JP6299155B2 - Cast planning device, method and program - Google Patents

Cast planning device, method and program Download PDF

Info

Publication number
JP6299155B2
JP6299155B2 JP2013229478A JP2013229478A JP6299155B2 JP 6299155 B2 JP6299155 B2 JP 6299155B2 JP 2013229478 A JP2013229478 A JP 2013229478A JP 2013229478 A JP2013229478 A JP 2013229478A JP 6299155 B2 JP6299155 B2 JP 6299155B2
Authority
JP
Japan
Prior art keywords
steel
steel output
cast
production
date
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013229478A
Other languages
Japanese (ja)
Other versions
JP2015090532A (en
Inventor
政典 塩谷
政典 塩谷
森 純一
純一 森
邦春 伊藤
邦春 伊藤
水谷 泰
泰 水谷
悠 内田
悠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013229478A priority Critical patent/JP6299155B2/en
Publication of JP2015090532A publication Critical patent/JP2015090532A/en
Application granted granted Critical
Publication of JP6299155B2 publication Critical patent/JP6299155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するキャスト計画立案装置、方法及びプログラムに関する。   The present invention relates to a cast planning apparatus, method, and program for planning a casting plan in a steelmaking process using equipment including a converter and continuous casting equipment.

鉄鋼製造業では、製品の規格やサイズ等が極めて多岐に渡る上、顧客側の製品使用予定に合わせた納期遵守と納期短縮の要求が強くなっている。一方、製造業においては、大量生産による生産性向上の観点から製鋼設備における製品の化学的成分が同一の注文を複数まとめてロット単位で生産することが求められており、鉄鋼製造業においても、製鋼設備は基本的に同一成分の鋼の大量生産を目指した設備である。しかしながら、製造工程は製鋼、圧延、精整、出荷等の複数の製造設備からなり、製鋼工程でのロットの生産性の追及が他の製造設備の生産性を低下させたり、製鋼設備でのロットまとめが下流工程での製造負荷集中につながり仕掛増や製造工期増を引き起こしたりすること等から、製造工程間でのトレードオフを考慮した出鋼ロットを作成することが求められる。また、ロットを作るための先作りは余分な製品在庫や、それに応じた工期増を引き起こす。すなわち、各製造工程の負荷の均等化と納期管理を達成しつつ、製鋼設備においてなるべく同一成分の鋼をまとめて鋳造できる出鋼枠配置計画を作成する必要がある。   In the steel manufacturing industry, product standards and sizes are extremely diverse, and there is an increasing demand for compliance with delivery dates and shortening delivery times according to the customer's product use schedule. On the other hand, in the manufacturing industry, from the viewpoint of productivity improvement by mass production, it is required to produce multiple orders of the same chemical composition of products in steelmaking facilities in batch units. In the steel manufacturing industry, The steelmaking facility is basically a facility aimed at mass production of steel of the same composition. However, the manufacturing process consists of multiple manufacturing facilities such as steelmaking, rolling, refining, and shipping. Pursuing the productivity of lots in the steelmaking process decreases the productivity of other manufacturing facilities, and the lots in steelmaking facilities. Since the summarization leads to concentration of manufacturing load in the downstream process and causes an increase in work in progress and an increase in the manufacturing period, it is required to create a steel-out lot considering the trade-off between the manufacturing processes. In addition, pre-fabrication for making a lot causes extra product inventory and a corresponding increase in work period. In other words, it is necessary to create a steel frame arrangement plan that can cast steel of the same component as much as possible in a steel making facility while achieving equalization of load in each manufacturing process and delivery date management.

さらに近年では、更なる製造コストの削減及び製品品質の向上のため、出鋼ロットの切り替わりに伴うコストを最小化し、鋳片品質向上のために鋳造位置や連続鋳造数を規制する等、複雑な鋳造制約も満足したキャスト計画を立案しなければならない。例えば異なる出鋼成分の溶鋼を連続鋳造しなければならない場合でも、異鋼種混合部を最小化して屑化コストを削減するため、なるべく化学的成分が似通った溶鋼を連続鋳造したり、比重が重い順番に連続鋳造したりする制約や、鋳片品質を向上させるため、指定された出鋼成分のチャージは連続鋳造の先頭での鋳造を禁止する制約、1つのキャストでの連続鋳造チャージ数を制限する制約等を考慮したキャスト計画を立案しなければならない。   Furthermore, in recent years, in order to further reduce production costs and improve product quality, the costs associated with changing the steelmaking lot have been minimized, and the casting position and the number of continuous castings have been regulated to improve the slab quality. A cast plan that satisfies the casting constraints must be formulated. For example, even when it is necessary to continuously cast molten steel with different steel output components, in order to minimize the mixing of different steel types and reduce scrapping costs, continuous casting of molten steel with similar chemical components as much as possible or heavy specific gravity Restrictions on continuous casting in order and restrictions on the charge of the specified steel output component to prohibit casting at the beginning of continuous casting in order to improve the quality of the slab, limiting the number of continuous casting charges in one cast A cast plan that takes into account the restrictions to be made must be made.

特許文献1には、製造品種の注文情報、製造品種別の工程処理発生確率、及び立案方針に関する情報を取り込む入力手段と、複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を注文データベースに格納する注文データベース格納手段と、それぞれの製造品種についての工程処理発生確率である製造品種モデルを格納する製造品種モデル格納手段と、注文データベースの情報を基に、文マトリクスを作成する注文マトリクス作成手段と、工程能力上限値と、れ出鋼量と行出鋼量との加算値に対する重みと、前記工程処理発生確率と出鋼量とから計算される工程負荷と程能力との差の絶対値で表される工程負荷平準度に対する重みと、鋼ロット拡大に関する評価値に対する重みと、を少なくとも設定する立案方針設定手段と、少なくとも前記遅れ出鋼量と前記先行出鋼量との加算値と、前記工程負荷平準度と、前記出鋼ロット拡大に関する評価値と、の重み付き線形和で表される評価関数を、出鋼量が出鋼能力上限値以下になるという制約の満たす範囲内で最小又は最大にして、鋼枠配置計画及び造品種別充当枠を算出する最適化計算手段と、前記出鋼枠配置計画及び前記製造品種別充当枠からなる出鋼計画立案結果を表示する出鋼計画立案結果表示手段と、前記出鋼計画立案結果を登録する出鋼計画立案結果登録手段と、を備えた出鋼枠配置計画立案手法が開示されている。 Patent Document 1 includes at least the input means for fetching information on the production type order information, the process processing occurrence probability for each production type, and information on the planning policy, the weight, the production type, and the steel output request date for a plurality of orders. and order database storing means for storing the order information in the order database comprising, a manufacturing varieties model storage means for storing a manufacturing varieties model is a step processes occurrence probability for each production varieties, based on the information of the order database, orders an order matrix creating means for creating a matrix, and the process capability upper limit, the process is calculated from the weights for the sum of the lag tapping amount in the previous row tapping quantity, as the step processing occurrence probability and tapped volume and weights for step load leveling degree represented by the absolute value of the difference between the load and Engineering enough capacity to at least set the weights for the evaluation value related tapping lot larger, the It is expressed by a weighted linear sum of the planning policy setting means, at least the added value of the delayed steel amount and the preceding steel amount, the process load level, and the evaluation value related to the steel production lot expansion. an evaluation function, the optimization calculation means in the minimum or maximum in the range satisfying the constraint that the amount tapping becomes less tapping capacity upper limit value, calculates the tapping frame allocation planning and manufacturing products classification appropriated frame, A steelmaking plan planning result display means for displaying a steelmaking plan planning result comprising the steelmaking frame arrangement plan and the production type allocation frame, a steelmaking plan planning result registration means for registering the steelmaking plan planning result, A method for planning a steel frame arrangement provided with the above is disclosed.

また、特許文献2には、注文群を最終工程から順次通過工程を遡って上工程まで生産計画を作成し、それによって得られた注文群全体を元にして取り合わせ制約に基づいて上工程の製造ロットの生産計画を作成して、それによって得られた注文群のうち至近の着手分を元に詳細な取り合わせ制約に基づいて上工程の製造ロットの生産計画を作成し、前記の処理によって作成された上工程の製造ロットの処理理終了時間情報を時間調整しながら一つの時間軸上に接続し、その接続された上工程処理終了時間情報を元に通過工程を順次下って最終工程まで生産計画を立案する鉄鋼製品の生産計画作成手法が開示されている。   Further, in Patent Document 2, a production plan is created from the last process to the upper process in order from the final process to the upper process, and the upper process is manufactured based on the arrangement constraints based on the entire order group obtained thereby. Create a production plan for the lot, create a production plan for the production lot of the upper process based on detailed assortment constraints based on the closest start of the order group obtained by that, and created by the above process In addition, the processing process end time information of the production lot of the upper process is connected on one time axis while adjusting the time, and the production plan is sequentially made from the passing process to the final process based on the connected upper process processing end time information. A method for creating a production plan for steel products is proposed.

特許第5000547号公報Japanese Patent No. 5000547 特開2003−256020号公報JP 2003-256020 A

特許文献1に開示されている手法は、日別の製造品種別の出鋼量を決定する手法であり、チャージの鋳造順番までは考えていない。また、多目的混合整数計画法という数理最適化手法を用いるため、全ての制約を線形式で表わさなければならない。しかしながら、複雑な鋳造制約の中には線形式で表わすことが困難な制約や、たとえ線形式で表わせたとしても最適化計算に時間が掛かり過ぎてしまう制約もあり、特許文献1の手法では、複雑な鋳造制約を満足したキャスト計画を実用的な時間で立案することが困難である。   The technique disclosed in Patent Document 1 is a technique for determining the amount of steel output for each production type, and does not consider the order of charge casting. In addition, since a mathematical optimization technique called multi-objective mixed integer programming is used, all constraints must be expressed in a linear form. However, among the complicated casting constraints, there are constraints that are difficult to represent in a linear format, and there are constraints that take too much time for optimization calculation even if expressed in a linear format. It is difficult to create a casting plan that satisfies complex casting constraints in a practical time.

また、特許文献2に開示されている手法は、粗計画として、日別の設備毎の能力制約と納期制約のみを考慮して、日別の出鋼チャージを決定し、精計画として、全ての操業制約を考慮して、日内の出鋼チャージの鋳造順やキャストを決定する手法である。このように、精計画の立案は粗計画の一部を修正するのみのため、粗計画の立案結果が精計画の精度に大きく影響を及ぼす方式である。しかしながら、粗計画では操業制約を全く考慮せずに立案しており、得られた粗計画が精計画の立案にとって良好である可能性は乏しく、しかも精計画は粗計画の至近の一部を将来方向へ順次修正することで、粗計画と精計画の乖離が将来の精計画に累積されてしまうため、全立案期間で評価値の優れた精計画を立案することは困難である。   In addition, the method disclosed in Patent Document 2 is a rough plan, in which only daily capacity constraints and delivery date constraints are considered, and a daily steel charge is determined. This is a method of determining the casting order and casting of the steel output charge within the day in consideration of operational constraints. As described above, since the fine plan is prepared by correcting only a part of the rough plan, the result of the rough plan greatly affects the accuracy of the fine plan. However, the rough plan does not take any operational restrictions into consideration, and it is unlikely that the obtained rough plan is good for the planning of the fine plan. By sequentially correcting in the direction, the difference between the rough plan and the fine plan is accumulated in the future fine plan. Therefore, it is difficult to make a fine plan with an excellent evaluation value in the whole planning period.

本発明は上記のような点に鑑みてなされたものであり、全立案期間に対して、ロット集約、工程負荷の平準化及び納期の最適性に優れ、しかも、数理最適化手法では解くことが難しい複雑な鋳造制約も満足した良質のキャスト計画を実用的な時間で立案できるようにすることを目的とする。   The present invention has been made in view of the above points, and is excellent in lot aggregation, process load leveling and delivery date optimization over the entire planning period, and can be solved by a mathematical optimization method. The aim is to be able to develop a good casting plan that satisfies difficult and complicated casting constraints in a practical time.

