JP6300199B2 - Rotation prevention structure for movable breakwater - Google Patents

Rotation prevention structure for movable breakwater Download PDF

Info

Publication number
JP6300199B2
JP6300199B2 JP2014075520A JP2014075520A JP6300199B2 JP 6300199 B2 JP6300199 B2 JP 6300199B2 JP 2014075520 A JP2014075520 A JP 2014075520A JP 2014075520 A JP2014075520 A JP 2014075520A JP 6300199 B2 JP6300199 B2 JP 6300199B2
Authority
JP
Japan
Prior art keywords
steel pipe
upper steel
rotation
top end
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014075520A
Other languages
Japanese (ja)
Other versions
JP2015196991A (en
Inventor
宏人 小山
宏人 小山
太郎 有川
太郎 有川
高田 賢一
賢一 高田
将人 本多
将人 本多
木原 一禎
一禎 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Toa Corp
Nippon Steel Engineering Co Ltd
National Institute of Maritime Port and Aviation Technology
Original Assignee
Obayashi Corp
Toa Corp
Nippon Steel Engineering Co Ltd
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Toa Corp, Nippon Steel Engineering Co Ltd, National Institute of Maritime Port and Aviation Technology filed Critical Obayashi Corp
Priority to JP2014075520A priority Critical patent/JP6300199B2/en
Publication of JP2015196991A publication Critical patent/JP2015196991A/en
Application granted granted Critical
Publication of JP6300199B2 publication Critical patent/JP6300199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

本発明は、可動式防波堤の回転防止構造に関するものであり、具体的には、可動式防波堤における鋼管の回転防止を容易かつ低コストに実現する技術に関する。   The present invention relates to a structure for preventing rotation of a movable breakwater, and more specifically, to a technique for easily and inexpensively preventing rotation of a steel pipe in a movable breakwater.

通常の気象条件時には海底付近にある一方、荒天時や津波発生時などには海面上に突出して後背領域への波浪の入射を抑制する可動式防波堤が提案されている。この可動式防波堤は、海底地盤に立設された下部鋼管とその内空において上下に摺動する上部鋼管とから主に構成され、特に措置を講じない場合、突出時に波浪を受けた上部鋼管が下部鋼管内空で回転する事態となりうる。上部鋼管が回転すると、上部鋼管と下部鋼管との間で駆動機構などへの電力供給を行うカプラが位置ずれを起こし、鋼管位置の調整作業が発生する。また、隣接鋼管を支点にして上部鋼管を吊下している索材の損傷、切断が生じる懸念もある。   A movable breakwater has been proposed that is near the seabed under normal weather conditions, but protrudes above the sea surface during stormy weather or when a tsunami occurs, and suppresses the incidence of waves into the back area. This movable breakwater is mainly composed of a lower steel pipe standing on the seabed and an upper steel pipe that slides up and down in the inner space. It can be a situation where it rotates in the lower steel pipe. When the upper steel pipe rotates, the coupler that supplies power to the drive mechanism or the like is displaced between the upper steel pipe and the lower steel pipe, and the adjustment work of the steel pipe position occurs. In addition, there is a concern that damage and cutting of the rope hanging the upper steel pipe with the adjacent steel pipe as a fulcrum may occur.

そこで、こうした可動式防波堤における鋼管の回転防止に関する技術としては、以下のような技術が提案されている。すなわち、可動式防波堤において上部鋼管の外周面に沿って長手方向に延設された突起部を備え、この突起部が下部鋼管天端に備わるスタビライザーの間隙に収容される構成とすることで、上部鋼管の回転を抑止する技術(特許文献1)などが提案されている。   Therefore, the following techniques have been proposed as techniques for preventing the steel pipe from rotating in such a movable breakwater. That is, the movable breakwater includes a protrusion extending in the longitudinal direction along the outer peripheral surface of the upper steel pipe, and the protrusion is accommodated in a stabilizer gap provided at the top of the lower steel pipe. A technique for suppressing rotation of a steel pipe (Patent Document 1) has been proposed.

特開2008−255718号公報JP 2008-255718 A

しかしながら従来技術を採用した可動式防波堤において、上述した上部鋼管の突起部と、下部鋼管の内壁面との離間距離が非常に小さいため、上部鋼管を下部鋼管内で浮上させる際、突起部と下部鋼管の内壁面とが接触しやすく、上部鋼管の浮上が出来なくなってしまう不具合が生じる懸念があった。一方、そうした事態を可能な限り回避すべく、上部鋼管および下部鋼管それぞれの寸法、真円度誤差、曲がりの各製作精度を向上させ、更に、各鋼管の施工時にも真円度誤差計測を多頻度で行うといった対策を行うと、製作および施工にかかるコストと手間、工期が過大になってしまう問題があった。   However, in the movable breakwater adopting the prior art, since the separation distance between the protrusion of the upper steel pipe and the inner wall surface of the lower steel pipe is very small, when the upper steel pipe is levitated in the lower steel pipe, the protrusion and the lower There is a concern that the inner wall surface of the steel pipe is likely to come into contact with each other, and there is a problem that the upper steel pipe cannot float. On the other hand, in order to avoid such a situation as much as possible, the manufacturing accuracy of each of the upper steel pipe and the lower steel pipe, the roundness error, and the bending are improved. If measures such as frequency are taken, there is a problem that the cost, labor, and construction period for production and construction become excessive.

