determined that the operation continuation condition is not satisfied, the standby mode is set at step # 12.

運転制御手段5は、前記運転形態選定処理にて定めた運転形態にて燃料電池1を運転する。
つまり、燃料電池1の運転形態を負荷追従連続運転形態に定めたときは、運転周期の全時間帯にわたって燃料電池1の発電出力を現在要求されている現負荷電力に追従させる現負荷電力追従運転を実行する。
その現負荷電力追従運転では、1分等の比較的短い所定の出力調整周期毎に現負荷電力を求め、最小出力から最大出力の範囲内で、連続的に現負荷電力に追従する電主出力を決定し、燃料電池1の発電出力をその決定した電主出力に調整する形態で運転する。
尚、前記現負荷電力は、前記負荷電力計測手段11の計測値及び前記インバータ6の出力値に基づいて計測し、更に、その現負荷電力は、前の出力調整周期において所定のサンプリング時間(例えば5秒)でサンプリングしたデータの平均値として求められる。
The operation control means 5 operates the fuel cell 1 in the operation mode determined in the operation mode selection process.
That is, when the operation mode of the fuel cell 1 is set to the load following continuous operation mode, the current load power following operation that causes the power generation output of the fuel cell 1 to follow the current load power currently requested over the entire time period of the operation cycle. Execute.
In the current load power follow-up operation, the main load output is obtained for every relatively short predetermined output adjustment period such as one minute, and continuously follows the current load power within the range from the minimum output to the maximum output. And the power generation output of the fuel cell 1 is adjusted to the determined main output.
The current load power is measured based on the measured value of the load power measuring means 11 and the output value of the inverter 6, and the current load power is measured at a predetermined sampling time (for example, in the previous output adjustment cycle). 5 seconds) is obtained as an average value of the data sampled.

燃料電池1の運転形態を抑制連続運転形態に定めたときは、燃料電池1の発電出力を設定抑制出力にすると定められている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、他の単位時間では現負荷電力追従運転を実行する。
燃料電池1の運転形態を強制連続運転形態に定めたときは、燃料電池1の発電出力を設定増大出力にすると定められている単位時間では燃料電池1の発電出力を設定増大出力に調節し、他の単位時間では現負荷電力追従運転を実行する。
When the operation mode of the fuel cell 1 is set to the suppression continuous operation mode, the power generation output of the fuel cell 1 is adjusted to the setting suppression output in the unit time determined to set the power generation output of the fuel cell 1 to the setting suppression output, Current load power follow-up operation is executed in other unit times.
When the operation mode of the fuel cell 1 is set to the forced continuous operation mode, the power generation output of the fuel cell 1 is adjusted to the set increase output in a unit time determined to set the power generation output of the fuel cell 1 to the set increase output, Current load power follow-up operation is executed in other unit times.

燃料電池1の運転形態を1日対応型、2日対応型、3日対応型のいずれの負荷追従断続運転に定めたときも、運転時間帯に含まれる単位時間においては現負荷電力追従運転を実行し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1の運転形態を1日対応型、2日対応型、3日対応型のいずれの抑制断続運転に定めたときも、運転時間帯に含まれる単位時間のうち設定抑制出力が設定されている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1の運転形態を1日対応型、2日対応型、3日対応型のいずれの強制断続運転に定めたときも、運転時間帯に含まれる単位時間のうち設定増大出力が設定されている単位時間では燃料電池1の発電出力を設定増大出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
When the operation mode of the fuel cell 1 is determined to be any one of the load follow-up intermittent operation of the one-day correspondence type, two-day correspondence type, and three-day correspondence type, the current load power follow-up operation is performed in the unit time included in the operation time zone. The fuel cell 1 is stopped during the unit time included in the stop time zone.
When the operation mode of the fuel cell 1 is determined to be any one of the one-day correspondence type, two-day correspondence type, and three-day correspondence type intermittent intermittent operation, the setting suppression output is set in the unit time included in the operation time zone. In the unit time, the power generation output of the fuel cell 1 is adjusted to the set suppression output, and the fuel cell 1 is stopped in the unit time included in the stop time zone.
When the operation mode of the fuel cell 1 is determined to be any one of the one-day type, two-day type, and three-day type forced intermittent operation, the set increase output is set in the unit time included in the operation time zone. In a certain unit time, the power generation output of the fuel cell 1 is adjusted to the set increase output, and the fuel cell 1 is stopped in the unit time included in the stop time zone.

つまり、運転周期の開始時点になる毎に運転形態選定処理を実行し、その運転形態選定処理では、上述のように、熱負荷賄い率U/Lが下位設定値Kよりも大きくて待機条件を満たすと判断したときに、燃料電池1が停止中であると判断した場合、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断した場合、及び、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値M以下で且つ運転継続条件を満たさないと判断した場合のいずれかの場合では、待機形態に設定するように構成されているので、先の運転形態選定処理にて2日対応型又は3日対応型の負荷追従、抑制又は強制のいずれかの断続運転形態に設定されて、今回の運転形態選定処理を行う時点が2日対応型又は3日対応型の断続運転形態における2回目の運転周期の開始時点に相当するときに、その運転形態選定処理にて前述のように待機形態に設定されると、その2日対応型又は3日対応型の断続運転形態における2回目の運転周期の全時間帯にわたって燃料電池1が停止されることになり、2日対応型又は3日対応型の断続運転形態が継続される。   That is, every time the operation cycle starts, the operation mode selection process is executed. In the operation mode selection process, as described above, the thermal load coverage ratio U / L is larger than the lower set value K and the standby condition is satisfied. When it is determined that the fuel cell 1 is stopped, when it is determined that the fuel cell 1 is stopped, when it is determined that the fuel cell 1 is in operation and the thermal load coverage ratio U / L is greater than the upper set value M, and In any case where it is determined that the fuel cell 1 is in operation and the thermal load coverage ratio U / L is equal to or lower than the upper set value M and does not satisfy the operation continuation condition, the standby mode is set. Therefore, in the previous driving mode selection process, the two-day type or the three-day type load follow, suppression, or forced intermittent driving mode is set, and the current driving mode selection process is performed at 2 points. For day-to-day or 3-day type intermittent operation If the standby mode is set as described above in the operation mode selection process at the time corresponding to the start point of the second operation cycle, 2 in the 2-day correspondence type or the 3-day correspondence type intermittent operation mode. The fuel cell 1 is stopped over the entire time period of the second operation cycle, and the 2-day correspondence type or the 3-day correspondence type intermittent operation mode is continued.