本発明の要旨は以下のとおりである。
(1)転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するキャスト計画立案装置であって、
複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を注文データベースに格納する注文データベース格納手段と、
前記注文データベースの情報を基に、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクスを作成する注文マトリクス作成手段と、
それぞれの製造品種についての工程処理発生確率である製造品種モデルを格納する製造品種モデル格納手段と、
少なくとも工程能力上限値と、工程負荷の平準化に関する重みと、出鋼要望日と出鋼日との差異に関する重みと、出鋼ロット拡大に関する重みと、製品品質に関する重みとを立案方針パラメタとして設定する立案方針設定手段と、
前記注文マトリクス、前記製造品種モデル及び前記立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を満たす範囲内で最小又は最大にして、日別の前記製造品種別の出鋼量である製造品種別充当枠を数理最適化手法により算出する第1の最適化計算手段と、
前記第1の最適化計算手段で算出した製造品種別充当枠を基に、キャスト計画の初期値を作成する初期キャスト計画作成手段と、
少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、製品品質に関する鋳造制約の違反回数との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう、前記キャスト計画の初期値を用いて探索手法によりキャスト計画を算出する第2の最適化計算手段と、
前記第2の最適化計算手段で算出したキャスト計画を出力する出力手段とを備え、
前記初期キャスト計画作成手段では、立案期間の各日のキャスト数と各キャストのチャージ数を決定し、各チャージに製造品種を割り付けることを特徴とするキャスト計画立案装置。
(2)前記第1の最適化計算手段では、数理最適化手法として多目的混合整数計画法を用いることを特徴とする(1)に記載のキャスト計画立案装置。
(3)前記第2の最適化計算手段では、前記初期キャスト計画作成手段で作成したキャスト計画の初期値を現在解及び最適解として、
現在解の一部を修正した近傍解を作成して所定の評価値を計算し、前記所定の評価値に応じて該近傍解を現在解とするか否かを判定し、該近傍解を現在解とした場合に、さらに該近傍解の前記所定の評価値が最適解のものよりも良かったならば該近傍解を最適解とする、ことを所定の収束判定のルール下で繰り返すことを特徴とする(1)又は(2)に記載のキャスト計画立案装置。
(4)前記第2の最適化計算手段では、現在解の中からチャージの入れ替えを行うことにより近傍解を作成することを特徴とする(3)に記載のキャスト計画立案装置。
(5)前記第2の最適化手段では、前記製品品質に関する鋳造制約のうち、遵守することが必須である鋳造制約について、違反回数を前記評価関数に重み付き線形和として加える替わりに、前記制約条件に加えることを特徴とする(1)乃至(4)のいずれか一つに記載のキャスト計画立案装置。
(6) 転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するキャスト計画立案方法であって、
注文マトリクス作成手段が、複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を格納する注文データベースの情報を基に、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクスを作成するステップと、
立案方針設定手段が、少なくとも工程能力上限値と、工程負荷の平準化に関する重みと、出鋼要望日と出鋼日との差異に関する重みと、出鋼ロット拡大に関する重みと、製品品質に関する重みとを立案方針パラメタとして設定するステップと、
第1の最適化計算手段が、前記注文マトリクス、それぞれの製造品種についての工程処理発生確率である製造品種モデル及び前記立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を満たす範囲内で最小又は最大にして、日別の前記製造品種別の出鋼量である製造品種別充当枠を数理最適化手法により算出するステップと、
初期キャスト計画作成手段が、前記算出した製造品種別充当枠を基に、キャスト計画の初期値を作成するステップと、
第2の最適化計算手段が、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、製品品質に関する鋳造制約の違反回数との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう、前記キャスト計画の初期値を用いて探索手法によりキャスト計画を算出するステップと、
出力手段が、前記算出したキャスト計画を出力するステップとを有し、
前記キャスト計画の初期値を作成するステップでは、立案期間の各日のキャスト数と各キャストのチャージ数を決定し、各チャージに製造品種を割り付けることを特徴とするキャスト計画立案方法。
(7)転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するためのプログラムであって、
複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を注文データベースに格納する注文データベース格納手段と、
前記注文データベースの情報を基に、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクスを作成する注文マトリクス作成手段と、
それぞれの製造品種についての工程処理発生確率である製造品種モデルを格納する製造品種モデル格納手段と、
少なくとも工程能力上限値と、工程負荷の平準化に関する重みと、出鋼要望日と出鋼日との差異に関する重みと、出鋼ロット拡大に関する重みと、製品品質に関する重みとを立案方針パラメタとして設定する立案方針設定手段と、
前記注文マトリクス、前記製造品種モデル及び前記立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を満たす範囲内で最小又は最大にして、日別の前記製造品種別の出鋼量である製造品種別充当枠を数理最適化手法により算出する第1の最適化計算手段と、
前記第1の最適化計算手段で算出した製造品種別充当枠を基に、キャスト計画の初期値を作成する初期キャスト計画作成手段と、
少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、製品品質に関する鋳造制約の違反回数との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう、前記キャスト計画の初期値を用いて探索手法によりキャスト計画を算出する第2の最適化計算手段と、
前記第2の最適化計算手段で算出したキャスト計画を出力する出力手段としてコンピュータを機能させるためのプログラムであって、
前記初期キャスト計画作成手段では、立案期間の各日のキャスト数と各キャストのチャージ数を決定し、各チャージに製造品種を割り付けることを特徴とするプログラム。
The gist of the present invention is as follows.
(1) A cast planning device for planning a cast plan in a steelmaking process using equipment including a converter and continuous casting equipment,
Order database storage means for storing order information including at least the weight, the production type, and the steel extraction request date for a plurality of orders in the order database;
Based on the information in the order database, the steel product types with similar production specifications are aggregated as one production type, and the orders in which the production type and the date of steel output request are the same are aggregated by weight as the same order group Order matrix creating means for creating a matrix;
Production type model storage means for storing a production type model that is the probability of process processing occurrence for each type of production;
At least the process capacity upper limit, the weight related to leveling of the process load, the weight related to the difference between the steel output request date and the steel output date, the weight related to the expansion of the steel output lot, and the weight related to the product quality are set as planning policy parameters. Planning policy setting means,
Using the order matrix, the production model, and the planning policy parameters, at least an evaluation value related to leveling of the process load, an evaluation value related to a difference between a steel output request date and a steel output date, and an evaluation related to expansion of a steel output lot The evaluation function expressed by a weighted linear sum with the value is minimized or maximized within a range satisfying the steel output amount constraint that the amount of steel output is equal to or less than the upper limit of the steel output capacity. A first optimization calculating means for calculating an allocation frame by production type, which is the amount of steel output, by a mathematical optimization method;
An initial cast plan creation means for creating an initial value of a cast plan based on the production type allocation frame calculated by the first optimization calculation means;
A weighted linear sum of at least the evaluation value for leveling the process load, the evaluation value for the difference between the date of requesting steel production and the date of steel production, the evaluation value for expanding the steel production lot, and the number of violations of casting constraints related to product quality The initial value of the cast plan is searched so that the evaluation function represented by can be minimized or maximized within a range that satisfies the constraint conditions including the steel output amount constraint that the steel output amount is equal to or less than the steel output capacity upper limit value. A second optimization calculating means for calculating a cast plan by a technique;
Output means for outputting the cast plan calculated by the second optimization calculation means,
The initial cast plan creation means determines the number of casts for each day in the planning period and the number of charges for each cast, and assigns a production type to each charge.
(2) The cast planning apparatus according to (1), wherein the first optimization calculation means uses multi-objective mixed integer programming as a mathematical optimization method.
(3) In the second optimization calculation means, the initial value of the cast plan created by the initial cast plan creation means is set as the current solution and the optimal solution,
A neighborhood solution is created by correcting a part of the current solution, a predetermined evaluation value is calculated, it is determined whether the neighborhood solution is made the current solution according to the predetermined evaluation value, and the neighborhood solution is In the case of a solution, if the predetermined evaluation value of the neighborhood solution is better than that of the optimum solution, the neighborhood solution is repeated as an optimum solution under a predetermined convergence determination rule. The cast planning apparatus according to (1) or (2).
(4) The cast planning apparatus according to (3), wherein the second optimization calculation means creates a neighborhood solution by exchanging charges from the current solution.
(5) In the second optimization means, instead of adding the number of violations as a weighted linear sum to the evaluation function for the casting constraints that must be observed among the casting constraints related to the product quality, the constraints The cast planning apparatus according to any one of (1) to (4), which is added to a condition.
(6) A cast planning method for planning a cast plan in a steelmaking process using equipment including a converter and continuous casting equipment,
The order matrix creation means manufactures one type of steel material with similar manufacturing specifications based on order database information that stores order information including at least the weight, production type, and date of request for steel production for multiple orders. A step of creating an order matrix in which orders that are aggregated as varieties and that have the same production varieties and steel output request dates are aggregated by weight as the same order group;
The planning policy setting means includes at least a process capacity upper limit value, a weight related to leveling of the process load, a weight related to the difference between the steel output request date and the steel output date, a weight related to the expansion of the steel output lot, and a weight related to the product quality. Setting as a planning policy parameter;
The first optimization calculation means uses the order matrix, the production type model that is the probability of occurrence of process processing for each production type, and the planning policy parameter, and at least an evaluation value related to leveling of the process load, The amount of steel output in which the amount of steel output is below the upper limit of the steel output capacity, using an evaluation function expressed by a weighted linear sum of the evaluation value for the difference between the requested date and the date of steel output and the value for the expansion of the steel output lot. Calculating the allocation limit by production type, which is the amount of steel output according to the production type by day, by a mathematical optimization method with the minimum or maximum within a range that satisfies the constraints;
An initial cast plan creation means creating an initial value of a cast plan based on the calculated appropriation frame by production type;
The second optimization calculation means includes at least an evaluation value relating to leveling of the process load, an evaluation value relating to a difference between the steel output request date and the steel output date, an evaluation value relating to the expansion of the steel output lot, and a casting constraint relating to product quality. The evaluation function represented by the weighted linear sum with the number of violations of the above, so as to be the minimum or maximum within the range that satisfies the constraint condition including the steel output amount constraint that the steel output amount is below the upper limit of the steel output capacity Calculating a cast plan by a search method using an initial value of the cast plan;
An output means for outputting the calculated cast plan;
In the step of creating the initial value of the cast plan, the number of casts of each day in the planning period and the number of charges of each cast are determined, and a production type is assigned to each charge.
(7) A program for drafting a cast plan in a steelmaking process using equipment including a converter and continuous casting equipment,
Order database storage means for storing order information including at least the weight, the production type, and the steel extraction request date for a plurality of orders in the order database;
Based on the information in the order database, the steel product types with similar production specifications are aggregated as one production type, and the orders in which the production type and the date of steel output request are the same are aggregated by weight as the same order group Order matrix creating means for creating a matrix;
Production type model storage means for storing a production type model that is the probability of process processing occurrence for each type of production;
At least the process capacity upper limit, the weight related to leveling of the process load, the weight related to the difference between the steel output request date and the steel output date, the weight related to the expansion of the steel output lot, and the weight related to the product quality are set as planning policy parameters. Planning policy setting means,
Using the order matrix, the production model, and the planning policy parameters, at least an evaluation value related to leveling of the process load, an evaluation value related to a difference between a steel output request date and a steel output date, and an evaluation related to expansion of a steel output lot The evaluation function expressed by a weighted linear sum with the value is minimized or maximized within a range satisfying the steel output amount constraint that the amount of steel output is equal to or less than the upper limit of the steel output capacity. A first optimization calculating means for calculating an allocation frame by production type, which is the amount of steel output, by a mathematical optimization method;
An initial cast plan creation means for creating an initial value of a cast plan based on the production type allocation frame calculated by the first optimization calculation means;
A weighted linear sum of at least the evaluation value for leveling the process load, the evaluation value for the difference between the date of requesting steel production and the date of steel production, the evaluation value for expanding the steel production lot, and the number of violations of casting constraints related to product quality The initial value of the cast plan is searched so that the evaluation function represented by can be minimized or maximized within a range that satisfies the constraint conditions including the steel output amount constraint that the steel output amount is equal to or less than the steel output capacity upper limit value. A second optimization calculating means for calculating a cast plan by a technique;
A program for causing a computer to function as output means for outputting a cast plan calculated by the second optimization calculation means,
The initial cast plan creation means determines the number of casts for each day of the planning period and the number of charges for each cast, and assigns a production type to each charge.

本発明によれば、全立案期間に対して、ロット集約、工程負荷の平準化及び納期の最適性に優れ、しかも、数理最適化手法では解くことが難しい複雑な鋳造制約も満足した良質のキャスト計画を実用的な時間で立案することができる。   According to the present invention, a high-quality cast that is excellent in lot consolidation, process load leveling, and delivery date optimization over the entire planning period, and that satisfies complex casting constraints that are difficult to solve by mathematical optimization techniques. Plans can be made in a practical time.

実施形態に係るキャスト計画立案装置の概略構成を示す図である。It is a figure which shows schematic structure of the cast plan planning apparatus which concerns on embodiment. 実施形態に係るキャスト計画立案装置によるキャスト計画立案方法の概略を示すフローチャートである。It is a flowchart which shows the outline of the cast plan planning method by the cast plan planning apparatus which concerns on embodiment. 評価関数に付与する重み関数の一例を示す特性図である。It is a characteristic view which shows an example of the weight function provided to an evaluation function. 初期キャスト計画作成手段における各チャージと製造品種との割り付けを説明するための図である。It is a figure for demonstrating allocation with each charge and manufacturing kind in an initial cast plan preparation means. 第2の最適化計算手段での処理を示すフローチャートである。It is a flowchart which shows the process in the 2nd optimization calculation means. 第2の最適化計算手段における近傍解の作成方法の一例を説明するための図である。It is a figure for demonstrating an example of the preparation method of the neighborhood solution in a 2nd optimization calculation means. 本発明のキャスト計画を示す図である。It is a figure which shows the cast plan of this invention. 従来のキャスト計画を示す図である。It is a figure which shows the conventional cast plan. 鉄鋼業における厚板製造工程の一例の概略図である。It is the schematic of an example of the thick board manufacturing process in the steel industry.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
まず、鉄鋼業における代表的な製品である厚鋼板(厚板)の製造プロセス(製鋼プロセス)の概略構成の一例を図9を用いて説明する。図9において矢印は仕掛かり品の流れを示す。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
First, an example of a schematic configuration of a manufacturing process (steel making process) of a thick steel plate (thick plate) which is a representative product in the steel industry will be described with reference to FIG. In FIG. 9, the arrows indicate the flow of work in progress.

転炉301では高温溶融状態の鉄鋼中間製品(溶鋼)の化学的成分である出鋼成分を例えば約300ton単位で調整し、溶鋼鍋に出鋼する。この転炉301での出鋼単位をチャージと呼ぶ。   In the converter 301, a steel output component, which is a chemical component of a steel intermediate product (molten steel) in a high-temperature molten state, is adjusted in units of, for example, about 300 tons, and the steel is discharged into a molten steel pan. The steel output unit in the converter 301 is called charge.

連続鋳造設備302では転炉301で製造された溶鋼を複数チャージ分連続して鋳造し、その後、規定の長さに切断することで、例えば約20ton単位のスラブと呼ばれる板状の中間製品を製造する。この連続鋳造設備302での一連の製造単位をキャストと呼ぶ。製造仕様にもよるが、概ね8〜12チャージを1キャストとして製造する。   The continuous casting facility 302 continuously casts molten steel produced in the converter 301 for a plurality of charges, and then cuts it to a specified length to produce a plate-like intermediate product called a slab of about 20 tons, for example. To do. A series of production units in the continuous casting equipment 302 is called casting. Although it depends on the manufacturing specifications, the 8 to 12 charges are generally manufactured as one cast.

圧延設備303ではスラブを加熱後、所定の厚みや幅まで成形する。   In the rolling equipment 303, the slab is heated and then formed to a predetermined thickness and width.

精整(切断)設備304では注文仕様のサイズに切断を、精整(矯正)設備305では形状等の品質を確保するための矯正を、精整(手入)設備306では品質確保のための手入れを行い、すべての処理を終えた製品は倉庫307に配置される。なお、注文仕様のサイズに切断された製品をプレートと呼ぶ。   The refining (cutting) equipment 304 cuts to the size of the custom specification, the refining (correction) equipment 305 performs correction to ensure the quality of the shape, etc., and the refining (care) equipment 306 is used to ensure the quality. Products that have undergone care and have been all processed are placed in a warehouse 307. In addition, the product cut | disconnected to the size of order specification is called a plate.

厚板製造プロセスの各製造設備での代表的な最小製造ロットの大きさ(単位)の一例を表1に示す。当例においては、転炉301では最終製品(倉庫での最小製造ロット)の大きさ3tonの約100倍の大きさを、連続鋳造設備302では最終製品の約800倍の大きさを最小製造ロット単位として製造することが生産性や歩留の観点で必要である。しかし、転炉や連続鋳造設備の生産性や歩留を優先し、納期が先の注文までを先作りし製造ロットを大きくすると、製品在庫が増えてしまうという問題がある。また、精整設備304〜306の製造負荷を考慮せずに転炉や連続鋳造設備の製造ロットを大きくすると、製造負荷集中による仕掛増、製造工期増へ繋がることとなる。すなわち、各製造装置における製造負荷を平準化することも重要である。このように、製造ロットの拡大、製造負荷の平準化、及び納期遵守という、相反する課題を両立するように製造着手タイミングを決定したキャスト計画を立案することが重要である。   Table 1 shows an example of the size (unit) of a representative minimum production lot in each production facility of the thick plate production process. In this example, the converter 301 is about 100 times as large as 3 ton of the final product (minimum production lot in the warehouse), and the continuous production facility 302 is about 800 times larger than the final product. Manufacturing as a unit is necessary from the viewpoint of productivity and yield. However, if the productivity and yield of converters and continuous casting equipment are given priority and the delivery date is made up to the previous order and the production lot is increased, there is a problem that the product inventory increases. Further, if the production lot of the converter and continuous casting equipment is increased without considering the production load of the finishing equipment 304 to 306, it will lead to an increase in work due to concentration of the production load and an increase in the manufacturing period. That is, it is also important to level the manufacturing load in each manufacturing apparatus. As described above, it is important to formulate a casting plan in which the production start timing is determined so as to satisfy the conflicting problems of expansion of the production lot, leveling of the production load, and compliance with the delivery date.

Figure 0006299155
Figure 0006299155

キャスト計画を立案する際の狙いとしては、投入された未出鋼注文に対して、製造ロット拡大、納期遵守、及び製造工程平準化という、互いに相反する要求を同時に満たすことであり、また、これらの相反する要求を同時に満たすことが課題でもある。この課題を解決するために、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群とすることで注文データを簡素化・低次元化して取り扱い、製造ロット拡大、納期遵守、及び製造工程平準化といった要件を満たすキャスト計画を立案する。   The purpose of drafting the cast plan is to simultaneously satisfy the mutually contradicting requirements of the unfinished steel orders that have been put in place, such as expansion of production lots, compliance with delivery dates, and leveling of production processes. It is also an issue to satisfy the conflicting requirements at the same time. In order to solve this problem, the steel product types with similar manufacturing specifications are aggregated as one manufacturing type, and the order data is obtained by making the orders with the same manufacturing type and the desired date of steel production into the same order group. Create a cast plan that meets the requirements of simplification, lower-dimensional handling, expansion of production lots, compliance with delivery dates, and leveling of production processes.

また、連続鋳造設備302は液体状の鋼(溶鋼)を固体状の鋼(スラブ)に変える製鉄所にとって最も重要な工程であり、製造コスト及び製品品質を大きく左右する。例えば連続鋳造設備302では、転炉301で成分調整された溶鋼を冷却しながら連続してスラブにするが、溶鋼成分が切り替わる部分では溶鋼が混ざり合ってしまうため、製品としては使用できず、屑(スクラップ)となってしまう。また、溶鋼成分が切り替わる異鋼種混合部(屑化部分)の大きさは、前後チャージの成分と比重によって異なり、基本的には成分が似通っており、比重順に(比重の高い方を先に)鋳込むと異鋼種混合部は小さくなる。一方、品質の観点では、連続鋳造設備302の鋳造を始める先頭のチャージは設備が安定しておらず、どうしてもスラブ品質が低下するため、高品質スラブをキャストの先頭で鋳造できない。また、特別な成分のチャージを鋳造する場合、その次に鋳造するチャージの品質低下の問題から、キャストの最後で鋳込む必要がある。このような鋳造制約が多数存在し、製造コストの低減及び製品品質の向上のためには、このような鋳造制約を守ったキャスト計画を立案することが重要である。   The continuous casting equipment 302 is the most important process for a steel mill that changes liquid steel (molten steel) to solid steel (slab), and greatly affects manufacturing cost and product quality. For example, in the continuous casting equipment 302, the molten steel whose components are adjusted in the converter 301 is continuously cooled to form a slab. However, the molten steel is mixed in the portion where the molten steel components are switched, and thus cannot be used as a product. (Scrap). In addition, the size of the dissimilar steel type mixing part (debrised part) where the molten steel component changes depends on the component of the front and rear charge and the specific gravity, and the components are basically similar, in order of specific gravity (higher specific gravity first) When cast, the different steel type mixing part becomes smaller. On the other hand, from the viewpoint of quality, the top charge for starting casting of the continuous casting equipment 302 is not stable, and the quality of the slab is inevitably lowered, so that a high quality slab cannot be cast at the top of the cast. In addition, when a charge of a special component is cast, it is necessary to cast at the end of the casting because of a problem of deterioration in quality of a charge to be cast next. There are many such casting constraints, and in order to reduce manufacturing costs and improve product quality, it is important to create a casting plan that complies with these casting constraints.

本実施形態に係るキャスト計画立案装置の概略構成を図1に示す。このキャスト計画立案装置は、注文データベース格納手段101、注文マトリクス作成手段102、製造品種モデル格納手段104、立案方針設定手段105、第1の最適化計算手段106、初期キャスト計画作成手段107、第2の最適化計算手段108、出力手段であるキャスト計画立案結果表示手段109及びキャスト計画立案結果登録手段110を備えている。注文データベース格納手段101は、複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を注文データベースに格納する。製造品種モデル格納手段104は、それぞれの製造品種についての工程処理発生確率である製造品種モデルを格納する。
以下、各手段の機能を詳細に説明する。
FIG. 1 shows a schematic configuration of a cast planning apparatus according to the present embodiment. This cast plan planning apparatus includes an order database storage means 101, an order matrix creation means 102, a production type model storage means 104, a planning policy setting means 105, a first optimization calculation means 106, an initial cast plan creation means 107, a second Optimization calculation means 108, cast plan result display means 109 and cast plan result registration means 110, which are output means. The order database storage unit 101 stores order information including at least the weight, the production type, and the date of steel extraction request for a plurality of orders in the order database. The production type model storage means 104 stores a production type model which is the probability of occurrence of process processing for each production type.
Hereinafter, the function of each means will be described in detail.

図2に、本実施形態に係るキャスト計画立案装置によるキャスト計画立案方法の概略を示す。
まず、注文マトリクス作成手段102において、注文データベース格納手段101から製造品種の注文情報を読み込み(ステップS201)、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクス103を作成する(ステップS202)。
FIG. 2 shows an outline of a cast plan making method by the cast plan making apparatus according to the present embodiment.
First, the order matrix creation means 102 reads the order information of the production type from the order database storage means 101 (step S201), aggregates the types of steel materials with similar production specifications as one production type, and produces the production type and the steel output request. An order matrix 103 is created in which orders having the same date are aggregated by weight as the same order group (step S202).

次に、立案方針設定手段105において、立案方針に関する情報からキャスト計画を立案する上での各種条件である立案方針パラメタを設定する(ステップS204)。立案方針パラメタとしてより詳しくは、例えば工程能力上限値(工程負荷上限値)、第1と第2の最適化計算時間、第1と第2の最適化計算収束条件、及び各評価指標の優先度(工程負荷の平準化に関する重み、出鋼要望日と出鋼日との差異に関する重み、出鋼ロット拡大に関する重み、製品品質に関する重み等)等がある。   Next, the planning policy setting means 105 sets planning policy parameters that are various conditions for formulating a cast plan from information related to the planning policy (step S204). More specifically, as the planning policy parameters, for example, the process capability upper limit value (process load upper limit value), the first and second optimization calculation times, the first and second optimization calculation convergence conditions, and the priority of each evaluation index (Weight regarding leveling of process load, weight regarding difference between output date and output date, weight related to expansion of output steel lot, weight related to product quality, etc.).

次に、第1の最適化計算手段106において、製造品種モデル格納手段104から製造品種モデルを読み込み、また、注文マトリクス作成手段102から注文マトリクス103を読み込む(ステップS203)。そして、製造品種モデル、注文マトリクス103及び立案方針設定手段105から読み込んだ立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数と、出鋼量が出鋼能力上限値以下になるという出鋼量制約を数式で表わした制約式を作成する(ステップS205)。そして、多目的混合整数計画法により評価関数を最小又は最大にして最適化計算を行い(ステップS206)、日別の製造品種別の出鋼量である製造品種別充当枠を算出する。   Next, in the first optimization calculation means 106, the production type model is read from the production type model storage means 104, and the order matrix 103 is read from the order matrix creation means 102 (step S203). Then, using the planning policy parameters read from the production model, the order matrix 103, and the planning policy setting means 105, at least an evaluation value related to the leveling of the process load and an evaluation value related to the difference between the steel output request date and the steel output date And an evaluation function expressed by a weighted linear sum of the evaluation value related to the steel output lot expansion and a constraint expression expressing the steel output amount constraint that the steel output amount is equal to or less than the upper limit of the steel output capacity by a mathematical expression ( Step S205). Then, optimization calculation is performed by minimizing or maximizing the evaluation function by the multi-purpose mixed integer programming method (step S206), and an allocation frame for each production type that is a steel output amount for each production type is calculated.

次に、初期キャスト計画作成手段107において、ステップS206で算出した製造品種別充当枠を基に、キャスト計画の初期値である初期キャスト計画を作成する(ステップS207)。
次に、第2の最適化計算手段108において、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、線形式で表わすことが難しい製品品質に関する鋳造制約の違反回数に関する評価値の重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう(最小値又は最大値が変化しなくなるまで)、ステップS207で作成したキャスト計画の初期値を用いて探索手法によりキャスト計画を算出する(ステップS208)。
次に、ステップS208で算出したキャスト計画を、ディスプレイ等の表示装置からなるキャスト計画立案結果表示手段109により表示する(ステップS209)。
Next, the initial cast plan creating means 107 creates an initial cast plan that is an initial value of the cast plan based on the appropriation frame for each product type calculated in step S206 (step S207).
Next, in the second optimization calculation means 108, at least an evaluation value related to leveling of the process load, an evaluation value related to the difference between the steel output request date and the steel output date, an evaluation value related to the steel output lot expansion, and a line Constraint conditions including the output amount constraint that the steel output is below the upper limit of the steel output capacity, using an evaluation function expressed as a weighted linear sum of the evaluation values related to the number of violations of casting constraints related to product quality that is difficult to express A cast plan is calculated by a search method using the initial value of the cast plan created in step S207 so that it becomes the minimum or maximum within the range satisfying (until the minimum value or maximum value does not change) (step S208).
Next, the cast plan calculated in step S208 is displayed by the cast plan creation result display means 109 including a display device such as a display (step S209).

立案者はキャスト計画立案結果をチェックし(ステップS210)、キャスト計画立案結果が好ましければキャスト計画立案結果登録手段110によりキャスト計画立案結果を登録して(ステップS211)終了し、キャスト計画立案結果が好ましくなければ立案方針設定手段105において立案方針の再設定を行い、処理ステップS204〜S210を繰り返す。   The planner checks the cast plan drafting result (step S210), and if the cast plan drafting result is favorable, the cast plan drafting result registration means 110 registers the cast plan drafting result (step S211), and the process ends. If the result is not preferable, the planning policy setting unit 105 resets the planning policy and repeats the processing steps S204 to S210.

以下、主要部である第1の最適化計算手段106で実行される処理(ステップS206)、初期キャスト計画作成手段107で実行される処理(ステップS207)、第2の最適化計算手段108で実行される処理(ステップS208)について詳細に説明する。
下記に記載の製造品種とは、転炉の出鋼成分が同一で、精整工程の負荷が類似した注文のまとまりを意味し、厚板製品や鋼管製品の製造ラインでは、精整工程の負荷平準化が重要であるため、出鋼成分と精整の通過工程パターンが同じ注文のまとまりを製造品種としている。例えば、出鋼成分Aで通過工程パターンが100・・・1の製造品種は「A_100・・・1」という記号で表される。このように、製造品種は出鋼成分を精整の通過工程パターンで細分化した構成(出鋼成分を大分類、通過工程パターンを小分類とした区分け)となっているが、精整工程の負荷が類似した注文をまとめることができれば良く、例えば分野毎(造船分野や建築分野、産業機械分野等)に精整工程の負荷がほぼ同じであり、塗装有無が違う程度であれば、出鋼成分を大分類、分野を中分類、塗装有無を小分類と区分けした製造品種を用いても構わない。また、上記の通過工程パターンとは、それぞれの精整工程の通過有無の予測値(0:通過し難い、1:通過し易い)を精整工程の順番に並べたコードである。予測値の算出方法は、過去の製造実績データを学習データとして、注文の製造仕様からそれぞれの精整工程の通過有無を予測するモデルを決定木等の手法を用いて構築すれば良い。ただし、上記では通過工程パターンは、それぞれの精整工程の通過有無の予測値を順番に並べた記号としているが、通過有無の代わりに通過頻度を離散化した記号を用いても構わない。例えば精整工程の通過頻度をA(低頻度)、B(中頻度)、C(高頻度)の3つの記号で表すこととし、過去の製造実績データを学習データとして、それぞれの精整工程の通過頻度の記号(A,B,C)を、注文の製造仕様から予測するモデルを構築、その予測モデルの予測値を精整工程の順番に並べて通過工程パターンとしても良い。
Hereinafter, the process executed by the first optimization calculation means 106 (step S206), the process executed by the initial cast plan creation means 107 (step S207), and the second optimization calculation means 108. The process (step S208) to be performed will be described in detail.
The production types listed below mean a group of orders with the same steel composition in the converter and similar load on the finishing process. In the production line for thick plate products and steel pipe products, the load on the finishing process Because leveling is important, the production varieties consist of a group of orders that have the same steelmaking process and finishing process pattern. For example, a production type having a steel output component A and a passing process pattern of 100... 1 is represented by a symbol “A_100. In this way, the production varieties have a structure in which the steel output components are subdivided into a refined passage process pattern (classification of the steel output components as a large classification and a passage process pattern as a small classification). It is sufficient if orders with similar loads can be put together. For example, if the load of the finishing process is almost the same for each field (shipbuilding field, building field, industrial machine field, etc.) Production varieties may be used in which the components are classified into large categories, the fields are classified into medium categories, and the presence or absence of painting is classified into small categories. Moreover, said passage process pattern is a code in which predicted values (0: difficult to pass, 1: easy to pass) of passage of each finishing process are arranged in the order of the finishing process. As a method for calculating a predicted value, a model for predicting whether or not each refining process has passed from a manufacturing specification of an order may be constructed using a method such as a decision tree, using past manufacturing performance data as learning data. However, in the above description, the passing process pattern is a symbol in which the predicted values of the passing or not of each refining process are arranged in order. However, a symbol in which the passing frequency is discretized may be used instead of the passing or not. For example, the passing frequency of the refining process is represented by three symbols A (low frequency), B (medium frequency), and C (high frequency), and past manufacturing performance data is used as learning data, and each refining process A model that predicts the symbol (A, B, C) of the passing frequency from the manufacturing specifications of the order may be constructed, and the predicted values of the predicted model may be arranged in the order of the refinement process to form a passing process pattern.