そこで本発明は、可動式防波堤における鋼管の回転防止を容易かつ低コストに実現する技術の提供を目的とする。   Then, this invention aims at provision of the technique which implement | achieves rotation prevention of the steel pipe in a movable breakwater easily and at low cost.

上記課題を解決する可動式防波堤の回転防止構造は、水底面を貫通して水底地盤内に鉛直に挿入され、水中に上端面を開口させて配列された複数の下部鋼管と、各下部鋼管内に昇降可能に挿入された上部鋼管とを備えた可動式防波堤において、前記上部鋼管が軸回りに回転した際に、隣接する上部鋼管間で天端部において干渉して、上部鋼管の回転を規制する回転規制部材を前記上部鋼管に設けた可動式防波堤の回転防止構造であって、前記回転規制部材が、前記隣接する上部鋼管のうち一方の上部鋼管における天端部に固定され、他方の上部鋼管における天端部に達する桁材と、前記他方の上部鋼管における天端部にて、前記桁材における端部の左右両側に該当桁材から所定の離間距離を持って設置された少なくとも一対の突起部材と、からなるものであることを特徴とする。 The structure for preventing the rotation of the movable breakwater that solves the above problems includes a plurality of lower steel pipes that are inserted vertically through the bottom of the water into the bottom of the water and open at the top end in the water, and each bottom steel pipe When the upper steel pipe rotates around its axis, the upper steel pipe interferes with the upper end of the upper steel pipe to regulate the rotation of the upper steel pipe. A rotation preventing structure of a movable breakwater provided on the upper steel pipe , wherein the rotation restricting member is fixed to a top end portion of one upper steel pipe among the adjacent upper steel pipes, At least a pair of girders that reach the top end of the steel pipe and at the top end of the other upper steel pipe at a predetermined distance from the corresponding girders on the left and right sides of the end of the girder Projecting members, or It characterized in that it is become one.

これによれば、可動式防波堤における浮上動作や施工作業等に影響を及ぼさない上部鋼管天端部にて、鋼管の寸法、真円度誤差、曲がり等に関する製作精度や施工精度について過大な配慮を必要としない回転防止構造を備えることとなり、上部鋼管の外面と下部鋼管内面との離隔を大きく確保し、上述した施工精度や製作精度に起因した部材同士の接触による上部鋼管の浮上動作の不具合や、製作および施工にかかる過大なコストと手間、工期を回避可能となる。したがって、可動式防波堤における鋼管の回転防止を容易かつ低コストに実現できる。   According to this, excessive consideration is given to the manufacturing accuracy and construction accuracy related to the dimensions, roundness error, bending, etc. of the steel pipe at the top end of the upper steel pipe that does not affect the floating operation and construction work of the movable breakwater. It will be equipped with an anti-rotation structure that is not required, ensuring a large separation between the outer surface of the upper steel pipe and the inner surface of the lower steel pipe, and the problem of the floating operation of the upper steel pipe due to the contact between members due to the construction accuracy and manufacturing accuracy described above. It is possible to avoid excessive costs, labor, and construction time for manufacturing and construction. Therefore, it is possible to easily and inexpensively prevent the steel pipe from rotating on the movable breakwater.

また、前記回転規制部材が、前記隣接する上部鋼管のうち一方の上部鋼管における天端部に固定され、他方の上部鋼管における天端部に達する桁材と、前記他方の上部鋼管における天端部にて、前記桁材における端部の左右両側に該当桁材から所定の離間距離を持って設置された少なくとも一対の突起部材と、からなることにより、隣接する上部鋼管のうち桁材が固定された、一方の上部鋼管の回転挙動が、他方の上部鋼管の天端部上における桁材の平面方向の振れを引き起こすが、その桁材に対し天端部上の突起部材が当接して干渉し、その振れ幅を一定範囲に制限することが可能となる。また、他方の上部鋼管の回転挙動が生じた場合、この他方の上部鋼管の天端部に備わる突起部材も、該当天端部を含む平面上を回転しようとするが、その突起部材に対し同天端部上の桁材が当接して干渉し、その回転挙動を一定範囲に制限することが可能となる。こうした桁材の振れ幅や突起部材の回転範囲の制限は、上述した、一方の上部鋼管の回転挙動の制限に対応する。 Further, the rotation restricting member is fixed to the top end portion of one upper steel pipe among the adjacent upper steel pipes, and the girder reaching the top end portion of the other upper steel pipe, and the top end portion of the other upper steel pipe The at least one pair of projecting members installed at a predetermined distance from the corresponding girder on both the left and right sides of the end portion of the girder, the girder of the adjacent upper steel pipes is fixed. In addition, the rotational behavior of one upper steel pipe causes runout in the plane direction of the girders on the top end of the other upper steel pipe, but the protruding members on the top end abut against the girders and interfere with each other. , It is possible to limit the runout to a certain range. In addition, when the rotation behavior of the other upper steel pipe occurs, the projecting member provided at the top end of the other upper steel pipe also attempts to rotate on the plane including the corresponding top end, but the same occurs with respect to the projecting member. The spar on the top end abuts and interferes, and its rotational behavior can be limited to a certain range. Such restriction of the swing width of the girders and the rotation range of the protruding member corresponds to the restriction of the rotational behavior of the one upper steel pipe described above.