又、2日対応型又は3日対応型の断続運転形態においてその1回目の運転周期における実際の給湯負荷熱量が予測給湯負荷熱量よりも多くなって、又は、3日対応型の断続運転形態においてその2回目の運転周期における実際の給湯負荷熱量が予測給湯負荷熱量よりも多くなって、熱負荷賄い率U/Lが下位設定値K以下で待機条件を満たさないと判断されると、新たに、いずれかの断続運転形態に定められることになる。   In the 2-day or 3-day intermittent operation mode, the actual hot water supply load heat amount in the first operation cycle is larger than the predicted hot-water supply load heat amount, or in the 3-day type intermittent operation mode. When it is determined that the actual hot water supply load heat amount in the second operation cycle is larger than the predicted hot water supply load heat amount and the heat load coverage rate U / L is equal to or lower than the lower set value K, the standby condition is not satisfied. , It will be determined in any intermittent operation mode.

上述したように、前記運転形態選定処理においては、運転形態選定用の発熱効率R1を用いて求めた負荷追従連続運転形態の予測エネルギ消費量についての予測エネルギ削減量Pc1と、運転形態選定用の発熱効率R1を用いて求めた負荷追従断続運転形態の予測エネルギ消費量についての予測エネルギ削減量Pi1とに基づいて、前記燃料電池1の運転形態を連続運転形態及び断続運転形態のいずれかに定めるように構成されていることから、運転制御部5が、前記運転形態選定処理において、前記補助加熱器28の発熱効率として、前記潜熱回収型の補助加熱器28の発熱効率よりも低い値に定めた運転形態選定用の発熱効率を用いて、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量を求めるように構成されていることになる。   As described above, in the operation mode selection process, the predicted energy reduction amount Pc1 for the predicted energy consumption of the load following continuous operation mode obtained using the heat generation efficiency R1 for operation mode selection, and the operation mode selection Based on the predicted energy reduction amount Pi1 for the predicted energy consumption amount of the load following intermittent operation mode obtained using the heat generation efficiency R1, the operation mode of the fuel cell 1 is determined to be either the continuous operation mode or the intermittent operation mode. Therefore, the operation control unit 5 sets the heat generation efficiency of the auxiliary heater 28 to a value lower than the heat generation efficiency of the latent heat recovery type auxiliary heater 28 in the operation mode selection process. Using the heat generation efficiency for selecting the operation mode, the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation are obtained. It would have been.

又、燃料電池1の運転形態を前記連続運転形態に定めたときは、負荷追従連続運転形態、抑制連続運転形態及び強制連続運転形態のうち、通常発熱効率時の予測エネルギ削減量P'c1,P'c2,P'c3が最大の連続運転形態を燃料電池1の運転形態に定めるように構成されているので、前記運転制御部5が、前記運転形態選定処理において前記燃料電池1の運転形態を前記連続運転形態に定めたときは、発電出力を異ならせて前記燃料電池1を前記連続運転形態にて運転する場合の夫々について、前記潜熱回収型の補助加熱器28の発熱効率を用いて前記連続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない発電出力を前記燃料電池1の発電出力に定めるように構成されていることになる。   Further, when the operation mode of the fuel cell 1 is set to the continuous operation mode, among the load following continuous operation mode, the suppression continuous operation mode and the forced continuous operation mode, the predicted energy reduction amount P′c1, at the time of normal heat generation efficiency Since P′c2 and P′c3 are configured so as to determine the continuous operation mode having the maximum value as the operation mode of the fuel cell 1, the operation control unit 5 performs the operation mode of the fuel cell 1 in the operation mode selection process. When the fuel cell 1 is operated in the continuous operation mode with different power generation outputs, the heat generation efficiency of the latent heat recovery type auxiliary heater 28 is used for each of the cases where the fuel cell 1 is operated in the continuous operation mode. The predicted energy consumption during the continuous operation is obtained, and the power generation output with a small predicted energy consumption is determined as the power generation output of the fuel cell 1.

更に、燃料電池1の運転形態を前記断続運転形態に定めたときは、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態及び3日対応型の強制断続運転形態のうち、低発熱効率時の予測エネルギ削減量Pi1,Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9が最大の断続運転形態を燃料電池1の運転形態に定めるように構成されているので、前記運転制御部5が、前記運転形態選定処理において前記燃料電池1の運転形態を前記断続運転形態に定めたときは、運転時間帯を異ならせて前記燃料電池1を前記断続運転形態にて運転する場合の夫々について、前記運転形態選定用の発熱効率を用いて前記断続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない運転時間帯を前記燃料電池1の運転時間帯に定めるように構成されていることになる。   Furthermore, when the operation mode of the fuel cell 1 is determined to be the intermittent operation mode, the load tracking intermittent operation mode for one day type, the suppression intermittent operation mode for one day type, the forced intermittent operation mode for one day type, 2-day compatible load-following intermittent operation configuration, 2-day-controlled suppression intermittent operation configuration, 2-day compatible forced intermittent operation configuration, 3-day compatible load-following intermittent operation configuration, 3-day compatible suppression intermittent operation configuration Fuel cell 1 is the intermittent operation mode in which the predicted energy reduction amount Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, Pi9 is the largest among the three-day type forced intermittent operation modes. Therefore, when the operation control unit 5 determines that the operation mode of the fuel cell 1 is the intermittent operation mode in the operation mode selection process, the operation time zone is changed. The fuel power For each of the cases in which 1 is operated in the intermittent operation mode, the predicted energy consumption amount during the intermittent operation is obtained using the heat generation efficiency for selecting the operation mode, and an operation time period in which the predicted energy consumption amount is small is obtained. The fuel cell 1 is configured to be determined in the operation time zone.

以下、本発明の第2及び第3の各実施形態を説明するが、第2及び第3の各実施形態は、運転形態選定処理の別の実施形態を説明するものであって、コージェネレーションシステムの全体構成は第1実施形態と同様であるので、コージェネレーションシステムの全体構成については説明を省略して、主として、運転制御部5の運転形態選定処理における制御動作について説明する。   Hereinafter, the second and third embodiments of the present invention will be described. Each of the second and third embodiments describes another embodiment of the operation mode selection process, and is a cogeneration system. Since the overall configuration is the same as that of the first embodiment, the description of the overall configuration of the cogeneration system is omitted, and the control operation in the operation mode selection process of the operation control unit 5 will be mainly described.

〔第2実施形態〕
以下、本発明の第2実施形態を説明する。
この第2実施形態は、前記運転形態選定条件についての別の実施形態を説明するものであり、予測負荷データ演算処理及び予測エネルギ削減量演算処理は、上記の第1実施形態と同様であるので、それら予測負荷データ演算処理及び予測エネルギ削減量演算処理の説明を省略する。
この第2実施形態では、前記運転形態選定条件が、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量夫々についての予測運転メリットを運転形態選定用指標として、その運転形態選定用指標に基づいて前記燃料電池1の運転形態を定める条件に設定されている点では、上記の第1実施形態と同様であるが、前記運転形態選定条件が、連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」よりも小さいときは、燃料電池1の運転形態を待機形態に定め、連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量の少なくとも一方が待機時消費エネルギZの負の値「−Z」以上のときは、連続運転形態及び断続運転形態のうち予測エネルギ削減量が大きい方の運転形態を燃料電池1の運転形態を定める条件に設定されている点で、上記の第1実施形態と異なる。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described.
This 2nd Embodiment demonstrates another embodiment about the said driving | running | working mode selection conditions, and since a predicted load data calculation process and a predicted energy reduction amount calculation process are the same as said 1st Embodiment. Description of the predicted load data calculation process and the predicted energy reduction amount calculation process will be omitted.
In this second embodiment, the operation mode selection condition is that the predicted operation merits for the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation are used as the operation mode selection index. It is the same as the first embodiment in that it is set to a condition that determines the operation mode of the fuel cell 1 based on the selection index. However, the operation mode selection condition is a predicted energy reduction of the continuous operation mode. When the amount and the predicted energy reduction amount of the intermittent operation mode are smaller than the negative value “−Z” of the standby energy consumption Z, the operation mode of the fuel cell 1 is set to the standby mode, and the predicted energy reduction amount of the continuous operation mode is determined. When at least one of the predicted energy reduction amounts of the intermittent operation mode is equal to or greater than the negative value “−Z” of the standby energy consumption Z, the predicted error of the continuous operation mode and the intermittent operation mode is determined. The operating configuration towards conservation reduction is greater in that they are set to the condition for determining the operation mode of the fuel cell 1, different from the first embodiment.

以下、図7に示すフローチャートに基づいて、運転形態選定処理における運転制御部5の制御動作を説明する。
運転周期の開始時点になる毎に、第1実施形態と同様に、予測負荷データ演算処理を実行して、時系列的な予測負荷電力データ、及び、時系列的な予測負荷熱量データを求め、続いて、予測エネルギ削減量演算処理を実行して、複数種の運転形態夫々の予測エネルギ削減量を求める(ステップ#21〜23)。
Hereinafter, based on the flowchart shown in FIG. 7, the control operation of the operation control unit 5 in the operation mode selection process will be described.
Every time when the operation cycle starts, as in the first embodiment, the predicted load data calculation process is executed to obtain time-series predicted load power data and time-series predicted load heat quantity data, Subsequently, a predicted energy reduction amount calculation process is executed to obtain a predicted energy reduction amount for each of the plurality of types of operation modes (steps # 21 to 23).

続いて、ステップ#24にて、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1以上であると判断したときは、負荷追従連続運転形態の通常発熱効率時の予測エネルギ削減量P'c1、抑制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c2及び強制連続運転形態の通常発熱効率時の予測エネルギ削減量P'c3のうち最大の通常発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」以上の場合は、通常発熱効率時の予測エネルギ削減量が最大の連続運転形態を燃料電池1の運転形態に定め(ステップ#25,26)、最大の通常発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」よりも小さい場合は、待機形態を燃料電池1の運転形態に定める(ステップ#31)   Subsequently, at step # 24, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is equal to or larger than the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the one day type load follow-up intermittent operation mode. Is determined, the predicted energy reduction amount P′c1 during normal heat generation efficiency in the load following continuous operation mode, the predicted energy reduction amount P′c2 during normal heat generation efficiency in the suppressed continuous operation mode, and normal heat generation in the forced continuous operation mode When the predicted energy reduction amount at the maximum normal heat generation efficiency among the predicted energy reduction amounts P′c3 at the efficiency is greater than or equal to the negative value “−Z” of the standby energy consumption Z, the predicted energy reduction at the normal heat generation efficiency The continuous operation mode with the maximum amount is set as the operation mode of the fuel cell 1 (steps # 25 and 26), and the predicted energy reduction amount at the maximum normal heat generation efficiency is the negative value “−Z” of the standby energy consumption Z. Remote smaller defines a standby mode to the operation mode of the fuel cell 1 (step # 31)

ステップ#24にて、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1よりも小さいと判断したときは、ステップ#27において、第1実施形態と同様に熱負荷賄い率U/Lを求め、ステップ#28では、その求めた熱負荷賄い率U/Lと下位設定値Kとを比較して、熱負荷賄い率U/Lが下位設定値Kよりも大きいときは、待機条件を満たすと判断し、熱負荷賄い率U/Lが下位設定値K以下のときは、待機条件を満たさないと判断する。   In step # 24, it is determined that the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is smaller than the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the one day correspondence type load tracking intermittent operation mode. In step # 27, the thermal load coverage rate U / L is obtained in the same manner as in the first embodiment. In step # 28, the obtained thermal load coverage rate U / L is compared with the lower set value K. When the thermal load coverage rate U / L is larger than the lower set value K, it is determined that the standby condition is satisfied. When the thermal load coverage rate U / L is lower than the lower set value K, the standby condition must be satisfied. to decide.

そして、ステップ#28で待機条件を満たさないと判断したときは、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態及び3日対応型の強制断続運転形態の9種の断続運転形態の低発熱効率時の予測エネルギ削減量Pi1,Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9のうち最大の低発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」以上の場合は、低発熱効率時の予測エネルギ削減量が最大の断続運転形態を燃料電池1の運転形態に定め(ステップ#29,30)、最大の低発熱効率時の予測エネルギ削減量が待機時消費エネルギZの負の値「−Z」よりも小さい場合は、待機形態を燃料電池1の運転形態に定める(ステップ#29,31)。   When it is determined in step # 28 that the standby condition is not satisfied, the load following intermittent operation mode corresponding to one day, the suppression intermittent operation mode corresponding to one day, the forced intermittent operation mode corresponding to one day, the second day Corresponding type load following intermittent operation mode, 2 day type restrained intermittent operation mode, 2 day type forced forced intermittent mode, 3 day type load following intermittent mode, 3 day type intermittent mode Predicted energy reduction amount Pi1, Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, Pi9 at the time of low heat generation efficiency of nine types of three-day type forced intermittent operation forms. When the predicted energy reduction amount at the time is equal to or greater than the negative value “−Z” of the standby consumption energy Z, the intermittent operation mode with the maximum predicted energy reduction amount at the time of low heat generation efficiency is determined as the operation mode of the fuel cell 1 ( Step # 29, 30 When the predicted energy reduction amount at the time of the maximum low heat generation efficiency is smaller than the negative value “−Z” of the standby energy consumption Z, the standby mode is determined as the operation mode of the fuel cell 1 (steps # 29 and 31). .