表2は、製造品種モデル格納手段104に格納されている製造品種モデル(r[i][j][l])の一例を示す。また、製造品種モデルr[i][j][l]とは、それぞれの製造品種についての精整工程の処理発生確率である。製造品種モデルの品種区分として、出鋼成分iがI種類あり、それぞれの出鋼成分iごとにJ[i]種類の通過工程パターンjが存在する。精整工程lの数はL工程存在し、ガス(l=1)、矯正(l=2)、手入(l=3)、・・・、試験(l=L)の順番となっている。製造品種は出鋼成分と通過工程パターンの組合せであり、製造品種の種類の数は、J[1]からJ[I]の値の合計となる。製造品種ごとに精整工程の発生率が異なる。例えば出鋼成分A(i=1)、通過工程パターン100・・・1(j=2)(以下A_100・・・1)の製造品種は、ガス工程の発生確率が0.3、矯正工程の発生確率が0.1、手入工程の発生確率が0.1であることを示している。   Table 2 shows an example of the manufactured product model (r [i] [j] [l]) stored in the manufactured product model storage unit 104. Further, the manufactured product model r [i] [j] [l] is the processing occurrence probability of the refining process for each manufactured product. As the product category of the production product model, there are I types of steel output components i, and there are J [i] types of passing process patterns j for each of the steel output components i. The number of refining steps l is L, and the order is gas (l = 1), correction (l = 2), care (l = 3),..., Test (l = L). . The production type is a combination of the steel output component and the passing process pattern, and the number of types of the production type is the sum of the values from J [1] to J [I]. The incidence of the refining process is different for each product type. For example, the production type of the steel output component A (i = 1) and the passing process pattern 100... 1 (j = 2) (hereinafter A_100... 1) has a gas process occurrence probability of 0.3, The occurrence probability is 0.1, and the occurrence probability of the care process is 0.1.

Figure 0006299155
Figure 0006299155

表3は、注文マトリクス作成手段102で作成した注文マトリクス(xr[i][j][k])103の一例を示す。注文マトリクス103は、納期を基準にして精整工程から下工程を遡って、どの日(k)にどの製造品種(i,j)をどれだけの量出鋼して欲しいと要望されている出鋼要望量を、製造品種(行)及び出鋼要望日(列)の升目に配列して表記したものである。ここで、kは日付を表す番号であり、現在の立案日を1とし、立案期間をK日(k=1〜K)としている。 Table 3 shows an example of the order matrix (x r [i] [j] [k]) 103 created by the order matrix creating means 102. The order matrix 103 is requested to return the production process (i, j) and how much steel on which day (k) by going back from the refining process to the lower process on the basis of the delivery date. The amount of steel required is expressed by arranging it in a grid of production type (row) and date of request for steel production (column). Here, k is a number representing a date, where the current planning date is 1, and the planning period is K days (k = 1 to K).

Figure 0006299155
Figure 0006299155

表4は、立案方針設定手段105で設定した立案方針パラメタの一つである工程能力上限値(yr[l][k])の一例を示す。表4では、全ての工程の全ての処理日の能力が300tonとなっているが、定修等で工程が停止するときには処理能力が少なくなる。 Table 4 shows an example of the process capability upper limit value (y r [l] [k]) that is one of the planning policy parameters set by the planning policy setting means 105. In Table 4, the capacity of all processing days of all processes is 300 tons, but the processing capacity decreases when the process stops due to regular repair or the like.

Figure 0006299155
Figure 0006299155

第1の最適化計算手段106では、線形で記述可能な制約式と評価関数を用いて、表5に示すような製造品種別充当枠x[i][j][k]を決定する。製造品種別充当枠x[i][j][k]とは、出鋼成分iの通過パターンjの製造品種を日付kに出鋼する量である。注文の納期と通過工程が様々であるため、表3に示した注文マトリクス103では様々な日に様々な出鋼成分の鋼を鋳造しなければならないが、表5の太枠で囲まれた部分のように、出鋼成分Aであれば、4月2日と4月3日、出鋼成分Bであれば、4月2日と4月14日、出鋼成分Xであれば、4月1日と4月14日のように、日別に鋳造する出鋼成分がまとまっていることが判る。このように、日別に鋳造する出鋼成分の種類の数が少ない(同鋼種連々数が多い)製造品種別充当枠を計算することが第1の最適化計算手段106での目的となる。ただし、製造品種別充当枠を計算する際には、上記出鋼成分の種類の数以外にも考慮しなければならない制約や評価関数があり、それらに関して説明する。   The first optimization calculation means 106 determines a production type-specific allocation frame x [i] [j] [k] as shown in Table 5 using a linearly described constraint equation and an evaluation function. The production type-specific allocation frame x [i] [j] [k] is the amount of production of the production type of the passage pattern j of the steel output component i on date k. Since the delivery date and the passing process of orders are various, in the order matrix 103 shown in Table 3, steels with various steel output components must be cast on various days, but the part surrounded by the thick frame in Table 5 As in the case of the steel output component A, April 2 and April 3, if the steel output component B is April 2 and April 14, if the steel output component X is April As shown on the 1st and April 14th, it can be seen that the steel components to be cast by day are gathered. As described above, the first optimization calculation means 106 is to calculate the allocation frame for each production type in which the number of types of outgoing steel components to be cast on a daily basis is small (the number of the same steel types is large). However, there are constraints and evaluation functions that must be taken into consideration in addition to the number of types of steel output components when calculating the production type allocation frame, which will be described.

Figure 0006299155
Figure 0006299155

まず、出鋼量には限界があり、第k日の日別出鋼量S[k]は式(1)で示される出鋼量制約を受ける。ここで、S_maxは1日の出鋼能力上限値を表わす。   First, there is a limit to the amount of steel output, and the daily steel output S [k] on the kth day is subject to the amount of steel output indicated by equation (1). Here, S_max represents the upper limit of steel capacity for one sunrise.

Figure 0006299155
Figure 0006299155

第k日、出鋼成分iの出鋼量C[i][k]と第k日、出鋼成分iの工程パターンj(=1、2・・・J[i])に対する製造品種別充当枠x[i][j][k]の合計値、及び第k日、出鋼成分iの請求余材β[i][k]が式(2)の関係で表わされる。ここで、J[i]は出鋼成分iの通過工程パターンの種類の数である。   Approval by production type for the amount of steel output C [i] [k] of the steel output component i on the kth day and the process pattern j (= 1, 2... J [i]) of the steel output component i on the kth day. The total value of the frames x [i] [j] [k] and the billing surplus material β [i] [k] of the k-th day and the steel output component i are expressed by the relationship of the formula (2). Here, J [i] is the number of types of passing process patterns of the steel output component i.

Figure 0006299155
Figure 0006299155

注文マトリクス103の出鋼要望日の通りに出鋼する必要はなく、出鋼要望日との乖離が大きくない範囲で出鋼すれば良い。ある日の出鋼量には異なる出鋼要望日のものが含まれている。第k日、出鋼成分i、通過工程パターンjの製造品種別充当枠x[i][j][k]は、第k日、出鋼成分i、通過工程パターンj、出鋼要望日tの製造品種別出鋼要望日別充当枠xt[i][j][t][k]の立案期間(K日間)内の累積値として式(3)で表わされる。 It is not necessary to output steel as per the steel output request date of the order matrix 103, and it is sufficient to output steel in a range where the deviation from the steel output request date is not large. A certain amount of steel at sunrise includes those for different steelmaking dates. Approval frame x [i] [j] [k] for each production type of the k-th day, the steel output component i, and the passing process pattern j is the kth day, the steel output component i, the passing process pattern j, and the steel output request date t As a cumulative value within the planning period (K days) of the steelmaking request-specific allocation frame x t [i] [j] [t] [k] for each production type, it is expressed by equation (3).

Figure 0006299155
Figure 0006299155

全体としての注文量と生産量は釣り合っているので、立案期間(K日間)内において、出鋼成分i、通過工程パターンj、出鋼要望日tの注文マトリクスxr[i][j][t]と第k日、出鋼成分i、通過工程パターンjの製造品種別充当枠x[i][j][k]との関係は式(4)で表わされる。 Since the order quantity and the production quantity as a whole are balanced, within the planning period (K days), the order matrix x r [i] [j] [ The relationship between t], the kth day, the steel output component i, and the production type allocation frame x [i] [j] [k] of the passing process pattern j is expressed by Equation (4).

Figure 0006299155
Figure 0006299155

工程負荷は工程の発生率に左右されるので、第k日、工程番号lの工程負荷y[l][k]は、第k日、出鋼成分i、通過工程パターンjの製造品種別充当枠x[i][j][k]と、出鋼成分i、通過工程パターンj、工程番号lの工程発生率である製造品種モデルr[i][j][l]により式(5)により関係付けられる。ここで、Iは出鋼成分の種類の数である。   Since the process load depends on the rate of occurrence of the process, the process load y [l] [k] on the kth day and the process number l is allocated to the kth day, the outgoing steel component i, and the passing process pattern j by production type. Formula (5) using the frame x [i] [j] [k], the production rate model r [i] [j] [l], which is the process occurrence rate of the steel output component i, the passing process pattern j, and the process number l Are related by Here, I is the number of types of steel output components.

Figure 0006299155
Figure 0006299155

ロットサイズLOT_SIZEは転炉での1ロット(1チャージ)の処理量であり、第k日の出鋼成分iの出鋼量C[i][k]と、第k日の出鋼成分iのロット数δL[i][k]を用いて式(6)により関係付けられる。 The lot size LOT_SIZE is the processing amount of one lot (one charge) in the converter, and the amount of steel output C [i] [k] of the steel component i at the k-th sunrise and the number of lots δ L of the steel component i at the k-th sunrise. Using [i] [k], the relationship is given by equation (6).

Figure 0006299155
Figure 0006299155

第k日、出鋼成分iの出鋼があるか否かを式(7)表わす。第k日に出鋼成分iの出鋼があればδc[i][k]は1をとり、そうでなければ0をとるとする。 Expression (7) represents whether or not there is a steel output of the steel output component i on the kth day. It is assumed that δ c [i] [k] is 1 if there is steel output of the steel output component i on the kth day, and 0 if not.

Figure 0006299155
Figure 0006299155

ただし、C[i][k]の最大値をMとする。すなわち、式(7)は、下式(8)を定式化したものである。   However, the maximum value of C [i] [k] is M. That is, Formula (7) formulates the following Formula (8).

Figure 0006299155
Figure 0006299155

出鋼成分毎に設定される出鋼日の最小の間隔日数span[i]を用いて、出鋼成分毎の出鋼計画日に関する制約は式(9)のように表される。   Using the minimum interval days span [i] set for each steel output component, the constraint on the steel output planned date for each steel output component is expressed as shown in Equation (9).

Figure 0006299155
Figure 0006299155

工程l毎に設定された日数achieve_day[l]以降の精整工程の仕掛をある一定以上確保する。初期仕掛stock_0、第k日、工程lの仕掛stock[l][k]の関係を式(10)に表わす。   A certain number or more of devices for the refining process after the number of days achieve_day [l] set for each process l are secured. The relationship between the initial in-process stock_0, the k-th day, and the in-process stock [l] [k] of the process l is expressed by Expression (10).

Figure 0006299155
Figure 0006299155

安全仕掛を確保する制約式はsafety_stock[l]を用いて式(11)のように表される。   The constraint equation for ensuring the safety mechanism is expressed as equation (11) using safety_stock [l].

Figure 0006299155
Figure 0006299155

出鋼成分毎に設定される1キャスト単位の出鋼杯数H[i]、キャスト数h[i][k]を用いて、キャストの整数倍で出鋼する制約は式(12)のように表される。   Using the number of cast steel cups H [i] and cast number h [i] [k] per cast set for each steel output component, the constraint for steel output at an integral multiple of the cast is as shown in Equation (12) It is expressed in

Figure 0006299155
Figure 0006299155

式(13)は立案者により設定された日別出鋼成分別出鋼計画量waku[i][k]に関する制約である。   Equation (13) is a constraint on the daily steel production schedule by amount of steel production waku [i] [k] set by the planner.

Figure 0006299155
Figure 0006299155

次に、評価関数(14)〜(19)を定義する。式(14)は、先行出鋼量、遅れ出鋼量の最小化、即ち、出鋼要望日と出鋼日との差異の最小化を志向する評価指標である。   Next, evaluation functions (14) to (19) are defined. Formula (14) is an evaluation index that aims at minimizing the amount of preceding steel output and the amount of delayed steel output, that is, minimizing the difference between the steel output request date and the steel output date.

Figure 0006299155
Figure 0006299155

ただし、ref[i][j][k]は、第k日までの出鋼成分i、通過工程パターンjの製造品種の出鋼充当量の累積値Σxt[i][j][t][q](q=1〜k)に対する目標値であり、下式(15)のように表わされる。 However, ref [i] [j] [k] is the cumulative value Σx t [i] [j] [t] of the steel output equivalent for the production type of the steel output component i and the passing process pattern j up to the kth day. This is a target value for [q] (q = 1 to k), and is represented by the following equation (15).

Figure 0006299155
Figure 0006299155

式(16)は第k日の総出鋼量S[k]と第k日の出鋼能力目標値Sr[k]との差の最小化を志向する評価関数である。 Equation (16) is an evaluation function aimed at minimizing the difference between the total steel output S [k] on the k-th day and the steel capacity target value S r [k] on the k-th sunrise.

Figure 0006299155
Figure 0006299155

式(17)は工程負荷の平準化を志向した評価関数であり、3日間の工程負荷の移動平均と工程能力上限値との差の最小化を志向する評価関数である。   Expression (17) is an evaluation function aimed at leveling the process load, and is an evaluation function aimed at minimizing the difference between the moving average of the process load for 3 days and the process capability upper limit value.

Figure 0006299155
Figure 0006299155

式(18)は請求余材の最小化を志向した評価関数である。   Equation (18) is an evaluation function aimed at minimizing bills remaining.

Figure 0006299155
Figure 0006299155

式(19)は鋳造時の異鋼種継目の数の最小化(出鋼ロット拡大)を志向した評価関数である。   Equation (19) is an evaluation function aimed at minimizing the number of dissimilar steel joints during casting (expansion of steelmaking lots).

Figure 0006299155
Figure 0006299155

また、遅れ出鋼量最小、先行出鋼量最小においては、過度の先行出鋼、遅れ出鋼を抑制するために、式(20)で表される図3に示すような重み関数を式(14)の評価関数に付与する。   Further, in order to suppress excessive preceding steel and delayed steel in the minimum amount of delayed steel and the minimum amount of advanced steel, a weight function as shown in FIG. 14) to the evaluation function.

Figure 0006299155
Figure 0006299155

例えばa=2、b=5、c=100とする。この重み関数をW(k,t)と表わす。W(k,t)を式(14)に追加し、式(14)〜(19)の重み付き線形和を取ると各指標のバランスを取った総合評価指標(21)を得る。   For example, a = 2, b = 5, and c = 100. This weight function is represented as W (k, t). When W (k, t) is added to Expression (14) and a weighted linear sum of Expressions (14) to (19) is taken, a comprehensive evaluation index (21) in which each index is balanced is obtained.

Figure 0006299155
Figure 0006299155

ここで、W1、W2、W3、W4、W5はそれぞれ、出鋼要望日遵守度すなわち出鋼要望日と出鋼日との差異の程度、出鋼目標量達成度、工程負荷平準度、請求余材最小度及びロットまとめ達成度すなわち出鋼ロット拡大の程度に対する相対的な評価重みである。すなわち、立案方針設定手段105における各評価指標の優先度の設定とは評価重みW1〜W5を設定することである。 Here, W 1 , W 2 , W 3 , W 4 , and W 5 are respectively the degree of compliance with the date of steelmaking request, that is, the degree of difference between the date of steelmaking request and the date of steelmaking, the degree of achievement of the steel output target amount, and the process load. It is a relative evaluation weight with respect to leveling, minimum billing surplus, and lot summary achievement, that is, the degree of steelmaking lot expansion. That is, the setting of the priority of each evaluation index in the planning policy setting unit 105 is to set the evaluation weights W 1 to W 5 .

以上をまとめると、第1の最適化計算手段106は、注文マトリクス103、製造品種モデル及び立案方針設定手段105によって設定される工程能力の上限値と各評価指標の評価重みW1〜W5を用いて、制約式(1)〜(13)と評価関数(14)〜(19)を作成し、立案方針設定手段105において設定される第1の最適化計算時間と第1の最適化計算収束条件に従って混合整数計画法により最適化計算を行い、製造品種別充当枠x[i][j][k]を算出する。なお、混合整数計画法による最適化計算は市販の数理計画法のソルバー等を適宜用いれば良い。 In summary, the first optimization calculation means 106 calculates the upper limit value of the process capability and the evaluation weights W 1 to W 5 of each evaluation index set by the order matrix 103, the production type model and the planning policy setting means 105. The constraint formulas (1) to (13) and the evaluation functions (14) to (19) are created, and the first optimization calculation time and the first optimization calculation convergence set in the planning policy setting means 105 are used. Optimization calculation is performed by the mixed integer programming according to the conditions, and the allocation frame x [i] [j] [k] for each product type is calculated. In addition, the optimization calculation by the mixed integer programming may use a commercially available mathematical programming solver or the like as appropriate.

なお、工程負荷の平準化のための評価関数として、式(17)のように、3日間の工程負荷の移動平均と工程能力上限値との差の絶対値を用いているが、式(17')のように、3日間の工程負荷の移動平均と工程能力上限値との差の2乗としても良いし、式(17'')のように、3日間の工程負荷の移動平均が工程能力上限値を超えた値としても良い。また、移動平均日数は3日間に限定されるものではなく、3日より長くても、短くても良く、移動平均を用いることに限定せず、日別の工程負荷と工程能力上限との差に応じた評価関数としても良い。   As an evaluation function for leveling the process load, the absolute value of the difference between the moving average of the process load for three days and the process capability upper limit value is used as in the formula (17). It may be the square of the difference between the moving average of the process load for 3 days and the upper limit of the process capability as in '), or the moving average of the process load in 3 days is the process as in equation (17' '). It is good also as a value exceeding the capacity upper limit. The moving average days are not limited to 3 days, and may be longer or shorter than 3 days. The moving average days are not limited to using the moving average, and the difference between the daily process load and the process capacity upper limit. An evaluation function according to

Figure 0006299155
Figure 0006299155

工程負荷平準化と同様に、先行出鋼量、遅れ出鋼量の最小化、すなわち出鋼要望日と出鋼日との差異の最小化を志向する評価指標は式(14)に限定されるものではなく、例えば式(14')のように2次関数としても良い。また、W(k,t)は図3では左右対称となっているが、左右非対称(遅れ出鋼量には大きな重み、先行出鋼量には小さな重み)でも良い。   Similar to the process load leveling, the evaluation index aimed at minimizing the amount of prior steel production and delayed steel production, that is, minimizing the difference between the steel production request date and the steel production date is limited to Equation (14). For example, it may be a quadratic function as shown in equation (14 ′). Further, W (k, t) is symmetrical in FIG. 3, but it may be asymmetrical (a large weight for the delayed steel amount and a small weight for the preceding steel amount).

Figure 0006299155
Figure 0006299155

また、式(14)〜(19)の5つの評価指標を最小化するようにしたが、このうち式(14)、(17)、(19)は良いキャスト計画を立案するためには必要であるが、式(16)、(18)は省略可能である。なぜなら、式(16)に関しては、現実としては出鋼能力上限値まで出鋼することが多いため、式(1)の制約式のみを考慮すれば良いからである。また、式(18)に関しては、注文量が出鋼能力と比べて同量以上の場合が多いため、先行出鋼量と遅れ出鋼量を最小化することで、請求余材が少ない計画が得られるからである。また、評価指標は式(14)〜(19)に限定されるものではなく、上記以外の評価指標を式(21)に追加しても構わない。   In addition, although the five evaluation indexes of the formulas (14) to (19) are minimized, among them, the formulas (14), (17), and (19) are necessary for developing a good cast plan. However, equations (16) and (18) can be omitted. This is because, with regard to the equation (16), in reality, the steel is often produced up to the steel production capacity upper limit value, so that only the constraint equation of the equation (1) needs to be considered. In addition, with regard to equation (18), since the order quantity is often equal to or greater than the steel output capacity, there is a plan to reduce the amount of billing surplus by minimizing the preceding steel output and delayed steel output. It is because it is obtained. Further, the evaluation index is not limited to the expressions (14) to (19), and an evaluation index other than the above may be added to the expression (21).

以上のような手順により、日別の製造品種別の出鋼量である製造品種別充当枠x[i][j][k]を算出することができ、日別の出鋼成分別の出鋼量C[i][k]も得られる。
しかしながら、出鋼成分ごとの鋳造順や、キャスト(どこからどこまでが同一キャストか)が決定されておらず、このままでは製造指示に繋げることができない。多くの場合、生産管制担当者が鋳造制約を満足するように、鋳造順やキャストを人手で決定しているが、第1の最適化計算手段106で最適化した納期遵守や精整負荷平準化等を無視して、鋳造制約と鋳造ロット拡大のみ考えて、キャストを計画してしまうこともあり、折角の最適化効果が無くなってしまうことも多い。
そこで、初期キャスト計画作成手段107でキャスト計画の初期値を作成し、第2の最適化計算手段108で工程負荷平準化、出鋼要望日と出鋼日との差異の最小化、出鋼ロット拡大、鋳造制約を総合的に考えたキャスト計画を立案する。
Through the above-described procedure, it is possible to calculate the production type appropriation frame x [i] [j] [k], which is the amount of steel output according to the daily production type, and the daily output by the steel output component. Steel quantity C [i] [k] is also obtained.
However, the order of casting for each steel output component and the cast (from where to where is the same cast) are not determined, and it is not possible to lead to production instructions as it is. In many cases, the production control personnel manually determine the casting order and casting so that the casting constraints are satisfied. However, the first optimization calculation means 106 optimizes the delivery date and leveling load leveling. In many cases, the cast is planned only considering the casting restrictions and the casting lot expansion, and the optimization effect of the corner is often lost.
Therefore, an initial value of the cast plan is created by the initial cast plan creation means 107, the process load leveling is performed by the second optimization calculation means 108, the difference between the desired steel output date and the output date is minimized, and the output steel lot Develop a casting plan that comprehensively considers expansion and casting restrictions.

初期キャスト計画作成手段107では、第1の最適化計算手段106で算出した製造品種別充当枠x[i][j][k]を基に、キャスト計画の初期値を作成する。
まず、式(22)で計算される第k日のチャージ数D[k]から、第k日のキャスト数E[k]及び各キャストのチャージ数F[k][m]を式(23)、式(24)で計算する。
The initial cast plan creation unit 107 creates an initial value of the cast plan based on the production type allocation frame x [i] [j] [k] calculated by the first optimization calculation unit 106.
First, from the number of charges D [k] on the k-th day calculated by the equation (22), the number of casts E [k] on the k-th day and the number of charges F [k] [m] of each cast are expressed by the equation (23). And is calculated by the equation (24).

Figure 0006299155
Figure 0006299155

ここで、Ceiling(・)は小数点以下を整数に切り上げる関数、Round(・)は四捨五入する関数、CAST_SIZEは1つのキャストにおける連々可能な最大のチャージ数であり、F[k][m]は第k日の第m番目のキャストのチャージ数を意味する(m=1、・・・、E[k])。式(24)で全てのキャストのチャージ数を計算した結果、F[k][l]からF[k][E[k]]までの合計値がD[k]と異なる場合は、F[k][l]から順に1を加算もしくは減算して調整する。例えば、D[k]=28、CAST_SIZE=12のときには、E[k]=3、F[k][1]=F[k][2]=F[k][3]=9となるが、F[k][1]+F[k][2]+F[k][3]=27(≠D[k])であるため、F[k][1]=10と調整する。
式(22)〜(24)で示される方法は連続鋳造機が1基の場合の計算方法であるが、連続鋳造機が複数存在する場合にも容易に拡張することができる。例えば2台の連続鋳造機が有り、その能力差が3:4の場合、式(22)で計算されたチャージ数D[k]を3:4に分割し、それぞれのキャスト数とそのチャージ数を式(23)と式(24)で計算すれば良い。
Here, Ceiling (•) is a function that rounds up decimals to an integer, Round (•) is a function that rounds off, CAST_SIZE is the maximum number of charges that can be consecutively performed in one cast, and F [k] [m] is the first It means the number of charges of the mth cast on day k (m = 1,..., E [k]). When the total number of charges from F [k] [l] to F [k] [E [k]] is different from D [k] as a result of calculating the number of charges for all casts using Equation (24), F [k] k] [l] are adjusted by adding or subtracting 1 in order. For example, when D [k] = 28 and CAST_SIZE = 12, E [k] = 3 and F [k] [1] = F [k] [2] = F [k] [3] = 9. , F [k] [1] + F [k] [2] + F [k] [3] = 27 (≠ D [k]), so that F [k] [1] = 10 is adjusted.
The method represented by the formulas (22) to (24) is a calculation method in the case where there is one continuous casting machine, but can be easily extended even when there are a plurality of continuous casting machines. For example, if there are two continuous casting machines and the difference in capacity is 3: 4, the charge number D [k] calculated by Equation (22) is divided into 3: 4, and the number of casts and the number of charges are divided. May be calculated by Equation (23) and Equation (24).

上記のようにして、立案期間の各日のキャスト数E[k]と各キャストのチャージ数F[k][m]を決定した後、各チャージ(第k日の第m番目のキャストの第n番目のチャージ)に、製造品種を割り付ける(n=1、・・・、F[k][m])。各チャージと製造品種との割り付けは、図4に示すように、各チャージの出鋼成分と、通過工程パターン別の出鋼量、及び出鋼要望日別注文量を決定する処理である。
まず、製造品種別充当枠(x[i][j][k])より、日付順、製造品種番号順、通過工程パターン番号順に出鋼成分と通過工程パターン別の出鋼量を決定する。例えば表5の製造品種別充当枠で4月1日が出鋼成分Xのみ出鋼する場合には、図4のような割り付けとなる。ここでは、転炉での1ロットの処理量(LOT_SIZE)を200tonとしている。表5の製造品種別充当枠によれば4月1日の出鋼成分Xで通過工程パターン000・・・0の製造品種の出鋼量が440tonとなっており、図4の「出鋼量」の欄に示すように、キャスト1の1チャージ目に200ton、2チャージ目に200ton、3チャージ目に40tonに割り付けられている。また、表5の製造品種別充当枠によれば4月1日の出鋼成分Xで通過工程パターン100・・・0の製造品種の出鋼量が230tonとなっており、図4の「出鋼量」の欄に示すように、キャスト1の3チャージ目に、通過工程パターン000・・・0での40tonと合わせてLOT_SIZE200tonとなるように160tonに割り付けられている。
次に、製造品種別の出鋼量と見合う出鋼要望日別注文量を出鋼要望日が早い順番に割り付ける。例えば、図4に示すように、キャスト1の1チャージ目では、出鋼成分Xで通過工程パターン000・・・0の製造品種を200ton出鋼することになるが、表3の出鋼要望日別注文量によれば、出鋼成分Xで通過工程パターン000・・・0の製造品種の注文の中で出鋼要望日の早い注文は、4月1日の230tonであるため、図4に示すように、そのうち200tonをキャスト1の1チャージ目に割り付ける。2チャージ目も該製造品種を200ton出鋼することになるが、4月1日の該製造品種の注文量の残30tonを割り付け、残りの170tonを4月2日と4月3日の注文に、それぞれ50ton、120tonに分けて割り付けている。
これにより、チャージと製造品種との割り付けを行うことができるが、製造品種別出鋼要望日別充当枠xt[i][j][t][k]を用いて、通過パターン別の出鋼量と見合う出鋼要望日別注文量を決定しても良い。
このようにして、立案期間の各日のキャストとそのチャージ数、各チャージの出鋼成分と製造品種別出鋼量、及び出鋼要望日別注文量が決定され、これがキャスト計画の初期値となる。
As described above, after determining the number of casts E [k] for each day in the planning period and the number of charges F [k] [m] for each cast, each charge (the number of the mth cast on the kth day) The production type is assigned to the nth charge) (n = 1,..., F [k] [m]). As shown in FIG. 4, the allocation of each charge and the production type is a process of determining a steel output component of each charge, a steel output amount for each passing process pattern, and an order amount for each steel output request date.
First, the amount of steel output and the amount of steel output for each passing process pattern are determined in order of date, manufacturing product number, and passing process pattern number from the allocation frame for each manufacturing type (x [i] [j] [k]). For example, in the case of allocation of only the steel output component X on April 1 in the allocation frame by production type in Table 5, the allocation is as shown in FIG. Here, the processing amount (LOT_SIZE) of one lot in the converter is 200 tonnes. According to the allocation frame by production type in Table 5, the amount of steel output of the production type of the passage process pattern 000... 0 in the steel component X on April 1 is 440 tons. As shown in the column, 200 ton is assigned to the first charge of cast 1, 200 ton is assigned to the second charge, and 40 ton is assigned to the third charge. Moreover, according to the allocation frame by production type in Table 5, the amount of steel output of the production type of the passing component pattern 100... 0 with the steel component X on April 1 is 230 tons. As shown in the column “”, the third charge of cast 1 is assigned to 160 tons so as to be LOT_SIZE 200 tons together with 40 tons in the passing process pattern 000.
Next, the order quantity according to the desired steel production date corresponding to the production quantity according to the production type is assigned in the order from the early steel production request date. For example, as shown in FIG. 4, in the first charge of cast 1, 200 ton steel is produced for the production type of passing process pattern 000. According to the other order quantity, the order of the production date of the production process of the production process component 000... As shown, 200 tons are allocated to the first charge of cast 1. The second charge will also produce 200 tons of the production type, but the remaining 30 tons of the order quantity of the production type on April 1 will be allocated, and the remaining 170 tons will be placed on orders on April 2 and April 3 , And allocated to 50ton and 120ton respectively.
As a result, it is possible to assign the charge and the production type. However, using the production type-specific steel request date allocation frame x t [i] [j] [t] [k] You may determine the order quantity according to the steel production request day according to steel quantity.
In this way, the casting of each day in the planning period and the number of charges, the steel output composition of each charge and the amount of steel output by production type, and the order amount by date of steel output request are determined, and this is the initial value of the cast plan. Become.

第2の最適化計算手段108では、探索手法を用いて、複雑な鋳造制約も考慮したキャスト計画を立案する。
図5に、第2の最適化計算手段108での処理を示す。以下では製品品質に関する鋳造制約として、重点的に守らなければならない3つの重制約と、できれば守った方が良い2つの軽制約を例として説明する。なお、鋳造制約の内容と重制約と軽制約の区別は連続鋳造設備や製品品種毎に異なり、以下に示すのはあくまで一例である。
(鋳造制約1:重制約)指定した出鋼成分のチャージはキャストの先頭で鋳造してはならない(スタート不可)。
(鋳造制約2:重制約)指定した出鋼成分のチャージはキャストの最後で鋳造しなければならない(ラスト指定)。
(鋳造制約3:重制約)指定した出鋼成分は1つのキャスト内で指定したチャージ数以下でなければならない(連々数制限)。
(鋳造制約4:軽制約)指定した2つの出鋼成分のチャージは連続して鋳造しない方が良い(異鋼種継目相性)。
(鋳造制約5:軽制約)キャスト内でチャージは比重が大きい順に鋳造した方が良い(比重順)。
The second optimization calculation means 108 uses the search method to create a cast plan that takes into account complicated casting constraints.
FIG. 5 shows processing in the second optimization calculation means 108. In the following, as a casting constraint related to product quality, three heavy constraints that should be strictly observed and two light constraints that should be preferably observed will be described as an example. Note that the content of casting constraints and the distinction between heavy constraints and light constraints differ for each continuous casting facility and product type, and the following is just an example.
(Casting Constraint 1: Heavy Constraint) The specified steel component charge must not be cast at the beginning of the cast (not startable).
(Casting constraint 2: Heavy constraint) The specified steel output component charge must be cast at the end of casting (last designation).
(Casting restriction 3: Heavy restriction) The specified steel output component must be less than or equal to the number of charges specified in one cast (restricted number of consecutive).
(Casting constraint 4: light constraint) It is better not to continuously cast the specified two steel output components (dissimilar steel joint compatibility).
(Casting restriction 5: Light restriction) It is better to cast the charge in descending order of specific gravity (in order of specific gravity).

まず、初期キャスト計画作成手段107で作成した初期キャスト計画を現在解及び最適解とし、評価値を計算する(ステップS501)。評価関数は式(21)と下式(25)で計算される評価値JSとの合計値を返す関数である下式(26)とする。 First, the initial cast plan created by the initial cast plan creation unit 107 is used as a current solution and an optimal solution, and an evaluation value is calculated (step S501). The evaluation function is the following equation (26) that is a function that returns the total value of the evaluation value J S calculated by the equation (21) and the following equation (25).

ここで、JHは、製品品質に関する重制約を遵守したキャスト計画を立案するための評価指標である。JLは、製品品質に関する軽制約を遵守したキャスト計画を立案するための評価指標である。v1〜v5は、それぞれ鋳造制約1〜5を違反したチャージ数(制約違反回数)、W6〜W10はそれらの評価重みである。W6〜W10の値の大きさは、鋳造制約の重要度に依存して決まり、重点的に守る必要がある重制約の評価重みは軽制約より大きな値が設定される。これらの評価重みの値は、数ケースの条件で最適化計算のテストを行い、望ましい立案結果となるよう調整し、鋳造制約1〜4の出鋼成分の指定や鋳造制約5の出鋼成分毎の比重と共に、立案方針設定手段105で読み込まれる。 Here, JH is an evaluation index for drafting a cast plan that complies with heavy constraints on product quality. JL is an evaluation index for drafting a cast plan that complies with light constraints on product quality. v 1 to v 5 are the numbers of charges that violate the casting constraints 1 to 5 (the number of times the constraint is violated), and W 6 to W 10 are their evaluation weights. The magnitudes of the values of W 6 to W 10 are determined depending on the importance of casting constraints, and the evaluation weights of heavy constraints that need to be strictly observed are set larger than the light constraints. The values of these evaluation weights are tested for optimization calculation under the conditions of several cases, adjusted so as to obtain a desirable plan result, and the specified steel output components of casting constraints 1 to 4 and the output steel components of casting constraint 5 are adjusted. Are read by the planning policy setting means 105.

Figure 0006299155
Figure 0006299155

鋳造制約1〜5はチャージの鋳造順に関する制約であり、それぞれを線形式で表わすことは難しいが(不可能ではないが、変数の数が膨大になる)、図4に示すように、キャストと鋳造するチャージが決まれば、鋳造制約1〜5を違反しているか否かは容易に判断することができ、式(25)の評価値JSを計算することができる。なお、重点的に守る必要がある重制約を評価関数に組み込んだ場合は、評価重みの値に依っては重制約を違反するキャスト計画が立案されることもあるが、重制約を遵守することが必須の場合には、重制約を評価関数に組み込む替わりに(式(25)で評価値JSを求める際、重制約の評価値JHを加えないことに相当)、近傍解を求める際、重制約を違反するチャージ群の交換は禁止することで、重制約を必ず守るキャスト計画を立案できるようにしても良い。ここで、鋳造制約1〜3のうち、少なくとも1つの製品品質に関する鋳造制約は第2の最適化計算手段108で上記のように考慮する必要があるが、製品品質に関する鋳造制約4、5は、必要に応じていずれかもしくは両方を評価指標として式(25)に加えれば良い。また、製造コストに関する評価指標等を式(25)に加えても構わない。また、第1の最適化計算手段106と同様に、式(21)の評価関数には、少なくとも式(14)、(17)、(19)は必要であるが、式(16)、(18)は省略可能である。また、評価指標は式(14)〜(19)以外の評価指標を式(21)に追加しても構わない。 Casting constraints 1 to 5 are constraints related to the casting order of charges, and although it is difficult to represent each in a linear format (not impossible, the number of variables is enormous), but as shown in FIG. If the charge to be cast is determined, it can be easily determined whether or not the casting constraints 1 to 5 are violated, and the evaluation value J S of the equation (25) can be calculated. If heavy constraints that need to be strictly observed are incorporated in the evaluation function, a cast plan that violates the heavy constraints may be drafted depending on the evaluation weight value. Is essential, instead of incorporating the heavy constraint into the evaluation function (equivalent to not adding the heavy constraint evaluation value J H when obtaining the evaluation value J S in equation (25)), It is also possible to make a cast plan that always obeys heavy constraints by prohibiting exchange of charge groups that violate heavy constraints. Here, among the casting constraints 1 to 3, the casting constraint related to at least one product quality needs to be considered by the second optimization calculation means 108 as described above. Any one or both may be added to the formula (25) as an evaluation index as necessary. In addition, an evaluation index related to the manufacturing cost may be added to Expression (25). Similarly to the first optimization calculation means 106, the evaluation function of the equation (21) requires at least the equations (14), (17), (19), but the equations (16), (18 ) Can be omitted. Moreover, you may add evaluation indexes other than Formula (14)-(19) to Formula (21) as an evaluation index.

次に、現在解の一部を修正した近傍解を作成し、その評価値を計算する(ステップS502)。近傍解の作成方法は幾つも考えられるが、その一例を図6に示す。図6に示すように、現在解の中から2つのチャージ群を乱数や順番等で選び、両者を交換する(入れ替える)ことで近傍解を作成すれば良い。2つのチャージ群は、図6(a)に示すように異なるキャストから選んでも良いし、図6(b)に示すように同一チャージから選んでも良い(ただし、2つのチャージ群が重なることは不可)。また、図6では連続鋳造機が1基の場合を示しているが、複数基ある場合も、異なる連続鋳造機から2つのチャージ群を選び交換しても良い。また、図6ではチャージ数が同じチャージ群のみ交換しているが、チャージ数が異なるチャージ群を交換しても構わない。   Next, a neighborhood solution is created by correcting a part of the current solution, and its evaluation value is calculated (step S502). There are various methods for creating a neighborhood solution, and one example is shown in FIG. As shown in FIG. 6, it is only necessary to create a neighborhood solution by selecting two charge groups from the current solution by random numbers, order, etc., and exchanging (swapping) the two. The two charge groups may be selected from different casts as shown in FIG. 6 (a), or may be selected from the same charge as shown in FIG. 6 (b) (however, the two charge groups cannot overlap). ). Further, FIG. 6 shows a case where there is one continuous casting machine, but in the case where there are a plurality of continuous casting machines, two charge groups may be selected and exchanged from different continuous casting machines. In FIG. 6, only the charge groups having the same number of charges are exchanged, but charge groups having different numbers of charges may be exchanged.

このような方法で近傍解を生成して、その評価値を算出する。近傍解の評価値と現在解の評価値の大小関係より、近傍解を受理するか否かを判定する(ステップS503)。ローカルサーチ(山登り法)の場合、近傍解の評価値が現在解のものより良い場合のみ受理するが、シミュレーティッド・アニーリング法(SA法)等は、局所最適解に陥りにくくするため、近傍解の評価値が現在解のものより悪い場合でも、ある確率で受理する。
近傍解を受理しない場合、収束判定(ステップS506)に進む。近傍解を受理する場合、近傍解を現在解とし(ステップS504)、さらに近傍解の評価値が最適解のものよりも良かったならば、近傍解を最適解とする(ステップS505)。
The neighborhood solution is generated by such a method, and the evaluation value is calculated. It is determined whether or not the neighborhood solution is accepted based on the magnitude relationship between the neighborhood solution evaluation value and the current solution evaluation value (step S503). In the case of local search (mountain climbing method), it is accepted only when the evaluation value of the neighborhood solution is better than that of the current solution, but the simulated annealing method (SA method) etc. Even if the evaluation value of is worse than that of the current solution, it is accepted with a certain probability.
When the neighborhood solution is not accepted, the process proceeds to the convergence determination (step S506). When the neighborhood solution is accepted, the neighborhood solution is set as the current solution (step S504). If the evaluation value of the neighborhood solution is better than that of the optimum solution, the neighborhood solution is set as the optimum solution (step S505).

探索手法では真の最適解が得られたか否かの判断ができないため、事前に定められたルールに従い収束判定を行い、収束したと判断する場合には探索を停止する(ステップS506)。収束判定のルールとしては、指定繰り返し回数の計算を行ったか、指定時間の計算を行ったか、最適解の更新が定められた繰り返し回数以上行われなかったか等が用いられる。収束していないと判断された場合には、ステップS502に戻り、探索を繰り返す。収束したと判定された場合には、現在までに得られた最適解をキャスト計画として出力する(ステップS507)。   Since it is not possible to determine whether or not a true optimum solution has been obtained by the search method, convergence determination is performed according to a predetermined rule, and when it is determined that the convergence has been completed, the search is stopped (step S506). As a rule for determining the convergence, whether the specified number of repetitions has been calculated, whether the specified time has been calculated, whether the update of the optimum solution has not been performed more than the predetermined number of repetitions, or the like is used. If it is determined that it has not converged, the process returns to step S502 and the search is repeated. If it is determined that it has converged, the optimal solution obtained so far is output as a cast plan (step S507).

このようにして、詳細な鋳造制約も考慮したキャスト計画が得られ、計算されたキャスト計画がキャスト計画立案結果表示手段109により出力される(ステップS209)。立案者は立案結果を確認し、問題があれば、立案方針を再設定指定し、最適化計算を繰り返すことで、高精度なキャスト計画を立案することができる。
なお、上記では精整負荷の単位を重量としているが、製造品種毎に平均的な単位重量当たりの枚数を予め設定しておき、精整負荷の単位を枚数に変換して取り扱っても良い。
In this way, a cast plan that takes into account detailed casting constraints is obtained, and the calculated cast plan is output by the cast plan formulation result display means 109 (step S209). The planner can confirm the plan result, and if there is a problem, it is possible to formulate a highly accurate cast plan by re-designating the plan policy and repeating the optimization calculation.
In the above description, the unit of the adjustment load is the weight. However, an average number of sheets per unit weight may be set in advance for each manufactured product, and the unit of the adjustment load may be converted into the number.

上述した実施形態に係るキャスト計画立案装置により、表6に示す条件で、キャスト計画を立案した。第2の最適化計算手段108では、鋳造制約1〜5を考慮して最適化計算を行った。   A cast plan was drafted under the conditions shown in Table 6 by the cast plan drafting apparatus according to the embodiment described above. The second optimization calculation means 108 performs the optimization calculation in consideration of the casting constraints 1 to 5.

Figure 0006299155
Figure 0006299155

本発明を適用して最終的に得られたキャスト計画(本発明のキャスト計画と呼ぶ)を図7に、評価値を表7に示す。図7は、各日におけるキャスト、チャージ、鋼種を表わす。本発明のキャスト計画では、鋳造制約1〜5を全て満たすキャスト計画が立案されているので、実行可能な計画となっている。また、表7の「精整処理能力超過量」の評価値から、精整負荷は工程能力の2倍以内となっており、工程に負荷が集中する状況ではなく、荷揃達成率(全注文のうち、出鋼要望日までに出鋼できなかった割合)も95%以上であり、かつ、先行出鋼量(在庫)も約1万tonレベルであるため、良好なキャスト計画が作成されている。なお、本実施例では1つのキャスト内のチャージ数は8チャージに固定しているため、図6のように2つのチャージ群を交換する際、同数のチャージ数のチャージ群を交換することで近傍解を作成している。   The cast plan finally obtained by applying the present invention (referred to as the cast plan of the present invention) is shown in FIG. FIG. 7 shows the cast, charge, and steel type for each day. In the cast plan of the present invention, a cast plan that satisfies all of the casting constraints 1 to 5 is drawn up, and is therefore an executable plan. In addition, from the evaluation value of “excess amount of finishing processing capacity” in Table 7, the finishing load is within twice the process capacity. Among them, the ratio of steel that could not be steeled by the date of request for steelmaking was 95% or more, and the amount of steel in advance (inventory) was about 10,000 tons, so a good casting plan was created. Yes. In this embodiment, the number of charges in one cast is fixed to 8 charges, so when exchanging two charge groups as shown in FIG. Creating a solution.

Figure 0006299155
Figure 0006299155

一方、第2の最適化計算手段108を用いず、初期キャスト計画作成手段107で得られたキャスト計画(従来のキャスト計画と呼ぶ)を図8に、その評価値を表8に示す。図8は、各日におけるキャスト、チャージ、鋼種を表わす。従来のキャスト計画では、太線部分のチャージが鋳造制約を違反しており、このままでは生産指示に繋げることができない。一方、第1の最適化計算手段106の効果により、表8の評価値は、本発明のキャスト計画と同等もしくは若干良いが、本発明のキャスト計画とほとんど差がなく、本発明のキャスト計画が評価値を過度に犠牲にして鋳造制約を満足さている訳ではないことが確認できた。また、計算時間も227秒であり、従来のキャスト計画と比べ12秒(=227−215秒)しか延びておらず、実用的な時間でキャスト計画が立案することができた。   On the other hand, FIG. 8 shows a cast plan (referred to as a conventional cast plan) obtained by the initial cast plan creation means 107 without using the second optimization calculation means 108, and Table 8 shows the evaluation values. FIG. 8 shows the cast, charge and steel type for each day. In the conventional cast plan, the charge in the thick line portion violates the casting constraint, and it cannot be connected to the production instruction as it is. On the other hand, due to the effect of the first optimization calculation means 106, the evaluation values in Table 8 are equal to or slightly better than the cast plan of the present invention, but there is almost no difference from the cast plan of the present invention. It was confirmed that the casting constraints were not satisfied at the sacrifice of the evaluation value. Also, the calculation time is 227 seconds, which is only 12 seconds (= 227-215 seconds) longer than the conventional cast plan, and the cast plan can be drawn up in a practical time.

Figure 0006299155
Figure 0006299155

以上述べたように、数理最適化手法は厳密な最適解を算出することが可能であるが、制約式や評価関数が線形式で表わされる問題に限定される。一方、探索手法は線形式で表わせない複雑な制約や評価関数を持つ問題にも適用できるが、初期値の依存性が高く、初期値が悪い場合には最適解が得られないという問題がある。そこで、まず、数理最適化手法により、線形式で表わすことが可能な主要な制約(出鋼能力制約)と主要な評価関数(工程負荷の平準化、出鋼要望日と出鋼日との差異の最小化、出鋼ロット拡大)を用いて数理計画手法により、日別の製造品種別出鋼量である製造品種別充当枠を計算する。得られた製造品種別充当枠から全立案期間のキャスト計画の初期値を算出することで、線形式で表現できない複雑な鋳造制約は考慮していないものの、出鋼能力のような主要な制約、工程負荷、納期・在庫(出鋼要望日と出鋼日との差異)、出鋼ロット等の主要な指標は考慮しているので、次の探索手法でのキャスト計画の立案にとって、良質な初期値が得られる。そして、このような良質な初期値を用いて、探索手法によりキャスト計画を求めることで、複雑な鋳造制約をも満足し、全立案期間に渡って評価値の優れたキャスト計画が実用的な時間で立案することができる。   As described above, the mathematical optimization method can calculate a strict optimum solution, but is limited to a problem in which constraint equations and evaluation functions are expressed in a linear form. On the other hand, the search method can be applied to problems with complicated constraints and evaluation functions that cannot be expressed in a linear form, but there is a problem that the initial value is highly dependent and an optimal solution cannot be obtained if the initial value is bad. . Therefore, first, the major constraints (steeling capacity constraints) that can be expressed in a line format by mathematical optimization methods and the main evaluation functions (leveling of process load, difference between requested date and output date) The amount of steel to be allocated by production type, which is the amount of steel output by production type by day, is calculated by a mathematical planning method. By calculating the initial value of the cast plan for the entire planning period from the allocation frame by production type obtained, it does not consider complex casting restrictions that can not be expressed in linear form, but it is a major restriction such as steel production capacity, Considering major indicators such as process load, delivery date / inventory (difference between steel production request date and steel production date), steel production lot, etc., it is a good quality initial for the planning of the next search method. A value is obtained. Then, by using such a good initial value to obtain a cast plan by a search method, it is possible to satisfy a complicated casting constraint, and a cast plan with an excellent evaluation value over the entire planning period is a practical time. Can be planned.

本発明を適用することにより、以下のような効果が得られる。
1)数理最適化により厳密な最適解を算出するため、キャスト計画の骨格は最適性が保証された計画となる。
2)このキャスト計画を初期値として、探索手法により複雑な鋳造制約を満足したキャスト計画を立案することにより、複雑な鋳造制約を満足し、かつ、最適性に優れた計画が得られる。
3)探索手法は初期解(初期計画)の依存性が強く、評価値の悪い局所最適解に陥り易いが、数理最適化手法で得られたキャスト計画を初期解としているため、評価値の良い(最適解に近い)初期解を用いるため、最適性に優れた計画を得られる。
4)探索手法のみで最適性に優れた解を得るためには、複数の初期解(例えば100個)を用いて最適化計算を行い、得られた局所最適解の中で最も評価値の優れた計画を採用するという多スタート探索手法が用いられることが多いが、初期解の個数だけ計算時間が延びてしまい、キャスト計画が得られるまでの時間が膨大に掛ってしまう。本発明を適用することにより、複数の初期解を用いないため、短時間で最適性の優れたキャスト計画が得られる。
By applying the present invention, the following effects can be obtained.
1) Since a strict optimal solution is calculated by mathematical optimization, the skeleton of the cast plan is a plan in which optimality is guaranteed.
2) Using this cast plan as an initial value, a cast plan that satisfies complex casting constraints by a search method is established, so that a plan that satisfies complex casting constraints and that is excellent in optimality can be obtained.
3) The search method has a strong dependency on the initial solution (initial plan) and is likely to fall into a local optimal solution with a poor evaluation value. However, since the cast plan obtained by the mathematical optimization method is used as the initial solution, the evaluation value is good. Since an initial solution (close to the optimal solution) is used, a plan with excellent optimality can be obtained.
4) In order to obtain an optimal solution only by the search method, optimization calculation is performed using a plurality of initial solutions (for example, 100), and the best evaluation value is obtained among the obtained local optimal solutions. In many cases, the multi-start search method of adopting a new plan is used, but the calculation time is increased by the number of initial solutions, and the time until a cast plan is obtained is enormous. By applying the present invention, since a plurality of initial solutions are not used, a cast plan with excellent optimality can be obtained in a short time.

本発明を適用したキャスト計画立案装置の各手段は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現される。
以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
Each means of the cast planning apparatus to which the present invention is applied is realized by a computer device including, for example, a CPU, a ROM, a RAM, and the like.
As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.
The present invention also provides software (program) that implements the functions of the present invention to a system or apparatus via a network or various storage media, and the system or apparatus computer reads out and executes the program. It is feasible.

101:注文データベース格納手段、102:注文マトリクス作成手段、104:製造品種モデル格納手段、105:立案方針設定手段、106:第1の最適化計算手段、107:初期キャスト計画作成手段、108:第2の最適化計算手段、109:キャスト計画立案結果表示手段、110:キャスト計画立案結果登録手段   101: Order database storage means, 102: Order matrix creation means, 104: Production type model storage means, 105: Planning policy setting means, 106: First optimization calculation means, 107: Initial cast plan creation means, 108: First 2 optimization calculation means, 109: cast plan planning result display means, 110: cast plan planning result registration means

Claims (7)

転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するキャスト計画立案装置であって、
複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を注文データベースに格納する注文データベース格納手段と、
前記注文データベースの情報を基に、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクスを作成する注文マトリクス作成手段と、
それぞれの製造品種についての工程処理発生確率である製造品種モデルを格納する製造品種モデル格納手段と、
少なくとも工程能力上限値と、工程負荷の平準化に関する重みと、出鋼要望日と出鋼日との差異に関する重みと、出鋼ロット拡大に関する重みと、製品品質に関する重みとを立案方針パラメタとして設定する立案方針設定手段と、
前記注文マトリクス、前記製造品種モデル及び前記立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を満たす範囲内で最小又は最大にして、日別の前記製造品種別の出鋼量である製造品種別充当枠を数理最適化手法により算出する第1の最適化計算手段と、
前記第1の最適化計算手段で算出した製造品種別充当枠を基に、キャスト計画の初期値を作成する初期キャスト計画作成手段と、
少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、製品品質に関する鋳造制約の違反回数との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう、前記キャスト計画の初期値を用いて探索手法によりキャスト計画を算出する第2の最適化計算手段と、
前記第2の最適化計算手段で算出したキャスト計画を出力する出力手段とを備え、
前記初期キャスト計画作成手段では、立案期間の各日のキャスト数と各キャストのチャージ数を決定し、各チャージに製造品種を割り付けることを特徴とするキャスト計画立案装置。
A cast planning device for drafting a casting plan in a steelmaking process using equipment including a converter and continuous casting equipment,
Order database storage means for storing order information including at least the weight, the production type, and the steel extraction request date for a plurality of orders in the order database;
Based on the information in the order database, the steel product types with similar production specifications are aggregated as one production type, and the orders in which the production type and the date of steel output request are the same are aggregated by weight as the same order group Order matrix creating means for creating a matrix;
Production type model storage means for storing a production type model that is the probability of process processing occurrence for each type of production;
At least the process capacity upper limit, the weight related to leveling of the process load, the weight related to the difference between the steel output request date and the steel output date, the weight related to the expansion of the steel output lot, and the weight related to the product quality are set as planning policy parameters. Planning policy setting means,
Using the order matrix, the production model, and the planning policy parameters, at least an evaluation value related to leveling of the process load, an evaluation value related to a difference between a steel output request date and a steel output date, and an evaluation related to expansion of a steel output lot The evaluation function expressed by a weighted linear sum with the value is minimized or maximized within a range satisfying the steel output amount constraint that the amount of steel output is equal to or less than the upper limit of the steel output capacity. A first optimization calculating means for calculating an allocation frame by production type, which is the amount of steel output, by a mathematical optimization method;
An initial cast plan creation means for creating an initial value of a cast plan based on the production type allocation frame calculated by the first optimization calculation means;
A weighted linear sum of at least the evaluation value for leveling the process load, the evaluation value for the difference between the date of requesting steel production and the date of steel production, the evaluation value for expanding the steel production lot, and the number of violations of casting constraints related to product quality The initial value of the cast plan is searched so that the evaluation function represented by can be minimized or maximized within a range that satisfies the constraint conditions including the steel output amount constraint that the steel output amount is equal to or less than the steel output capacity upper limit value. A second optimization calculating means for calculating a cast plan by a technique;
Output means for outputting the cast plan calculated by the second optimization calculation means,
The initial cast plan creation means determines the number of casts for each day in the planning period and the number of charges for each cast, and assigns a production type to each charge.
前記第1の最適化計算手段では、数理最適化手法として多目的混合整数計画法を用いることを特徴とする請求項1に記載のキャスト計画立案装置。   The cast planning apparatus according to claim 1, wherein the first optimization calculation unit uses multi-objective mixed integer programming as a mathematical optimization method. 前記第2の最適化計算手段では、前記初期キャスト計画作成手段で作成したキャスト計画の初期値を現在解及び最適解として、
現在解の一部を修正した近傍解を作成して所定の評価値を計算し、前記所定の評価値に応じて該近傍解を現在解とするか否かを判定し、該近傍解を現在解とした場合に、さらに該近傍解の前記所定の評価値が最適解のものよりも良かったならば該近傍解を最適解とする、ことを所定の収束判定のルール下で繰り返すことを特徴とする請求項1又は2に記載のキャスト計画立案装置。
In the second optimization calculation means, the initial value of the cast plan created by the initial cast plan creation means as the current solution and the optimal solution,
A neighborhood solution is created by correcting a part of the current solution, a predetermined evaluation value is calculated, it is determined whether the neighborhood solution is made the current solution according to the predetermined evaluation value, and the neighborhood solution is In the case of a solution, if the predetermined evaluation value of the neighborhood solution is better than that of the optimum solution, the neighborhood solution is repeated as an optimum solution under a predetermined convergence determination rule. The cast planning apparatus according to claim 1 or 2.
前記第2の最適化計算手段では、現在解の中からチャージの入れ替えを行うことにより近傍解を作成することを特徴とする請求項3に記載のキャスト計画立案装置。   4. The cast planning apparatus according to claim 3, wherein the second optimization calculation means creates a neighborhood solution by exchanging charges from the current solution. 前記第2の最適化手段では、前記製品品質に関する鋳造制約のうち、遵守することが必須である鋳造制約について、違反回数を前記評価関数に重み付き線形和として加える替わりに、前記制約条件に加えることを特徴とする請求項1乃至4のいずれか1項に記載のキャスト計画立案装置。   The second optimization means adds the number of violations to the constraint condition instead of adding the number of violations as a weighted linear sum to the evaluation function for casting constraints that must be observed among casting constraints related to the product quality. The cast planning apparatus according to any one of claims 1 to 4, characterized in that: 転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するキャスト計画立案方法であって、
注文マトリクス作成手段が、複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を格納する注文データベースの情報を基に、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクスを作成するステップと、
立案方針設定手段が、少なくとも工程能力上限値と、工程負荷の平準化に関する重みと、出鋼要望日と出鋼日との差異に関する重みと、出鋼ロット拡大に関する重みと、製品品質に関する重みとを立案方針パラメタとして設定するステップと、
第1の最適化計算手段が、前記注文マトリクス、それぞれの製造品種についての工程処理発生確率である製造品種モデル及び前記立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を満たす範囲内で最小又は最大にして、日別の前記製造品種別の出鋼量である製造品種別充当枠を数理最適化手法により算出するステップと、
初期キャスト計画作成手段が、前記算出した製造品種別充当枠を基に、キャスト計画の初期値を作成するステップと、
第2の最適化計算手段が、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、製品品質に関する鋳造制約の違反回数との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう、前記キャスト計画の初期値を用いて探索手法によりキャスト計画を算出するステップと、
出力手段が、前記算出したキャスト計画を出力するステップとを有し、
前記キャスト計画の初期値を作成するステップでは、立案期間の各日のキャスト数と各キャストのチャージ数を決定し、各チャージに製造品種を割り付けることを特徴とするキャスト計画立案方法。
A cast planning method for creating a casting plan in a steelmaking process using equipment including a converter and continuous casting equipment,
The order matrix creation means manufactures one type of steel material with similar manufacturing specifications based on order database information that stores order information including at least the weight, production type, and date of request for steel production for multiple orders. A step of creating an order matrix in which orders that are aggregated as varieties and that have the same production varieties and steel output request dates are aggregated by weight as the same order group;
The planning policy setting means includes at least a process capacity upper limit value, a weight related to leveling of the process load, a weight related to the difference between the steel output request date and the steel output date, a weight related to the expansion of the steel output lot, and a weight related to the product quality. Setting as a planning policy parameter;
The first optimization calculation means uses the order matrix, the production type model that is the probability of occurrence of process processing for each production type, and the planning policy parameter, and at least an evaluation value related to leveling of the process load, The amount of steel output in which the amount of steel output is below the upper limit of the steel output capacity, using an evaluation function expressed by a weighted linear sum of the evaluation value for the difference between the requested date and the date of steel output and the value for the expansion of the steel output lot. Calculating the allocation limit by production type, which is the amount of steel output according to the production type by day, by a mathematical optimization method with the minimum or maximum within a range that satisfies the constraints;
An initial cast plan creation means creating an initial value of a cast plan based on the calculated appropriation frame by production type;
The second optimization calculation means includes at least an evaluation value relating to leveling of the process load, an evaluation value relating to a difference between the steel output request date and the steel output date, an evaluation value relating to the expansion of the steel output lot, and a casting constraint relating to product quality. The evaluation function represented by the weighted linear sum with the number of violations of the above, so as to be the minimum or maximum within the range that satisfies the constraint condition including the steel output amount constraint that the steel output amount is below the upper limit of the steel output capacity Calculating a cast plan by a search method using an initial value of the cast plan;
An output means for outputting the calculated cast plan;
In the step of creating the initial value of the cast plan, the number of casts of each day in the planning period and the number of charges of each cast are determined, and a production type is assigned to each charge.
転炉及び連続鋳造設備を含む設備による製鋼プロセスにおけるキャスト計画を立案するためのプログラムであって、
複数の注文についての、重量と製造品種と出鋼要望日とを少なくとも含む注文情報を注文データベースに格納する注文データベース格納手段と、
前記注文データベースの情報を基に、製造仕様が類似した鋼材の品種を一つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として重量で集約した注文マトリクスを作成する注文マトリクス作成手段と、
それぞれの製造品種についての工程処理発生確率である製造品種モデルを格納する製造品種モデル格納手段と、
少なくとも工程能力上限値と、工程負荷の平準化に関する重みと、出鋼要望日と出鋼日との差異に関する重みと、出鋼ロット拡大に関する重みと、製品品質に関する重みとを立案方針パラメタとして設定する立案方針設定手段と、
前記注文マトリクス、前記製造品種モデル及び前記立案方針パラメタを用いて、少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を満たす範囲内で最小又は最大にして、日別の前記製造品種別の出鋼量である製造品種別充当枠を数理最適化手法により算出する第1の最適化計算手段と、
前記第1の最適化計算手段で算出した製造品種別充当枠を基に、キャスト計画の初期値を作成する初期キャスト計画作成手段と、
少なくとも工程負荷の平準化に関する評価値と、出鋼要望日と出鋼日との差異に関する評価値と、出鋼ロット拡大に関する評価値と、製品品質に関する鋳造制約の違反回数との重み付き線形和で表わされる評価関数を、出鋼量が出鋼能力上限値以下になるという出鋼量制約を含む制約条件を満たす範囲内で最小又は最大となるよう、前記キャスト計画の初期値を用いて探索手法によりキャスト計画を算出する第2の最適化計算手段と、
前記第2の最適化計算手段で算出したキャスト計画を出力する出力手段としてコンピュータを機能させるためのプログラムであって、
前記初期キャスト計画作成手段では、立案期間の各日のキャスト数と各キャストのチャージ数を決定し、各チャージに製造品種を割り付けることを特徴とするプログラム。
A program for creating a casting plan in a steelmaking process using equipment including a converter and continuous casting equipment,
Order database storage means for storing order information including at least the weight, the production type, and the steel extraction request date for a plurality of orders in the order database;
Based on the information in the order database, the steel product types with similar production specifications are aggregated as one production type, and the orders in which the production type and the date of steel output request are the same are aggregated by weight as the same order group Order matrix creating means for creating a matrix;
Production type model storage means for storing a production type model that is the probability of process processing occurrence for each type of production;
At least the process capacity upper limit, the weight related to leveling of the process load, the weight related to the difference between the steel output request date and the steel output date, the weight related to the expansion of the steel output lot, and the weight related to the product quality are set as planning policy parameters. Planning policy setting means,
Using the order matrix, the production model, and the planning policy parameters, at least an evaluation value related to leveling of the process load, an evaluation value related to a difference between a steel output request date and a steel output date, and an evaluation related to expansion of a steel output lot The evaluation function expressed by a weighted linear sum with the value is minimized or maximized within a range satisfying the steel output amount constraint that the amount of steel output is equal to or less than the upper limit of the steel output capacity. A first optimization calculating means for calculating an allocation frame by production type, which is the amount of steel output, by a mathematical optimization method;
An initial cast plan creation means for creating an initial value of a cast plan based on the production type allocation frame calculated by the first optimization calculation means;
A weighted linear sum of at least the evaluation value for leveling the process load, the evaluation value for the difference between the date of requesting steel production and the date of steel production, the evaluation value for expanding the steel production lot, and the number of violations of casting constraints related to product quality The initial value of the cast plan is searched so that the evaluation function represented by can be minimized or maximized within a range that satisfies the constraint conditions including the steel output amount constraint that the steel output amount is equal to or less than the steel output capacity upper limit value. A second optimization calculating means for calculating a cast plan by a technique;
A program for causing a computer to function as output means for outputting a cast plan calculated by the second optimization calculation means,
The initial cast plan creation means determines the number of casts for each day of the planning period and the number of charges for each cast, and assigns a production type to each charge.
JP2013229478A 2013-11-05 2013-11-05 Cast planning device, method and program Active JP6299155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229478A JP6299155B2 (en) 2013-11-05 2013-11-05 Cast planning device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229478A JP6299155B2 (en) 2013-11-05 2013-11-05 Cast planning device, method and program

Publications (2)

Publication Number Publication Date
JP2015090532A JP2015090532A (en) 2015-05-11
JP6299155B2 true JP6299155B2 (en) 2018-03-28

Family

ID=53194041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229478A Active JP6299155B2 (en) 2013-11-05 2013-11-05 Cast planning device, method and program

Country Status (1)

Country Link
JP (1) JP6299155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170316131A1 (en) * 2015-11-23 2017-11-02 Northeastern University Method of batching and scheduling for steelmaking production with plant-wide process consideration

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428375B2 (en) * 2015-02-26 2018-11-28 新日鐵住金株式会社 Charge knitting device, charge knitting method, and program
JP6593080B2 (en) * 2015-10-02 2019-10-23 日本製鉄株式会社 Steelmaking rolling planning device, steelmaking rolling planning method, and program
JP6711215B2 (en) * 2016-09-02 2020-06-17 日本製鉄株式会社 Charge knitting apparatus, charge knitting method, and program
JP6834727B2 (en) * 2016-12-20 2021-02-24 日本製鉄株式会社 Planning equipment, planning methods, and programs
EP3617821B1 (en) 2017-04-26 2023-03-29 Fujitsu Limited Production plan generation device, production plan generation program, and production plan generation method
JP7024580B2 (en) * 2018-04-26 2022-02-24 日本製鉄株式会社 Mountain division plan creation device, mountain division plan creation method, and program
JP7261639B2 (en) * 2019-03-29 2023-04-20 川崎重工業株式会社 Production control system and production control method
CN114298567B (en) * 2021-12-30 2024-06-21 重庆大学 Method and system for scheduling casting schedule and dynamic decision-making of casting time of continuous casting machine
CN114418464B (en) * 2022-03-29 2022-06-24 北京科技大学 Case reasoning-based two-step metallurgy process energy evaluation method and system
CN115007828B (en) * 2022-05-30 2024-03-19 首钢京唐钢铁联合有限责任公司 Method and device for determining continuous casting mixed casting slab, medium and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744441B2 (en) * 2002-03-01 2006-02-08 Jfeスチール株式会社 Steel intermediate product and steel product production plan creation method, apparatus thereof, program for realizing the method or apparatus
JP5000547B2 (en) * 2007-04-27 2012-08-15 新日本製鐵株式会社 Steel frame arrangement planning device, method, program, and computer-readable storage medium
JP5280075B2 (en) * 2008-03-19 2013-09-04 新日鐵住金株式会社 Operation plan creation method and operation plan creation device for steel making process, and method for manufacturing steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170316131A1 (en) * 2015-11-23 2017-11-02 Northeastern University Method of batching and scheduling for steelmaking production with plant-wide process consideration
US10713399B2 (en) * 2015-11-23 2020-07-14 Northeastern University Method of batching and scheduling for steelmaking production with plant-wide process consideration

Also Published As

Publication number Publication date
JP2015090532A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6299155B2 (en) Cast planning device, method and program
WO2017088674A1 (en) Steelmaking batch grouping and production scheduling method for whole process production
JP6593080B2 (en) Steelmaking rolling planning device, steelmaking rolling planning method, and program
JP5000547B2 (en) Steel frame arrangement planning device, method, program, and computer-readable storage medium
Tang et al. A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous‐casting production
CN104483915A (en) Hot rolling multiple production line slab matching control method for improving steel enterprise material utilization rate
JP6428375B2 (en) Charge knitting device, charge knitting method, and program
JP2011048778A (en) Production schedule creation device
CN112926828B (en) Steelmaking production data analysis and optimization scheduling method for medium plate production line
JP5000369B2 (en) Delivery date adjustment support device, delivery date negotiation support device, method, computer program, and computer-readable storage medium
JP2007115169A (en) Production planning device and method, and program
JP2003256020A (en) Production plan preparing method for intermediate steel product and steel product, its device, program for realizing method and device, and manufacturing method of intermediate steel product and steel product
JP2002149223A (en) Production management support system
JP7156024B2 (en) Plan creation device, plan creation method, and program
JP4492332B2 (en) Cast knitting apparatus and cast knitting method
JP6477309B2 (en) Steelmaking production schedule creation device, steelmaking production schedule creation method, operation method, and steelmaking product manufacturing method
Van Voorhis et al. Developing software for generating pouring schedules for steel foundries
JP4525093B2 (en) Production plan creation system, production plan creation method and program
JP5454479B2 (en) Steel rolling plan planning device, steel rolling plan planning method, and computer program
JP2006155011A (en) Production schedule planning device, and production schedule planning method
Zhang et al. A mixed integer programming model and improved genetic algorithm for order planning of iron-steel plants
de Souza et al. Models for scheduling charges in continuous casting: application to a Brazilian steel plant
CN115345032B (en) Steelmaking-continuous casting tundish plan optimization method and device and electronic equipment
JP6711215B2 (en) Charge knitting apparatus, charge knitting method, and program
RU43384U1 (en) AUTOMATED REAL-TIME MANAGEMENT SYSTEM PRODUCTION BY ORDERS OF CLIENTS AT THE ENTERPRISE (OPTIONS)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R151 Written notification of patent or utility model registration

Ref document number: 6299155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350