前記回転規制部材が、前記隣接する上部鋼管の各天端部を連結する索状材からなることとすれば、隣接する上部鋼管のうちいずれか一方の上部鋼管に回転挙動が生じた際、その上部鋼管の天端部に所定箇所が固定された索状材が、上述の回転挙動に応じた引っ張り力を受けるが、その一端を固定した他方の上部鋼管を支点に抵抗して干渉し、回転範囲を一定に制限することが可能となる。 If the rotation restricting member is made of a cord-like material that connects the top ends of the adjacent upper steel pipes, when rotation behavior occurs in any one of the upper steel pipes, A cord-like material with a predetermined location fixed to the top end of the upper steel pipe receives the tensile force according to the above-mentioned rotational behavior, but the other upper steel pipe with one end fixed resists and interferes with the fulcrum, and rotates. The range can be limited to a certain level.

本発明によれば、可動式防波堤における鋼管の回転防止を容易かつ低コストに実現できる。   ADVANTAGE OF THE INVENTION According to this invention, rotation prevention of the steel pipe in a movable breakwater can be implement | achieved easily and at low cost.

本実施形態における可動式防波堤の回転防止構造例1を示す説明図である。It is explanatory drawing which shows the rotation prevention structure example 1 of the movable breakwater in this embodiment. 本実施形態における可動式防波堤の回転防止構造例1を示す平面図である。It is a top view which shows the rotation prevention structure example 1 of the movable breakwater in this embodiment. 本実施形態における回転防止構造例1の稼働状況例を示す平面図である。It is a top view which shows the example of an operating condition of the rotation prevention structure example 1 in this embodiment. 本実施形態の回転防止構造におけるラップ部の挙動例を示す説明図である。It is explanatory drawing which shows the example of a behavior of the lap | wrap part in the rotation prevention structure of this embodiment. 本実施形態における可動式防波堤の回転防止構造例2を示す説明図である。It is explanatory drawing which shows the rotation prevention structure example 2 of the movable breakwater in this embodiment. 本実施形態における可動式防波堤の回転防止構造例2を示す平面図である。It is a top view which shows the rotation prevention structure example 2 of the movable breakwater in this embodiment. 本実施形態における回転防止構造例2の稼働状況例を示す平面図である。It is a top view which shows the example of an operating condition of the rotation prevention structure example 2 in this embodiment.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態の可動式防波堤10における回転防止構造100の例1を示す説明図であり、図2はその平面図である。本実施形態における可動式防波堤1の回転防止構造100は、可動式防波堤1を構成する上部鋼管が軸回りに回転した際に、隣接する上部鋼管間でその天端部において干渉して上部鋼管の回転を規制し、可動式防波堤1における上部鋼管10の回転防止を容易かつ低コストに実現するものとなる。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory view showing Example 1 of the rotation prevention structure 100 in the movable breakwater 10 of the present embodiment, and FIG. 2 is a plan view thereof. The rotation prevention structure 100 of the movable breakwater 1 in the present embodiment is such that when the upper steel pipe constituting the movable breakwater 1 rotates around its axis, the upper steel pipes interfere with each other between the adjacent upper steel pipes. The rotation is restricted, and the rotation prevention of the upper steel pipe 10 on the movable breakwater 1 is realized easily and at low cost.

こうした回転防止構造100が適用される可動式防波堤1は、海底地盤Gを基礎にして垂直に打設され上方に開口した下部鋼管20と、その内空21において昇降する上述の上部鋼管10が海中Sに列設され、その後背領域Aへの波浪の侵入を抑制する構成となっている。   The movable breakwater 1 to which such an anti-rotation structure 100 is applied includes a lower steel pipe 20 that is vertically placed on the bottom of the seabed G and opens upward, and the above-described upper steel pipe 10 that moves up and down in the inner space 21 is in the sea. S is arranged in line with S and is configured to suppress the invasion of waves into the back region A thereafter.