ステップ#28で待機条件を満たすと判断したときは、ステップ#32で、燃料電池1が運転中か否かを判断して、運転中のときは、ステップ#33にて、熱負荷賄い率U/Lが前記下位設定値Kよりも大きい上位設定値M(例えば0.9)よりも大きいか否かを判断して、大きくないと判断したときは、ステップ#34において、第1実施形態と同様に、燃料電池1の運転を継続する運転継続条件を満たすか否かを判断し、運転継続条件を満たすと判断すると、ステップ#35において、燃料電池1の運転を負荷追従運転にて継続する負荷追従運転継続モードに定め、ステップ#36において、第1実施形態と同様に、前記運転継続時間を設定する運転継続時間設定処理を実行する。   If it is determined in step # 28 that the standby condition is satisfied, it is determined in step # 32 whether or not the fuel cell 1 is in operation. If it is in operation, in step # 33, the thermal load coverage rate U is determined. When it is determined whether / L is larger than the upper set value M (for example, 0.9) that is larger than the lower set value K and not larger, in step # 34, the first embodiment is compared with the first embodiment. Similarly, it is determined whether or not the operation continuation condition for continuing the operation of the fuel cell 1 is satisfied. If it is determined that the operation continuation condition is satisfied, the operation of the fuel cell 1 is continued in the load following operation in step # 35. The load follow-up operation continuation mode is set, and in step # 36, the operation continuation time setting process for setting the operation continuation time is executed in the same manner as in the first embodiment.

ステップ#32にて、燃料電池1が停止中であると判断したとき、ステップ#33にて、熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断したとき、ステップ#34にて、運転継続条件を満たさないと判断したときは、ステップ#31にて待機形態に設定する。
そして、第1実施形態と同様に、運転制御部5は、前記運転形態選定処理にて定めた運転形態にて燃料電池1を運転する。
When it is determined in step # 32 that the fuel cell 1 is stopped, in step # 33, when it is determined that the thermal load coverage ratio U / L is larger than the upper set value M, in step # 34 If it is determined that the operation continuation condition is not satisfied, the standby mode is set at step # 31.
Then, similarly to the first embodiment, the operation control unit 5 operates the fuel cell 1 in the operation mode determined in the operation mode selection process.

そして、この第2実施形態においても、上記の第1実施形態と同様に、運転制御部5が、前記運転形態選定処理において、前記補助加熱器28の発熱効率として、前記潜熱回収型の補助加熱器28の発熱効率よりも低い値に定めた運転形態選定用の発熱効率を用いて、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量を求めるように構成されている。
又、前記運転制御部5が、前記運転形態選定処理において前記燃料電池1の運転形態を前記連続運転形態に定めたときは、前記潜熱回収型の補助加熱器28の発熱効率を用いて前記連続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量に基づいて前記燃料電池1の発電出力を定めるように構成されている。
更に、前記運転制御部5が、前記運転形態選定処理において前記燃料電池1の運転形態を前記断続運転形態に定めたときは、前記運転形態選定用の発熱効率を用いて前記断続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量に基づいて前記燃料電池1の運転時間帯を定めるように構成されている。
Also in the second embodiment, as in the first embodiment, the operation control unit 5 uses the latent heat recovery type auxiliary heating as the heat generation efficiency of the auxiliary heater 28 in the operation mode selection process. The predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation are obtained by using the heat generation efficiency for selecting the operation mode set to a value lower than the heat generation efficiency of the vessel 28. .
Further, when the operation control unit 5 determines that the operation mode of the fuel cell 1 is the continuous operation mode in the operation mode selection process, the continuous heating mode is used to generate the continuous heat using the latent heat recovery type auxiliary heater 28. A predicted energy consumption amount during operation is obtained, and a power generation output of the fuel cell 1 is determined based on the predicted energy consumption amount.
Furthermore, when the operation control unit 5 determines the operation mode of the fuel cell 1 to be the intermittent operation mode in the operation mode selection process, the heat generation efficiency for selecting the operation mode is used to predict the intermittent operation. An energy consumption amount is obtained, and an operation time zone of the fuel cell 1 is determined based on the predicted energy consumption amount.

〔第3実施形態〕
以下、本発明の第3実施形態を説明する。
この第3実施形態は、前記運転形態選定条件についての別の実施形態を説明するものである。
つまり、この第3実施形態においても、上記の第1及び第2の各実施形態と同様に、前記運転形態選定条件が、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量夫々についての予測運転メリットを運転形態選定用指標として、その運転形態選定用指標に基づいて前記燃料電池1の運転形態を定める条件に設定されているが、この第3実施形態では、予測運転メリットとして、燃料電池1を運転することにより得られると予測される予測二酸化炭素削減量を求める点で上記の第1及び第2の各実施形態と異なる。
[Third Embodiment]
The third embodiment of the present invention will be described below.
In the third embodiment, another embodiment of the operation mode selection condition will be described.
That is, also in the third embodiment, as in each of the first and second embodiments, the operation mode selection condition includes the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation. The predicted driving merit for each quantity is set as an index for selecting the driving mode, and the conditions for determining the driving mode of the fuel cell 1 based on the driving mode selecting index are set. In this third embodiment, the predicted driving is set. As a merit, it differs from each of the first and second embodiments in that a predicted carbon dioxide reduction amount that is predicted to be obtained by operating the fuel cell 1 is obtained.

そして、各運転形態の予測二酸化炭素削減量は、下記の式15に示すように、燃料電池1を運転しない場合の予測二酸化炭素排出量から、燃料電池1を各運転形態にて運転した場合の予測二酸化炭素排出量を減じることにより演算する。   The predicted amount of carbon dioxide reduction for each operation mode is calculated from the predicted amount of carbon dioxide emission when the fuel cell 1 is not operated, as shown in the following formula 15, when the fuel cell 1 is operated in each operation mode. Calculate by reducing the predicted carbon dioxide emissions.

予測二酸化炭素削減量=燃料電池1を運転しない場合の予測二酸化炭素排出量D1−燃料電池1を運転した場合の予測二酸化炭素排出量D2……………(式15)   Predicted carbon dioxide reduction amount = predicted carbon dioxide emission amount D1 when the fuel cell 1 is not operated D1-predicted carbon dioxide emission amount D2 when the fuel cell 1 is operated (Equation 15)

前記燃料電池1を運転しない場合の予測二酸化炭素排出量D1(kg)は、下記の式16に示すように、最初の運転周期の予測負荷電力の全てを商用電源7からの受電電力で補う場合の予測二酸化炭素排出量と、最初の運転周期の予測負荷熱量の全てを補助加熱器28の発生熱で補う場合の予測二酸化炭素排出量との和として求められる。   The predicted carbon dioxide emission amount D1 (kg) when the fuel cell 1 is not operated is a case where all of the predicted load power in the first operation cycle is supplemented with the received power from the commercial power supply 7, as shown in the following equation 16. Is calculated as the sum of the predicted carbon dioxide emission amount and the predicted carbon dioxide emission amount when all of the predicted load heat amount in the first operation cycle is supplemented with the heat generated by the auxiliary heater 28.

D1=予測負荷電力×火力発電所の二酸化炭素発生原単位+(予測負荷熱量÷R)×3.6×都市ガスの二酸化炭素発生原単位……………(式16)   D1 = predicted load power × carbon dioxide generation basic unit of thermal power plant + (predicted load calorie / ÷ R) × 3.6 × city gas carbon dioxide generation basic unit …………… (Formula 16)

一方、燃料電池1を運転した場合の予測二酸化炭素排出量D2(kg)は、下記の式17に示すように、最初の運転周期の予測負荷電力及び予測負荷熱量を燃料電池1の予測発電出力及び予測熱出力で補う場合の予測二酸化炭素排出量と、予測負荷電力から予測発電出力を差し引いた分に相当する予測不足電力量の全てを商用電源7からの受電電力で補う場合の予測二酸化炭素排出量と、予測不足熱量の全てを補助加熱器28の発生熱で補う場合の予測二酸化炭素排出量との和にて求められる。   On the other hand, the predicted carbon dioxide emission amount D2 (kg) when the fuel cell 1 is operated is calculated by using the predicted load power and the predicted load heat amount of the first operation cycle as the predicted power generation output of the fuel cell 1 as shown in the following Expression 17. And the predicted carbon dioxide emission when supplementing with the predicted heat output, and the predicted carbon dioxide emission when all of the predicted insufficient power corresponding to the amount obtained by subtracting the predicted power output from the predicted load power is supplemented with the received power from the commercial power source 7. It is obtained by the sum of the exhaust amount and the predicted carbon dioxide emission amount when all of the predicted insufficient heat amount is supplemented with the heat generated by the auxiliary heater 28.

E2=運転周期予測エネルギ消費量×3.6×都市ガスの二酸化炭素発生原単位+予測不足電力量×火力発電所の二酸化炭素発生原単位+(予測不足熱量÷R)×3.6×都市ガスの二酸化炭素発生原単位……………(式17)   E2 = operating cycle predicted energy consumption × 3.6 × city gas generation unit of carbon gas + predicted insufficient power amount × carbon dioxide generation unit of thermal power plant + (predicted insufficient heat amount / R) × 3.6 × city Basic unit of gas carbon dioxide generation ……………… (Formula 17)

そして、運転形態選定処理においては、複数種の連続運転形態の夫々及び複数種の断続運転形態の夫々について予測エネルギ削減量に代えて予測二酸化炭素削減量を求めて、燃料電池1の運転形態を連続運転形態、断続運転形態及び待機形態のいずれかに定めることになり、その際は、上記の第1実施形態又は第2実施形態と同様に、補助加熱器28の発熱効率Rとして、潜熱回収型の補助加熱器28の発熱効率R2、及び、その潜熱回収型の補助加熱器28の発熱効率R2よりも低い値に定めた運転形態選定用の発熱効率R1を用いることになる。   In the operation mode selection process, the operation mode of the fuel cell 1 is determined by obtaining the predicted carbon dioxide reduction amount instead of the predicted energy reduction amount for each of the plurality of types of continuous operation modes and each of the plurality of types of intermittent operation modes. In this case, the heat generation efficiency R of the auxiliary heater 28 is set as latent heat recovery, as in the first embodiment or the second embodiment. The heat generation efficiency R2 of the mold auxiliary heater 28 and the heat generation efficiency R1 for selecting the operation mode determined to be lower than the heat generation efficiency R2 of the latent heat recovery type auxiliary heater 28 are used.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第1及び第2の各実施形態では、運転形態選定処理において、予め、複数種の連続運転形態及び複数種の断続運転形態の全てについて予測エネルギ削減量を求めておいて、連続運転形態の予測エネルギ削減量と断続運転形態の予測エネルギ削減量との比較等の処理を行うときに、予め求めた予測エネルギ削減量から必要なものをピックアップする場合について例示したが、連続運転形態の予測エネルギ削減量と断続運転形態の予測エネルギ削減量との比較等の処理を行う都度、必要な運転形態の予測エネルギ削減量を求めるように構成してもよい。
[Another embodiment]
Next, another embodiment will be described.
(A) In each of the first and second embodiments, in the operation mode selection process, the predicted energy reduction amount is obtained in advance for all of the plurality of types of continuous operation modes and the plurality of types of intermittent operation modes. In the case of performing processing such as comparison between the predicted energy reduction amount of the continuous operation mode and the predicted energy reduction amount of the intermittent operation mode, the case of picking up necessary ones from the predicted energy reduction amount obtained in advance is illustrated. You may comprise so that the prediction energy reduction amount of a required driving | running form may be calculated | required whenever processing, such as a comparison with the prediction energy reduction amount of a form, and the prediction energy reduction amount of an intermittent driving | running mode, is performed.

例えば、第1実施形態においては、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1を求めて、その低発熱効率時の予測エネルギ削減量Pc1と設定削減量Gとを比較して、低発熱効率時の予測エネルギ削減量Pc1が設定削減量G以上であれば、負荷追従、抑制および強制の各連続運転形態夫々について通常発熱効率時の予測エネルギ削減量P'c1,P'c2,P'c3を求めて、通常発熱効率時の予測エネルギ削減量が最大の連続運転形態を燃料電池1の運転形態に定める。
負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が設定削減量Gよりも小さければ、1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1を求めて、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1と1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1とを比較する。
そして、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1よりも小さいときは、更に、1日対応型の抑制断続運転形態、強制断続運転形態、2日対応型の負荷追従断続運転形態、抑制断続運転形態、強制断続運転形態、3日対応型の負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々について低発熱効率時の予測エネルギ削減量Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9を求めて、低発熱効率時の予測エネルギ削減量が最大の断続運転形態を燃料電池1の運転形態に定めるように構成する。
For example, in the first embodiment, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is obtained, and the predicted energy reduction amount Pc1 at the time of low heat generation efficiency is compared with the set reduction amount G. If the predicted energy reduction amount Pc1 at the time of low heat generation efficiency is equal to or greater than the set reduction amount G, the predicted energy reduction amounts P′c1 and P′c2 at the time of normal heat generation efficiency for each of the load following, suppression, and forced continuous operation modes. , P′c3 is determined, and the continuous operation mode having the maximum predicted energy reduction amount at the time of normal heat generation efficiency is determined as the operation mode of the fuel cell 1.
If the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is smaller than the set reduction amount G, the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the day-to-day load following intermittent operation mode is obtained. The predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is compared with the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the one day correspondence type load tracking intermittent operation mode.
When the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is smaller than the predicted energy reduction amount Pi1 at the time of low heat generation efficiency in the one day type load follow-up intermittent operation mode, further one day Corresponding suppression intermittent operation mode, forced intermittent operation mode, 2-day load follow intermittent operation mode, suppression intermittent operation mode, forced intermittent operation mode, 3-day load follow intermittent operation mode, suppression intermittent operation mode and For each of the forced intermittent operation modes, the predicted energy reduction amount Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, and Pi9 at the time of low heat generation efficiency is obtained, and the intermittent operation mode having the maximum predicted energy reduction amount at the time of low heat generation efficiency is obtained. The fuel cell 1 is configured as defined in the operation mode.

又、第2実施形態においては、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1と、1日対応型の負荷追従断続運転形態における発熱効率時の予測エネルギ削減量Pi1とを求めて、それらを比較し、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が1日対応型の負荷追従断続運転形態における発熱効率時の予測エネルギ削減量Pi1以上であれば、負荷追従、抑制および強制の各連続運転形態夫々について通常発熱効率時の予測エネルギ削減量P'c1,P'c2,P'c3を求めて、通常発熱効率時の予測エネルギ削減量が最大の連続運転形態を燃料電池1の運転形態に定め、負荷追従連続運転形態の低発熱効率時の予測エネルギ削減量Pc1が1日対応型の負荷追従断続運転形態における低発熱効率時の予測エネルギ削減量Pi1よりも小さければ、更に、1日対応型の抑制断続運転形態、強制断続運転形態、2日対応型の負荷追従断続運転形態、抑制断続運転形態、強制断続運転形態、3日対応型の負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々について低発熱効率時の予測エネルギ削減量Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9を求めて、低発熱効率時の予測エネルギ削減量が最大の断続運転形態を燃料電池1の運転形態に定めるように構成する。   In the second embodiment, the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load follow-up continuous operation mode and the predicted energy reduction amount Pi1 at the time of heat generation efficiency in the day-to-day load follow-up intermittent operation mode are obtained. If the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is equal to or greater than the predicted energy reduction amount Pi1 at the time of heat generation efficiency in the one day correspondence type load following intermittent operation mode, the load For each follow-up, suppression, and forced continuous operation mode, the predicted energy reduction amounts P′c1, P′c2, and P′c3 at the normal heat generation efficiency are obtained, and the continuous operation with the maximum predicted energy reduction amount at the normal heat generation efficiency is obtained. The mode is determined as the operation mode of the fuel cell 1, and the predicted energy reduction amount Pc1 at the time of low heat generation efficiency in the load following continuous operation mode is low heat generation efficiency in the load follow intermittent operation mode of one day type If it is smaller than the predicted energy reduction amount Pi1, it is further reduced to a 1-day type suppression intermittent operation mode, a forced intermittent operation mode, a 2-day type load follow-up intermittent operation mode, a controlled intermittent operation mode, a forced intermittent operation mode, 3 days. Low heat generation is obtained by calculating the predicted energy reduction amount Pi2, Pi3, Pi4, Pi5, Pi6, Pi7, Pi8, Pi9 at the time of low heat generation efficiency for each of the corresponding load following intermittent operation mode, suppression intermittent operation mode and forced intermittent operation mode. The intermittent operation mode in which the predicted energy reduction amount at the time of efficiency is the maximum is determined as the operation mode of the fuel cell 1.

(ロ) 上記の第1及び第2の各実施形態において、連続運転形態の低発熱効率時の予測エネルギ削減量を求める場合、及び、断続運転形態の低発熱効率時の予測エネルギ削減量を求める場合は、運転形態選定用の発熱効率R1を用いて、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、連続運転形態の通常発熱効率時の予測エネルギ削減量を求める場合は、潜熱回収型の発熱効率R2を用いて、燃料電池1を運転しない場合の予測エネルギ消費量E1を求めたが、連続運転形態の低発熱効率時の予測エネルギ削減量を求める場合、断続運転形態の低発熱効率時の予測エネルギ削減量を求める場合、及び、連続運転形態の通常発熱効率時の予測エネルギ削減量を求める場合のいずれにおいても、運転形態選定用の発熱効率R1又は潜熱回収型の発熱効率R2のいずれか一方の同じ値の発熱効率を用いて、燃料電池1を運転しない場合の予測エネルギ消費量E1を求めても良い。 (B) In each of the first and second embodiments described above, when the predicted energy reduction amount at the time of low heat generation efficiency in the continuous operation mode is obtained, and the predicted energy reduction amount at the time of low heat generation efficiency in the intermittent operation mode is obtained. In this case, using the heat generation efficiency R1 for selecting the operation mode, the predicted energy consumption E1 when the fuel cell 1 is not operated is obtained, and when the predicted energy reduction amount at the normal heat generation efficiency in the continuous operation mode is obtained, the latent heat The recovery type heat generation efficiency R2 is used to determine the predicted energy consumption E1 when the fuel cell 1 is not operated. However, when the predicted energy reduction amount at the time of low heat generation efficiency in the continuous operation mode is determined, the intermittent operation mode is low. In either case of obtaining the predicted energy reduction amount at the time of the heat generation efficiency or obtaining the predicted energy reduction amount at the time of the normal heat generation efficiency in the continuous operation mode, the heat generation efficiency R1 for selecting the operation mode By using the heat generation efficiency of one of the same value of heat generation efficiency R2 of latent heat recovery type, may be obtained predicted energy consumption E1 when not operating the fuel cell 1.

(ハ) 運転形態選定条件は、上記の第1〜第3の各実施形態において定めた条件に限定されるものでない。
例えば、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量そのものを運転形態選定用指標として、その運転形態選定用指標に基づいて第1及び第2の各実施形態と同様の手順で燃料電池1の運転形態を定める条件に設定しても良い。この場合、連続運転時及び断続運転時の各予測エネルギ消費量は、上記式10にて求める。
又、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての予測二酸化炭素排出量を運転形態選定用指標として、その運転形態選定用指標に基づいて第1及び第2の各実施形態と同様の手順で燃料電池1の運転形態を定める条件に設定しても良い。この場合、連続運転時及び断続運転時の各予測二酸化炭素排出量は、上記式17にて求める。
又、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての光熱費を運転形態選定用指標として、その運転形態選定用指標に基づいて第1及び第2の各実施形態と同様の手順で燃料電池1の運転形態を定める条件に設定しても良い。
(C) The operation mode selection conditions are not limited to the conditions defined in the first to third embodiments.
For example, the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation itself are used as the operation mode selection index, and the same procedure as in the first and second embodiments based on the operation mode selection index. Thus, the conditions for determining the operation mode of the fuel cell 1 may be set. In this case, each predicted energy consumption during continuous operation and intermittent operation is obtained by the above equation 10.
Further, the predicted energy consumption during the continuous operation and the predicted carbon dioxide emission for the predicted energy consumption during the intermittent operation are used as the operation mode selection index, and the first and second parameters are selected based on the operation mode selection index. You may set to the conditions which determine the driving | running form of the fuel cell 1 in the procedure similar to each embodiment. In this case, each predicted carbon dioxide emission amount at the time of continuous operation and intermittent operation is obtained by the above equation 17.
In addition, the first and second embodiments are based on the operation mode selection index using the utility cost for each of the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation as an operation mode selection index. You may set to the conditions which determine the driving | running form of the fuel cell 1 in the procedure similar to.

又、連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量夫々についての予測運転メリットを運転形態選定用指標とする場合、予測運転メリットとしては、上記の第1及び第2の各実施形態で例示した予測エネルギ削減量や、上記の第3実施形態で例示した予測二酸化炭素削減量に限定されるものではなく、例えば、予測光熱費削減額でも良い。
予測光熱費削減額は、燃料電池1を運転しない場合の光熱費から、燃料電池1を運転した場合の光熱費を減じて求めることができる。
前記燃料電池1を運転しない場合の光熱費は、予測電力負荷の全てを商用電源7から買電するときのコストと、予測熱負荷の全てを補助加熱器28で賄うときのエネルギコスト(燃料コスト)の和として求められる。
一方、燃料電池1を運転したときの光熱費は、予測負荷電力及び予測負荷熱量を燃料電池1の予測発電出力及び予測熱出力で補う場合の燃料電池1のエネルギコスト(燃料コスト)と、予測負荷電力から予測発電出力を差し引いた分に相当する予測不足電量を商用電源7から買電するときのコストと、予測不足熱量を補助加熱器28の発生熱で補う場合のエネルギコスト(燃料コスト)との和として求められる。
In addition, when the predicted operation merit for each of the predicted energy consumption during continuous operation and the predicted energy consumption during intermittent operation is used as an index for selecting the operation mode, It is not limited to the predicted energy reduction amount exemplified in the embodiment or the predicted carbon dioxide reduction amount exemplified in the third embodiment, and may be, for example, a predicted utility cost reduction amount.
The predicted reduction in the utility cost can be obtained by subtracting the utility cost when the fuel cell 1 is operated from the utility cost when the fuel cell 1 is not operated.
When the fuel cell 1 is not operated, the utility cost is the cost of purchasing all of the predicted power load from the commercial power source 7 and the energy cost of supplying all of the predicted heat load with the auxiliary heater 28 (fuel cost). ).
On the other hand, the utility costs when the fuel cell 1 is operated are the energy cost (fuel cost) of the fuel cell 1 when the predicted load power and the predicted load heat amount are supplemented by the predicted power generation output and the predicted heat output of the fuel cell 1, and the prediction The cost for purchasing the predicted insufficient power corresponding to the amount obtained by subtracting the predicted power output from the load power from the commercial power supply 7 and the energy cost for supplementing the predicted insufficient power with the heat generated by the auxiliary heater 28 (fuel cost) As the sum of

(ニ) 運転形態選定用の発熱効率の具体的な設定値は、上記の第1〜第3の各実施形態において例示した如き非潜熱回収型の補助加熱手段の発熱効率に限定されるものではなく、非潜熱回収型の補助加熱手段の発熱効率よりも高い値や低い値に設定しても良い。 (D) The specific set value of the heat generation efficiency for selecting the operation mode is not limited to the heat generation efficiency of the non-latent heat recovery type auxiliary heating means as exemplified in the first to third embodiments. Alternatively, it may be set to a value higher or lower than the heat generation efficiency of the non-latent heat recovery type auxiliary heating means.

(ホ) 上記の第1〜第3の各実施形態においては、連続運転形態として、負荷追従、抑制、強制の3種を備える場合について例示したが、これら3種のうちのいずれか1種を備えたり、いずれか2種を備えるように構成しても良い。又、燃料電池1の発電出力を定格出力(例えば発電出力調整範囲の最大出力)に調整する定格連続運転を備えても良い。
断続運転形態としては、負荷追従、抑制、強制の3種を備える場合について例示したが、これら3種のうちのいずれか1種を備えたり、いずれか2種を備えるように構成しても良い。又、負荷追従、抑制、強制の各断続運転形態について、1日対応型、2日対応型及び3日対応型を備える場合について例示したが、1日対応型のみを備えたり、1日対応型と2日対応型とを備えたり、4日対応型を加えても良い。
(E) In each of the first to third embodiments described above, the continuous operation mode has been illustrated with respect to the case of including three types of load following, suppression, and forced, but any one of these three types is used. Or may be configured to include any two of them. Moreover, you may provide the rated continuous operation which adjusts the electric power generation output of the fuel cell 1 to a rated output (for example, the maximum output of a power generation output adjustment range).
As the intermittent operation mode, the case of including three types of load following, suppression, and forced is exemplified, but any one of these three types may be provided, or any two types may be configured. . In addition, the load following, suppression, and forced intermittent operation modes have been illustrated with the case of having a one-day correspondence type, a two-day correspondence type, and a three-day correspondence type. And a 2-day compatible type, or a 4-day compatible type may be added.

(ヘ) 熱電併給装置として、上記の各実施形態では燃料電池1を適用したが、これ以外に、例えば、ガスエンジンにより発電機を駆動するように構成したもの等、種々のものを適用することができる。 (F) Although the fuel cell 1 is applied in each of the above-described embodiments as a combined heat and power supply device, in addition to this, various devices such as a configuration in which a generator is driven by a gas engine may be applied. Can do.

実施形態に係るコージェネレーションシステムの全体構成を示すブロック図The block diagram which shows the whole structure of the cogeneration system which concerns on embodiment 実施形態に係るコージェネレーションシステムの制御構成を示すブロック図The block diagram which shows the control structure of the cogeneration system which concerns on embodiment 予測エネルギ削減量を求める処理を説明する図The figure explaining the process which calculates | requires prediction energy reduction amount 燃料電池の電池発電効率及び電池熱効率を示す図The figure which shows the battery power generation efficiency and battery thermal efficiency of the fuel cell 出力増大時発生熱量及び出力抑制時発電用エネルギ量差を示す図Figure showing the amount of heat generated when output is increased and the difference in energy amount for power generation when output is suppressed 第1実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 1st Embodiment. 第2実施形態に係る制御動作のフローチャートを示す図The figure which shows the flowchart of the control action which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1 熱電併給装置
5 運転制御手段
28 補助加熱手段
1 Cogeneration device 5 Operation control means 28 Auxiliary heating means

Claims (5)

電力と熱とを併せて発生する熱電併給装置と、燃焼式で潜熱回収型の補助加熱手段と、運転を制御する運転制御手段とが設けられ、
その運転制御手段が、周期的な運転形態選定タイミングにおいて、時系列的な予測負荷電力及び時系列的な予測負荷熱量並びに前記補助加熱手段の発熱効率に基づいて、前記熱電併給装置を連続運転すると仮定したときの連続運転時の予測エネルギ消費量、及び、前記熱電併給装置を断続運転すると仮定したときの断続運転時の予測エネルギ消費量を求めて、その求めた連続運転時の予測エネルギ消費量及び断続運転時の予測エネルギ消費量並びに運転形態選定条件に基づいて、前記熱電併給装置の運転形態を連続運転形態、断続運転形態及び前記熱電併給装置を停止させて運転を待機させる待機形態のいずれかに定める運転形態選定処理を実行するように構成されたコージェネレーションシステムであって、
前記運転制御手段が、前記運転形態選定処理において、前記補助加熱手段の発熱効率として、前記潜熱回収型の補助加熱手段の発熱効率よりも低い値に定めた運転形態選定用の発熱効率を用いて、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量を求めるように構成されているコージェネレーションシステム。
A cogeneration device that generates both electric power and heat, a combustion type latent heat recovery type auxiliary heating means, and an operation control means for controlling the operation,
When the operation control means continuously operates the cogeneration device based on the time-series predicted load power, the time-series predicted load heat amount, and the heat generation efficiency of the auxiliary heating means at the periodic operation mode selection timing. The predicted energy consumption during continuous operation when it is assumed and the predicted energy consumption during intermittent operation when it is assumed that the combined heat and power supply device is intermittently operated are obtained. Based on the predicted energy consumption at the time of intermittent operation and the operation mode selection condition, any of the operation mode of the combined heat and power supply device is a continuous operation mode, the intermittent operation mode or the standby mode in which the combined heat and power supply device is stopped and waits for the operation. A cogeneration system configured to execute the operation type selection process defined in
In the operation mode selection process, the operation control means uses, as the heat generation efficiency of the auxiliary heating means, the heat generation efficiency for operation mode selection set to a value lower than the heat generation efficiency of the latent heat recovery type auxiliary heating means. A cogeneration system configured to obtain a predicted energy consumption during the continuous operation and a predicted energy consumption during the intermittent operation.
前記運転形態選定用の発熱効率を非潜熱回収型の補助加熱手段の発熱効率に定める請求項1記載のコージェネレーションシステム。   The cogeneration system according to claim 1, wherein the heat generation efficiency for selecting the operation mode is determined as the heat generation efficiency of the non-latent heat recovery type auxiliary heating means. 前記運転制御手段が、前記運転形態選定処理において前記熱電併給装置の運転形態を前記断続運転形態に定めたときは、運転時間帯を異ならせて前記熱電併給装置を前記断続運転形態にて運転する場合の夫々について、前記運転形態選定用の発熱効率を用いて前記断続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない運転時間帯を前記熱電併給装置の運転時間帯に定めるように構成されている請求項1又は2記載のコージェネレーションシステム。   When the operation control means sets the operation mode of the combined heat and power device to the intermittent operation mode in the operation mode selection process, the operation and power supply device is operated in the intermittent operation mode with different operation time zones. For each of the cases, the predicted energy consumption during the intermittent operation is obtained using the heat generation efficiency for selecting the operation mode, and the operation time zone in which the predicted energy consumption is low is determined as the operation time zone of the combined heat and power supply device. The cogeneration system according to claim 1 or 2, configured as described above. 前記運転制御手段が、前記運転形態選定処理において前記熱電併給装置の運転形態を前記連続運転形態に定めたときは、発電出力を異ならせて前記熱電併給装置を前記連続運転形態にて運転する場合の夫々について、前記潜熱回収型の補助加熱手段の発熱効率を用いて前記連続運転時の予測エネルギ消費量を求めて、その予測エネルギ消費量が少ない発電出力を前記熱電併給装置の発電出力に定めるように構成されている請求項1〜3のいずれか1項に記載のコージェネレーションシステム。   When the operation control means sets the operation mode of the cogeneration device to the continuous operation mode in the operation mode selection process, and operates the cogeneration device in the continuous operation mode with different power generation outputs. For each of the above, the predicted energy consumption during the continuous operation is obtained using the heat generation efficiency of the auxiliary heating means of the latent heat recovery type, and the power generation output with the small predicted energy consumption is determined as the power generation output of the cogeneration device. The cogeneration system according to any one of claims 1 to 3, which is configured as described above. 前記運転形態選定条件が、前記連続運転時の予測エネルギ消費量及び前記断続運転時の予測エネルギ消費量夫々についての、予測二酸化炭素排出量、予測光熱費及び予測運転メリットのうちのいずれか1つを運転形態選定用指標として、その運転形態選定用指標に基づいて前記熱電併給装置の運転形態を定める条件に設定されている請求項1〜4のいずれか1項に記載のコージェネレーションシステム。   The operation mode selection condition is any one of a predicted carbon dioxide emission amount, a predicted utility cost, and a predicted operation merit for each of the predicted energy consumption during the continuous operation and the predicted energy consumption during the intermittent operation. The cogeneration system according to any one of claims 1 to 4, wherein the operation mode selection index is set to a condition that determines the operation mode of the combined heat and power supply device based on the operation mode selection index.
JP2008083810A 2008-03-27 2008-03-27 Cogeneration system Expired - Fee Related JP5143603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083810A JP5143603B2 (en) 2008-03-27 2008-03-27 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083810A JP5143603B2 (en) 2008-03-27 2008-03-27 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2009236411A true JP2009236411A (en) 2009-10-15
JP5143603B2 JP5143603B2 (en) 2013-02-13

Family

ID=41250580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083810A Expired - Fee Related JP5143603B2 (en) 2008-03-27 2008-03-27 Cogeneration system

Country Status (1)

Country Link
JP (1) JP5143603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190750A (en) * 2010-03-15 2011-09-29 Toyota Motor Corp Apparatus for thermal management of vehicle
JP2011233378A (en) * 2010-04-28 2011-11-17 Noritz Corp Fuel cell hot-water supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190750A (en) * 2010-03-15 2011-09-29 Toyota Motor Corp Apparatus for thermal management of vehicle
JP2011233378A (en) * 2010-04-28 2011-11-17 Noritz Corp Fuel cell hot-water supply system

Also Published As

Publication number Publication date
JP5143603B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP2011185520A (en) Cogeneration system
JP5222100B2 (en) Hot water storage water heater
JP5032857B2 (en) Cogeneration system
JP5048354B2 (en) Cogeneration system
JP5006678B2 (en) Hot water storage water heater
JP5143603B2 (en) Cogeneration system
JP5064856B2 (en) Cogeneration system
JP4916197B2 (en) Cogeneration system
JP4912837B2 (en) Cogeneration system
JP5551942B2 (en) Cogeneration system
JP4897855B2 (en) Cogeneration system
JP5722970B2 (en) Cogeneration system
JP2009243851A (en) Cogeneration system
JP5433071B2 (en) Cogeneration system
JP5438540B2 (en) Cogeneration system
JP4359248B2 (en) Cogeneration system
JP4897780B2 (en) Cogeneration system
JP5122247B2 (en) Hot water storage water heater
JP2007333289A (en) Cogeneration system
JP5210010B2 (en) Cogeneration system
JP5406640B2 (en) Cogeneration system
JP5037959B2 (en) Cogeneration system
JP5507615B2 (en) Cogeneration system
JP5551953B2 (en) Hot water storage water heater
JP2009243850A (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees