JP6302060B2 - Microporous polylactic acid oriented film and its application - Google Patents
Microporous polylactic acid oriented film and its application Download PDFInfo
- Publication number
- JP6302060B2 JP6302060B2 JP2016526147A JP2016526147A JP6302060B2 JP 6302060 B2 JP6302060 B2 JP 6302060B2 JP 2016526147 A JP2016526147 A JP 2016526147A JP 2016526147 A JP2016526147 A JP 2016526147A JP 6302060 B2 JP6302060 B2 JP 6302060B2
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- microporous
- oriented film
- film
- film according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000747 poly(lactic acid) Polymers 0.000 title claims description 130
- 239000004626 polylactic acid Substances 0.000 title claims description 129
- 239000011148 porous material Substances 0.000 claims description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 51
- -1 polyethylene Polymers 0.000 claims description 44
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- 150000002894 organic compounds Chemical class 0.000 claims description 26
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 23
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 22
- 230000009477 glass transition Effects 0.000 claims description 21
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 13
- 230000002209 hydrophobic effect Effects 0.000 claims description 12
- 239000004698 Polyethylene Substances 0.000 claims description 11
- 239000004310 lactic acid Substances 0.000 claims description 11
- 235000014655 lactic acid Nutrition 0.000 claims description 11
- 229920000573 polyethylene Polymers 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 229920006381 polylactic acid film Polymers 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 229920001451 polypropylene glycol Polymers 0.000 claims description 7
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 claims description 6
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 5
- 239000010445 mica Substances 0.000 claims description 5
- 229910052618 mica group Inorganic materials 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 229960002479 isosorbide Drugs 0.000 claims description 4
- 239000001069 triethyl citrate Substances 0.000 claims description 4
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 claims description 4
- 235000013769 triethyl citrate Nutrition 0.000 claims description 4
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 claims description 3
- 229920000805 Polyaspartic acid Polymers 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 238000005034 decoration Methods 0.000 claims description 3
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000001087 glyceryl triacetate Substances 0.000 claims description 3
- 235000013773 glyceryl triacetate Nutrition 0.000 claims description 3
- 150000003903 lactic acid esters Chemical class 0.000 claims description 3
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 108010064470 polyaspartate Proteins 0.000 claims description 3
- 239000004629 polybutylene adipate terephthalate Substances 0.000 claims description 3
- 239000004631 polybutylene succinate Substances 0.000 claims description 3
- 229920002961 polybutylene succinate Polymers 0.000 claims description 3
- 229920001444 polymaleic acid Polymers 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 235000012222 talc Nutrition 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 3
- 229960002622 triacetin Drugs 0.000 claims description 3
- 239000010455 vermiculite Substances 0.000 claims description 3
- 229910052902 vermiculite Inorganic materials 0.000 claims description 3
- 235000019354 vermiculite Nutrition 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 2
- 229920000980 poly(hydroxybutyrate-co-hydroxyvalerate) Polymers 0.000 claims description 2
- 229920009537 polybutylene succinate adipate Polymers 0.000 claims description 2
- 239000004630 polybutylene succinate adipate Substances 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 239000004632 polycaprolactone Substances 0.000 claims description 2
- 229920000379 polypropylene carbonate Polymers 0.000 claims description 2
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 44
- 239000007788 liquid Substances 0.000 description 20
- 239000000835 fiber Substances 0.000 description 18
- 230000035699 permeability Effects 0.000 description 15
- 239000002994 raw material Substances 0.000 description 9
- 238000004132 cross linking Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229930182843 D-Lactic acid Natural products 0.000 description 3
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229940022769 d- lactic acid Drugs 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004017 vitrification Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229920006125 amorphous polymer Polymers 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000003622 knife milling Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- JJTUDXZGHPGLLC-ZXZARUISSA-N (3r,6s)-3,6-dimethyl-1,4-dioxane-2,5-dione Chemical group C[C@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-ZXZARUISSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229920001938 Vegetable gum Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- VCNTUJWBXWAWEJ-UHFFFAOYSA-J aluminum;sodium;dicarbonate Chemical compound [Na+].[Al+3].[O-]C([O-])=O.[O-]C([O-])=O VCNTUJWBXWAWEJ-UHFFFAOYSA-J 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- QCCDYNYSHILRDG-UHFFFAOYSA-K cerium(3+);trifluoride Chemical compound [F-].[F-].[F-].[Ce+3] QCCDYNYSHILRDG-UHFFFAOYSA-K 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910001647 dawsonite Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920005839 ecoflex® Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000007735 ion beam assisted deposition Methods 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- YAFKGUAJYKXPDI-UHFFFAOYSA-J lead tetrafluoride Chemical compound F[Pb](F)(F)F YAFKGUAJYKXPDI-UHFFFAOYSA-J 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000010449 novaculite Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001529 polyepoxysuccinic acid Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229920000428 triblock copolymer Polymers 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Biological Depolymerization Polymers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は高分子材料の技術分野に属し、微多孔構造を有するポリ乳酸フィルムに関する。 The present invention belongs to the technical field of polymer materials and relates to a polylactic acid film having a microporous structure.
微多孔フィルムは、透湿防水フィルム、電池用セパレータ、分離フィルム、組織工学材料、エネルギー貯蔵材料として、ヘルスケア、医療、建設、水処理、農業、電気製品、装飾品などの多くの分野に幅広く使用されている。微多孔フィルムの製造方法には、主に発泡、粒子充填-延伸、溶剤エッチング、相分離、自己組織化などがあるが、各種の方法により製造された微多孔フィルムは、その構造によってそれぞれ独自の特徴を持つ。 Microporous films are widely used in many fields such as healthcare, medical, construction, water treatment, agriculture, electrical products, and ornaments as moisture permeable waterproof films, battery separators, separation films, tissue engineering materials, and energy storage materials. It is used. The production method of microporous film mainly includes foaming, particle filling-stretching, solvent etching, phase separation, self-organization, etc. Microporous film produced by various methods has its own structure depending on its structure. Has characteristics.
ポリ乳酸は生分解性ポリエステルであり、当該ポリマーを含有する微多孔フィルムはすでに提案されており、ヘルスケア、医療などの分野に利用することができる。 Polylactic acid is a biodegradable polyester, and a microporous film containing the polymer has already been proposed and can be used in fields such as healthcare and medicine.
CN201310185870.6では、粒子充填-延伸法により、直径が0.2〜7μmの範囲内にある表面孔の面積が総表面積の0.5%〜15%を占めており、耐水度が800mmを超え、透湿度が1000g/m2・day、剛軟度が40mm未満、ポリ乳酸などの生分解性ポリマーを含有する微多孔配向フィルムが提供される。当該フィルムは、透湿防水フィルムとして、ヘルスケア分野に利用できる。 In CN201310185870.6, the surface pore area in the range of 0.2-7μm diameter occupies 0.5% -15% of the total surface area by particle filling-stretching method, the water resistance is over 800mm, and the moisture permeability is A microporous oriented film containing 1000 g / m 2 · day, a bending resistance of less than 40 mm, and containing a biodegradable polymer such as polylactic acid is provided. The film can be used in the healthcare field as a moisture permeable waterproof film.
CN201110414695.4では、相分離技術により、組織工学用多孔質ステントとして利用できる、孔径が5〜400μmの間で制御可能ポリ乳酸材料が提供される。 In CN201110414695.4, a phase separation technique provides a polylactic acid material that can be used as a porous stent for tissue engineering and has a pore diameter of 5 to 400 μm.
CN201080052568.8では、吸水材料として利用できる、ポリ乳酸の発泡体を粉砕した粉体が溶融接着により相互に接合して、孔径が100〜2000μmの連続多孔質構造が得られている。 In CN201080052568.8, a powder obtained by pulverizing a polylactic acid foam, which can be used as a water-absorbing material, is bonded to each other by fusion bonding to obtain a continuous porous structure having a pore size of 100 to 2000 μm.
上述の各種の技術では、製造された微多孔フィルムの孔径が異なるが、サブミクロン・ナノレベルの、孔径が均一な微孔を有する微多孔ポリ乳酸フィルムを製造することが困難である。 In the various techniques described above, although the pore diameter of the produced microporous film is different, it is difficult to produce a microporous polylactic acid film having micropores of submicron / nano level and uniform pore diameter.
また、透湿防水フィルムなどの半透膜として使用するとき、温度感受性に対して特別な要求がある場合もある。 In addition, when used as a semipermeable membrane such as a moisture permeable waterproof film, there may be a special requirement for temperature sensitivity.
例えば、透過量が温度によって変化することが必要になる場合がある。例えば、ポリ乳酸微多孔フィルムの透湿性により、内容物の湿度を調節することができる。低い温度で内容物の湿度を低くしようとする場合、フィルムには高い透湿性が要求される。一方、高い温度で内容物の湿度を高くし、または内容物はそれ以上水分を喪失しないようにする場合、フィルムには低い透湿性が要求される。また例えば、ポリ乳酸微多孔フィルムの透湿性により、揮発性の芳香成分の内容物の揮発速度を調節することができる。低い温度では揮発性の芳香成分を速くフィルムに透過させる必要があるのに対して、高い温度では揮発性の芳香成分をゆっくりフィルムに透過させる必要がある。 For example, the amount of transmission may need to change with temperature. For example, the humidity of the contents can be adjusted by the moisture permeability of the polylactic acid microporous film. When trying to lower the humidity of the contents at a low temperature, the film is required to have high moisture permeability. On the other hand, when the humidity of the content is increased at a high temperature or the content is not further lost, the film is required to have low moisture permeability. For example, the volatilization rate of the content of a volatile fragrance | flavor component can be adjusted with the moisture permeability of a polylactic acid microporous film. At low temperatures, volatile aroma components need to permeate the film quickly, whereas at high temperatures, volatile aroma components need to permeate the film slowly.
また例えば、透明性が温度によって変化することが必要な場合がある。例えば、低い温度ではフィルムの透明性が悪く、高い温度ではフィルムの透明性が良い。 Also, for example, the transparency may need to change with temperature. For example, the transparency of the film is poor at low temperatures, and the transparency of the film is good at high temperatures.
一方、従来技術では、上述の均一な、サブミクロン・ナノレベルの孔を有し、かつ、孔径および孔面積が温度感受性を持つポリ乳酸微多孔フィルムを達成する技術案が提出されていない。 On the other hand, in the prior art, no technical proposal has been submitted for achieving the above-mentioned uniform polylactic acid microporous film having submicron / nano level pores and having a pore diameter and pore area that are temperature sensitive.
微多孔フィルムの応用範囲拡大に伴って、従来技術では、微多孔ポリ乳酸フィルムは、孔径が大きく、孔径分布が均一でないなどの欠点により、ヘルスケア、医療、建設、水処理、農業、エレクトロニクス、包装、装飾などの分野での応用が制限されることを見出した。また、温度応答性が要求される場合もある。 With the expansion of the application range of microporous film, in the prior art, microporous polylactic acid film has a drawback that it has a large pore size and non-uniform pore size distribution, etc., resulting in healthcare, medical care, construction, water treatment, agriculture, electronics, We found that application in fields such as packaging and decoration is limited. In addition, temperature responsiveness may be required.
従来技術の欠点を解決するため、本発明は、微多孔ポリ乳酸配向フィルムを提供する。 In order to solve the drawbacks of the prior art, the present invention provides a microporous polylactic acid oriented film.
配向フィルムとは、当業者によく知られる用語であり、キャスト、インフレーション、キャスティング、プレス成形などの方法により製造された未延伸フィルムを、一軸延伸または二軸延伸することにより、ポリマーのセグメント、分子鎖及び/或いは結晶を配向させて得たフィルムである。一般に、配向形成によって、フィルムに強度、靭性、透明性の向上など有益な性能および性質を与えるが、後処理の条件によって、フィルムに熱収縮性を持たせることも可能である。フィルムの配向は、一方向、二方向の延伸機で実施してもよいし、チューブラー法などの改良したインフレーション法により実施してもよい。フィルムに配向性を有するかどうかを測定する方法は、公知技術であり、通常の手段として、X線回折法、複屈折法、ラマン分光法、赤外線法、超音波法などがある。 An oriented film is a term well known to those skilled in the art, and is obtained by uniaxially stretching or biaxially stretching an unstretched film produced by a method such as casting, inflation, casting, press molding, etc. It is a film obtained by orienting chains and / or crystals. In general, orientation formation provides beneficial performance and properties such as improved strength, toughness, and transparency to the film, but it is also possible to impart heat shrinkability to the film depending on post-treatment conditions. The orientation of the film may be performed by a unidirectional or bi-directional stretching machine, or may be performed by an improved inflation method such as a tubular method. A method for measuring whether or not the film has orientation is a known technique, and as usual means, there are an X-ray diffraction method, a birefringence method, a Raman spectroscopy method, an infrared method, an ultrasonic method and the like.
本発明は、フィルムはフィルム中のポリ乳酸成分のガラス転移温度以下のとき、直径が10〜1000nm範囲にある表面孔を有し、このような孔の面積の総和は、前記フィルムの総表面積の20%以上を占める、微多孔ポリ乳酸配向フィルムを提供する。未配向のポリ乳酸フィルムに対して、配向したポリ乳酸フィルムは、より良好な強度と貯蔵安定性を有する。 The present invention has surface pores having a diameter in the range of 10 to 1000 nm when the film is below the glass transition temperature of the polylactic acid component in the film, and the total area of such pores is the total surface area of the film. A microporous polylactic acid oriented film occupying 20% or more is provided. An oriented polylactic acid film has better strength and storage stability than an unoriented polylactic acid film.
本発明にいう表面孔は、外部に露出され、かつポリマーおよび/またはその他の孔で完全に遮られていない孔を指し、顕微鏡によりフィルムの表面にこのような孔が観察される。 Surface pores as used herein refer to pores that are exposed to the outside and are not completely obstructed by the polymer and / or other pores, and such pores are observed on the surface of the film by a microscope.
前記孔の面積は、フィルムが水平に置かれたとき水平面における孔の投影面積を指す。前記フィルムの総面積は、フィルムが水平に置かれたとき水平面におけるフィルムの投影面積を指す。 The area of the holes refers to the projected area of the holes in the horizontal plane when the film is placed horizontally. The total area of the film refers to the projected area of the film in a horizontal plane when the film is placed horizontally.
直径が10〜1000nmの範囲内にあるサブミクロン・ナノレベルの孔径は、水蒸気の浸透を阻害しない前提下で、液体水の通過を効果的に阻害することができる。 Submicron nano-level pore diameters in the range of 10 to 1000 nm can effectively inhibit the passage of liquid water on the premise that the penetration of water vapor is not inhibited.
ガラス化転移温度とは、ポリマーの非晶相がガラス状態からゴム状態へ、または後者から前者へ変換する温度を意味し、非晶のポリマーセグメントが自由に運動できる最低温度であり、通常Tgで示す。ポリ乳酸のTgは、通常約55℃であり、結晶化度、配向度、架橋度、添加剤の種類または含有量などの中の1つか複数の因子から影響を受けることがある。結晶、配向、または架橋などの因子の存在によって、非晶のポリマーセグメントの運動を制限する作用があり、これにより、Tgが高くなることがある。可塑剤などの添加剤または共重合性モノマーの存在によって、ポリ乳酸のTgは約15℃またはこれよりも低い温度に下がることがあり、具体的な効果は、その種類または含有量に左右される。 The vitrification transition temperature means the temperature at which the amorphous phase of the polymer transforms from the glassy state to the rubbery state, or from the latter to the former, and is the lowest temperature at which the amorphous polymer segment can move freely. Show. The Tg of polylactic acid is usually about 55 ° C. and may be affected by one or more factors among crystallinity, orientation, cross-linking, additive type or content. The presence of factors such as crystals, orientation, or cross-linking has the effect of limiting the motion of the amorphous polymer segment, which can increase the Tg. Due to the presence of additives such as plasticizers or copolymerizable monomers, the Tg of polylactic acid may drop to about 15 ° C or lower, and the specific effect depends on the type or content. .
ポリマーのガラス転移温度は、体積、熱力学的特性、機械特性、電磁特性の変化を検出することによって測定することができる。一般的によく使用される手段として、示差走査熱量測定(DSC)又は動的熱機械性能分析(DMA)がある。異なる方法で測定されたガラス化温度に差異があるが、本発明における前記ガラス化温度は、以下の具体的な実施方法中の測定方法により測定される。 The glass transition temperature of a polymer can be measured by detecting changes in volume, thermodynamic properties, mechanical properties, and electromagnetic properties. Commonly used means are differential scanning calorimetry (DSC) or dynamic thermomechanical performance analysis (DMA). Although there is a difference in the vitrification temperature measured by different methods, the vitrification temperature in the present invention is measured by a measurement method in the following specific implementation methods.
フィルムはフィルム中のポリ乳酸成分のガラス転移温度以下の場合には、直径が10〜1000nmの範囲内にあるサブミクロン・ナノレベルの表面孔の孔径は、水蒸気の浸透を阻害しない前提下で、液体水の通過を効果的に阻害することができる。 When the film is below the glass transition temperature of the polylactic acid component in the film, the pore diameter of the submicron / nano-level surface pores having a diameter in the range of 10 to 1000 nm is based on the premise that the penetration of water vapor is not inhibited. The passage of liquid water can be effectively inhibited.
直径が10〜1000nmの範囲内にある表面孔の孔面積の総和を増加させることは、透湿度の向上に有利である。本発明において、このような孔の面積の総和が、前記微多孔ポリ乳酸配向フィルムの総表面積の20%以上を占めるのが好ましい。透湿度をさらに増加する視点から、本発明において、前記直径が10〜1000nmの範囲内にある表面孔の孔面積の総和が、前記フィルムの総表面積の35%以上を占めるのがより好ましく、45%以上を占めるのがさらに好ましい。前記表面孔の面積の上限は特に限定されないが、例えば70%以下であってよい。 Increasing the total pore area of the surface holes having a diameter in the range of 10 to 1000 nm is advantageous in improving moisture permeability. In the present invention, the total area of such holes preferably occupies 20% or more of the total surface area of the microporous polylactic acid oriented film. From the viewpoint of further increasing the water vapor transmission rate, in the present invention, the total pore area of the surface pores having a diameter in the range of 10 to 1000 nm preferably occupies 35% or more of the total surface area of the film, 45 More preferably, it occupies% or more. The upper limit of the surface hole area is not particularly limited, but may be, for example, 70% or less.
均一な孔径は、フィルムの機械特性、透湿性の均一性の向上に有利である。本発明では、前記直径が10〜1000nmの範囲内にある表面孔の孔径は均一であり、その孔径分布は2.0未満が好ましく、1.5未満がより好ましく、1.3未満がさらに好ましい。孔径分布の下限は特に限定されないが、例えば1.05以上であってよい。 A uniform pore size is advantageous for improving the mechanical properties and moisture permeability uniformity of the film. In the present invention, the surface pores having a diameter in the range of 10 to 1000 nm have a uniform pore size, and the pore size distribution is preferably less than 2.0, more preferably less than 1.5, and even more preferably less than 1.3. The lower limit of the pore size distribution is not particularly limited, but may be, for example, 1.05 or more.
さらに、前記微多孔ポリ乳酸配向フィルムでは、フィルムはフィルム中のポリ乳酸成分のガラス転移温度以下のとき、直径が10〜1000nmの範囲内にある内部孔をさらに有する。内部孔の存在は、フィルムの透湿率の更なる向上に有利である。 Furthermore, in the microporous polylactic acid oriented film, the film further has internal pores having a diameter in the range of 10 to 1000 nm when the temperature is equal to or lower than the glass transition temperature of the polylactic acid component in the film. The presence of the internal holes is advantageous for further improving the moisture permeability of the film.
本発明にいう内部孔は、ポリマーおよび/またはその他の孔で完全に遮られた孔を指し、フィルムの断面に顕微鏡によりこの種の孔が観察される。 An internal hole as referred to in the present invention refers to a hole that is completely blocked by polymer and / or other holes, and this type of hole is observed by a microscope in the cross section of the film.
前記内部孔については、断面積の占める割合によってこの種の孔の量を判断することができる。ダイヤモンドナイフやイオンミリングなどの手段により、フィルムの長手方向(MD)または横方向(TD)に沿って、MD-厚み方向(ZD)断面またはTD-ZD断面を作出した後、顕微鏡(電子顕微鏡や原子間力顕微鏡など)を用いてこの断面を観察し、画像処理技術により、フィルムのMD-ZD断面、或いははTD-ZD断面におけるこの種の孔の面積の総和が、当該断面積に占めるパーセンテージ(断面積占有率)を統計的に計算することができる。統計計算により、断面積を100%とし、本発明における前記直径が10〜1000nmの範囲内にある内部孔の断面積占有率は20%以上であることが好ましい。透湿度をさらに向上させる視点から、本発明において、前記直径が10〜1000nmの範囲内にある内部孔は、35%以上がより好ましく、45%以上がさらに好ましい。前記内部孔の断面積占有率の上限は特に限定されないが、例えば70%以下であってよい。フィルムの均一性向上の視点から、本発明では、前記直径が10〜1000nmの範囲内にある内部孔の孔径は均一であり、その孔径分布は2.0未満が好ましく、1.5未満がより好ましく、1.3未満がさらに好ましい。前記孔径分布の下限は特に限定されないが、例えば1.1以上であってよい。 For the internal hole, the amount of this type of hole can be determined by the ratio of the cross-sectional area. Create a MD-thickness (ZD) or TD-ZD section along the longitudinal direction (MD) or transverse direction (TD) of the film by means such as diamond knife or ion milling, and then use a microscope (such as an electron microscope or This section is observed using an atomic force microscope, etc., and the percentage of the area of this kind of hole in the MD-ZD section of the film or in the TD-ZD section of the film is accounted for by image processing technology. The (cross-sectional area occupancy) can be calculated statistically. According to statistical calculation, the cross-sectional area is set to 100%, and the cross-sectional area occupancy ratio of the internal holes having the diameter in the range of 10 to 1000 nm in the present invention is preferably 20% or more. From the viewpoint of further improving the moisture permeability, in the present invention, the internal pores having a diameter in the range of 10 to 1000 nm is more preferably 35% or more, and further preferably 45% or more. The upper limit of the cross-sectional area occupation ratio of the internal hole is not particularly limited, but may be, for example, 70% or less. From the viewpoint of improving the uniformity of the film, in the present invention, the pore diameter of the internal pores in the range of 10 to 1000 nm is uniform, and the pore diameter distribution is preferably less than 2.0, more preferably less than 1.5, and less than 1.3. Is more preferable. The lower limit of the pore size distribution is not particularly limited, but may be, for example, 1.1 or more.