本実施形態における上部鋼管10としては、空気ポンプなどの空気圧送手段による内空11への給気により生じる浮力で海中Sを上昇し、海面F上に突出する本管10Aと、この本管10Aの両側に隣接する上部鋼管であって本管10Aの浮上動作に伴って浮上する側管10Bとを含んでいる。図1の例では、本管10Aの両側に側管10Bを配置した例を示したが、本管10Aの一方の側にのみ側管10Bを配置した構成であってもよい。   As the upper steel pipe 10 in the present embodiment, a main pipe 10A that rises in the sea S by buoyancy generated by supply of air to the inner space 11 by a pneumatic feeding means such as an air pump and protrudes above the sea surface F, and the main pipe 10A. The upper steel pipe adjacent to both sides of the main pipe 10A, and the side pipe 10B that floats as the main pipe 10A floats. In the example of FIG. 1, an example in which the side tube 10B is disposed on both sides of the main tube 10A is shown, but a configuration in which the side tube 10B is disposed only on one side of the main tube 10A may be employed.

また、上述の本管10Aと側管10Bとの間は、本管10Aの天端部12に固定され、各端部103が側管10Bにおける天端部15に達する桁材101が渡されている。この桁材101は所定強度を有する鋼材で構成されており、本実施形態の回転防止構造100における回転規制部材を成すものとなる。なお、桁材101における上述の端部103は、各側管10Bの天端部15に達しているが、そこで固定されてはいない。   Further, between the main pipe 10A and the side pipe 10B described above, the girders 101 that are fixed to the top end 12 of the main pipe 10A and each end 103 reaches the top end 15 of the side pipe 10B are passed. Yes. This girder 101 is made of a steel material having a predetermined strength, and constitutes a rotation restricting member in the rotation preventing structure 100 of the present embodiment. In addition, although the above-mentioned end part 103 in the girder 101 reaches the top end part 15 of each side pipe 10B, it is not fixed there.

また、桁材101は、側管10Bの天端部15における開口部16(図1中の破線で囲んだ拡大図中)を介して下方に垂下させた合成樹脂製ロープなどの索材104を備えており、この索材104の下端104Aは、側管10Bの内空17に備わる隔壁18に接続されている。つまり、桁材101は、隔壁18に接続された索材104によって側管10Bを吊り下げている。従って、上述した本管10Aの浮上動作に伴って桁材101が当初位置から上昇するに従い、索材104で吊り下げられている側管10Bも浮上することになる。なお、こうした本管10Aと側管10Bの浮上動作用の構成は一例であり、他の手段を採用した構成に本実施形態の回転防止構造100を適用してもよい。   Further, the girder 101 has a rope 104 such as a synthetic resin rope suspended downward through an opening 16 (in the enlarged view surrounded by a broken line in FIG. 1) in the top end 15 of the side tube 10B. The lower end 104A of the cable member 104 is connected to a partition wall 18 provided in the inner space 17 of the side pipe 10B. That is, the girder 101 suspends the side pipe 10 </ b> B by the cord material 104 connected to the partition wall 18. Therefore, as the beam member 101 rises from the initial position in accordance with the above-described floating operation of the main pipe 10A, the side pipe 10B suspended by the cord material 104 also rises. Note that the structure for the floating operation of the main pipe 10A and the side pipe 10B is an example, and the rotation prevention structure 100 of the present embodiment may be applied to a structure employing other means.

本実施形態の回転防止構造100における回転規制部材は、上述した桁材101の他に、側管10Bの天端部15に設置された突起部材105を含んでいる。この突起部材105は、側管10Bの天端部15上における桁材101の端部103の左右両側に、この端部103の側面103Aから所定の離間距離dを持って設置した単位突起部材105A、105Bの対105Cで構成されている。図1〜3にそれぞれ示す突起部材105の例では、単位突起部材105A、105Bの対105Cが2つ、側管10Bの天端部15に設置された構成を示している。勿論、この対105Cの設置数は、1つ以上であれば特に限定されない。   The rotation restricting member in the rotation preventing structure 100 of the present embodiment includes a protruding member 105 installed on the top end portion 15 of the side tube 10B in addition to the above-described beam member 101. The projecting members 105 are installed on the left and right sides of the end portion 103 of the beam member 101 on the top end portion 15 of the side tube 10B with a predetermined distance d from the side surface 103A of the end portion 103. , 105B and 105C. The example of the protruding member 105 shown in FIGS. 1 to 3 shows a configuration in which two pairs 105C of unit protruding members 105A and 105B are installed at the top end 15 of the side tube 10B. Of course, the number of the pair 105C is not particularly limited as long as it is one or more.

こうした回転防止構造100によれば、図3にて例示するように、桁材101が固定された本管10Aの回転挙動により、各側管10Bの天端部15上において桁材101の平面方向の振れが生じた際、桁材101に対し天端部15上の突起部材105が当接して干渉し、その振れ幅を一定範囲に制限することが可能となる。また、側管10Bの回転挙動が生じた場合、この側管10Bの天端部15に備わる突起部材105も、該当天端部15を含む平面上を回転しようとするが、その突起部材105に対し同天端部15上の桁材101が当接して干渉し、その回転挙動を一定範囲に制限することが可能となる。   According to such an anti-rotation structure 100, as illustrated in FIG. 3, the planer direction of the beam member 101 on the top end portion 15 of each side tube 10B due to the rotation behavior of the main tube 10A to which the beam member 101 is fixed. When the wobbling occurs, the projecting member 105 on the top end portion 15 abuts against and interferes with the beam member 101, and the wobbling width can be limited to a certain range. Further, when the rotation behavior of the side tube 10B occurs, the projection member 105 provided in the top end portion 15 of the side tube 10B also tries to rotate on the plane including the top end portion 15; On the other hand, the beam member 101 on the same top end portion 15 abuts and interferes, and the rotational behavior can be limited to a certain range.

なお、津波など過大な波浪を本管10Aが受ける場合、この本管10Aが下部鋼管20とのラップ部50(図4参照)を起点に後背領域Aへ大きく傾斜しようとする挙動が生じ、これに伴って桁材101も大きな振幅で側管10Bの天端部15上を水平移動しようとする。この時、上述の離間距離dが極く小さく、例えば、単位突起部材105A、105Bと、桁材101における端部103の側面103Aとが当初からほぼ接触しているような位置関係にある場合、上述した波浪から本管10Aが受けた荷重は、桁材101を介してほぼそのまま側管10Bの天端部15上の突起部材105にかかることになる。このことは、側管10Bが過大な波浪を受けた場合でも同様である。   In addition, when the main pipe 10A receives an excessive wave such as a tsunami, the main pipe 10A has a behavior that tends to largely tilt toward the back region A starting from a lap portion 50 (see FIG. 4) with the lower steel pipe 20. Accordingly, the girders 101 also try to move horizontally on the top end 15 of the side tube 10B with a large amplitude. At this time, when the above-described separation distance d is extremely small, for example, when the unit projecting members 105A and 105B and the side surface 103A of the end portion 103 of the beam member 101 are in contact with each other from the beginning, The load received by the main pipe 10A from the above-described waves is applied to the protruding member 105 on the top end portion 15 of the side pipe 10B through the girder 101 as it is. This is the same even when the side tube 10B receives excessive waves.

そこで、津波等の過大な波浪による荷重を突起部材105のみで受けずに、上部鋼管10と下部鋼管20の全体として上述の荷重に抗すべく、上部鋼管10に生じる上述の傾斜等の変位等を、桁材101が架設され隣り合う本管10A及び側管10Bの間での相対変位として考慮し、これを許容する離間距離dを決定すると好適である。   Therefore, the displacement of the above-described inclination or the like generated in the upper steel pipe 10 to resist the above-described load as a whole of the upper steel pipe 10 and the lower steel pipe 20 without receiving the load due to excessive waves such as tsunami only by the protruding member 105. Is considered as a relative displacement between the main pipe 10A and the side pipe 10B adjacent to each other where the girder 101 is installed, and it is preferable to determine a separation distance d that allows this.

例えば図4にて示すように、上部鋼管10と下部鋼管20とのラップ部50のあそびXmm(ラップ部の上下のあそびが等しい場合)、ラップ部50の長さYmm、であったとする。この状態にて波浪を受けた場合の上部鋼管10の傾斜は、(X×2)/Y=Zと算定できる。また、ラップ部50を除いた上部鋼管長さをVmmとすると、上部鋼管天端部での変位は、V×Z=Wmmとなる。   For example, as shown in FIG. 4, it is assumed that the lap portion 50 of the upper steel pipe 10 and the lower steel pipe 20 has a play Xmm (when the upper and lower lap portions are equal) and the wrap portion 50 has a length Ymm. The inclination of the upper steel pipe 10 when receiving waves in this state can be calculated as (X × 2) / Y = Z. Moreover, if the upper steel pipe length excluding the wrap portion 50 is Vmm, the displacement at the upper end of the upper steel pipe is V × Z = Wmm.

そこで、この上部鋼管天端部での変位Wに、下部鋼管20の打設時における鉛直性に関する誤差や、鋼管製作時の曲がり誤差、真円度誤差による変形量等を加算して、本管10A及び側管10Bの間での相対変位を算定し、この算定値以上となるよう離間距離dを決定すればよい。   Therefore, the displacement W at the top end of the upper steel pipe 20 is added with an error related to verticality when the lower steel pipe 20 is placed, a bending error when manufacturing the steel pipe, a deformation amount due to roundness error, etc. What is necessary is just to calculate the relative displacement between 10A and the side pipe | tube 10B, and to determine the separation distance d so that it may become this calculated value or more.

このように決定した離間距離dに応じて突起部材105の設置を行えば、津波など過大な波浪を受けた本管10Aが傾斜する挙動を生じた際、これに伴う側管10Bの天端部15上での桁材101の移動量は、上述の離間距離d以下であり、波浪から本管10Aが受けた荷重がそのまま突起部材105にかかる事態は回避できる。   If the protruding member 105 is installed according to the separation distance d determined in this way, when the main pipe 10A that has received an excessive wave such as a tsunami is inclined, a top end portion of the side pipe 10B accompanying this occurs. The amount of movement of the girders 101 on 15 is equal to or less than the above-mentioned separation distance d, and a situation in which the load received by the main pipe 10A from the waves is directly applied to the protruding member 105 can be avoided.

続いて本実施形態の可動式防波堤10における回転防止構造100の他の例について説明する。図5は本実施形態の可動式防波堤10の回転防止構造100の例2を示す説明図であり、図6はその平面図である。なお、本例においても可動式防波堤10の構成は上述の例1と同様のものを想定する。   Then, the other example of the rotation prevention structure 100 in the movable breakwater 10 of this embodiment is demonstrated. FIG. 5 is an explanatory view showing Example 2 of the rotation prevention structure 100 of the movable breakwater 10 of the present embodiment, and FIG. 6 is a plan view thereof. In this example as well, the configuration of the movable breakwater 10 is assumed to be the same as in Example 1 described above.

この場合の回転防止構造100は、上述の本管10Aにおける天端部12と、各側管10Bにおける天端部15との間を連結する索状材40から構成されている。この索状体40は合成樹脂製ロープや鋼製の鎖などを採用できる。こうした索状体40によれば、図7にて例示するように、隣接する本管10Aおよび側管10Bのうち、例えば本管10Aに回転挙動が生じた際、この本管10Aの天端部12に一端41が固定された索状材40が、上述の回転挙動に応じた引っ張り力を受けるが、その他端42を固定した側管10Bを支点に抵抗して干渉し、本管10Aの回転範囲を一定に制限することとなる。勿論、側管10Bに回転挙動が生じた場合も、同様に回転範囲を制限できる。   The rotation prevention structure 100 in this case is composed of a cord-like material 40 that connects between the top end 12 in the main pipe 10A and the top end 15 in each side pipe 10B. The cord-like body 40 can employ a synthetic resin rope, a steel chain, or the like. According to such a cord-like body 40, as illustrated in FIG. 7, for example, when a rotating behavior occurs in the main pipe 10A among the adjacent main pipe 10A and the side pipe 10B, the top end portion of the main pipe 10A is formed. The cord-like material 40 having one end 41 fixed to 12 receives a pulling force according to the above-described rotational behavior, but resists and interferes with the side tube 10B having the other end 42 fixed to the fulcrum, and the main tube 10A rotates. The range will be limited to a certain level. Of course, the rotation range can be similarly limited when the side pipe 10B has a rotational behavior.

なお、索状体40に関しても、上述の突起部材105に関する離間距離dと同様に、津波など過大な波浪を本管10Aが受ける場合、この本管10Aが下部鋼管20とのラップ部を起点に後背領域Aへ大きく傾斜しようとする挙動が生じ、これに伴って索状体40も大きな引っ張り力を受けることになる。この時、索状体40における長さのあそびが極く小さく、例えば、本管10A及び側管10Bにおける各固定箇所間の最短距離で索状体40が渡してある場合、上述した波浪から本管10Aが受けた荷重は、索状体40を介してほぼそのまま側管10Bの天端部15上の索状体40の固定箇所にかかることになる。このことは、側管10Bが過大な波浪を受けた場合でも同様である。   In the meantime, when the main pipe 10A receives an excessive wave such as a tsunami, the main pipe 10A starts from the lap portion with the lower steel pipe 20 as in the case of the distance d related to the protruding member 105. The behavior which tends to largely incline toward the back region A occurs, and accordingly, the cord-like body 40 also receives a large pulling force. At this time, the play of the length in the cord 40 is extremely small. For example, when the cord 40 is handed over at the shortest distance between the fixed portions in the main pipe 10A and the side pipe 10B, the above-mentioned waves are used for the main wave. The load received by the pipe 10A is applied almost directly to the fixing portion of the cord 40 on the top end 15 of the side pipe 10B via the cord 40. This is the same even when the side tube 10B receives excessive waves.

そこで、津波等の過大な波浪による荷重を索状体40および索状体40の固定箇所で直接受けずに、上部鋼管10および下部鋼管20の全体として上述の荷重に抗すべく、上部鋼管10に生じる上述の傾斜等の変位を、索状体40が架設され隣り合う本管10A及び側管10Bの間での相対変位として考慮し、これを許容するあそびを決定すると好適である。相対変位の算定手法の考え方については上述の離間距離dの場合と同様であり、この相対変位の算定値以上となるよう、索状体40のあそびを決定すればよい。   Therefore, the upper steel pipe 10 and the lower steel pipe 20 as a whole are resistant to the above-described loads without receiving a load caused by an excessive wave such as a tsunami directly at the fixing portion of the cable-like body 40 and the rope-like body 40. It is preferable to consider the displacement such as the inclination described above as the relative displacement between the main pipe 10A and the side pipe 10B adjacent to each other where the cord-like body 40 is installed, and to determine the play that allows this. The concept of the relative displacement calculation method is the same as in the case of the separation distance d described above, and the play of the cord-like body 40 may be determined so as to be equal to or greater than the calculated value of the relative displacement.

このように決定したあそびを含む長さの索状体40を設置すれば、津波など過大な波浪を受けた本管10Aが傾斜する挙動を生じた際、これに伴って索状体40が引っ張られる長さは、上述のあそび以下であり、波浪から本管10Aが受けた荷重が、そのまま索状体40ないし索状体40の固定箇所にかかる事態は回避できる。   If the cable-like body 40 having a length including the play determined in this way is installed, when the main pipe 10A that has received an excessive wave such as a tsunami is inclined, the rope-like body 40 is pulled accordingly. The length of the cable is equal to or less than the above-described play, and it is possible to avoid a situation in which the load received by the main pipe 10A from the waves is directly applied to the cable-shaped body 40 or the fixing portion of the cable-shaped body 40.

本実施形態によれば、可動式防波堤における鋼管の回転防止を容易かつ低コストに実現できる。   According to this embodiment, rotation prevention of the steel pipe in a movable breakwater can be realized easily and at low cost.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

G 海底地盤
S 海中
A 後背領域
F 海面
d 離間距離
1 可動式防波堤
10 上部鋼管
10A 本管
10B 側管
11 上部鋼管内空
12 本管天端部
15 側管天端部
16 側管天端部の開口部
17 側管内空
18 側管隔壁
20 下部鋼管
21 下部鋼管内空
40 索状体
41 索状体の一端
42 索状体の他端
100 回転防止構造
101 桁材
103 桁材端部
103A 桁材端部の側面
104 索材
104A 索材下端
105 突起部材
105A、105B 単位突起部材
105C 単位突起部材の対
G Submarine ground S Underwater A Rear area F Sea surface d Separation distance 1 Movable breakwater 10 Upper steel pipe 10A Main pipe 10B Side pipe 11 Upper steel pipe interior 12 Main pipe top end 15 Side pipe top end 16 Side pipe top end Opening portion 17 Side pipe inner space 18 side pipe partition wall 20 Lower steel pipe 21 Lower steel pipe inner space 40 Cable-like body 41 One end of the rope-like body 42 Other end of the rope-like body 100 Anti-rotation structure 101 Girder 103 Girder end 103A Girder Side surface 104 of end portion 104 cord member 104 lower cord member 105 projection member 105A, 105B unit projection member 105C pair of unit projection member

Claims (2)

水底面を貫通して水底地盤内に鉛直に挿入され、水中に上端面を開口させて配列された複数の下部鋼管と、各下部鋼管内に昇降可能に挿入された上部鋼管とを備えた可動式防波堤において、前記上部鋼管が軸回りに回転した際に、隣接する上部鋼管間で天端部において干渉して、上部鋼管の回転を規制する回転規制部材を前記上部鋼管に設けた可動式防波堤の回転防止構造であって、
前記回転規制部材が、
前記隣接する上部鋼管のうち一方の上部鋼管における天端部に固定され、他方の上部鋼管における天端部に達する桁材と、
前記他方の上部鋼管における天端部にて、前記桁材における端部の左右両側に該当桁材から所定の離間距離を持って設置された少なくとも一対の突起部材と、
からなるものであることを特徴とする可動式防波堤の回転防止構造。
Movable with a plurality of lower steel pipes that penetrate the bottom of the water and are vertically inserted into the water bottom ground and arranged with the upper end surface open in the water, and upper steel pipes that are inserted in each lower steel pipe so as to be movable up and down In the type breakwater, when the upper steel pipe rotates about its axis, the movable steel breakwater is provided with a rotation restricting member for restricting the rotation of the upper steel pipe by interfering at the top end portion between the adjacent upper steel pipes. Anti-rotation structure of
The rotation restricting member is
A girder fixed to the top end of one upper steel pipe among the adjacent upper steel pipes and reaching the top end of the other upper steel pipe,
At the top end of the other upper steel pipe, at least a pair of projecting members installed at a predetermined distance from the corresponding girder on the left and right sides of the end of the girder,
A structure for preventing rotation of a movable breakwater characterized by comprising:
水底面を貫通して水底地盤内に鉛直に挿入され、水中に上端面を開口させて配列された複数の下部鋼管と、各下部鋼管内に昇降可能に挿入された上部鋼管とを備えた可動式防波堤において、前記上部鋼管が軸回りに回転した際に、隣接する上部鋼管間で天端部において干渉して、上部鋼管の回転を規制する回転規制部材を前記上部鋼管に設けた可動式防波堤の回転防止構造であって、
前記回転規制部材が、前記隣接する上部鋼管の各天端部を連結する索状材からなるものであることを特徴とする可動式防波堤の回転防止構造。
Movable with a plurality of lower steel pipes that penetrate the bottom of the water and are vertically inserted into the water bottom ground and arranged with the upper end surface open in the water, and upper steel pipes that are inserted in each lower steel pipe so as to be movable up and down In the type breakwater, when the upper steel pipe rotates about its axis, the movable steel breakwater is provided with a rotation restricting member for restricting the rotation of the upper steel pipe by interfering at the top end portion between the adjacent upper steel pipes. Anti-rotation structure of
The structure for preventing rotation of a movable breakwater, wherein the rotation restricting member is made of a cord-like material connecting the top ends of the adjacent upper steel pipes .
JP2014075520A 2014-04-01 2014-04-01 Rotation prevention structure for movable breakwater Active JP6300199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075520A JP6300199B2 (en) 2014-04-01 2014-04-01 Rotation prevention structure for movable breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075520A JP6300199B2 (en) 2014-04-01 2014-04-01 Rotation prevention structure for movable breakwater

Publications (2)

Publication Number Publication Date
JP2015196991A JP2015196991A (en) 2015-11-09
JP6300199B2 true JP6300199B2 (en) 2018-03-28

Family

ID=54546850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075520A Active JP6300199B2 (en) 2014-04-01 2014-04-01 Rotation prevention structure for movable breakwater

Country Status (1)

Country Link
JP (1) JP6300199B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4712743U (en) * 1971-03-12 1972-10-14
GB8908311D0 (en) * 1989-04-13 1989-06-01 Jackman Stephen E Mollusc culture breakwater
JPH09125338A (en) * 1995-10-27 1997-05-13 Tokyo Seiko Co Ltd Wave suppressing device and method, and mooring structure and method
JPH1037153A (en) * 1996-07-26 1998-02-10 Toa Harbor Works Co Ltd Emergency correspondence type wave-forcebreaking method at harbor entrance part and its breakwater
JP4406679B2 (en) * 2007-04-06 2010-02-03 株式会社大林組 Movable breakwater
JP4650527B2 (en) * 2008-06-26 2011-03-16 株式会社大林組 Movable breakwater and operating method of movable breakwater
JP5614743B2 (en) * 2010-10-29 2014-10-29 独立行政法人港湾空港技術研究所 Port entrance blocking structure
JP5269868B2 (en) * 2010-12-10 2013-08-21 三菱重工鉄構エンジニアリング株式会社 Movable breakwater and movable breakwater facility

Also Published As

Publication number Publication date
JP2015196991A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
KR101358326B1 (en) Anti sloshing apparatus, ship having the same and method using the same
JP6220307B2 (en) Land type flap gate
CN206031719U (en) Large vessel alongside device
KR20150021305A (en) Sliding type floating power plant mooring apparatus
JP6300199B2 (en) Rotation prevention structure for movable breakwater
KR102027577B1 (en) Mooring apparatus
BR112014010041B1 (en) RISER ASSEMBLY AND METHOD TO PROVIDE RISER ASSEMBLY
JP5059696B2 (en) Undulating gate breakwater
KR101750805B1 (en) Fender for Berthing
KR102618974B1 (en) Fender davit device
KR100609095B1 (en) A light weight anchor block of press-in type
JP5508306B2 (en) Levitation breakwater
JP6438555B2 (en) Floating flap gate
KR101715704B1 (en) Movement Compensator Of Cable Installation Ship And Compensating Method Of Ship Movement Using The Same
JP6184800B2 (en) Ship mooring device
KR20160029473A (en) Floating structure
KR101435397B1 (en) Vessel
US3550549A (en) Tension anchor system for offshore apparatus
KR102050930B1 (en) Fender
JP2014173579A (en) Floating body type windmill device with gimbal mount
KR102438695B1 (en) Floating structure having apparatus for supporting leg
KR101549198B1 (en) Dry dock with floating barge
JP6285117B2 (en) Portable drainage pump
KR101842665B1 (en) Retractable chain connector
KR102113405B1 (en) Apparatus for lifting tidal current meter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20161101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6300199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250