本発明の微多孔ポリ乳酸配向フィルムについては、処方や製造工程の変更によって、温度感受性を付与することができる。フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃以上高い温度に1時間置かれた後、前記直径が10〜1000nmの範囲内にある表面孔の孔面積の総和は50%以上減少する。孔面積の減少は孔径の縮小によるのである。 About the microporous polylactic acid oriented film of this invention, temperature sensitivity can be provided by the change of prescription or a manufacturing process. After the film is placed at a temperature 30 ° C. or more higher than the glass transition temperature of the polylactic acid component in the film for 1 hour, the total pore area of the surface pores whose diameter is in the range of 10 to 1000 nm is reduced by 50% or more. To do. The decrease in pore area is due to the reduction in pore diameter.
さらに、フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃以上高い温度に1時間置かれた後、前記直径が10〜1000nmの範囲内にある内部孔の孔面積の総和は50%以上減少する。この面積の減少度合いは、実際の要求を満たすべく、後述の処方および延伸工程パラメータを調節することにより制御される。 Furthermore, after the film is placed at a temperature 30 ° C. or higher than the glass transition temperature of the polylactic acid component in the film for 1 hour, the total pore area of the internal pores whose diameter is in the range of 10 to 1000 nm is 50% Decrease more. This degree of area reduction is controlled by adjusting the formulation and drawing process parameters described below to meet actual requirements.
前記温度感受性を有する微多孔ポリ乳酸配向フィルムについて、フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度、若しくはそれよりも高い温度に1時間置かれた場合、直径が10〜1000nmの範囲内にある内部孔および/または表面孔の孔径および総面積の減少により、フィルムは光透過率が増加し、ヘイズが減少する傾向が出る可能性がある。ある技術案では、フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度、若しくはそれよりも高い温度に1時間置かれた後、光透過率が90%超え、ヘイズが10%未満のフィルムを得ることができる。フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度、若しくはそれよりも高い温度に1時間置かれた後、直径が10〜1000nmの範囲内にある内部孔および/または表面孔の孔径および総面積の減少により、また、フィルムは透湿度が低下する傾向が出る可能性がある。ある技術案では、フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度、若しくはそれよりも高い温度に1時間置かれた後、透湿度が40%以上低下するフィルムを得ることができる。透明度および透湿度の変化により、当該フィルムは、包装用フィルム、装飾用フィルムとして使用できる。 For the microporous polylactic acid oriented film having temperature sensitivity, when the film is placed at a temperature 30 ° C. higher than the glass transition temperature of the polylactic acid component in the film, or higher for 1 hour, the diameter is 10 to Due to the reduction in pore size and total area of internal and / or surface pores in the 1000 nm range, the film may tend to increase light transmission and decrease haze. In one technical solution, after the film is placed at a temperature 30 ° C. higher than or higher than the glass transition temperature of the polylactic acid component in the film for 1 hour, the light transmittance exceeds 90% and the haze is 10%. Less than films can be obtained. Internal and / or surface pores with a diameter in the range of 10 to 1000 nm after the film has been placed at a temperature 30 ° C. above or higher than the glass transition temperature of the polylactic acid component in the film for 1 hour Due to the decrease in the pore size and the total area of the film, the film may tend to have a reduced moisture permeability. In one technical solution, after the film is placed at a temperature 30 ° C higher than or higher than the glass transition temperature of the polylactic acid component in the film for 1 hour, a film whose moisture permeability is reduced by 40% or more is obtained. Can do. The film can be used as a packaging film or a decorative film due to changes in transparency and moisture permeability.
また、本発明の微多孔ポリ乳酸配向フィルムは、処方や製造工程の変更によって、温度感受性を有しなく、若しくは温度感受性を弱くすることができる。つまり、フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度に1時間置かれた後、前記直径が10〜1000nmの範囲内にある表面孔の孔面積の総和が、50%以下(50%を除く)減少する。 Moreover, the microporous polylactic acid oriented film of this invention does not have temperature sensitivity or can make temperature sensitivity weak by the change of prescription or a manufacturing process. That is, after the film is placed at a temperature 30 ° C. higher than the glass transition temperature of the polylactic acid component in the film for 1 hour, the total pore area of the surface holes whose diameter is in the range of 10 to 1000 nm is 50%. Decrease below (excluding 50%).
さらに、フィルムがフィルム中のポリ乳酸成分のガラス転移温度よりも30℃以上高い温度に1時間置かれた後、前記直径が10〜1000nmの範囲内にある内部孔の孔断面積の総和が、50%以下(50%を除く)減少する。 Furthermore, after the film is placed at a temperature 30 ° C. or more higher than the glass transition temperature of the polylactic acid component in the film for 1 hour, the sum of the hole cross-sectional areas of the internal holes whose diameter is in the range of 10 to 1000 nm is Reduce by 50% or less (excluding 50%).
フィルムの透湿性をさらに向上させる視点から、本発明では、前記微多孔ポリ乳酸配向フィルムには、直径が1μm超え、かつ100μm未満の範囲内にある内部孔を有することができる。上述の方法により統計することができる。統計計算した後、断面積を100%とし、本発明における前記直径が1μm超え、かつ100μm未満の範囲内にある内部孔の断面積占有率は10%以上であることが好ましい。前記断面積占有率の下限は特に限定されないが、例えば30%以下であってよい。 From the viewpoint of further improving the moisture permeability of the film, in the present invention, the microporous polylactic acid oriented film can have internal pores having a diameter of more than 1 μm and less than 100 μm. Statistics can be made by the method described above. After statistical calculation, the cross-sectional area is set to 100%, and the cross-sectional area occupation ratio of the internal holes in the present invention in which the diameter is in the range exceeding 1 μm and less than 100 μm is preferably 10% or more. The lower limit of the cross-sectional area occupancy is not particularly limited, but may be, for example, 30% or less.
前記微多孔ポリ乳酸配向フィルムは、以下の重量部数の成分を含み、ポリ乳酸樹脂A:40〜99.9重量部、好ましくは40〜99重量部、親水性有機化合物B:0.1〜60重量部、好ましくは1〜60重量部;前記親水性有機化合物Bは、水に溶解または膨潤可能な有機化合物から選ばれる1種類または数種類である。 The microporous polylactic acid oriented film comprises the following parts by weight of polylactic acid resin A: 40 to 99.9 parts by weight, preferably 40 to 99 parts by weight, hydrophilic organic compound B: 0.1 to 60 parts by weight , preferably 1 to 60 parts by weight ; the hydrophilic organic compound B is one or several kinds selected from organic compounds that can be dissolved or swollen in water.
構造の視点から、前記ポリ乳酸樹脂Aは、いずれのポリ乳酸樹脂であってもよく、さらに、ポリ乳酸(ポリラクチド)、または乳酸と他の化学構造との共重合体中の1種類または数種類であってもよい。 From the viewpoint of structure, the polylactic acid resin A may be any polylactic acid resin, and further, polylactic acid (polylactide), or one or several kinds of copolymers of lactic acid and other chemical structures. There may be.
ポリ乳酸の分子構造は、好ましくはL-乳酸またはD-乳酸80〜100mol%とそれぞれのエナンチオマー0-20mol%からなる分子構造である。上述のポリ乳酸樹脂は、L-乳酸またはD-乳酸の中の1種または2種を原料とし、脱水重縮合して得られる。好ましくは、乳酸の環状二量体であるラクチドを、開環重合して得られる。ラクチドには、L-乳酸の環状二量体であるL-ラクチド、D-乳酸の環状二量体であるD-ラクチド、D-ラクチドとL-ラクチドとを環状二量体化して得られたメソラクチド、およびD-ラクチドとL-ラクチドとのラセミ混合物であるDLラクチドがある。本発明は、いずれのラクチドを使用してもよい。ただし、主原料としては、D-ラクチドまたはL-ラクチドが好ましい。 The molecular structure of polylactic acid is preferably a molecular structure composed of L-lactic acid or D-lactic acid of 80 to 100 mol% and each enantiomer of 0 to 20 mol%. The above-mentioned polylactic acid resin is obtained by dehydration polycondensation using one or two of L-lactic acid or D-lactic acid as a raw material. Preferably, it is obtained by ring-opening polymerization of lactide, which is a cyclic dimer of lactic acid. Lactide was obtained by cyclic dimerization of L-lactide, a cyclic dimer of L-lactic acid, D-lactide, a cyclic dimer of D-lactic acid, and D-lactide and L-lactide. There is meso-lactide and DL-lactide, which is a racemic mixture of D-lactide and L-lactide. Any lactide may be used in the present invention. However, as the main raw material, D-lactide or L-lactide is preferable.
前記乳酸と他の化学構造との共重合体は、乳酸と任意の化学構造単位とからなるランダム共重合体、ブロック共重合体またはグラフト共重合体中の1種類または数種類を指す。そのうち、乳酸単位の鎖長は、特に限定されないが、微多孔フィルムの機械性能向上の視点から、乳酸の鎖長が1〜20万重量平均分子量であることが好ましい。前記乳酸と他の化学構造との共重合体として、生分解性向上および環境に優しい視点から、乳酸と、ヒドロキシカルボン酸類、グリコールまたはポリオール類、ジカルボン酸または多価カルボン酸類との共重合体が好ましい。 The copolymer of lactic acid and other chemical structures refers to one or several kinds of random copolymers, block copolymers, or graft copolymers composed of lactic acid and arbitrary chemical structural units. Among them, the chain length of the lactic acid unit is not particularly limited, but from the viewpoint of improving the mechanical performance of the microporous film, the chain length of lactic acid is preferably 1 to 200,000 weight average molecular weight. As a copolymer of lactic acid and other chemical structure, from the viewpoint of improving biodegradability and environmentally friendly, a copolymer of lactic acid and hydroxycarboxylic acids, glycol or polyols, dicarboxylic acid or polyvalent carboxylic acids is preferable.
結晶化特性から、前記ポリ乳酸樹脂Aは、結晶性ポリ乳酸樹脂でも、非晶性ポリ乳酸樹脂でも、結晶性ポリ乳酸樹脂と非晶性ポリ乳酸樹脂の混合物でもよい。成形性向上の視点から、非晶性ポリ乳酸樹脂、または結晶性ポリ乳酸樹脂と非晶性ポリ乳酸樹脂との混合物が好ましい。結晶性ポリ乳酸樹脂と非晶性ポリ乳酸樹脂との混合物について、成形性向上の視点から、非晶性ポリ乳酸樹脂が混合物全量の30%以上を占めるのが好ましく、50%以上がより好ましい。 From the viewpoint of crystallization characteristics, the polylactic acid resin A may be a crystalline polylactic acid resin, an amorphous polylactic acid resin, or a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. From the viewpoint of improving moldability, an amorphous polylactic acid resin or a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin is preferred. With respect to the mixture of the crystalline polylactic acid resin and the amorphous polylactic acid resin, from the viewpoint of improving moldability, the amorphous polylactic acid resin preferably accounts for 30% or more of the total amount of the mixture, and more preferably 50% or more.
フィルム中の結晶性ポリ乳酸樹脂と非晶質ポリ乳酸樹脂の割合を判定するには、様々な方法がある。一つの方法として、示差走査熱量測定(DSC)が挙げられる。フィルムの試料の成分を分離し、ポリ乳酸成分を分離した後、DSC測定を行い、融解エンタルピーを計算することにより、結晶性ポリ乳酸樹脂と非晶性ポリ乳酸樹脂の割合を判定することができる。 There are various methods for determining the ratio of the crystalline polylactic acid resin and the amorphous polylactic acid resin in the film. One method is differential scanning calorimetry (DSC). After separating the components of the film sample and separating the polylactic acid component, the ratio of crystalline polylactic acid resin to amorphous polylactic acid resin can be determined by performing DSC measurement and calculating the melting enthalpy .
ポリ乳酸系樹脂Aの分子量について、特に限定されないが、成形加工性および力学性能向上の視点から、重量平均分子量が5万〜50万であるのが好ましく、8万〜30万であるのがより好ましい。 The molecular weight of the polylactic acid resin A is not particularly limited, but from the viewpoint of improving moldability and mechanical performance, the weight average molecular weight is preferably 50,000 to 500,000, more preferably 80,000 to 300,000. preferable.
上述する水に溶解可能な有機化合物とは、4〜100℃中のある温度で、当該有機化合物は、水100gに1g以上溶解できることを意味する。 The above-mentioned organic compound that can be dissolved in water means that the organic compound can be dissolved in 1 g or more in 100 g of water at a certain temperature in 4 to 100 ° C.
水に膨潤可能な有機化合物とは、4〜100℃中のある温度で、1gの当該有機化合物は、水100gに体積が10%以上膨張できることを意味する。 An organic compound that can swell in water means that 1 g of the organic compound can swell by 10% or more in 100 g of water at a temperature of 4 to 100 ° C.
前記親水性有機化合物Bは、低分子量有機化合物でも、高分子量有機化合物でも、及び/又はポリマーでもよい。 The hydrophilic organic compound B may be a low molecular weight organic compound, a high molecular weight organic compound, and / or a polymer.
具体的には、前記親水性有機化合物Bは、エチレングリコール、ジエチレングリコール、グリセロールまたはプロピレングリコールなどのアルコール類小分子化合物、コハク酸または乳酸などのカルボン酸系小分子化合物、ラクチド、カプロラクトン、乳酸エステル、クエン酸エステル、グリセロールエステルまたはイソソルビドなどのエステル系小分子化合物、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコールコポリマーなどのポリエテール重合体、または、ポリエーテル-ポリオレフィン共重合体、ポリエーテル-ポリエステルコポリマー、ポリエーテル系ポリウレタン、ポリビニルアルコール、ポリエチレンイミン、ポリビニルピロリドン、ポリアクリルアミド、ポリマレイン酸、ジアリルアミンポリマーの4級アンモニウム塩、ポリアスパラギン酸、ポリエポキシコハク酸、カルボキシメチルイヌリン、デンプンまたはその誘導体、セルロースエーテル、キチン、キサンタンガム、または植物ガムの中から選ばれる1種類または数種類であってよい。 Specifically, the hydrophilic organic compound B is an alcohol small molecule compound such as ethylene glycol, diethylene glycol, glycerol or propylene glycol, a carboxylic acid small molecule compound such as succinic acid or lactic acid, lactide, caprolactone, lactate ester, Ester-based small molecule compounds such as citrate ester, glycerol ester or isosorbide, polyether polymer such as polyethylene glycol, polyethylene oxide, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, or polyether-polyolefin copolymer, polyether- Polyester copolymer, polyether polyurethane, polyvinyl alcohol, polyethyleneimine, polyvinylpyrrolidone, polyacrylic One or several types selected from amide, polymaleic acid, quaternary ammonium salt of diallylamine polymer, polyaspartic acid, polyepoxysuccinic acid, carboxymethylinulin, starch or derivatives thereof, cellulose ether, chitin, xanthan gum, or vegetable gum It may be.
原料の入手容易性の視点から、前記親水性有機化合物Bは、エチレングリコール、グリセロール、コハク酸、乳酸、ラクチド、乳酸エステル、クエン酸トリブチル、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル、グリセリルトリアセテート、イソソルビド、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコールコポリマー、ポリエチレングリコール-ポリ乳酸共重合体、ポリプロピレングリコール-ポリ乳酸共重合体、ポリエチレングリコール-ポリプロピレングリコール-ポリ乳酸共重合体、ポリビニルアルコール、ポリエチレンイミン、ポリビニルピロリドン、デンプン、ポリマレイン酸、またはポリアスパラギン酸の中から選ばれる1種類または数種類であってよい。 From the viewpoint of easy availability of raw materials, the hydrophilic organic compound B is ethylene glycol, glycerol, succinic acid, lactic acid, lactide, lactic acid ester, tributyl citrate, triethyl citrate, acetyl triethyl citrate, acetyl tributyl citrate, Glyceryl triacetate, isosorbide, polyethylene glycol, polyethylene oxide, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer, polyethylene glycol-polylactic acid copolymer, polypropylene glycol-polylactic acid copolymer, polyethylene glycol-polypropylene glycol-polylactic acid copolymer , Polyvinyl alcohol, polyethyleneimine, polyvinylpyrrolidone, starch, polymaleic acid, or polyaspartic acid May be one or several are.
直径が10〜1000nmの範囲内にある表面孔および/または内部孔の量および孔径均一性向上の視点から、ポリ乳酸Aに対し良い相溶性を有する親水性有機化合物Bがさらに好ましい。具体的には、エチレングリコール、グリセロール、コハク酸、乳酸、ラクチド、乳酸エステル、クエン酸トリブチル、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルトリブチルシトレート、グリセリルトリアセテート、イソソルビド、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコールコポリマー、ポリエチレングリコール-ポリ乳酸共重合体、ポリプロピレングリコール-ポリ乳酸共重合体、またはポリエチレングリコール-ポリプロピレングリコール-ポリ乳酸共重合体中の1種類または数種類であってよい。 From the viewpoint of improving the amount of surface pores and / or internal pores having a diameter in the range of 10 to 1000 nm and improving pore size uniformity, a hydrophilic organic compound B having good compatibility with polylactic acid A is more preferred. Specifically, ethylene glycol, glycerol, succinic acid, lactic acid, lactide, lactic acid ester, tributyl citrate, triethyl citrate, triethyl citrate, acetyl tributyl citrate, glyceryl triacetate, isosorbide, polyethylene glycol, polyethylene oxide, polypropylene It may be one or several of glycol, polyethylene glycol-polypropylene glycol copolymer, polyethylene glycol-polylactic acid copolymer, polypropylene glycol-polylactic acid copolymer, or polyethylene glycol-polypropylene glycol-polylactic acid copolymer.
本発明では、前記親水性有機化合物Bの分子量に対し、特別な要求がなく、フィルムの機械性能の視点から、数平均分子量が、10万未満であることが好ましく、数平均分子量が、5万未満であることがさらに好ましい。数平均分子量の下限は、特に限定されないが、例えば、55以上であってよい。 In the present invention, there is no special requirement for the molecular weight of the hydrophilic organic compound B, and from the viewpoint of the mechanical performance of the film, the number average molecular weight is preferably less than 100,000, and the number average molecular weight is 50,000. More preferably, it is less than. The lower limit of the number average molecular weight is not particularly limited, but may be 55 or more, for example.
前記フィルムは、直径が1μm 超え、かつ100μm未満の範囲内にある内部孔をさらに有する場合には、フィルムの透湿性をさらに向上することができる。発明者は、前記微多孔ポリ乳酸配向フィルムには、ポリ乳酸樹脂Aおよび親水性有機化合物Bを100重量部で計算すると、400重量部以内の非相溶の疎水性成分Cをさらに含有する場合、フィルムには、直径が1μm超え、かつ100μm未満の範囲内にある内部孔を形成できることを見出した。前記非相溶の疎水性成分Cは、前記親水性有機化合物Bを除いた、40〜100℃においてポリ乳酸と多相構造を形成できる物質から選ばれる1種類または数種類である。前記40〜100℃においてポリ乳酸と多相構造を形成できるとは、40〜100℃の温度範囲内の任意の温度でポリ乳酸と多相構造を形成できることを意味する。 When the film further has an internal hole whose diameter is in the range of more than 1 μm and less than 100 μm, the moisture permeability of the film can be further improved. When the inventor further calculates the polylactic acid resin A and the hydrophilic organic compound B in 100 parts by weight based on the microporous polylactic acid oriented film, the incompatible hydrophobic component C is contained within 400 parts by weight. It has been found that the film can be formed with internal pores having a diameter in the range of more than 1 μm and less than 100 μm. The incompatible hydrophobic component C is one or several types selected from substances that can form a multiphase structure with polylactic acid at 40 to 100 ° C. excluding the hydrophilic organic compound B. The phrase “a polyphase structure can be formed with polylactic acid at 40 to 100 ° C.” means that a polyphase structure can be formed with polylactic acid at an arbitrary temperature within a temperature range of 40 to 100 ° C.
多相構造とは、高分子関連分野で通用する用語であり、一定の温度で、ポリマーとポリマー、ポリマーと小分子化合物、またはポリマーと無機物との間に二相系または多相系が存在することを言う。多相構造は、光学顕微鏡、電子顕微鏡、原子間力顕微鏡などの顕微観察方法によって直接に判断することもできるし、示差走査熱量測定器、動的機械特性分析器などの間接的な方法によって判断することもできる。 A multiphase structure is a term commonly used in the field of polymer, and there is a two-phase or multiphase system between a polymer and a polymer, a polymer and a small molecule compound, or a polymer and an inorganic substance at a certain temperature. Say that. The multiphase structure can be judged directly by a microscopic observation method such as an optical microscope, an electron microscope, an atomic force microscope, or an indirect method such as a differential scanning calorimeter or a dynamic mechanical property analyzer. You can also
前記非相溶の疎水性成分Cは、有機物でも、無機物でも、または有機物と無機物との混合物でもよい。具体的には、前記非相溶の疎水性成分Cは、前記親水性有機化合物Bを除いた、炭素数が100未満のアルカン、アルケン、芳香族などの小分子化合物、ポリオレフィン、ポリウレタン、ポリ乳酸を除いたポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリチオエーテル、ポリエーテル、含フッ素ポリマー、不飽和樹脂、エポキシ樹脂、アクリル樹脂、またはポリスチレンなどのポリマー、木粉、セルロース、サイザル麻繊維、または竹繊維などの植物繊維、羊毛繊維などの動物繊維、芳香族ポリアミド繊維、芳香族ポリエステル繊維などの有機合成繊維、ガラス繊維、アスベスト繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウィスカー、シリコン系ウィスカー、ウォラストナイト、セピオライト、アスベスト、スラグ繊維、ゾノトライト、シリコンアパタイト、石膏繊維、シリカ繊維、シリカ/アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維またはボロン繊維、ガラスフレーク、非膨潤性雲母、膨潤性雲母、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、バーミキュライト、モンモリロナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、微小中空ガラス球、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、二酸化チタン、ベーマイトアルミナ、シリカ、石膏、ノバキュライト、ドーソナイトまたは白土などの無機物などの物質から一種類または数種類選ばれる。 The incompatible hydrophobic component C may be organic, inorganic, or a mixture of organic and inorganic. Specifically, the incompatible hydrophobic component C is a small molecule compound such as alkane, alkene, aromatic, etc. having less than 100 carbon atoms excluding the hydrophilic organic compound B, polyolefin, polyurethane, polylactic acid. Polyester, polyamide, polyimide, polycarbonate, polythioether, polyether, fluorine-containing polymer, unsaturated resin, epoxy resin, acrylic resin, or polystyrene, wood flour, cellulose, sisal fiber, bamboo fiber, etc. Plant fiber, animal fiber such as wool fiber, organic synthetic fiber such as aromatic polyamide fiber, aromatic polyester fiber, glass fiber, asbestos fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker , Magnesium whisker, silicon Whisker, wollastonite, sepiolite, asbestos, slag fiber, zonotlite, silicon apatite, gypsum fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber or boron fiber, glass flake, non-swelling mica Swellable mica, graphite, metal foil, ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, vermiculite, montmorillonite, dolomite, kaolin, fine silicic acid, feldspar powder, potassium titanate, fine hollow glass sphere, One kind or several kinds are selected from substances such as calcium carbonate, magnesium carbonate, calcium sulfate, titanium dioxide, boehmite alumina, silica, gypsum, novaculite, dawsonite or clay.
前記非相溶の疎水性成分Cは、ポリ乳酸樹脂との界面接着性を向上するため、任意の界面変性、界面相溶化を行ってもよい。 The incompatible hydrophobic component C may be subjected to arbitrary interfacial modification and interfacial compatibilization in order to improve interfacial adhesion with the polylactic acid resin.
材料の生分解性を維持、向上させる視点から、前記非相溶の疎水性成分Cは、生分解性ポリマーまたは無機フィラーであるのが好ましい。 From the viewpoint of maintaining and improving the biodegradability of the material, the incompatible hydrophobic component C is preferably a biodegradable polymer or an inorganic filler.
前記非相溶の疎水性成分Cは、ポリヒドロキシブチレート、ポリ(ヒドロキシ酪酸-co-ヒドロキシ吉草酸)、ヒドロキシブチレート−coヒドロキシヘキサノエート重合体、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリプロピレンアジペートテレフタレート、ポリブチレンサクシネートテレフタレート、ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリシクロヘキセンカーボネート、炭酸カルシウム、タルク、マイカ、ゼオライト、バーミキュライト、二酸化チタン、シリカ、硫酸カルシウムまたはモンモリロナイト中の一種類または数種類であるのがさらに好ましい。 The incompatible hydrophobic component C includes polyhydroxybutyrate, poly (hydroxybutyrate-co-hydroxyvalerate), hydroxybutyrate-cohydroxyhexanoate polymer, polybutylene succinate, polybutylene succinate adipate In polycaprolactone, polybutylene adipate terephthalate, polypropylene adipate terephthalate, polybutylene succinate terephthalate, polyethylene carbonate, polypropylene carbonate, polycyclohexene carbonate, calcium carbonate, talc, mica, zeolite, vermiculite, titanium dioxide, silica, calcium sulfate or montmorillonite More preferably, it is one kind or several kinds.
本発明の微多孔ポリ乳酸配向フィルムには、本発明の目的達成を損なわない範囲で、可塑剤、相溶化剤、端末封止剤、難燃剤、核剤、酸化防止剤、潤滑剤、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、防カビ剤、抗菌剤、発泡剤などの添加剤中の1種類または数種類を添加することができる。前記親水性有機化合物Bおよび非相溶の疎水性成分C中の一部も、可塑剤、核剤、充填剤、潤滑剤、顔料または染料などの添加剤として使用することができる。 In the microporous polylactic acid oriented film of the present invention, a plasticizer, a compatibilizing agent, a terminal sealant, a flame retardant, a nucleating agent, an antioxidant, a lubricant, and an antistatic agent are used as long as the object of the present invention is not impaired. One or several kinds of additives such as an agent, an antifogging agent, a light stabilizer, an ultraviolet absorber, a pigment, an antifungal agent, an antibacterial agent and a foaming agent can be added. Some of the hydrophilic organic compound B and the incompatible hydrophobic component C can also be used as additives such as plasticizers, nucleating agents, fillers, lubricants, pigments or dyes.
前記微多孔ポリ乳酸配向フィルムは、良好な親水性を有し、25℃の水に10min浸漬すると、当該フィルムの含水量は、フィルムの総質量の1〜50%となる。 The microporous polylactic acid oriented film has good hydrophilicity, and when immersed in water at 25 ° C. for 10 minutes, the water content of the film becomes 1 to 50% of the total mass of the film.
前記微多孔ポリ乳酸配向フィルムにおいて、ポリ乳酸樹脂の重量平均分子量は5〜50万であり、実用的な機械特性を満足するために、8〜40万であるのが好ましく、10〜30万であるのがより好ましい。 In the microporous polylactic acid oriented film, the polylactic acid resin has a weight average molecular weight of 50,000 to 500,000, preferably 80,000 to 400,000 in order to satisfy practical mechanical properties, More preferably.
本発明は、親水性有機化合物の親水性を利用し、好ましくは、以下の方法により前記微多孔ポリ乳酸配向フィルムを製造する。 The present invention utilizes the hydrophilicity of the hydrophilic organic compound, and preferably produces the microporous polylactic acid oriented film by the following method.
第1工程:各原料を押出し、密閉型若しくは開放型ローラー式混合などの方法により混合する。 First step: Each raw material is extruded and mixed by a method such as closed type or open type roller type mixing.
第2工程:第1工程で得られた混合物を、キャスト、インフレーション、圧延、プレス成形、押出、キャスティング成形により未配向フィルムを得る。 Second step: An unoriented film is obtained from the mixture obtained in the first step by casting, inflation, rolling, press molding, extrusion, and casting.
第3工程:以下のいずれかの方法により配向フィルムを作製する: Third step: An oriented film is produced by any of the following methods:
方法一
前記配向フィルムは、未配向フィルムを水蒸気で加熱すると同時に、一軸または二軸延伸して作製される。
Method 1 The oriented film is produced by uniaxially or biaxially stretching an unoriented film with water vapor at the same time.
方法二
前記配向フィルムは、未配向フィルムを液体で加熱すると同時に、一軸または二軸延伸して作製される。前記液体は、水、または、混合液体を100重量部で計算すると含水量が10重量部よりも大きい混合液体から選ばれる。前記混合液体として、水、エタノール、エチレングリコールまたはグリセロール中の1種または多種の混合液(水含量が10%よりも大きい)が挙げられるが、これらに限定されない。コスト、グリーン化・環境にやさしい視点から、水が好ましい。水質や水の清浄度に対し、特別な要求がないが、製品品質の視点から、水道水、脱イオン水、または蒸留水などの、比較的純粋な水が好ましい。
Method 2 The oriented film is produced by uniaxially or biaxially stretching simultaneously with heating the unoriented film with a liquid. The liquid is selected from water or a mixed liquid having a water content greater than 10 parts by weight when the mixed liquid is calculated by 100 parts by weight. Examples of the liquid mixture include, but are not limited to, one or more liquid mixtures (water content greater than 10%) in water, ethanol, ethylene glycol, or glycerol. Water is preferable from the viewpoint of cost, greening and environmental friendliness. Although there is no special requirement for water quality and cleanliness, relatively pure water such as tap water, deionized water, or distilled water is preferable from the viewpoint of product quality.
方法三
配向フィルムは、未配向フィルムを液体に浸漬した後取り出し、熱空気で加熱すると同時に、一軸または二軸延伸して作製される。前記液体は、水、または、混合液体を100重量部で計算すると含水量が10重量部よりも大きい混合液体から選ばれる。前記混合液体として、水、エタノール、エチレングリコールまたはグリセロール中の一種類または数種類の混合液(水含量が10%よりも大きい)が挙げられるが、これらに限定されない。コスト、グリーン化・環境にやさしい視点から、水が好ましい。水質や水の清浄度に対し、特別な要求はないが、製品品質の視点から、水道水、脱イオン水、または蒸留水などの、比較的純粋な水が好ましい。浸漬時間に対し、特別な要求がないが、液体の温度が低い場合、比較的長い浸漬時間を選択することができ、液体の温度が高い場合、ポリ乳酸の加水分解を防ぐため比較的短い浸漬時間を選択することができ、普通は、4s〜10hである。
Method 3 An oriented film is produced by immersing an unoriented film after immersing it in a liquid, heating it with hot air, and simultaneously uniaxially or biaxially stretching it. The liquid is selected from water or a mixed liquid having a water content greater than 10 parts by weight when the mixed liquid is calculated by 100 parts by weight. Examples of the mixed liquid include, but are not limited to, one or several mixed liquids (water content is greater than 10%) in water, ethanol, ethylene glycol, or glycerol. Water is preferable from the viewpoint of cost, greening and environmental friendliness. Although there is no special requirement for water quality or cleanliness, relatively pure water such as tap water, deionized water, or distilled water is preferable from the viewpoint of product quality. There is no special requirement for immersion time, but if the temperature of the liquid is low, a relatively long immersion time can be selected, and if the temperature of the liquid is high, a relatively short immersion to prevent hydrolysis of polylactic acid Time can be selected, usually 4s-10h.
上述の三つの方法において、前記未延伸フィルムは延伸される前に、含水量に対し、特別な要求はない。一方、実験では、含水量が総質量の0.1〜30%であるとき、前記微多孔構造の均一性に有利であることが示されている。 In the above three methods, the unstretched film has no special requirement for water content before it is stretched. On the other hand, experiments have shown that when the water content is 0.1-30% of the total mass, it is advantageous for the uniformity of the microporous structure.
上述の三つの方法において、前記延伸の温度は40〜100℃である、加工安定性向上の視点から、延伸温度は60〜97℃であることが好ましい。 In the above-mentioned three methods, the stretching temperature is 40 to 100 ° C. From the viewpoint of improving processing stability, the stretching temperature is preferably 60 to 97 ° C.
処方および延伸倍率などの延伸工程パラメータを調節することにより、表面(および内部)孔の孔径を制御することができ、前記直径が10〜1000nmの範囲内にある孔の孔径の数量平均値は、通常100〜800nm(10nm単位の精度で)である。延伸倍率が大きいほど、孔径が大きい。 By adjusting drawing process parameters such as formulation and draw ratio, the hole diameter of the surface (and internal) holes can be controlled, and the number average value of the hole diameters of the holes in the range of 10 to 1000 nm is: Usually 100 to 800 nm (with an accuracy of 10 nm unit). The larger the draw ratio, the larger the pore size.
上記の方法に加えて、ヒートセットなどの汎用の製膜工程を追加することにより、前記微多孔ポリ乳酸配向フィルムを作製することができる。 In addition to the above method, the microporous polylactic acid oriented film can be produced by adding a general-purpose film forming process such as heat setting.
さらに、第4工程を追加することにより、温度感受性を有しないか温度感受性の低い微多孔ポリ乳酸配向フィルムを作製することができる。 Furthermore, by adding the fourth step, a microporous polylactic acid oriented film having no temperature sensitivity or low temperature sensitivity can be produced.
第4工程:配向フィルムに後処理を行い、前記後処理は、次の方法中のいずれか一種類または数種類であってよいが、これらに限定されない。 Fourth step: Post-treatment is performed on the oriented film, and the post-treatment may be any one or several of the following methods, but is not limited thereto.
方法一: 液体で配向フィルムを浸漬し、使用される液体は、水、または、混合液体を100重量部で計算すると含水量が10重量部よりも大きい混合液体から選ばれ、液体の温度は、40〜99℃から選ばれ、60〜90℃であることが好ましく、後処理時間は、1s〜180minであり、2s〜120minであることが好ましい。 Method 1: The oriented film is immersed in a liquid, and the liquid used is selected from water or a mixed liquid having a water content greater than 10 parts by weight when the mixed liquid is calculated in 100 parts by weight. It is selected from 40 to 99 ° C, preferably 60 to 90 ° C, and the post-treatment time is 1 s to 180 min, and preferably 2 s to 120 min.
方法二: フィルムの表面に、高耐熱性の材料を塗布し、溶液または懸濁、分散した耐熱性材料をフィルムの孔の表面に塗布する。
前記塗布材料は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂中のいずれか一種類または数種類である。
塗布方法は、浸漬、ロール塗布、スプレー塗布中のいずれか一種類または数種類である。
Method 2: A highly heat-resistant material is applied to the surface of the film, and a solution, suspension, or dispersed heat-resistant material is applied to the surface of the film holes.
The coating material is one kind or several kinds of epoxy resin, urethane resin, and acrylic resin.
The application method is any one type or several types during dipping, roll coating, and spray coating.
方法三: フィルムの表面に、フィルムをコーティングする。
前記コーティング材料は、金、白金、アルミニウム、銀、ニッケル、モリブデン、銅、錫、ニオブ、亜鉛、タングステン、チタン、クロム、ジルコニウム、シリコン、グラファイト、酸化アルミニウム、酸化インジウム、酸化チタン、酸化マグネシウム、酸化カルシウム、三酸化アンチモン、酸化ビスマス、酸化ガドリニウム、酸化タングステン、チタニア、シリカ、セリア、イットリア、五酸化ニオブ、酸化スカンジウム、二酸化ジルコニウム、五酸化タンタル、酸化亜鉛、二酸化ケイ素、フッ素化タングステン、フッ化バリウム、フッ化鉛、フッ化セリウム、フッ化ランタン、窒化アルミニウム、窒化チタン、窒化ケイ素中の一種類または数種類である。
Method 3: The film is coated on the surface of the film.
The coating material is gold, platinum, aluminum, silver, nickel, molybdenum, copper, tin, niobium, zinc, tungsten, titanium, chromium, zirconium, silicon, graphite, aluminum oxide, indium oxide, titanium oxide, magnesium oxide, oxidation Calcium, antimony trioxide, bismuth oxide, gadolinium oxide, tungsten oxide, titania, silica, ceria, yttria, niobium pentoxide, scandium oxide, zirconium dioxide, tantalum pentoxide, zinc oxide, silicon dioxide, tungsten fluoride, barium fluoride , Lead fluoride, cerium fluoride, lanthanum fluoride, aluminum nitride, titanium nitride, or silicon nitride.
コーティング方法は、真空スパッタリング、真空イオンプレーティング、イオンビーム蒸着、イオンビーム支援蒸着、光学コーティング、化学的気相法、真空蒸着中の一種類または数種類である。 The coating method may be one or several types during vacuum sputtering, vacuum ion plating, ion beam deposition, ion beam assisted deposition, optical coating, chemical vapor deposition, and vacuum deposition.
方法四: フィルムの作製工程において架橋剤を添加し、本工程で架橋する。
前記架橋剤は、多官能ポリエステルアクリレート、イソシアヌル酸トリアリル、エポキシ-アクリレート、ポリエーテルアクリレート、多官能性アルコールまたはエチレングリコールアクリレート、ウレタンアクリレート、エポキシ-カチオン、ベンゾフェノン、アジリジン、アミン類、チオキサントン中の一種類または数種類を指す。
Method 4: A cross-linking agent is added in the film production step, and cross-linking is performed in this step.
The crosslinking agent is one of polyfunctional polyester acrylate, triallyl isocyanurate, epoxy-acrylate, polyether acrylate, polyfunctional alcohol or ethylene glycol acrylate, urethane acrylate, epoxy-cation, benzophenone, aziridine, amines, thioxanthone Or several types.
架橋方法は、ガンマ線照射架橋、電子線照射架橋、マイクロ波放射線架橋、紫外線架橋中の一種類または数種類である。 There are one or several types of crosslinking methods in gamma ray irradiation crosslinking, electron beam irradiation crosslinking, microwave radiation crosslinking, and ultraviolet crosslinking.
本発明の利点は、緻密で均質な、温度応答性などの特徴を有するナノレベルの微孔を持つ微多孔配向フィルムを製造することができ、かつ、加工方法は、簡単、迅速であり、毒性及び有害な溶媒を使用する必要がなく、グリーン化であり環境にやさしいことにある。当該微多孔配向フィルムは、ヘルスケア、医療、建築、水処理、農業、エレクトロニクス、包装および装飾など様々な分野に応用できる。 Advantages of the present invention are that a microporous oriented film having nano-level micropores having dense and homogeneous characteristics such as temperature responsiveness can be manufactured, and the processing method is simple, rapid, and toxic. In addition, there is no need to use harmful solvents, and it is green and environmentally friendly. The microporous oriented film can be applied to various fields such as healthcare, medical care, architecture, water treatment, agriculture, electronics, packaging and decoration.
以下の実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。 The present invention will be described in more detail by the following examples, but the present invention is not limited to the examples.
実施例と比較例で使用されるテスト方法は、以下の通りであり、すべてのテストについて、テストの温度について明確な説明がなければ、25℃においてテストする;
厚さ:三洋社製7050膜厚計により測定し、9つのデータの平均値をとる。
重量平均分子量および数平均分子量:ゲル浸透クロマトグラフィーにより測定し、移動相としてテトラヒドロフランを使用し、3回測定し、平均値をとる。
ポリ乳酸成分のガラス転移温度(Tg):示差走査熱量計(DSC)を使用し、10℃/minの昇温速度で、フィルムの第1回の昇温曲線から得られる。
The test methods used in the examples and comparative examples are as follows, and all tests are tested at 25 ° C. unless there is a clear description of the test temperature;
Thickness: Measured with a Sanyo 7050 film thickness meter and the average of nine data.
Weight average molecular weight and number average molecular weight: Measured by gel permeation chromatography, using tetrahydrofuran as the mobile phase, measured three times, and averaged.
Glass transition temperature (Tg) of polylactic acid component: It can be obtained from the first heating curve of the film using a differential scanning calorimeter (DSC) at a heating rate of 10 ° C./min.
透湿度:JIS Z0208:1976に準拠し、湿度が90%。 3回測定し、平均値をとる。
透明性:光線透過率およびヘイズは、GB/ T2410-2008に準拠し、光電ヘーズメーターを用いて測定する。
含水量:試料を、25℃で24h真空乾燥した後、重量m1を測り、水に10min浸漬し、取り出した後、表面の水を拭き取り、重量m2を測り、式(1)にしたがって含水量を計算する。
Moisture permeability: JIS Z0208: conforms to 1976, humidity is 90%. Measure three times and take the average value.
Transparency: Light transmittance and haze are measured using a photoelectric haze meter according to GB / T2410-2008.
Moisture content: After the sample was 24h vacuum dried at 25 ° C., weighed m 1, and 10min immersed in water, after taking out, wipe the surface water, weighed m 2, containing according to equation (1) Calculate the amount of water.
<表面構造測定>
表面構造観察は、25℃で行う。
孔径d:フィルム表面を走査型電子顕微鏡(SEM)にて観察し、10000倍の拡大倍率で異なる位置において写真を5枚ランダムに撮影し、ペンで孔の輪郭を描いた後、画像処理ソフトImageJ1.46rを用いて、各表面孔の面積Sを計算し、さらに、式(2)にしたがい、各孔の孔径d(すなわち孔の面積と等しい面積を有する円の直径)を計算する。
<Surface structure measurement>
The surface structure is observed at 25 ° C.
Hole diameter d: Observe the surface of the film with a scanning electron microscope (SEM), take five photos at different positions at a magnification of 10,000 times, draw the outline of the hole with a pen, and then use the image processing software ImageJ1 .46r is used to calculate the area S of each surface hole, and further according to equation (2), the hole diameter d of each hole (ie, the diameter of a circle having an area equal to the area of the hole).
平均孔径(ナノレベルの孔)dn:式(3)にしたがって、直径が10〜1000nmの範囲内にある孔の孔径平均値を計算する。 Average pore diameter (nano-level pore) d n : The average pore diameter of pores having a diameter in the range of 10 to 1000 nm is calculated according to the formula (3).
ここで、Σdは直径が10〜1000nmの範囲内にある孔の孔径dの和であり、nは計算される直径が10〜1000nmの範囲内にある孔の個数である。
孔径分布(ナノレベルの孔)SD:まず式(4-1)にしたがって体積平均孔径dvを計算し、その後、式(4-2)にしたがって孔径分布SDを計算する。
Here, Σd is the sum of the hole diameters d of holes having a diameter in the range of 10 to 1000 nm, and n is the number of holes having a calculated diameter in the range of 10 to 1000 nm.
Pore size distribution (nano-level pores) SD: First, the volume average pore size d v is calculated according to equation (4-1), and then the pore size distribution SD is calculated according to equation (4-2).
ここで、Σd4は孔径が10〜1000nmの範囲内にある孔の孔径dの4乗の和であり、Σd3は孔径が10〜1000nmの範囲内にある孔の孔径dの3乗の和である。
面積比(ナノレベルの孔)S%:直径が10〜1000nmの範囲内にある表面孔の面積が、総表面積に占めるパーセンテージ。式(5)にしたがって計算する。
Here, Σd 4 is the sum of the fourth power of the hole diameter d of a hole having a hole diameter in the range of 10 to 1000 nm, and Σd 3 is the sum of the third power of the hole diameter d of a hole having a hole diameter in the range of 10 to 1000 nm. It is.
Area ratio (nano-level pores) S%: Percentage of the total surface area by the area of surface pores with a diameter in the range of 10-1000 nm. Calculate according to equation (5).
ここで、前記ΣSmは、SEM観測面積の和である。 Here, ΣS m is the sum of SEM observation areas.
<内部構造測定>
内部構造観察は、25℃で行う。
ダイヤモンドナイフやイオンミリングなどの手段により、平らなMD-ZD断面を作出し、SEMにて当該断面を観察する。
孔径d:上述の表面孔径の統計および計算方法により、内部孔の孔径を計算する。
平均孔径(ナノレベルの孔)dn:式(3)にしたがって、直径が10〜1000nmの範囲内にある孔の孔径平均値を計算する。ここで、Σdは孔径が10〜1000nmの範囲内にある孔の孔径dの和である。
孔径分布(ナノレベルの孔)SD:まず式(4-1)にしたがって体積平均孔径dvを計算し、その後、式(4-2)にしたがって孔径分布SDを計算する。
<Internal structure measurement>
The internal structure is observed at 25 ° C.
Create a flat MD-ZD cross section by means of diamond knife or ion milling, and observe the cross section with SEM.
Hole diameter d: The hole diameter of the inner hole is calculated by the above-mentioned surface hole diameter statistics and calculation method.
Average pore diameter (nano-level pore) d n : The average pore diameter of pores having a diameter in the range of 10 to 1000 nm is calculated according to the formula (3). Here, Σd is the sum of the hole diameters d of the holes having a hole diameter in the range of 10 to 1000 nm.
Pore size distribution (nano-level pores) SD: First, the volume average pore size d v is calculated according to equation (4-1), and then the pore size distribution SD is calculated according to equation (4-2).
面積比(ナノレベルの孔)S%:直径が10〜1000nmの範囲内にある表面孔の面積が、総表面積に占めるパーセンテージ。式(5)にしたがって計算する。
平均孔径(ミクロンレベルの孔)d’m:直径が1〜100μmの範囲内にある孔の孔径平均値を示し、式(6)にしたがって計算する。
Area ratio (nano-level pores) S%: Percentage of the total surface area by the area of surface pores with a diameter in the range of 10-1000 nm. Calculate according to equation (5).
Average pore diameter (micron level hole) d ′ m : Shows the average diameter of pores having a diameter in the range of 1 to 100 μm, and is calculated according to equation (6).
ここで、Σd’は孔径が1〜100μmの範囲内にある孔の孔径dの和であり、mは計算される直径が1〜100μmの範囲内にある孔の個数である。 Here, Σd ′ is the sum of the hole diameters d of holes having a hole diameter in the range of 1 to 100 μm, and m is the number of holes having a calculated diameter in the range of 1 to 100 μm.
実施例と比較例で使用される原料は以下の通りである: The raw materials used in the examples and comparative examples are as follows:
<ポリ乳酸樹脂>(A)
A-1:ポリ乳酸、4032D、米国NatureWorks社製。重量平均分子量23万である。
A-2:ポリ乳酸、4060D、米国NatureWorks社製。重量平均分子量23万である。
<Polylactic acid resin> (A)
A-1: Polylactic acid, 4032D, manufactured by NatureWorks, USA. The weight average molecular weight is 230,000.
A-2: Polylactic acid, 4060D, manufactured by NatureWorks, USA. The weight average molecular weight is 230,000.
<親水性有機化合物>(B)
B-1:ポリエチレングリコール、数平均分子量600、中国国薬集団製。
B-2:ポリ乳酸-ポリエチレングリコール-ポリ乳酸三ブロック共重合体、CN200810018621.7の実施例1にしたがって製造される。数平均分子量は2万である。
<Hydrophilic organic compound> (B)
B-1: Polyethylene glycol, number average molecular weight 600, manufactured by China Pharmaceutical Group.
B-2: Polylactic acid-polyethylene glycol-polylactic acid triblock copolymer, produced according to Example 1 of CN200810018621.7. The number average molecular weight is 20,000.
<非相溶の疎水性成分>(C)
C-1:ポリブチレンサクシネート、Bionolle 1020、日本昭和ポリマー株式会社製。
C-2:ポリブチレンアジペートテレフタレート、Ecoflex C1200、BASF社製。
C-3:炭酸カルシウムは、粒径は1.2〜3.5μmであり、日本三共精粉株式会社製。
<Incompatible hydrophobic component> (C)
C-1: Polybutylene succinate, Bionolle 1020, manufactured by Nippon Showa Polymer Co., Ltd.
C-2: Polybutylene adipate terephthalate, Ecoflex C1200, manufactured by BASF.
C-3: Calcium carbonate has a particle size of 1.2 to 3.5 μm and is manufactured by Sankyo Seiko Co., Ltd.
実施例1〜7
原料を一定の配合割合で、2軸スクリュー押出機により押出し、ペレット化して、押出温度が175〜200℃である。次いで、単軸スクリュー押出機によりインフレーションし、厚みが100μmの未配向フィルムを作製し、インフレーション温度が180〜200℃である。さらに、85℃の水蒸気において、未配向フィルムを3×3の倍率で同時二軸延伸し、配向フィルムを得た。表1に、当該フィルムの組成が示されている。25℃において、各フィルムの性能を測定し、表1に示す。
Examples 1-7
The raw material is extruded by a twin screw extruder at a constant blending ratio and pelletized, and the extrusion temperature is 175 to 200 ° C. Subsequently, it is blown by a single screw extruder to produce an unoriented film having a thickness of 100 μm, and the inflation temperature is 180 to 200 ° C. Further, the unoriented film was simultaneously biaxially stretched at a magnification of 3 × 3 in 85 ° C. water vapor to obtain an oriented film. Table 1 shows the composition of the film. The performance of each film was measured at 25 ° C. and shown in Table 1.
比較例1〜3
原料を一定の配合割合で、2軸スクリュー押出機により押出し、ペレット化して、押出温度が175〜200℃である。次いで、単軸スクリュー押出機によりインフレーションし、厚みが100μmの未配向フィルムを作製し、インフレーション温度が180〜200℃である。さらに、85℃の水蒸気において、未配向フィルムを3×3の倍率で同時二軸延伸し、配向フィルムを得た。表1に、当該フィルムの組成が示されている。25℃において、各フィルムの性能を測定し、表1に示す。
Comparative Examples 1-3
The raw material is extruded by a twin screw extruder at a constant blending ratio and pelletized, and the extrusion temperature is 175 to 200 ° C. Subsequently, it is blown by a single screw extruder to produce an unoriented film having a thickness of 100 μm, and the inflation temperature is 180 to 200 ° C. Further, the unoriented film was simultaneously biaxially stretched at a magnification of 3 × 3 in 85 ° C. water vapor to obtain an oriented film. Table 1 shows the composition of the film. The performance of each film was measured at 25 ° C. and shown in Table 1.
実施例8〜14、比較例4
原料を一定の配合割合で、2軸スクリュー押出機により押出し、ペレット化して、押出温度が175〜200℃である。次いで、単軸スクリュー押出機により流延し、流延温度が180〜200℃であり、厚みが120μmの未配向フィルムを作製した。さらに、80℃の水中で、表2に示された延伸方法により未配向フィルムを延伸し、配向フィルムを得た。表2に、当該フィルムの組成が示されている。25℃において、各フィルムの性能を測定し、表2に示す。
Examples 8-14, Comparative Example 4
The raw material is extruded by a twin screw extruder at a constant blending ratio and pelletized, and the extrusion temperature is 175 to 200 ° C. Next, the film was cast by a single screw extruder to produce an unoriented film having a casting temperature of 180 to 200 ° C. and a thickness of 120 μm. Further, the unoriented film was drawn in 80 ° C. water by the drawing method shown in Table 2 to obtain an oriented film. Table 2 shows the composition of the film. The performance of each film was measured at 25 ° C. and is shown in Table 2.
実施例15〜18
原料を一定の配合割合で、2軸スクリュー押出機により押出し、ペレット化して、押出温度が175〜200℃である。次いで、単軸スクリュー押出機により流延し、流延温度が180〜200℃であり、厚みが120μmの未配向フィルムを作製した。さらに、80℃の水に、30min浸漬した。次いで、90℃の空気で、表3に示された延伸方法により未配向フィルムを延伸し、配向フィルムを得た。表3に、当該フィルムの組成が示されている。25℃において、各フィルムの性能を測定し、表3に示す。
Examples 15-18
The raw material is extruded by a twin screw extruder at a constant blending ratio and pelletized, and the extrusion temperature is 175 to 200 ° C. Next, the film was cast by a single screw extruder to produce an unoriented film having a casting temperature of 180 to 200 ° C. and a thickness of 120 μm. Further, it was immersed in water at 80 ° C. for 30 minutes. Next, the unoriented film was drawn with 90 ° C. air by the drawing method shown in Table 3 to obtain an oriented film. Table 3 shows the composition of the film. The performance of each film was measured at 25 ° C. and shown in Table 3.
実施例19〜25
実施例8〜14に記載の配向フィルムをそれぞれ、フィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度条件下で放置し、1時間経過後、各性能の測定を行う。その結果を表4に示す。
Examples 19-25
Each of the oriented films described in Examples 8 to 14 is allowed to stand under a temperature condition 30 ° C. higher than the glass transition temperature of the polylactic acid component in the film, and each performance is measured after 1 hour. The results are shown in Table 4.
実施例26〜32
実施例8〜14に記載の配向フィルムについてそれぞれ以下の処理を行う。
Examples 26-32
Each of the oriented films described in Examples 8 to 14 is subjected to the following treatment.
熱処理方法:
実施例8、9に記載の配向フィルムを80℃の水に0.5h浸漬する;
実施例10、11に記載の配向フィルムを80℃の水に2h浸漬する;
実施例12に記載の配向フィルムの表面に酸化アルミニウムを蒸着し、厚さが40nmである;
実施例13に記載の配向フィルムの表面にシリカを蒸着し、厚さが40nmである;
実施例14に記載の配向フィルムの表面に、厚さが20nmのエポキシ樹脂を塗布する;
次いで、各フィルムを、フィルム中のポリ乳酸成分のガラス転移温度よりも30℃高い温度条件下で放置し、1時間経過後、各性能の測定を行う。その結果を表5に示す。
上述の実施例において、GPC測定を行い、その結果、ポリ乳酸成分の重量平均分子量は11〜20万である。
Heat treatment method:
Soaking the oriented films described in Examples 8 and 9 in 80 ° C. water for 0.5 h;
Soaking the oriented films described in Examples 10 and 11 in water at 80 ° C. for 2 h;
Aluminum oxide is deposited on the surface of the oriented film described in Example 12 and has a thickness of 40 nm;
Silica is deposited on the surface of the oriented film described in Example 13 and has a thickness of 40 nm;
An epoxy resin having a thickness of 20 nm is applied to the surface of the oriented film described in Example 14;
Next, each film is left under a temperature condition 30 ° C. higher than the glass transition temperature of the polylactic acid component in the film, and each performance is measured after 1 hour. The results are shown in Table 5.
In the above-mentioned Example, GPC measurement is performed, and as a result, the weight average molecular weight of a polylactic acid component is 1-100,000.
本明細書で言及される特許文献、非特許文献は全て引用の方式により本明細書に組み込まれる。本明細書で言う「数種類」は、一種類を上回る全てのケースを含み、つまり、「一種類または数種類」は、一種類、二種類、三種類などを含む。本明細書において、ある数値範囲について、上限と下限をそれぞれ記載した場合、または、上限と下限を組み合わせた方式である数値範囲を記載した場合、記載された各上限と各下限は、新しい数値範囲として任意に組み合わせることができ、これは、組み合わせてなる数値範囲を明確に記載した記載方式と同じであると見なされるべきである。本発明の趣旨を逸脱しない限りにおいて、当業者は本発明に改変、改良を行うことができ、これらも本発明の範囲内に含まれる。 All patent documents and non-patent documents referred to in this specification are incorporated herein by reference. "Several" as used herein includes all cases of more than one type, i.e., "one kind or several kinds" includes one kind, two kinds, the etc. three kinds such. In this specification, when an upper limit and a lower limit are respectively described for a certain numerical range, or when a numerical range that is a combination of the upper limit and the lower limit is described, each upper limit and each lower limit described is a new numerical range. Can be arbitrarily combined, and this should be regarded as the same as the description method in which the combined numerical range is clearly described. Unless it deviates from the meaning of this invention, those skilled in the art can change and improve this invention, and these are also contained in the scope of the present invention.
Claims (21)
ポリ乳酸樹脂A:40〜99.9重量部および親水性有機化合物B:0.1〜60重量部を含み、
前記親水性有機化合物Bは、水に溶解または膨潤可能な有機化合物から一種類または数種類選ばれることを特徴とする、請求項1に記載の微多孔ポリ乳酸配向フィルム。 The microporous polylactic acid oriented film is
Polylactic acid resin A: 40 to 99.9 parts by weight and hydrophilic organic compound B: 0.1 to 60 parts by weight,
2. The microporous polylactic acid oriented film according to claim 1, wherein the hydrophilic organic compound B is selected from one or several organic compounds that can be dissolved or swelled in water.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310504568.2A CN104559093A (en) | 2013-10-23 | 2013-10-23 | Microporous polylactic acid oriented film |
CN201310504568.2 | 2013-10-23 | ||
CN201410070430.0A CN104877314A (en) | 2014-02-28 | 2014-02-28 | Microporous polylactic acid oriented film |
CN201410070430.0 | 2014-02-28 | ||
CN201410331453.2A CN105462192A (en) | 2014-07-11 | 2014-07-11 | Microporous polylactic acid oriented film |
CN201410331453.2 | 2014-07-11 | ||
PCT/CN2014/088612 WO2015058638A1 (en) | 2013-10-23 | 2014-10-15 | Microporous polylactic acid oriented film and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016539215A JP2016539215A (en) | 2016-12-15 |
JP6302060B2 true JP6302060B2 (en) | 2018-03-28 |
Family
ID=52992251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016526147A Expired - Fee Related JP6302060B2 (en) | 2013-10-23 | 2014-10-15 | Microporous polylactic acid oriented film and its application |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6302060B2 (en) |
CN (1) | CN105683288B (en) |
TW (1) | TW201520241A (en) |
WO (1) | WO2015058638A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106147160A (en) * | 2015-04-14 | 2016-11-23 | 东丽先端材料研究开发(中国)有限公司 | Micro-porous polylactic acid orientation thin film |
CN106800754B (en) * | 2015-11-26 | 2021-01-05 | 东丽先端材料研究开发(中国)有限公司 | Microporous film |
CN105670249A (en) * | 2016-01-25 | 2016-06-15 | 中国科学院长春应用化学研究所 | Polylactic acid porous material and preparation method thereof |
CN109265941B (en) * | 2018-08-09 | 2021-07-23 | 束建军 | Semitransparent heat-resistant polylactic acid composite material and preparation method thereof |
CN113493599A (en) * | 2020-03-19 | 2021-10-12 | 东丽先端材料研究开发(中国)有限公司 | Oriented film and multilayer film containing same |
CN112662145B (en) * | 2020-12-21 | 2023-03-28 | 内蒙古农业大学 | Bacteriostatic degradable respiratory membrane with self-contraction performance, preparation method and application |
CN112793250A (en) * | 2020-12-30 | 2021-05-14 | 重庆和泰润佳股份有限公司 | Multilayer co-extrusion biodegradable breathable film, preparation method thereof and sanitary towel |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005126701A (en) * | 2003-09-30 | 2005-05-19 | Toray Ind Inc | Molded product made from polylactic acid-based polymer composition |
JP2006038754A (en) * | 2004-07-29 | 2006-02-09 | Fuji Photo Film Co Ltd | Base material for target detection, its manufacturing method, target detector, and target detection method |
JP4784143B2 (en) * | 2005-04-28 | 2011-10-05 | 滋賀県 | Method for producing polylactic acid porous body |
WO2009038061A1 (en) * | 2007-09-21 | 2009-03-26 | Fujifilm Corporation | Multilayered film and process for producing the same |
JP5574256B2 (en) * | 2009-05-07 | 2014-08-20 | 国立大学法人大阪大学 | Porous material |
JP5721141B2 (en) * | 2009-09-10 | 2015-05-20 | 国立大学法人群馬大学 | Method for producing polylactic acid stereocomplex crystal, polylactic acid, molded article thereof, synthetic fiber, porous body and ionic conductor |
JP5405374B2 (en) * | 2010-03-26 | 2014-02-05 | 富士フイルム株式会社 | Manufacturing method of honeycomb structure film |
CN101942704A (en) * | 2010-07-20 | 2011-01-12 | 东华大学 | Preparation method of organic nano porous fiber film having controllable ultra-high specific area |
CN104830036B (en) * | 2010-08-18 | 2016-09-21 | 东丽株式会社 | Porous membrane |
JP2012057004A (en) * | 2010-09-07 | 2012-03-22 | Toray Ind Inc | Porous film |
JP2013185112A (en) * | 2012-03-09 | 2013-09-19 | Canon Inc | Method of producing polyester porous body |
SG11201405484UA (en) * | 2012-03-12 | 2014-10-30 | Nanotheta Co Ltd | Ultra-thin polymer film, and porous ultra-thin polymer film |
-
2014
- 2014-10-15 JP JP2016526147A patent/JP6302060B2/en not_active Expired - Fee Related
- 2014-10-15 CN CN201480058315.XA patent/CN105683288B/en active Active
- 2014-10-15 WO PCT/CN2014/088612 patent/WO2015058638A1/en active Application Filing
- 2014-10-22 TW TW103136430A patent/TW201520241A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN105683288A (en) | 2016-06-15 |
WO2015058638A1 (en) | 2015-04-30 |
CN105683288B (en) | 2017-12-19 |
TW201520241A (en) | 2015-06-01 |
JP2016539215A (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6302060B2 (en) | Microporous polylactic acid oriented film and its application | |
Rezabeigi et al. | Production of porous polylactic acid monoliths via nonsolvent induced phase separation | |
Souza et al. | Influence of electric fields on the structure of chitosan edible coatings | |
Gu et al. | Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly (lactic acid) | |
Górecka et al. | The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCL | |
US10550263B2 (en) | Composition for the preparation of a nanostructured biodegradable polymeric material, the material obtained and its applications | |
KR20070015907A (en) | Biodegradable Aliphatic Aromatic Copolyester Film | |
Tomietto et al. | Polyhydroxyalkanoate (PHA) based microfiltration membranes: Tailoring the structure by the non-solvent induced phase separation (NIPS) process | |
Wu et al. | Preparation of novel thermoplastic poly (vinyl alcohol) with improved processability for fused deposition modeling | |
CN106065167A (en) | A kind of micro-porous polylactic acid orientation thin film | |
JP6287832B2 (en) | the film | |
Labus et al. | Biodegradable polylactide and thermoplastic starch blends as drug release device–mass transfer study | |
Wang et al. | Study on the structure and properties of choline chloride toughened polylactide composites | |
JP4858457B2 (en) | Method for producing a molded product mainly composed of polyacetal resin | |
CN104877314A (en) | Microporous polylactic acid oriented film | |
CN105462192A (en) | Microporous polylactic acid oriented film | |
CN109575538B (en) | Microporous oriented polylactic acid film | |
CN106800754B (en) | Microporous film | |
JP4850550B2 (en) | Polylactic acid based porous material | |
JP6260377B2 (en) | Biodegradable film | |
CN106147163A (en) | Micro-porous polylactic acid orientation film | |
CN105754302A (en) | Micro-porous polyester film containing aromatic chain segment | |
Intaravichien et al. | Polylactide-b-Poly (Ethylene Glycol)-b-Polylactide Triblock Copolymer Films for Using as Drug Delivery Carriers | |
Yarysheva et al. | Amorphization of poly (vinyl alcohol) in the mesoporous matrix based on high-density polyethylene | |
CN107629424A (en) | A kind of micro- porous polylactic acid film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6302060 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |