JP6296453B2 - Signal processing apparatus and signal processing method - Google Patents
Signal processing apparatus and signal processing method Download PDFInfo
- Publication number
- JP6296453B2 JP6296453B2 JP2015181721A JP2015181721A JP6296453B2 JP 6296453 B2 JP6296453 B2 JP 6296453B2 JP 2015181721 A JP2015181721 A JP 2015181721A JP 2015181721 A JP2015181721 A JP 2015181721A JP 6296453 B2 JP6296453 B2 JP 6296453B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- frequency
- phase
- quadrature
- frequency component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Noise Elimination (AREA)
Description
本発明は、両側帯波を用いた放送、通信において、雑音が重畳される環境において、復調時にこの雑音を除去するようにした信号処理装置及び信号処理方法に関する。 The present invention relates to a signal processing apparatus and a signal processing method for removing noise during demodulation in an environment where noise is superimposed in broadcasting and communication using double sideband waves.
雑音が重畳された所望の放送波から雑音を除去して所望の放送波を復調する方法として、下記特許文献に記載の技術が知られている。下記特許文献1は、他方のアンテナに比べて放送波を強く受信して第1信号を得る第1アンテナと、他方のアンテナに比べて雑音を強く受信して第2信号を得る第2アンテナとを用いて、合成後の信号レベルが小さくなるように、第2信号の振幅と位相とを調整して、第1信号に合成する技術である。この技術では、第2信号の振幅と位相の調整は、所望の放送波の受信レベルがある閾値より小さい場合に行っている。すなわち、雑音電力が放送波の電力よりも大きい場合に、合成信号のレベルが小さくなるように、第2信号の振幅と位相とを調整するものである。両アンテナが同一の雑音源から雑音を受信しているので、両アンテナで受信される雑音の振幅と位相は、雑音源との各アンテナとの距離の差に応じて異なる。これを補償するために、第2信号の振幅を第1信号の振幅と一致させ、第2信号の位相を第1信号の位相に対してπだけ位相を変化させて、第1信号に対して逆相で第2信号を合成している。このように第2信号の増幅率と位相とを調整すれば、所望の放送波を受信できる状態になった場合にも、受信された放送波から雑音がキャンセルされた信号を得ることができる。 As a method for demodulating a desired broadcast wave by removing the noise from the desired broadcast wave on which the noise is superimposed, techniques described in the following patent documents are known. The following Patent Document 1 discloses a first antenna that receives a broadcast wave stronger than the other antenna and obtains a first signal, and a second antenna that receives noise stronger than the other antenna and obtains a second signal. Is used to adjust the amplitude and phase of the second signal so that the signal level after synthesis is reduced, and synthesizes the first signal. In this technique, the amplitude and phase of the second signal are adjusted when the reception level of the desired broadcast wave is smaller than a certain threshold value. That is, when the noise power is larger than the power of the broadcast wave, the amplitude and phase of the second signal are adjusted so that the level of the combined signal becomes small. Since both antennas receive noise from the same noise source, the amplitude and phase of the noise received by both antennas differ according to the difference in distance from each antenna to the noise source. In order to compensate for this, the amplitude of the second signal is made to coincide with the amplitude of the first signal, the phase of the second signal is changed by π with respect to the phase of the first signal, and The second signal is synthesized in reverse phase. By adjusting the amplification factor and phase of the second signal in this way, a signal with noise canceled from the received broadcast wave can be obtained even when a desired broadcast wave can be received.
また、下記特許文献2の技術は、車両に搭載されたラジオ受信機によるAMラジオ放送波の受信において、AMラジオ放送波に車両の電子機器から発せられるパルス性の雑音が混入するが、このパルス性の雑音を除去する技術である。この技術では、まず、AMラジオ放送波帯域以外の帯域におけるパルス雑音を検出して、そのパルス雑音の周期の大きさやレベルの変動幅を求めることで、雑音源を特定している。そして、その雑音源に応じて、パルス雑音が重畳された放送波において、放送波周波数付近のパルス雑音の高調波の帯域、雑音周期の帯域を、パルス雑音の時間幅に対応した時間だけ、減衰させることで、AMラジオ放送を聞く人に、パルス性雑音による不快感を与えないようにしている。
Further, in the technique of
特許文献1の技術は、2本のアンテナを用いて、雑音のみが受信できるようにして、2つのアンテナの受信信号の合成信号のレベルが小さくなるように、予め調整ておくという技術である。このため、特許文献1の技術は、雑音をキャンセルするために2本のアンテナを必要とし、雑音を除去するための設定は、所望の放送波の受信レベルが雑音除去の調整に影響を与えないように、受信レベルが小さい環境で行う必要がある。また、雑音の周波数特性に関係なく、一律に、第2信号の振幅と位相とを調整しているので、雑音は完全には除去されない。また、PWM方式によるDC−DCコンバータの場合には、基本周期は変わらなくとも、パルス幅の変化により雑音の周波数特性は変化する。このため、特許文献1の方法では、雑音を完全には除去できない。 The technique of Patent Document 1 is a technique that uses two antennas so that only noise can be received and is adjusted in advance so that the level of the combined signal of the received signals of the two antennas becomes small. For this reason, the technique of Patent Document 1 requires two antennas to cancel noise, and the setting for removing noise does not affect the adjustment of noise removal by the reception level of a desired broadcast wave. Thus, it is necessary to perform in an environment where the reception level is small. Further, since the amplitude and phase of the second signal are adjusted uniformly regardless of the frequency characteristics of the noise, the noise is not completely removed. Further, in the case of a DC-DC converter using the PWM method, the frequency characteristic of noise changes due to a change in pulse width even if the basic period does not change. For this reason, the method of Patent Document 1 cannot completely remove noise.
また、特許文献2の技術は、放送波帯域以外の帯域でパルス雑音を検出して、その検出タイミングで、パルス幅に応じた時間だけ、雑音の種類に応じた適性な周波数帯域を減衰させるという技術である。したがって、本質的には、放送波もパルス雑音の期間だけ減衰されることになる。これが、AMラジオ放送を聞く人に違和感を与える原因となる。
The technique of
そこで、本発明の目的は、所望信号に影響を与えることなく、周波数空間において周期性を有する雑音を精度良く除去することである。 Accordingly, an object of the present invention is to accurately remove noise having periodicity in a frequency space without affecting a desired signal.
上記課題を解決するための本発明は、両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理装置において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンドの同相成分と直交成分とに復調する復調手段と、同相成分と直交成分とをフーリエ変換して複素関数の同相周波数成分と複素関数の直交周波数成分とを出力するフーリエ変換手段と、同相周波数成分と、直交周波数成分に基づき、直交周波数成分と同相周波数成分間の時間平均された伝達関数を求める伝達関数演算手段と、伝達関数に基づいて、直交成分の周波数特性を補正して、同相成分に合成する合成手段とを有することを特徴とする信号処理装置である。
本発明の要旨は、直交成分には信号成分が含まれず雑音成分のみが現れることに注目して、直交成分に基づいて同相成分に重畳された雑音成分を除去することである。雑音成分の除去は周波数軸上又は時間軸上により行うことができる。
In order to solve the above problems, the present invention provides a signal processing device that receives a double-sideband signal and removes noise superimposed on the RF band, and orthogonally demodulates the double-sideband signal to obtain a positive frequency band and a negative frequency. Fourier the demodulating means for demodulating the in-phase and quadrature components of the baseband and a band, the in-phase and quadrature components by Fourier transform to output a quadrature frequency components of the in-phase frequency components and complex function of the complex function Based on the transforming means, the in-phase frequency component and the quadrature frequency component, the transfer function calculating means for obtaining a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component, and the frequency characteristic of the quadrature component based on the transfer function. The signal processing apparatus includes a synthesizing unit that corrects and synthesizes the in-phase component.
The gist of the present invention is to remove the noise component superimposed on the in-phase component based on the quadrature component, paying attention to the fact that the quadrature component does not include the signal component and only the noise component appears. The noise component can be removed on the frequency axis or the time axis.
1.本発明の原理
本発明は、次の原理を用いて、復調後の信号から雑音を除去するものである。直交多重化していない両側帯波(例えば、AM放送波)を直交復調した場合に、ベースバンドの同相成分には信号成分と雑音成分が現れ、直交成分には信号成分が現れず、雑音成分のみが現れる。上側帯波に雑音が重畳している場合には、直交成分は、同相成分の雑音成分に対して、正周波数帯域も負周波数帯域も、時間軸上において、π/2だけ位相が遅れている。すなわち、正周波数帯域の雑音成分に関して、直交成分は同相成分に対して−π/2だけ位相が回転しており、負周波数帯域の雑音成分に関して、直交成分は同相成分に対して、π/2だけ位相が回転している。なお、位相の符号は、正周波数帯域、負周波数帯域に係わらず、複素座標系における位相の符号、すなわち、左回転方向を正として定義する。また、時間軸上に関する位相の進み、遅れの定義は、正周波数については、複素座標系において左回転、負周波数については右回転に対する進み、遅れとして定義する。
1. Principle of the Invention The present invention removes noise from a demodulated signal using the following principle. When quadrature demodulation is performed on both sideband waves (for example, AM broadcast waves) that are not orthogonally multiplexed, a signal component and a noise component appear in the in-phase component of the baseband, no signal component appears in the orthogonal component, and only the noise component Appears. When noise is superimposed on the upper sideband, the phase of the quadrature component is delayed by π / 2 on the time axis in both the positive frequency band and the negative frequency band with respect to the noise component of the in-phase component. . That is, for the noise component in the positive frequency band, the phase of the quadrature component is rotated by −π / 2 with respect to the in-phase component, and for the noise component in the negative frequency band, the quadrature component is π / 2 with respect to the in-phase component. Only the phase is rotating. Note that the sign of the phase is defined as positive in the sign of the phase in the complex coordinate system, that is, the left rotation direction regardless of the positive frequency band and the negative frequency band. Also, the definition of phase advance and delay on the time axis is defined as the advance and delay with respect to the left rotation in the complex coordinate system for the positive frequency and the right rotation with respect to the negative frequency.
RF帯域において上側帯波帯域に重畳された雑音に関して、同相成分の正周波数帯域の雑音成分のスペクトルをρU (ω)とするとき、直交成分の正周波数帯域の雑音成分のスペクトルは、−jρU (ω)の関係にある。ただし、ρU は絶対値と位相とを含む複素数である。jは純虚数である。 Regarding the noise superimposed on the upper sideband in the RF band, when the spectrum of the noise component in the positive frequency band of the in-phase component is ρ U (ω), the spectrum of the noise component in the positive frequency band of the quadrature component is −jρ U (ω). However, ρ U is a complex number including an absolute value and a phase. j is a pure imaginary number.
直交復調後の同相成分も直交成分も実関数であるので、ベースバンドにおける雑音成分のスペクトルは、正周波数帯域と負周波数帯域とで、互いに複素共役の関係にある。したがって、同相成分の負周波数帯域の雑音成分のスペクトルは、ρU * (−ω)で表され、直交成分の負周波数帯域の雑音成分のスペクトルは、jρU * (−ω)で表される。ただし、ω>0であり、*は複素共役演算を意味する。 Since both the in-phase component and the quadrature component after quadrature demodulation are real functions, the spectrum of the noise component in the baseband is in a complex conjugate relationship between the positive frequency band and the negative frequency band. Therefore, the spectrum of the noise component in the negative frequency band of the in-phase component is represented by ρ U * (− ω), and the spectrum of the noise component in the negative frequency band of the quadrature component is represented by jρ U * (− ω). . However, ω> 0 and * means a complex conjugate operation.
また、RF帯域において下側帯波帯域に重畳された雑音については、直交成分の雑音成分は、同相成分の雑音成分に対して、正周波数帯域も負周波数帯域も、時間軸上において、位相がπ/2だけ進んでいる。すなわち、正周波数帯域の雑音成分に関して、直交成分は同相成分に対してπ/2だけ位相が回転しており、負周波数帯域の雑音成分に関して、直交成分は同相成分に対して、−π/2だけ位相が回転している。同相成分の正周波数帯域の雑音成分のスペクトルをρL * (ω)とするとき、直交成分の正周波数帯域の雑音成分のスペクトルは、jρL * (ω)の関係にある。同様に、ベースバンドにおける雑音成分のスペクトルは、正周波数帯域と負周波数帯域とで、互いに複素共役の関係にある。したがって、同相成分の負周波数帯域の雑音成分のスペクトルは、ρL (−ω)で表され、直交成分の負周波数帯域の雑音成分のスペクトルは、−jρL (−ω)で表される。 As for the noise superimposed on the lower sideband in the RF band, the noise component of the quadrature component has a phase of π on the time axis in both the positive frequency band and the negative frequency band with respect to the noise component of the in-phase component. Progressing by / 2. That is, for the noise component in the positive frequency band, the phase of the quadrature component is rotated by π / 2 with respect to the in-phase component, and for the noise component in the negative frequency band, the quadrature component is −π / 2 with respect to the in-phase component. Only the phase is rotating. When the spectrum of the noise component in the positive frequency band of the in-phase component is ρ L * (ω), the spectrum of the noise component in the positive frequency band of the quadrature component has a relationship of jρ L * (ω). Similarly, the spectrum of the noise component in the baseband is in a complex conjugate relationship between the positive frequency band and the negative frequency band. Therefore, the spectrum of the noise component in the negative frequency band of the in-phase component is represented by ρ L (−ω), and the spectrum of the noise component in the negative frequency band of the quadrature component is represented by −jρ L (−ω).
以上の関係は、全正周波数帯域及び全負周波数帯域での周波数に対して成立する。すなわち、直交成分の正周波数帯域の雑音成分のスペクトル−jρU (ω)、jρL * (ω)が分かれば、同相成分の全周波数帯域の雑音成分のスペクトルも一意的に決定される。以上の関係があるため、同相成分の正周波数帯域の雑音成分のスペクトルは、直交成分の正周波数帯域の雑音成分のスペクトル−jρU (ω)、jρL * (ω)に、それぞ、(j)、(−j)を乗算することで、求めることができる。同様に、同相成分の負周波数帯域の雑音成分のスペクトルは、直交成分の負周波数帯域の雑音成分のスペクトルjρ* U (−ω)、−jρL (−ω)に、それぞれ、(−j)、(j)を乗算することで求めることができる。この負周波数領域での乗算因子{(−j)、(j)}は、正周波数領域での乗算因子{(j)、(−j)}の複素共役でもある。 The above relationship is established for frequencies in all positive frequency bands and all negative frequency bands. In other words, if the spectrums -jρ U (ω) and jρ L * (ω) of the noise component in the positive frequency band of the orthogonal component are known, the spectrum of the noise component in the entire frequency band of the in-phase component is also uniquely determined. Because of the above relation, the spectrum of the noise component in the positive frequency band of the in-phase component becomes the spectrum of the noise component in the positive frequency band of the quadrature component −jρ U (ω) and jρ L * (ω), respectively ( It can be obtained by multiplying j) and (-j). Similarly, the spectrum of the noise component in the negative frequency band of the in-phase component becomes the spectrum jρ * U (−ω) and −jρ L (−ω) of the noise component in the negative frequency band of the quadrature component, respectively (−j). , (J) can be obtained by multiplication. The multiplication factor {(−j), (j)} in the negative frequency domain is also a complex conjugate of the multiplication factor {(j), (−j)} in the positive frequency domain.
なお、jの乗算は、複素座標系では、π/2の位相回転を意味し、時間軸上では、正周波数帯域についてはπ/2だけ位相を進めること、負周波数帯域についてはπ/2だけ位相を遅らせることを意味する。−jの乗算は、複素座標系では、−π/2の位相回転を意味し、時間軸上では、正周波数帯域についてはπ/2だけ位相を遅らせること、負周波数帯域についてはπ/2だけ位相を進めることを意味する。 Note that multiplication by j means a phase rotation of π / 2 in the complex coordinate system, and on the time axis, the phase is advanced by π / 2 for the positive frequency band, and only π / 2 for the negative frequency band. It means delaying the phase. The multiplication of −j means −π / 2 phase rotation in the complex coordinate system. On the time axis, the phase is delayed by π / 2 for the positive frequency band, and only π / 2 for the negative frequency band. It means to advance the phase.
直交成分の正周波数帯域の雑音成分のスペクトル、−jρU (ω)、jρL * (ω)について、次のように一般化することができる。すなわち、直交成分の雑音スペクトルは、周波数帯域毎に同相成分の雑音成分のスペクトル{ρU (ω)、ρL * (ω)}に、−jか、jかの因子を乗算したものである。したがって、{ρU (ω)、ρL * (ω)}を正周波数帯域の全雑音スペクトルρ(ω)と一般化すれは、直交成分の正周波数帯域の雑音成分のスペクトルは、jsign(ω)ρ(ω)と、一般式で表される。ここで、ρ(ω)は同相成分の正周波数帯域の雑音成分のスペクトル(複素関数)であり、sign(ω)は、任意の周波数ωにおいて、+1、又は、−1をとるωの関数である。以下、このsign(ω)を、符号関数(実関数)という。符号関数は同相成分と直交成分との位相関係を表しているだけであるので、時間的に変動しない。符号関数sign(ω)、したがって、jsign(ω)が分かれば、同相成分の正周波数帯域の雑音成分のスペクトルρ(ω)を直交成分から求めることができる。ρ(ω)=Z(ω)(jsign(ω)ρ(ω))として、直交成分から同相成分へ変換する伝達関数Z(ω)を定義すると、Z(ω)=−jsign(ω)として、伝達関数を求めることができる。同様に、負周波数帯域における伝達関数は、Z* (−ω)=jsign(−ω)で求めることができる。 The spectrum of the noise component in the positive frequency band of the orthogonal component, −jρ U (ω), jρ L * (ω) can be generalized as follows. That is, the noise spectrum of the quadrature component is obtained by multiplying the spectrum {ρ U (ω), ρ L * (ω)} of the in-phase component for each frequency band by a factor of −j or j. . Therefore, if {ρ U (ω), ρ L * (ω)} is generalized to the total noise spectrum ρ (ω) in the positive frequency band, the spectrum of the noise component in the positive frequency band of the orthogonal component is jsign (ω ) Ρ (ω) and the general formula. Here, ρ (ω) is the spectrum (complex function) of the noise component in the positive frequency band of the in-phase component, and sign (ω) is a function of ω taking +1 or −1 at an arbitrary frequency ω. is there. Hereinafter, this sign (ω) is referred to as a sign function (real function). Since the sign function only represents the phase relationship between the in-phase component and the quadrature component, it does not vary with time. If the sign function sign (ω) and therefore jsign (ω) are known, the spectrum ρ (ω) of the noise component in the positive frequency band of the in-phase component can be obtained from the quadrature component. When ρ (ω) = Z (ω) (jsign (ω) ρ (ω)) is defined as a transfer function Z (ω) for converting from a quadrature component to an in-phase component, Z (ω) = − jsign (ω) The transfer function can be obtained. Similarly, the transfer function in the negative frequency band can be obtained by Z * (− ω) = jsign (−ω).
したがって、伝達関数Z(ω)を同相周波数成分と直交周波数成分とから求めることができれば、同相成分の雑音成分を求めることができ、同相成分からこの雑音成分を除去すれば、同相成分は雑音が除去された信号成分となる。伝達関数Z(ω)を求めるには、同相周波数成分と直交周波数成分とが用いられるが、同相周波数成分には雑音成分と共に信号成分が存在する。そのため、同相成分と直交成分間の伝達関数Z(ω)を求める場合に信号成分の影響を排除するために、一定時間期間における平均演算を行う。すなわち、信号成分は不規則に変化していると見做すことができるので、時間平均すれば、平均値は小さくなるので、移動平均化処理により、信号成分を排除できる。
本発明は、以上の原理を用いるものである。
Accordingly, if the transfer function Z (ω) can be obtained from the in-phase frequency component and the quadrature frequency component, the noise component of the in-phase component can be obtained, and if this noise component is removed from the in-phase component, the in-phase component is noisy. The signal component is removed. In order to obtain the transfer function Z (ω), an in-phase frequency component and a quadrature frequency component are used, and the in-phase frequency component includes a signal component together with a noise component. Therefore, in order to eliminate the influence of the signal component when obtaining the transfer function Z (ω) between the in-phase component and the quadrature component, an average calculation is performed over a certain period of time. That is, since it can be considered that the signal component changes irregularly, if the time average is performed, the average value becomes small. Therefore, the signal component can be eliminated by the moving averaging process.
The present invention uses the above principle.
本発明は、伝達関数を求めるのに時間軸信号をフーリエ変換している。伝達関数が分かれば、そのインパルス応答と、時間軸直交成分とを畳み込み積分をすれば、時間軸上の同相成分の雑音成分を求めることができる。したがって、時間軸上の同相成分から、畳み込み積分の結果の時間特性を減算すれば、雑音の除去された信号を得ることができる。
したがって、本発明において、合成手段は、時間軸上の直交成分と伝達関数のインパルス応答との畳み込みにより補正された時間軸上の直交成分を求める等価手段と、時間軸上の同相成分から、等価手段の出力する補正された時間軸上の直交成分を除去する雑音除去手段とを有する構成を採用することができる。時間軸上の合成には、畳み込み積分を実現するトランスバーサルフィルタ、その他のフィルタを用いることができる。
In the present invention, the time axis signal is Fourier-transformed to obtain the transfer function. If the transfer function is known, the noise component of the in-phase component on the time axis can be obtained by convolving and integrating the impulse response with the time axis orthogonal component. Therefore, a signal from which noise is removed can be obtained by subtracting the time characteristic of the result of convolution integration from the in-phase component on the time axis.
Therefore, in the present invention, the synthesizing means is equivalent to the equivalent means for obtaining the quadrature component on the time axis corrected by the convolution of the quadrature component on the time axis and the impulse response of the transfer function, and the in-phase component on the time axis. It is possible to adopt a configuration having noise removal means for removing the orthogonal component on the corrected time axis output from the means. For synthesis on the time axis, a transversal filter or other filter that realizes convolution integration can be used.
また、周波数軸上で雑音の除去を行うことができる。
すなわち、上記発明において、合成手段は、直交周波数成分を伝達関数により補正する等価手段と、同相周波数成分から、等価手段の出力する補正された直交周波数成分を減算して雑音除去同相周波数成分を出力する雑音除去手段と、雑音除去同相周波数成分を逆フーリエ変換して、時間軸上の復調信号とする逆フーリエ変換手段と、を有する構成とすることができる。
Further, noise can be removed on the frequency axis.
That is, in the above invention, the combining means subtracts the corrected orthogonal frequency component output from the equivalent means from the equivalent means for correcting the orthogonal frequency component by the transfer function and outputs the noise-removed in-phase frequency component from the in-phase frequency component. And a noise removing unit that performs the inverse Fourier transform on the noise-removed in-phase frequency component to obtain a demodulated signal on the time axis.
2.伝達関数
伝達関数を求める構成は、幾つかある。
(1)伝達関数を、複素共役積の時間平均から演算する方法
上記発明において、伝達関数演算手段は、同相周波数成分と直交周波数成分との一方と、他方の複素共役とを各周波数毎に乗算する複素共役乗算手段と、複素共役乗算手段の出力の時間平均を演算する時間平均演算手段と、時間平均演算手段の出力から各周波数毎の符号成分を抽出し、その符号成分の周波数特性を伝達関数とする符号周波数特性抽出手段と、を有する構成とすることができる。
2. Transfer Function There are several configurations for obtaining the transfer function.
(1) Method of calculating transfer function from time average of complex conjugate product In the above invention, the transfer function calculating means multiplies one of the in-phase frequency component and the quadrature frequency component and the other complex conjugate for each frequency. Complex conjugate multiplication means, a time average calculation means for calculating the time average of the output of the complex conjugate multiplication means, and a code component for each frequency is extracted from the output of the time average calculation means, and the frequency characteristic of the code component is transmitted. And a code frequency characteristic extracting means as a function.
正周波数帯域の同相周波数成分Fr (ω)は、S(ω)+ρ(ω)で表される。また、正周波数帯域の直交周波数成分Fi (ω)は、上記したように、jsign(ω)ρ(ω)で表される。Fr (ω)Fi * (ω)は、S(ω)(−jsign(ω))ρ* (ω)−jsign(ω)|ρ(ω)|2 となる。*は複素共役演算を意味する。第1項のS(ω)(−jsign(ω))ρ* (ω)は、時間的に不規則に変化しているので、平均をとれば、0を含む微小値の平均残差Δ(ω)とすることができる。|ρ(ω)|2 の時間平均Av(|ρ(ω)|2 )は、雑音スペクトルの絶対値の2乗の時間平均であるので、微小量にはならない。Avは時間平均値を表す。したがって、第2項の時間平均{−jsign(ω)Av(|ρ(ω)|2 )}は、虚数であるから、Av(|ρ(ω)|2 )がΔ(ω)の絶対値よりも大きいならば、その符号{−jsign(ω)}を周波数毎に決定することができる。よって、上記した伝達関数Z(ω)=−jsign(ω)が求まり、負周波数帯域ではZ* (−ω)=jsign(−ω)として伝達関数を求めることができる。 The in-phase frequency component F r (ω) in the positive frequency band is represented by S (ω) + ρ (ω). Further, the orthogonal frequency component F i (ω) in the positive frequency band is represented by jsign (ω) ρ (ω) as described above. F r (ω) F i * (ω) is S (ω) (− jsign (ω)) ρ * (ω) −jsign (ω) | ρ (ω) | 2 * Means complex conjugate operation. Since S (ω) (− jsign (ω)) ρ * (ω) of the first term changes irregularly in time, if an average is taken, an average residual Δ ((min) including zero) Δ ( ω). | Ρ (ω) | 2 of the time-average Av (| ρ (ω) | 2) is because it is the square of the time average of the absolute value of the noise spectrum, not a small amount. Av represents a time average value. Accordingly, since the time average {−jsign (ω) Av (| ρ (ω) | 2 )} of the second term is an imaginary number, Av (| ρ (ω) | 2 ) is the absolute value of Δ (ω) The sign {-jsign (ω)} can be determined for each frequency. Therefore, the transfer function Z (ω) = − jsign (ω) described above is obtained, and the transfer function can be obtained as Z * (− ω) = jsign (−ω) in the negative frequency band.
なお、Fr * (ω)Fi (ω)は、S* (ω)(jsign(ω)ρ(ω))+jsign(ω)|ρ(ω)|2 となる。これの移動時間平均をとれば、S* (ω)(jsign(ω)ρ(ω))は、0を含む微小量の平均残差Δ(ω)とすることができる。したがって、時間平均Av(|ρ(ω)|2 )がΔ(ω)よりも大きいならば、その符号jsign(ω)を周波数毎に決定することができる。よって、その符号を反転した−jsign(ω)を上記した伝達関数Z(ω)として求めることができる。負周波数帯域ではZ* (−ω)=jsign(−ω)として伝達関数を求めることができる。したがって、同相周波数成分と直交周波数成分との一方と、他方の複素共役とを各周波数毎に乗算し、その乗算値の時間平均を演算し、その時間平均から各周波数毎の符号成分を抽出し、その符号成分の周波数特性を伝達関数とすることができる。
なお、負周波数領域の伝達関数は、正周波数領域の伝達関数の共役複素数で求めても、負周波数領域について、直接、Fr (−ω)Fi * (−ω)や、Fr (−ω)Fi * (−ω)の時間平均で求めても良い。結果は、Z* (−ω)=jsign(−ω)が得られる。
Note that F r * (ω) F i (ω) is S * (ω) (jsign (ω) ρ (ω)) + jsign (ω) | ρ (ω) | 2 If this moving time average is taken, S * (ω) (jsign (ω) ρ (ω)) can be an average residual Δ (ω) of a minute amount including zero. Therefore, if the time average Av (| ρ (ω) | 2 ) is larger than Δ (ω), the sign jsign (ω) can be determined for each frequency. Therefore, −jsign (ω) with the sign inverted can be obtained as the above-described transfer function Z (ω). In the negative frequency band, the transfer function can be obtained as Z * (− ω) = jsign (−ω). Therefore, one of the in-phase frequency component and the quadrature frequency component and the other complex conjugate are multiplied for each frequency, the time average of the multiplied value is calculated, and the code component for each frequency is extracted from the time average. The frequency characteristic of the code component can be used as a transfer function.
Even if the transfer function in the negative frequency domain is obtained as a conjugate complex number of the transfer function in the positive frequency domain, F r (−ω) F i * (− ω) or F r (− ω) F i * (-ω) of may be obtained in time average. As a result, Z * (− ω) = jsign (−ω) is obtained.
また、上記発明において、復調手段の出力する直交成分と同相成分のうちの一方にのみ純虚数j又は−jを乗算又は除算するか、又は、フーリエ変換手段の出力する直交周波数成分と同相周波数成分のうちの一方にのみ純虚数j又は−jを乗算又は除算した周波数成分を新たに直交周波数成分とする位相回転手段を有する構成とすることができる。この場合には、同相周波数成分と直交周波数成分との積(一方は複素共役)の移動時間平均の符号が、±sign(ω)と、実数になることを除き、上述した説明が成立する。この符号関数と±j直交周波数成分との積が同相周波数成分となり、又は、この符号関数と直交周波数成分との積が±j同相周波数成分となるので、−jsign(ω)を伝達関数として求めたことに他ならない。 In the above invention, the pure imaginary number j or -j is multiplied or divided by only one of the quadrature component and the in-phase component output from the demodulation means, or the quadrature frequency component and the in-phase frequency component output from the Fourier transform means. Only one of them may have a phase rotation means that newly uses a frequency component obtained by multiplying or dividing the pure imaginary number j or -j as an orthogonal frequency component. In this case, the above description holds true except that the sign of the moving time average of the product (one is complex conjugate) of the in-phase frequency component and the quadrature frequency component becomes ± sign (ω) and a real number. Since the product of the sign function and the ± j quadrature frequency component becomes an in-phase frequency component, or the product of the sign function and the quadrature frequency component becomes a ± j in-phase frequency component, −jsign (ω) is obtained as a transfer function. It is none other than that.
(2)伝達関数を比率から求める方法
正周波数帯域の同相周波数成分Fr (ω)は、S(ω)+ρ(ω)である。正周波数帯域の直交周波数成分Fi (ω)は、上記したように、jsign(ω)ρ(ω)である。したがって、雑音成分の同相周波数成分の直交周波数成分に対する伝達関数Z(ω)は、Fr (ω)/Fi (ω)=(S(ω)+ρ(ω))/(jsign(ω)ρ(ω))の時間平均の虚部の符号の周波数関数として定義される。S(ω)/(jsign(ω)ρ(ω))の時間平均は、0を含む微小量の平均残差Δ(ω)となる。また、ρ(ω)/(jsign(ω)ρ(ω))は、瞬時値においても、−jsign(ω)である。したがって、平均残差Δ(ω)の絶対値が1より小さい場合には、伝達関数Z(ω)は、上記各周波数毎の直交周波数成分に対する同相周波数成分の比の移動時間平均により求めることができる。
また、正周波数領域における直交周波数成分の同相周波数成分に対する伝達関数Y(ω)は、Fi (ω)/Fr (ω)=(jsign(ω)ρ(ω))/(S(ω)+ρ(ω))の時間平均の虚部の符号の周波数関数として定義される。この時も、Fi (ω)/Fr (ω)=jsign(ω)/{[S(ω)/ρ(ω)]+1}であり、S(ω)/ρ(ω)の時間平均は、0を含む微小量の平均残差Δ(ω)となる。平均残差Δ(ω)の絶対値が1より小さい場合には、Fi (ω)/Fr (ω)の時間平均の虚部の符号はsign(ω)となる。したがって、このようにして求めた伝達関数Y(ω)の逆数で、伝達関数Z(ω)を求めても良い。
(2) Method for obtaining transfer function from ratio The in-phase frequency component F r (ω) in the positive frequency band is S (ω) + ρ (ω). As described above, the orthogonal frequency component F i (ω) in the positive frequency band is jsign (ω) ρ (ω). Therefore, the transfer function Z (ω) for the orthogonal frequency component of the in-phase frequency component of the noise component is F r (ω) / F i (ω) = (S (ω) + ρ (ω)) / (jsign (ω) ρ (Ω)) is defined as a frequency function of the sign of the imaginary part of the time average. The time average of S (ω) / (jsign (ω) ρ (ω)) is an average residual Δ (ω) of a minute amount including zero. Further, ρ (ω) / (jsign (ω) ρ (ω)) is −jsign (ω) even in the instantaneous value. Therefore, when the absolute value of the average residual Δ (ω) is smaller than 1, the transfer function Z (ω) can be obtained by the moving time average of the ratio of the in-phase frequency component to the orthogonal frequency component for each frequency. it can.
Further, the transfer function Y (ω) for the in-phase frequency component of the orthogonal frequency component in the positive frequency region is F i (ω) / F r (ω) = (jsign (ω) ρ (ω)) / (S (ω) + Ρ (ω)) is defined as a frequency function of the sign of the imaginary part of the time average. Also at this time, F i (ω) / F r (ω) = jsign (ω) / {[S (ω) / ρ (ω)] + 1}, and the time average of S (ω) / ρ (ω) Is an average residual Δ (ω) of a minute amount including zero. When the absolute value of the average residual Δ (ω) is smaller than 1, the sign of the imaginary part of the time average of F i (ω) / F r (ω) is sign (ω). Therefore, the transfer function Z (ω) may be obtained by the reciprocal of the transfer function Y (ω) obtained in this way.
したがって、上記発明において、伝達関数演算手段は、同相周波数成分を直交周波数成分で各周波数毎に除算した周波数特性の時間平均、又は、直交周波数成分を同相周波数成分で除算した周波数特性の時間平均を演算する時間平均演算手段と、時間平均演算手段の出力から各周波数毎の符号成分を抽出し、その符号成分の周波数特性を伝達関数とする符号周波数特性抽出手段とを有する構成とすることができる。
また、平均残差Δ(ω)の絶対値が小さい場合には、符号化しない伝達関数を用いても、その伝達関数と直交周波数成分とから雑音の同相周波数成分を求めることができる。すなわち、上記発明において、伝達関数演算手段は、同相周波数成分を直交周波数成分で各周波数毎に除算した周波数特性の時間平均、又は、直交周波数成分を同相周波数成分で除算した周波数特性の時間平均を演算する時間平均演算手段と、を有し、時間平均演算手段の出力する時間平均された周波数特性を伝達関数とする構成とすることができる。
Therefore, in the above invention, the transfer function calculating means calculates the time average of the frequency characteristics obtained by dividing the in-phase frequency component by the orthogonal frequency component for each frequency, or the time average of the frequency characteristics obtained by dividing the orthogonal frequency component by the in-phase frequency component. A time average calculating means for calculating, and a code frequency characteristic extracting means for extracting a code component for each frequency from the output of the time average calculating means and using the frequency characteristic of the code component as a transfer function can be provided. .
Further, when the absolute value of the average residual Δ (ω) is small, an in-phase frequency component of noise can be obtained from the transfer function and the orthogonal frequency component even if a transfer function that is not encoded is used. That is, in the above invention, the transfer function calculating means calculates the time average of the frequency characteristic obtained by dividing the in-phase frequency component by the orthogonal frequency component for each frequency, or the time average of the frequency characteristic obtained by dividing the orthogonal frequency component by the in-phase frequency component. A time average calculating means for calculating, and a time-averaged frequency characteristic output from the time average calculating means can be used as a transfer function.
伝達関数Z(ω)を求める時、ρ(ω)が0の場合には、伝達関数Z(ω)(Z(ω)=1/Y(ω)で求める場合を含む)が発散するので、これを回避するためには、次の構成を採用すれば良い。
すなわち、本発明において、伝達関数演算手段又は合成手段は、直交周波数成分の絶対値が所定閾値以上の周波数成分に対して演算又は合成を実行し、直交周波数成分の絶対値が所定閾値より小さい周波数成分に対しては演算又は合成を実行しない構成とすることができる。
すなわち、直交周波数成分の絶対値が所定閾値以上となる周波数のスペクトルだけ抽出して同相周波数成分との比率を演算すれば良い。この所定閾値は、S(ω)/(jsign(ω)ρ(ω)、又は、S(ω)/ρ(ω))の時間平均である平均残差Δ(ω)の絶対値が1以下となるρ(ω)の絶対値に設定すれば良い。そして、他の周波数では、伝達関数Z(ω)の演算や同相周波数成分に対する合成を実行しない。このようにすれば、演算しない周波数において雑音成分の除去はできないが、すなくとも、直交雑音成分が同相で同相雑音成分に重畳されてしまうことを防止することができる。この周波数の雑音レベルはもともと小さいので、同相成分から雑音が除去できなくとも、問題にはならない。
When obtaining the transfer function Z (ω), if ρ (ω) is 0, the transfer function Z (ω) (including the case of obtaining Z (ω) = 1 / Y (ω)) diverges. In order to avoid this, the following configuration may be employed.
In other words, in the present invention, the transfer function calculating means or the combining means performs a calculation or combination on a frequency component whose absolute value of the orthogonal frequency component is greater than or equal to a predetermined threshold value, and the absolute value of the orthogonal frequency component is smaller than the predetermined threshold value It can be set as the structure which does not perform a calculation or a synthesis | combination with respect to a component.
That is, it is only necessary to extract only the spectrum of the frequency at which the absolute value of the orthogonal frequency component is equal to or greater than a predetermined threshold value and calculate the ratio with the in-phase frequency component. The predetermined threshold is such that the absolute value of the average residual Δ (ω) that is the time average of S (ω) / (jsign (ω) ρ (ω) or S (ω) / ρ (ω)) is 1 or less. What is necessary is just to set to the absolute value of (rho) ((omega)) which becomes. At other frequencies, the calculation of the transfer function Z (ω) and the synthesis for the in-phase frequency component are not executed. In this way, although noise components cannot be removed at frequencies that are not calculated, it is possible to prevent the quadrature noise components from being superimposed on the in-phase noise components in the same phase. Since the noise level at this frequency is originally small, it does not matter if the noise cannot be removed from the in-phase component.
さらに、上記発明において、合成手段は、伝達関数演算手段が、同相周波数成分を直交周波数成分で各周波数毎に除算した周波数特性の時間平均を演算する場合にはその時間平均の絶対値が2より小さい周波数成分のみに対して合成演算を実行し、伝達関数演算手段が、直交周波数成分を同相周波数成分で除算した周波数特性の時間平均を演算する場合にはその時間平均の絶対値が1/2より大きい周波数成分のみに対して合成演算を実行する構成としても良い。
直交周波数成分の絶対値が0でなければ、上記の比率は演算できる。しかし、S(ω)/(jsign(ω)ρ(ω))の平均残差Δ(ω)の絶対値が1以上の場合には、同相周波数成分/直交周波数成分の時間平均の絶対値は、2以上となる可能性がある。比率の絶対値が2以上となると、比率の虚部の符号は、−jsign(ω)を表さなくなる。−jsign(ω)の絶対値は1であるので、比率の絶対値が2より小さい場合には、比率の虚部の符号は、−jsign(ω)に対して、符号反転することはない。
また、S(ω)/(ρ(ω)の平均残差Δ(ω)の絶対値が1以上の場合は、|Δ(ω)+1|が2以上となる可能性があり、したがって、直交周波数成分/同相周波数成分の時間平均の絶対値は、1/2以下となる可能性がある。この場合には、Δ(ω)+1の符号が負となる可能性がある。したがって、比率の絶対値が1/2以下となる場合は、比率の虚部の符号は、jsign(ω)を表さなくなる。比率の絶対値が1/2より大きい場合には、比率の虚部の符号は、jsign(ω)に対して、符号反転することはない。
また、比率演算により伝達関数を求める場合には、上側帯波雑音と下側帯波雑音とがベースバンドにおいて同一周波数で重なっている場合には、比率の時間平均は、−jsign(ω)とはならない。したがって、比率の時間平均から符号関数を求めずに、直接、比率の時間平均として、伝達関数Z(ω)を求める。上記の平均残差Δ(ω)の絶対値が小さく、比率の時間平均が大きく変化しない場合には、この伝達関数Z(ω)を、上側帯波雑音と下側帯波雑音と同一周波数で重畳された直交周波数成分に乗算すれば、上側帯波雑音と下側帯波雑音と同一周波数で重畳された同相周波数成分の雑音を求めることができる。
Further, in the above invention, the synthesizing means, when the transfer function calculating means calculates the time average of the frequency characteristic obtained by dividing the in-phase frequency component by the orthogonal frequency component for each frequency, the absolute value of the time average is 2 When a synthesis operation is performed only on a small frequency component and the transfer function calculation means calculates a time average of frequency characteristics obtained by dividing the orthogonal frequency component by the in-phase frequency component, the absolute value of the time average is ½ A composition operation may be executed only for larger frequency components.
If the absolute value of the orthogonal frequency component is not 0, the above ratio can be calculated. However, when the absolute value of the average residual Δ (ω) of S (ω) / (jsign (ω) ρ (ω)) is 1 or more, the absolute value of the time average of the in-phase frequency component / orthogonal frequency component is 2 or more. When the absolute value of the ratio is 2 or more, the sign of the imaginary part of the ratio does not represent −jsign (ω). Since the absolute value of −jsign (ω) is 1, when the absolute value of the ratio is smaller than 2, the sign of the imaginary part of the ratio is not inverted with respect to −jsign (ω).
Further, when the absolute value of the average residual Δ (ω) of S (ω) / (ρ (ω) is 1 or more, | Δ (ω) +1 | may be 2 or more, and therefore, orthogonal The absolute value of the time average of the frequency component / in-phase frequency component may be ½ or less, in which case the sign of Δ (ω) +1 may be negative. If the absolute value is ½ or less, the sign of the imaginary part of the ratio will not represent jsign (ω) If the absolute value of the ratio is greater than ½, the sign of the imaginary part of the ratio is , Jsign (ω) is not inverted.
When the transfer function is obtained by the ratio calculation, if the upper sideband noise and the lower sideband noise overlap at the same frequency in the baseband, the time average of the ratio is -jsign (ω) Don't be. Therefore, the transfer function Z (ω) is obtained directly as the time average of the ratio without obtaining the sign function from the time average of the ratio. When the absolute value of the above average residual Δ (ω) is small and the time average of the ratio does not change greatly, this transfer function Z (ω) is superimposed on the upper sideband noise and the lower sideband noise at the same frequency. By multiplying the generated orthogonal frequency component, the noise of the in-phase frequency component superimposed on the upper sideband noise and the lower sideband noise at the same frequency can be obtained.
また、本発明において、フーリエ変換手段の出力から伝達関数演算手段の出力までの間において、直流を含む帯域を除去するマスク手段を設けても良い。
直交復調において、復調搬送波が受信信号の搬送波と同期していない場合には、直流付近にビート信号が表れ、これは直交周波数成分にも表れる。この周波数成分を除去して伝達関数を求めることができる。
In the present invention, mask means for removing a band including direct current may be provided between the output of the Fourier transform means and the output of the transfer function calculation means.
In quadrature demodulation, when the demodulated carrier wave is not synchronized with the carrier wave of the received signal, a beat signal appears near the direct current, which also appears in the orthogonal frequency component. The transfer function can be obtained by removing this frequency component.
3.同期復調
本発明において、復調手段は、直交復調後の直交成分に含まれる、変調搬送波に対する復調搬送波の誤差周波数のビート信号が零となるように、復調搬送波の周波数と位相を制御するフェーズロックドループ部を有することが望ましい。同期検波を実行でき、雑音を確実に除去することができる。
3. Synchronous demodulation In the present invention, the demodulating means controls the frequency and phase of the demodulated carrier so that the beat signal of the error frequency of the demodulated carrier with respect to the modulated carrier contained in the quadrature component after quadrature demodulation is zero. It is desirable to have a part. Synchronous detection can be performed, and noise can be reliably removed.
また、復調手段は、ベースバンド信号の移動平均から、変調搬送波に対する復調搬送波の誤差周波数のビート信号を求め、そのビート信号に基づいてベースバンド信号のビート信号による変動を補正した信号を新たにベースバンド信号とする同期手段を有することが望ましい。ベースバンドにおけるスペクトルは、同相成分も直交成分も、ビート周波数だけ周波数がシフトするので、これ周波数シフトを補正することで、信号成分の復調と、雑音の除去を確実に実行することができる。
また、同期手段は、ベースバンド信号の移動平均に伴って生じる瞬時位相の遅れを、検出した瞬時位相の時間差と移動平均に応じて補正する手段を有するようにしても良い。
In addition, the demodulation means obtains a beat signal of the error frequency of the demodulated carrier wave with respect to the modulated carrier wave from the moving average of the baseband signal, and based on the beat signal, a signal obtained by correcting the fluctuation due to the beat signal of the baseband signal is newly added to the baseband signal. It is desirable to have synchronization means for making a band signal. Since the spectrum in the baseband is shifted in frequency by the beat frequency for both the in-phase component and the quadrature component, the signal component can be demodulated and noise can be reliably removed by correcting this frequency shift.
The synchronization unit may include a unit that corrects the delay of the instantaneous phase caused by the moving average of the baseband signal according to the time difference of the detected instantaneous phase and the moving average.
4.方法発明
本方法発明は、両側帯波信号を受信して、RF帯域に重畳する雑音を除去する信号処理方法において、両側帯波信号を直交復調して、正周波数帯域と負周波数帯域とを有したベースバンドの同相成分と直交成分とに復調し、同相成分と直交成分とをフーリエ変換して同相周波数成分と直交周波数成分とを求め、同相周波数成分と、直交周波数成分に基づき、直交周波数成分と同相周波数成分間の時間平均された伝達関数を求め、伝達関数に基づいて、直交成分の周波数特性を補正して、同相成分に合成することを特徴とする信号処理方法である。上記の装置発明について説明したことが方法発明にも適用できる。
4). Method invention The present invention is a signal processing method for receiving a double-sideband signal and removing noise superimposed on the RF band, and orthogonally demodulating the double-sideband signal to have a positive frequency band and a negative frequency band. The baseband in-phase component and quadrature component are demodulated, and the in-phase component and quadrature component are Fourier transformed to obtain the in-phase frequency component and quadrature frequency component. Based on the in-phase frequency component and quadrature frequency component, the quadrature frequency component Is a signal processing method characterized in that a time-averaged transfer function between the in-phase frequency components is obtained, the frequency characteristics of the quadrature components are corrected based on the transfer function, and the in-phase components are synthesized. What has been described above for the device invention is also applicable to the method invention.
また、方法発明において、時間平均された伝達関数から各周波数毎の符号成分を抽出して、その符号成分の周波数特性を直交成分の補正に用いる伝達関数としても良い。
また、方法発明において、合成は、同相周波数成分から、直交周波数成分を伝達関数で補正した直交周波数成分を除去して雑音除去同相周波数成分を求め、雑音除去同相周波数成分を逆フーリエ変換して、時間軸上の復調信号とするようにしても良い。装置発明と同様に成立する。
In the method invention, a code component for each frequency may be extracted from a time-averaged transfer function, and the frequency characteristic of the code component may be used as a transfer function for correcting the orthogonal component.
In the method invention, the synthesis is performed by removing a quadrature frequency component obtained by correcting the quadrature frequency component with a transfer function from the in-phase frequency component to obtain a noise-removed common-mode frequency component, and performing an inverse Fourier transform on the noise-removed common-mode frequency component, A demodulated signal on the time axis may be used. This is the same as the device invention.
本発明によると、RF帯域に雑音が重畳される環境において、復調時にこの雑音を精度よく除去することができるので、所望信号の検出精度、復調精度を向上させることができる。 According to the present invention, since noise can be accurately removed during demodulation in an environment where noise is superimposed on the RF band, the detection accuracy and demodulation accuracy of a desired signal can be improved.
以下、本発明を具体的な実施例に基づいて説明する。本発明は、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described based on specific examples. The present invention is not limited to the following examples.
1.構成
本発明の具体的な一実施例に係る信号処理装置1の構成を図1に示す。本実施例は、HV(ハイブリッド車)におけるAMラジオ受信機に混入する雑音を抑制する信号処理装置である。HVには、100kHzのキャリア周波数で制御されるDC−DCコンバータが搭載されていると仮定する。AMラジオ放送波は、531kHzから1602kHzの周波数帯域が割り当てられている。DC−DCコンバータから発生するスイッチング雑音は、基本的には、周波数空間では、線スペクトル列となる。この雑音が、AMラジオ放送帯域に入り込み、AMラジオ放送波に雑音を与える。本発明は、AMラジオ放送の上側帯波帯域と下側帯波帯域とに、共に、雑音が存在する場合であっても、雑音を除去することができる。本実施例は、AMラジオ放送帯域に入り込むこの種の雑音をキャンセルする信号処理装置である。しかしながら、本発明は、このような雑音に限定されることなく、直交多重化されていない両側帯波伝送において、RF帯域に雑音が混入する全ての環境において用いることができる。また、混入する雑音は線スペクトルに限らず帯域を有した連続スペクトルであっても良い。
1. Constitution
A configuration of a signal processing apparatus 1 according to a specific embodiment of the present invention is shown in FIG. A present Example is a signal processing apparatus which suppresses the noise mixed in the AM radio receiver in HV (hybrid vehicle). It is assumed that the HV is equipped with a DC-DC converter that is controlled at a carrier frequency of 100 kHz. The AM radio broadcast wave is assigned a frequency band of 531 kHz to 1602 kHz. The switching noise generated from the DC-DC converter basically becomes a line spectrum string in the frequency space. This noise enters the AM radio broadcast band and gives noise to the AM radio broadcast wave. The present invention can remove noise even when noise is present in both the upper sideband and lower sideband of AM radio broadcasting. This embodiment is a signal processing device that cancels this type of noise entering the AM radio broadcast band. However, the present invention is not limited to such noise, and can be used in all environments in which noise is mixed in the RF band in double-sideband transmission that is not orthogonally multiplexed. Further, the noise to be mixed is not limited to the line spectrum but may be a continuous spectrum having a band.
本実施例の信号処理装置は、アンテナ11により受信されたAMラジオ放送信号が増幅器12により増幅され、A/Dコンバータ13により、一定の周期Δtでサンプリングされて、ディジタル値に変換された後、CPUにより処理される装置である。もちろん、アナログ回路で全て、又は一部を構成することは可能であるが、ディジタルで処理することが簡単であるので、本実施例はディジタル処理によるものである。図1の構成は、ディジタル処理の各機能部毎にブロックで表現されている。A/Dコンバータ13の出力する信号は実数であるが、直交復調部20及びその後段のデータ処理は全て複素数で行われる。復調手段である直交復調部20は、ミキサー21と復調搬送波発生部22と同相成分抽出部23と直交成分抽出部24とを有している。直交復調部20によりベースバンド信号が得られる。複素信号で取り扱う関係上、このベースバンド信号は、上側帯波帯域に対応する正周波数帯域と下側帯波帯域に対応する負周波数帯域とを有する。
In the signal processing apparatus of this embodiment, the AM radio broadcast signal received by the antenna 11 is amplified by the
直交復調部20に、位相同期処理部70が設けられている。位相同期処理部70はベースバンド信号を入力してその移動平均を演算する移動平均演算部71と、その出力の複素共役を演算する複素共役演算部72と、その出力の振幅を規格化する振幅規格化部73と、その出力とベースバンド信号とを乗算する乗算部74とを有している。
The quadrature demodulation unit 20 is provided with a phase
同相成分抽出部23の出力する同相成分は、フーリエ変換部45(以下、「FFT」と記す)に入力して、同相周波数成分が得られる。また、直交成分抽出部24の出力する直交成分は、FFT46に入力して直交周波数成分が得られる。本実施例装置は、さらに、乗算部26と伝達関数演算部60と合成部80とを有している。乗算部26は直交周波数成分にjを乗算する部分であり、位相回転手段を構成する。伝達関数演算部60は、同相周波数成分の直交周波数成分に対する伝達関数を演算する部分であり、複素共役演算部47、乗算部48、時間平均演算部49、符号周波数特性抽出部50とを有している。また、合成部80は、伝達関数演算部60により求められた伝達関数を用いて直交周波数成分を補正し、補正された周波数成分を同相周波数成分から減算して雑音を除去する部分であり、乗算部81、減算部82、逆フーリエ変換部(以下、「IFFT」という)83とを有する。
The in-phase component output from the in-phase
FFT46の出力する直交周波数成分は、乗算部26でjが乗算(π/2だけ位相を回転)され、複素共役演算部47に入力して、複素共役直交周波数成分が得られる。この複素共役直交周波数成分と同相周波数成分とが、乗算部48に入力して、各周波数毎に各成分が乗算されて、複素積周波数成分として時間平均演算部49に出力される。時間平均演算部49では、現時刻tに対して過去一定時間T内での時間平均が演算される。この時間平均演算部49の出力が符号周波数特性抽出部50に入力して上述した−jsign( ω) の符号関数から成る時間平均伝達関数が演算される。この時間平均伝達関数と直交周波数成分とが乗算部81において各周波数毎に乗算される。乗算部81の出力は、直交雑音成分から予測される同相雑音成分(以下、「推定同相雑音成分」という)となる。そして、減算部82において、同相周波数成分から推定同相雑音成分を周波数毎に減算して、雑音が除去された雑音除去同相周波数成分が得られる。その雑音除去同相周波数成分は、IFFT83に入力して逆フーリエ変換されて、時間軸上の雑音が除去された復調信号S(t)が得られる。
The orthogonal frequency component output from the
次に本信号処理装置の作用について説明する。
1.受信信号のスペクトル
雑音は、放送局から受信装置に至る間に上側帯波帯域と下側帯波帯域とに重畳されるものとする。アンテナ11の出力する受信信号r(t)は、(1)式で表される。
1. The spectrum noise of the received signal is superimposed on the upper sideband and the lower sideband from the broadcasting station to the receiving device. The reception signal r (t) output from the antenna 11 is expressed by equation (1).
空間を伝搬する波は、r(t)の実部で表される。したがって、A/Dコンバータ13から出力されるサンプリングされた受信信号(データ)は、実数列である。次に、この受信信号を直交復調する。
1.同期復調
復調搬送波発生部22の出力する復調搬送波の周波数は、変調搬送波の周波数ωc に対してΔωだけ大きいとする。すなわち、復調搬送波波L(t)は(2)式で表される。
信号成分の直交成分は存在しないので、複素空間では、直交復調は、(1)式で表される複素関数の実部の受信信号にexp[−j(ωc +Δω)t]を掛ける演算を行うことに等しい。したがって、ミキサー21の出力する復調した後のベースバンドの信号は、(3)式で表される。なお、復調結果には1/2の係数が係るので、表現を簡単にするために、x(t)は、直交復調の結果の2倍で定義する。ベースバンド信号に、exp(−jΔωt)の因子が現れる。なお、ミキサー21の出力には2ωc の高調波成分が含まれるので、実際には、ローパスフィルタにより高調波成分は除去されている。
1. Synchronous Demodulation The frequency of the demodulated carrier wave output from the demodulated
Since there is no quadrature component of the signal component, in the complex space, quadrature demodulation is performed by multiplying the received signal in the real part of the complex function expressed by equation (1) by exp [−j (ω c + Δω) t]. Equivalent to doing. Therefore, the demodulated baseband signal output from the
次に、複素共役演算部72により、(4)式の複素共役が求められ、振幅規格化部73により、(5)式の規格化信号が得られる。(4)式におけるA+S+ (t)+S- (t)は実数であるので、(4)式から、−jΔωt=tan-1(実部/虚部)により−jΔωtが得られるので、exp(jΔωt)を得ることができる。
次に、乗算部74により、ベースバンド信号に(5)式の規格化信号を乗算して、(6)式の同期ベースバンド信号xsync(t)を得ることができる。
この処理により、復調搬送波の周波数が変調搬送波の周波数に対して偏差Δωを有していても、その偏差による影響を排除することができる。
なお、上記の説明では、受信信号に含まれる復調搬送波と、変調搬送波との位相差Δφは、明示していないが、(2)〜(5)式におけるjΔωtをjΔωt+jΔφとおいて、位相誤差Δφを考慮して、(6)式を演算すると、Δφは消去されるので、Δφが存在しても、(6)式が得られる。すなわち、周波数誤差だけでなく位相誤差も、補償されることになる。
Next, the
By this processing, even if the frequency of the demodulated carrier wave has a deviation Δω with respect to the frequency of the modulated carrier wave, the influence of the deviation can be eliminated.
In the above description, the phase difference Δφ between the demodulated carrier wave and the modulated carrier wave included in the received signal is not clearly shown, but the phase error Δφ is calculated by setting jΔωt to jΔωt + jΔφ in equations (2) to (5). Considering this, if the expression (6) is calculated, Δφ is deleted, so that even if Δφ exists, the expression (6) can be obtained. That is, not only the frequency error but also the phase error is compensated.
したがって、位相同期処理部70により、復調した後のベースバンドの信号は、(7)式で表される。すなわち、ミキサー74の出力信号xsync(t)は、(7)式で表現でき、そのスペクトルは図2(b)に示すようになり、ベースバンドの正周波数帯域と負周波数帯域とを有している。雑音は正周波数帯域の周波数ωU にρU 、負周波数帯域の−ωL にρL のスペクトルが存在する。
(7)式の実部が直交復調における同相成分、虚部が直交復調における直交成分である。
同相成分は、(8)式で、直交成分は、(9)式で表される。
The in-phase component is expressed by equation (8), and the quadrature component is expressed by equation (9).
同相成分xr (t)は、FFT45に入力し、フーリエ変換されて同相周波数成分Xr (ω)が、(10)式のように求められる。
なお、S+ (ω)は、ω>0の領域でのみ定義された関数であり、S- (ω)は、ω<0の領域でのみ定義された関数である。δ(ω−ωU )等は、ω=ωU で1、他で0のデルタ関数である。同相成分には信号成分と雑音成分が存在するが、直交成分には、信号成分が存在せず、雑音成分のみが存在する。(10)式で表される同相成分のスペクトルは、図3(a)に示すようになる。正周波数帯域には、信号成分のスペクトルS+ と、周波数ωu ,ωL に、それぞれ、雑音成分のスペクトル(ρU /2),(ρL * /2)が現れ、負周波数帯域には、信号成分のスペクトルS- と、周波数−ωu ,−ωL に、それぞれ、雑音成分のスペクトル(ρU * /2),(ρL /2)が現れている。ρ* はρの複素共役で、ρの位相を反転したスペクトルである。同相成分xr (t)も、直交成分xi (t)も実関数である。 S + (ω) is a function defined only in the region of ω> 0, and S − (ω) is a function defined only in the region of ω <0. δ (ω−ω U ) or the like is a delta function of 1 when ω = ω U and 0 otherwise. The in-phase component has a signal component and a noise component, but the quadrature component has no signal component and only a noise component. The spectrum of the in-phase component represented by the equation (10) is as shown in FIG. In the positive frequency band, the spectrum (ρ U / 2) and (ρ L * / 2) of the noise component appear in the spectrum S + of the signal component and the frequencies ω u and ω L , respectively, and in the negative frequency band. , Noise component spectra (ρ U * / 2) and (ρ L / 2) appear in the signal component spectrum S − and the frequencies −ω u and −ω L , respectively. ρ * is a complex conjugate of ρ and a spectrum obtained by inverting the phase of ρ. Both the in-phase component x r (t) and the quadrature component x i (t) are real functions.
(11)式で表される直交成分のスペクトルは図3(b)に示すようになる。正周波数帯域には、周波数ωu ,ωL に、それぞれ、直交成分の雑音成分のスペクトル(−jρU /2),(jρ* L /2)が現れている。すなわち、この雑音成分は、同相成分のそれぞれの雑音成分と振幅は等しいが、同相成分に対して、位相が−π/2,π/2だけ回転している(時間軸上では、それぞれ、π/2だけ遅れ、進んでいる)。負周波数帯域には、周波数−ωu ,−ωL に、それぞれ、直交成分の雑音成分のスペクトル(jρU * /2),(−jρL /2)が現れている。すなわち、この雑音成分は、同相成分の雑音成分と振幅は等しいが、同相成分に対して位相が、それぞれ、π/2、−π/2だけ回転している(時間軸上では、それぞれ、π/2だけ遅れ、進んでいる)。また、同相成分も、直交成分も、正周波数帯域と負周波数帯域のスペクトルは、相互に、複素共役の関係、すなわち、位相が反転した関係にある。 The spectrum of the orthogonal component represented by the equation (11) is as shown in FIG. In the positive frequency band, spectrums (−jρ U / 2) and (jρ * L / 2) of noise components of orthogonal components appear at frequencies ω u and ω L , respectively. That is, this noise component has the same amplitude as each noise component of the in-phase component, but the phase is rotated by −π / 2, π / 2 with respect to the in-phase component (on the time axis, π / 2 is delayed and advanced). In the negative frequency band, spectrums (jρ U * / 2) and (−jρ L / 2) of noise components of orthogonal components appear at frequencies −ω u and −ω L , respectively. That is, the noise component has the same amplitude as the noise component of the in-phase component, but the phase is rotated by π / 2 and −π / 2 with respect to the in-phase component, respectively (on the time axis, π / 2 is delayed and advanced). Further, in both the in-phase component and the quadrature component, the spectra in the positive frequency band and the negative frequency band are in a complex conjugate relationship, that is, a relationship in which the phases are inverted.
2.伝達関数の演算
次に、直交周波数成分Xi (ω)は、π/2だけ位相を回転させる(jを乗算する)位相回転部26に入力して、jの乗算が行われ、位相回転直交周波数成分jXi (ω)が求められる。この位相回転直交周波数成分jXi (ω)は、複素共役演算部47に入力しその複素共役直交周波数成分(jXi (ω))* が演算される。次に、乗算部48において、FFT45の出力する同相周波数成分Xr (ω)と複素共役直交周波数成分(jXi (ω))* との各周波数毎の積が演算される。演算結果である複素積周波数成分Xr (ω)(jXi (ω))* は、(12)式で表される。だだし、表現を簡単にするために、複素積周波数成分の4倍で表現している。
次に、この複素積周波数成分は、時間平均演算部49において、現時刻tに対して過去T期間の時間平均が演算(時間移動平均)される。その結果は、時間平均R(ω)として(13)式で表される。
(13)式の時間平均R(ω)は、符号周波数特性抽出部50に入力し、各周波数毎の符号が抽出される。なお、Avは時間平均を表す。(13)式の各項は、実数であり、各雑音スペクトルの周波数の位置に表れる振幅の2乗の時間平均の実スペクトルである。したがって、値が存在する周波数毎に、正負の判断を実行することができる。その結果、符号周波数特性抽出部50からは、sign( ω) から成る符号周波数特性が、時間平均伝達関数W(ω)として出力される。時間平均伝達関数W(ω)は、(14)式で表される。なお、上側帯波に重畳した雑音と下側帯波に重畳した雑音がベースバンドにおいて同一周波数に表れる場合には、符号を決定することができないので、本実施例では、ρU とρL が重なっていない場合を想定している。
The time average R (ω) of the equation (13) is input to the code frequency
次に、減算部82において、FFT45の出力する同相周波数成分Xr (ω)から推定同相成分Q(ω)が周波数毎に減算される。(10)式と(15)式の比較から明らかなように、雑音が除去された同相周波数成分Aδ(ω)+S+ (ω)+S- (ω)が得られる。この同相周波数成分はIFFT83に入力して、雑音の除去された時間軸上の復調信号S(t)として出力される。
なお、時間平均R(ω)に、平均残差Δ(ω)が存在しても、その絶対値が雑音スペクトルの絶対値の2乗の時間平均より小さいならば、時間平均R(ω)が|Δ(ω)|より大きいところの周波数について、符号の抽出を行うことで、符号周波数特性を抽出することができる。
Next, the subtracting
Even if the average residual Δ (ω) exists in the time average R (ω), if the absolute value is smaller than the time average of the square of the absolute value of the noise spectrum, the time average R (ω) is The code frequency characteristic can be extracted by extracting the code for frequencies greater than | Δ (ω) |.
上記実施例では、FFT46の出力にjを乗算する位相回転部26を設けた。しかし、jを乗算する位置は、直交成分抽出部24の後でも良い。すなわち、時間軸上の直交成分xi (t)にjを乗算しても、結果は同じでる。さらに、(12)式から明らかなように、同相成分抽出部23の出力である同相成分xr (t)、又は、FFT45の出力する同相周波数成分Xr (ω)に−jを乗算しても、同一結果が得られる。また、jの乗算と複素共役の演算を同相周波数成分に対して実行し、その結果の(jXr (ω))* と直交周波数成分Xi (ω)との積を求めても良い。
さらに、このjの乗算を行うことなく、複素積周波数成分Xr (ω)(Xi (ω))* 又は(Xr (ω))* (Xi (ω))を演算するようにしても良い。(11)式から明らかなように、直交周波数成分Xi (ω)には、共通に1/jの因子がかかっているだけであるので、複素積周波数成分Xr (ω)(Xi (ω))* は、(12)式の右辺においてjを共通に掛けた式で表される。したがって、(13)式の時間平均R(ω)及び(14)式の時間平均伝達関数W(ω)も、各項にjを掛けた式で表される。(13)式の各項は虚数であるので、符号を決定することができる。したがって、直交周波数成分Xi (ω)に時間平均伝達関数W(ω)を周波数毎に乗算すると、(15)式の推定同相雑音成分Q(ω)が得られる。よって、図1において、位相回転部26が存在しない場合も同様に雑音成分が除去された同相周波数成分を求めることができ、時間軸上の雑音が除去された復調信号S(t)を得ることができる。
本実施例では、全周波数帯域において、上記の合成までの演算を行うことを想定しているが、直交周波数成分(Xi (ω)の絶対値が所定閾値以上の周波数だけ実行するようにしても良い。この所定閾値は、直交雑音成分の絶対値の2乗が、平均残差Δ(ω)の絶対値以上となる値に設定すれば良い。このようにすれば、雑音の直交成分が同相成分に同相で合成されることが防止される。
上記実施例では、説明を簡単にするために、上側帯波雑音、下側帯波雑音を単一の線スペクトルとして説明した。しかし、多数の線スペクトル列であっても、連続スペクトルであっても、各周波数成分毎に上記の原理が成立する。したがって、雑音が多数の線スペクトル列、連続スペクトルの場合にも、本発明は適用できる。
上記実施例では、正負の全周波数帯域で演算することを想定しているが、正周波数帯域について上記の演算により符号周波数特性W(ω)を求め、負周波数帯域の符号周波数特性はその複素共役W(−ω)* として求めても良い。当然に、その逆であっても良い。
In the above embodiment, the
Further, the complex product frequency component X r (ω) (X i (ω)) * or (X r (ω)) * (X i (ω)) is calculated without performing multiplication of j. Also good. As is apparent from the equation (11), the orthogonal frequency component X i (ω) is only multiplied by a factor of 1 / j in common, so that the complex product frequency component X r (ω) (X i ( ω)) * is expressed by an expression obtained by multiplying j in common on the right side of the expression (12). Therefore, the time average R (ω) in the equation (13) and the time average transfer function W (ω) in the equation (14) are also expressed by equations obtained by multiplying each term by j. Since each term in equation (13) is an imaginary number, the sign can be determined. Therefore, when the orthogonal frequency component X i (ω) is multiplied by the time average transfer function W (ω) for each frequency, the estimated common-mode noise component Q (ω) of the equation (15) is obtained. Therefore, in FIG. 1, even when the
In the present embodiment, it is assumed that the calculation up to the above synthesis is performed in all frequency bands, but only the frequency where the absolute value of the orthogonal frequency component (X i (ω) is equal to or greater than a predetermined threshold is executed. The predetermined threshold may be set to a value such that the square of the absolute value of the orthogonal noise component is equal to or greater than the absolute value of the average residual Δ (ω). The in-phase component is prevented from being synthesized in the same phase.
In the above embodiment, the upper sideband noise and the lower sideband noise are described as a single line spectrum for the sake of simplicity. However, the above principle holds true for each frequency component, whether it is a large number of line spectrum sequences or a continuous spectrum. Therefore, the present invention can also be applied when the noise is a large number of line spectrum sequences or continuous spectra.
In the above embodiment, it is assumed that the calculation is performed in all positive and negative frequency bands. However, the code frequency characteristic W (ω) is obtained by the above calculation for the positive frequency band, and the code frequency characteristic in the negative frequency band is a complex conjugate thereof. It may be obtained as W (−ω) * . Of course, the opposite may be possible.
次に、伝達関数を同相周波数成分と直交周波数成分との比率で求める例について説明する。実施例2の信号処理装置の構成を図4に示す。図1と同一の機能を果たす部分は同一の符号が付されている。本実施例では伝達関数演算部70の構成が実施例1とは異なる。伝達関数演算部70は、比率演算部71、時間平均演算部72、符号周波数特性抽出部73を有している。
Next, an example in which the transfer function is obtained by the ratio of the in-phase frequency component and the orthogonal frequency component will be described. FIG. 4 shows the configuration of the signal processing apparatus according to the second embodiment. Parts having the same functions as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, the configuration of the transfer
同相周波数成分Xr (ω)は、直流成分Aを除去した成分とし、(16)式のように一般式で表す。S(ω)、ρ(ω)は、正負の全周波数帯域で定義された信号成分のスペクトル、同相成分の雑音成分のスペクトルとする。また、上側帯波に重畳した雑音と下側帯波に重畳した雑音がベースバンドにおいて重ならない場合には、上述したように、直交成分は同相成分に対して、各周波数毎に符号関数jsing(ω) の因子だけが異なるだけである。したがって、直交周波数成分Xi (ω)は、jsing(ω) とρ(ω)とを用いて(17)式で表される。
比率演算部71において、直交周波数成分Xi (ω)に対する同相周波数成分Xr (ω)の比率周波数特性V(ω)が(18)式のように周波数毎に演算される。
次に、直交周波数成分Xi (ω)に伝達関数Z(ω)が、乗算部81で周波数毎に乗算されて、(20)式で表される推定同相雑音成分Q(ω)が得られる。
なお、(18)式で比率周波数特性V(ω)を求める時に、直交周波数成分Xi (ω)が0の場合には、発散する。このため、この比率を演算する場合に、直交周波数成分Xi (ω)の絶対値が所定値以上の周波数だけ、比率を演算し、その他の周波数では、この比率を0、すなわち、伝達関数Z(ω)を0とするか、演算せずに減算部82で減算演算を行わない。この周波数では、同相周波数成分から雑音を除去することはできないが、直交周波数成分の雑音成分が、同相雑音に同相で重畳されることが防止される。
When the ratio frequency characteristic V (ω) is obtained by the equation (18), if the orthogonal frequency component X i (ω) is 0, it diverges. For this reason, when calculating this ratio, the ratio is calculated only for the frequency whose absolute value of the orthogonal frequency component X i (ω) is equal to or greater than a predetermined value, and for other frequencies, this ratio is 0, that is, the transfer function Z (Ω) is set to 0, or no subtraction operation is performed in the
比率を演算する時の周波数決定する所定閾値は、(19)式の平均残差Δ(ω)の絶対値が1より小さくなるような直交周波数成分の絶対値で与えれば良い。平均残差Δ(ω)の絶対値が1より小さい場合には、(19)式から符号関数{−jsing(ω) }を決定できるからである。 The predetermined threshold for determining the frequency when calculating the ratio may be given by the absolute value of the orthogonal frequency component such that the absolute value of the average residual Δ (ω) in equation (19) is smaller than 1. This is because when the absolute value of the average residual Δ (ω) is smaller than 1, the sign function {−jsing (ω)} can be determined from the equation (19).
また、(19)式の比率の時間平均R(ω)の絶対値が2より小さい周波数では、その虚部の符号から符号関数{−jsing(ω) }を決定できる。この場合には、平均残差Δ(ω)の絶対値が1より小さいことを意味するので、符号関数を決定できる。時間平均R(ω)の絶対値が2以上の周波数では、伝達関数Z(ω)を0と置くか、同相周波数成分Xr (ω)と推定同相雑音成分Q(ω)との合成演算を行わないことで、上述のように、雑音の同相合成が防止される。 In addition, at a frequency where the absolute value of the time average R (ω) of the ratio of the equation (19) is smaller than 2, the sign function {−jsing (ω)} can be determined from the sign of the imaginary part. In this case, since it means that the absolute value of the average residual Δ (ω) is smaller than 1, the sign function can be determined. At frequencies where the absolute value of the time average R (ω) is 2 or more, the transfer function Z (ω) is set to 0, or the composite operation of the in-phase frequency component X r (ω) and the estimated in-phase noise component Q (ω) is performed. By not doing so, in-phase synthesis of noise is prevented as described above.
また、比率演算により伝達関数を求める場合には、上側帯波雑音と下側帯波雑音とが同一周波数で重なっている場合には、比率の時間平均は、−jsign(ω)とはならず、直接、比率の時間平均として、伝達関数Z(ω)が与えられる。時間平均R(ω)は、(21)式、伝達関数Z(ω)は(22)式で表される。
ただし、ρr (ω)、ρi (ω)は、同相雑音成分、直交雑音成分の全帯域スペクトルである。上記の平均残差Δ(ω)の絶対値が小さく、時間平均Av(ρr (ω)/ρi (ω))が大きく変化しない場合には、推定同相雑音成分Q(ω)は、ρi (ω)Av(ρr (ω)/ρi (ω))であるので、推定同相雑音成分Q(ω)は、近似的にρr (ω)となる。このようにして、比率の時間平均R(ω)を直接、伝達関数Z(ω)としても、雑音を除去することができる。なお、上側帯波雑音と下側帯波雑音とが重なっていない周波数では、当然に、(22)式の伝達関数Z(ω)は、符号関数{−jsign(ω)}となるので、正確に、同相周波数成分から同相雑音を除去することができる。
上記実施例では、正負の全周波数帯域で演算することを想定しているが、正周波数帯域について上記の演算により符号関数{−jsign(ω)}を伝達関数Z(ω)として求め、負周波数帯域の符号周波数特性はその複素共役Z(−ω)* =jsign(ω)として求めても良い。当然にその逆であっても良い。
さらに、比率演算部71において、同相周波数成分Xr (ω)に対する直交周波数成分Xi (ω)の比率周波数特性V(ω)を求めて、それから符号関数を抽出して、それを伝達関数の逆数1/Z(ω)としても良い。また、符号関数を抽出することなく、比例周波数特性の逆数1/V(ω)を直交周波数成分Xi (ω)に乗算するか、直交周波数成分Xi (ω)をその比例周波数特性V(ω)で除して推定同相周波数特性Q(ω)を求めても良い。
上記したことは、同様に成立する。直交周波数成分の絶対値が所定閾値以上の周波数、又は、比率の絶対値が1/2より大きい周波数についてのみ、比率演算又は合成演算を行えば良い。
However, ρ r (ω) and ρ i (ω) are full-band spectra of the in-phase noise component and the quadrature noise component. When the absolute value of the average residual Δ (ω) is small and the time average Av (ρ r (ω) / ρ i (ω)) does not change significantly, the estimated common-mode noise component Q (ω) is expressed as ρ Since i (ω) Av (ρ r (ω) / ρ i (ω)), the estimated common-mode noise component Q (ω) is approximately ρ r (ω). In this way, noise can be removed even if the time average R (ω) of the ratio is directly used as the transfer function Z (ω). Of course, at the frequency where the upper sideband noise and the lower sideband noise do not overlap, the transfer function Z (ω) in the equation (22) naturally becomes the sign function {−jsign (ω)}. In-phase noise can be removed from in-phase frequency components.
In the above embodiment, it is assumed that the calculation is performed in all positive and negative frequency bands. However, the sign function {−jsign (ω)} is obtained as the transfer function Z (ω) by the above calculation for the positive frequency band, and the negative frequency is obtained. The code frequency characteristic of the band may be obtained as its complex conjugate Z (−ω) * = jsign (ω). Of course, the opposite may be possible.
Further, the
The above is true in the same way. The ratio calculation or the combination calculation may be performed only for the frequency where the absolute value of the orthogonal frequency component is equal to or greater than the predetermined threshold or the frequency where the absolute value of the ratio is greater than 1/2.
位相同期処理部70において位相同期が完全でなく、Δωが存在すると、直流を中心として−Δω〜Δωの帯域は、その影響を受ける。このため、図5に示すように、その帯域を除去するマスク処理部51を設けても良い。実施例2の図4の場合も、図4の比率演算部71の後段に、マスク処理部51を設けても良い。
If phase synchronization is not complete in the phase
23…同相成分抽出部
24…直交成分抽出部
60,70…伝達関数演算部
80…合成部
23 ... In-phase
Claims (17)
前記同相成分と前記直交成分とをフーリエ変換して複素関数の同相周波数成分と複素関数の直交周波数成分とを出力するフーリエ変換手段と、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求める伝達関数演算手段と、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成する合成手段と
を有することを特徴とする信号処理装置。 In a signal processing device that receives a double sideband signal and removes noise superimposed on the RF band, the baseband in-phase component having a positive frequency band and a negative frequency band is obtained by quadrature demodulation of the double sideband signal. And a demodulating means for demodulating into a quadrature component,
Fourier transform means for Fourier transforming the in-phase component and the quadrature component to output the in- phase frequency component of the complex function and the quadrature frequency component of the complex function ;
Transfer function computing means for obtaining a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component based on the in-phase frequency component and the quadrature frequency component;
A signal processing apparatus comprising: combining means for correcting the frequency characteristic of the quadrature component based on the transfer function and combining it with the in-phase component.
前記同相成分と前記直交成分とをフーリエ変換して同相周波数成分と直交周波数成分とを出力するフーリエ変換手段と、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求める伝達関数演算手段と、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成する合成手段と、を有し、
前記伝達関数演算手段は、
前記同相周波数成分と前記直交周波数成分との一方と、他方の複素共役とを各周波数毎に乗算する複素共役乗算手段と、
前記複素共役乗算手段の出力の時間平均を演算する時間平均演算手段と、
前記時間平均演算手段の出力から各周波数毎の符号成分を抽出し、その符号成分の周波数特性を前記伝達関数とする符号周波数特性抽出手段と、
を有することを特徴とする信号処理装置。 In a signal processing apparatus that receives a double sideband signal and removes noise superimposed on the RF band, the baseband in-phase component having a positive frequency band and a negative frequency band is obtained by quadrature demodulation of the double sideband signal. And a demodulating means for demodulating into a quadrature component,
Fourier transform means for Fourier transforming the in-phase component and the quadrature component to output an in-phase frequency component and a quadrature frequency component;
Transfer function computing means for obtaining a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component based on the in-phase frequency component and the quadrature frequency component;
And combining means for correcting the frequency characteristic of the orthogonal component based on the transfer function and combining it with the in-phase component,
The transfer function calculating means includes
Complex conjugate multiplication means for multiplying one of the in-phase frequency component and the quadrature frequency component and the other complex conjugate for each frequency;
A time average calculating means for calculating a time average of an output of the complex conjugate multiplication means;
Code frequency characteristic extracting means for extracting a code component for each frequency from the output of the time average calculating means, and using the frequency characteristic of the code component as the transfer function;
A signal processing apparatus comprising:
前記同相成分と前記直交成分とをフーリエ変換して同相周波数成分と直交周波数成分とを出力するフーリエ変換手段と、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求める伝達関数演算手段と、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成する合成手段と、を有し、
前記伝達関数演算手段は、
前記同相周波数成分を前記直交周波数成分で各周波数毎に除算した周波数特性の時間平均、又は、前記直交周波数成分を前記同相周波数成分で除算した周波数特性の時間平均を演算する時間平均演算手段と、
前記時間平均演算手段の出力から各周波数毎の符号成分を抽出し、その符号成分の周波数特性を前記伝達関数とする符号周波数特性抽出手段と、
を有することを特徴とする信号処理装置。 In a signal processing apparatus that receives a double sideband signal and removes noise superimposed on the RF band, the baseband in-phase component having a positive frequency band and a negative frequency band is obtained by quadrature demodulation of the double sideband signal. And a demodulating means for demodulating into a quadrature component,
Fourier transform means for Fourier transforming the in-phase component and the quadrature component to output an in-phase frequency component and a quadrature frequency component;
Transfer function computing means for obtaining a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component based on the in-phase frequency component and the quadrature frequency component;
And combining means for correcting the frequency characteristic of the orthogonal component based on the transfer function and combining it with the in-phase component,
The transfer function calculating means includes
A time average of frequency characteristics obtained by dividing the in-phase frequency component by the orthogonal frequency component for each frequency, or a time average calculating means for calculating a time average of the frequency characteristics obtained by dividing the orthogonal frequency component by the in-phase frequency component;
Code frequency characteristic extracting means for extracting a code component for each frequency from the output of the time average calculating means, and using the frequency characteristic of the code component as the transfer function;
A signal processing apparatus comprising:
前記同相成分と前記直交成分とをフーリエ変換して同相周波数成分と直交周波数成分とを出力するフーリエ変換手段と、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求める伝達関数演算手段と、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成する合成手段と、を有し、
前記伝達関数演算手段は、
前記同相周波数成分を前記直交周波数成分で各周波数毎に除算した周波数特性の時間平均、又は、前記直交周波数成分を前記同相周波数成分で除算した周波数特性の時間平均を演算する時間平均演算手段と、
を有し、
前記時間平均演算手段の出力する時間平均された周波数特性を前記伝達関数とする
ことを特徴とする信号処理装置。 In a signal processing apparatus that receives a double sideband signal and removes noise superimposed on the RF band, the baseband in-phase component having a positive frequency band and a negative frequency band is obtained by quadrature demodulation of the double sideband signal. And a demodulating means for demodulating into a quadrature component,
Fourier transform means for Fourier transforming the in-phase component and the quadrature component to output an in-phase frequency component and a quadrature frequency component;
Transfer function computing means for obtaining a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component based on the in-phase frequency component and the quadrature frequency component;
And combining means for correcting the frequency characteristic of the orthogonal component based on the transfer function and combining it with the in-phase component,
The transfer function calculating means includes
A time average of frequency characteristics obtained by dividing the in-phase frequency component by the orthogonal frequency component for each frequency, or a time average calculating means for calculating a time average of the frequency characteristics obtained by dividing the orthogonal frequency component by the in-phase frequency component;
Have
The signal processing apparatus, wherein the time-averaged frequency characteristic output from the time-average calculating means is the transfer function.
ことを特徴とする請求項1乃至請求項5の何れか1項に記載の信号処理装置。 The transfer function calculating means or the synthesizing means performs calculation or synthesis on a frequency component having an absolute value of the orthogonal frequency component equal to or greater than a predetermined threshold value, so that the absolute value of the orthogonal frequency component is smaller than the predetermined threshold value. 6. The signal processing device according to claim 1, wherein no arithmetic operation or synthesis is performed on the signal processing device.
前記伝達関数演算手段が、前記同相周波数成分を前記直交周波数成分で各周波数毎に除算した周波数特性の時間平均を演算する場合にはその時間平均の絶対値が2より小さい周波数成分のみに対して合成演算を実行し、
前記伝達関数演算手段が、前記直交周波数成分を前記同相周波数成分で除算した周波数特性の時間平均を演算する場合にはその時間平均の絶対値が1/2より大きい周波数成分のみに対して合成演算を実行する
ことを特徴とする請求項4又は請求項5に記載の信号処理装置。 The synthesis means includes
When the transfer function calculation means calculates a time average of frequency characteristics obtained by dividing the in-phase frequency component by the orthogonal frequency component for each frequency, only the frequency component whose absolute value of the time average is less than 2 is used. Perform a composite operation,
When the transfer function calculation means calculates the time average of the frequency characteristics obtained by dividing the quadrature frequency component by the in-phase frequency component, only the frequency component whose absolute value of the time average is greater than ½ is combined and calculated The signal processing device according to claim 4, wherein the signal processing device is executed.
前記直交周波数成分を前記伝達関数により補正する等価手段と、
前記同相周波数成分から、前記等価手段の出力する補正された直交周波数成分を減算して雑音除去同相周波数成分を出力する雑音除去手段と、
前記雑音除去同相周波数成分を逆フーリエ変換して、時間軸上の復調信号とする逆フーリエ変換手段と、
を有することを特徴とする請求項1乃至請求項7の何れか1項に記載の信号処理装置。 The synthesis means includes
Equivalent means for correcting the orthogonal frequency component by the transfer function;
Noise removing means for subtracting the corrected quadrature frequency component output from the equivalent means from the in-phase frequency component to output a noise-removed in-phase frequency component;
Inverse Fourier transform means for performing inverse Fourier transform on the noise-removed in-phase frequency component to obtain a demodulated signal on the time axis;
The signal processing apparatus according to claim 1, comprising:
前記同相成分と前記直交成分とをフーリエ変換して同相周波数成分と直交周波数成分とを出力するフーリエ変換手段と、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求める伝達関数演算手段と、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成する合成手段と、を有し、
前記合成手段は、
時間軸上の前記直交成分と前記伝達関数のインパルス応答との畳み込みにより補正された時間軸上の直交成分を求める等価手段と、
時間軸上の前記同相成分から、前記等価手段の出力する補正された時間軸上の直交成分を除去する雑音除去手段と、
を有することを特徴とする信号処理装置。 In a signal processing apparatus that receives a double sideband signal and removes noise superimposed on the RF band, the baseband in-phase component having a positive frequency band and a negative frequency band is obtained by quadrature demodulation of the double sideband signal. And a demodulating means for demodulating into a quadrature component,
Fourier transform means for Fourier transforming the in-phase component and the quadrature component to output an in-phase frequency component and a quadrature frequency component;
Transfer function computing means for obtaining a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component based on the in-phase frequency component and the quadrature frequency component;
And combining means for correcting the frequency characteristic of the orthogonal component based on the transfer function and combining it with the in-phase component,
The synthesis means includes
An equivalent means for obtaining an orthogonal component on the time axis corrected by convolution of the orthogonal component on the time axis and the impulse response of the transfer function;
Noise removing means for removing the corrected quadrature component on the time axis output from the equivalent means from the in-phase component on the time axis;
A signal processing apparatus comprising:
時間軸上の前記直交成分と前記伝達関数のインパルス応答との畳み込みにより補正された時間軸上の直交成分を求める等価手段と、
時間軸上の前記同相成分から、前記等価手段の出力する補正された時間軸上の直交成分を除去する雑音除去手段と、
を有することを特徴とする請求項2乃至請求項7の何れか1項に記載の信号処理装置。 The synthesis means includes
An equivalent means for obtaining an orthogonal component on the time axis corrected by convolution of the orthogonal component on the time axis and the impulse response of the transfer function;
Noise removing means for removing the corrected quadrature component on the time axis output from the equivalent means from the in-phase component on the time axis;
The signal processing apparatus according to claim 2 , wherein the signal processing apparatus includes:
有することを特徴とする請求項1乃至請求項10の何れか1項に記載の信号処理装置。 During the period from the output of the Fourier transform means to the output of the transfer function calculating unit, according to any one of claims 1 to 10, characterized in that it comprises a mask means for removing a band including a DC Signal processing device.
ことを特徴とする請求項13に記載の信号処理装置。 14. The synchronization unit according to claim 13 , further comprising: a unit that corrects a delay of an instantaneous phase caused by a moving average of the baseband signal in accordance with a time difference between the detected instantaneous phase and a moving average. Signal processing device.
前記同相成分と前記直交成分とをフーリエ変換して複素関数の同相周波数成分と複素関数の直交周波数成分とを求め、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求め、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成する
ことを特徴とする信号処理方法。 In a signal processing method for receiving a double sideband signal and removing noise superimposed on an RF band, a baseband in-phase component having a positive frequency band and a negative frequency band is obtained by orthogonally demodulating the double sideband signal. And the quadrature component,
The Fourier transform of the in-phase component and the quadrature component to obtain the in- phase frequency component of the complex function and the quadrature frequency component of the complex function ,
Based on the in-phase frequency component and the quadrature frequency component, a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component is obtained,
Based on the transfer function, the frequency characteristic of the quadrature component is corrected and combined with the in-phase component.
前記同相成分と前記直交成分とをフーリエ変換して同相周波数成分と直交周波数成分とを求め、
前記同相周波数成分と、前記直交周波数成分に基づき、前記直交周波数成分と前記同相周波数成分間の時間平均された伝達関数を求め、
前記伝達関数に基づいて、前記直交成分の周波数特性を補正して、前記同相成分に合成し、
前記時間平均された前記伝達関数から各周波数毎の符号成分を抽出して、その符号成分の周波数特性を前記直交成分の補正に用いる前記伝達関数とすることを特徴とする信号処理方法。 A baseband in-phase component having a positive frequency band and a negative frequency band in a signal processing method for receiving a double sideband signal and removing noise superimposed on the RF band by quadrature demodulation of the double sideband signal And the quadrature component,
Fourier transform of the in-phase component and the quadrature component to obtain an in-phase frequency component and a quadrature frequency component,
Based on the in-phase frequency component and the quadrature frequency component, a time-averaged transfer function between the quadrature frequency component and the in-phase frequency component is obtained,
Based on the transfer function, correct the frequency characteristics of the quadrature component and synthesize it into the in-phase component,
A signal processing method, wherein a code component for each frequency is extracted from the time-averaged transfer function, and the frequency characteristic of the code component is used as the transfer function used for correcting the orthogonal component.
前記雑音除去同相周波数成分を逆フーリエ変換して、時間軸上の復調信号とする
ことを特徴とする請求項15又は請求項16に記載の信号処理方法。 In the synthesis, a quadrature frequency component obtained by correcting the quadrature frequency component with the transfer function is removed from the common mode frequency component to obtain a noise-removed common mode frequency component,
The signal processing method according to claim 15 or 16 , wherein the noise-removed in-phase frequency component is subjected to inverse Fourier transform to obtain a demodulated signal on a time axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181721A JP6296453B2 (en) | 2015-09-15 | 2015-09-15 | Signal processing apparatus and signal processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181721A JP6296453B2 (en) | 2015-09-15 | 2015-09-15 | Signal processing apparatus and signal processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017059934A JP2017059934A (en) | 2017-03-23 |
JP6296453B2 true JP6296453B2 (en) | 2018-03-20 |
Family
ID=58390642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015181721A Expired - Fee Related JP6296453B2 (en) | 2015-09-15 | 2015-09-15 | Signal processing apparatus and signal processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6296453B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019186593A (en) * | 2018-04-02 | 2019-10-24 | パイオニア株式会社 | Detection device, beat noise reduction device, and detection method |
JP7179227B2 (en) * | 2020-05-13 | 2022-11-28 | 三菱電機株式会社 | NOISE ELIMINATION DEVICE, ANTENNA DEVICE, AND NOISE ELIMINATION METHOD |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1093478A (en) * | 1996-09-12 | 1998-04-10 | Uniden Corp | Spread spectrum signal receiver |
US7127008B2 (en) * | 2003-02-24 | 2006-10-24 | Ibiquity Digital Corporation | Coherent AM demodulator using a weighted LSB/USB sum for interference mitigation |
JP5658975B2 (en) * | 2010-11-04 | 2015-01-28 | 日本キャステム株式会社 | Receiving apparatus, receiving method, and program |
JP6103843B2 (en) * | 2012-07-23 | 2017-03-29 | ラピスセミコンダクタ株式会社 | Noise removal circuit, receiver, and noise removal method |
JP2015126360A (en) * | 2013-12-26 | 2015-07-06 | 株式会社豊田中央研究所 | Signal processor, and signal processing method |
-
2015
- 2015-09-15 JP JP2015181721A patent/JP6296453B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2017059934A (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12047105B2 (en) | Apparatus and methods for DC-offset estimation | |
WO2018116943A1 (en) | Noise suppression device, noise suppression method, and reception device and reception method using same | |
US7933348B2 (en) | DC offset estimation system and method | |
US20210184901A1 (en) | Lora advanced receiver | |
EP2894823A1 (en) | Coefficient estimation for digital IQ calibration | |
WO2011086640A1 (en) | Transmitter apparatus, wireless communication apparatus and transmission method | |
JP6296453B2 (en) | Signal processing apparatus and signal processing method | |
JP2004304507A (en) | Ofdm demodulation method and semiconductor integrated circuit | |
JP6892271B2 (en) | Propagation distance estimator | |
JPH10303851A (en) | Digital broadcast receiver | |
JPS644707B2 (en) | ||
JPWO2005093979A1 (en) | Wireless system and wireless communication device | |
JP6278405B2 (en) | Signal processing apparatus and signal processing method | |
JP2015126360A (en) | Signal processor, and signal processing method | |
US9106326B2 (en) | Method for determining the imperfections of a transmit pathway and of a receive pathway of an apparatus, and associated radio apparatus | |
US20200412390A1 (en) | Radio frequency circuits and methods of processing radio frequency signals | |
JP6426559B2 (en) | Method of correcting frequency reception signal, correction device of frequency reception signal, noise canceling method for vehicle, and noise canceling device for vehicle | |
EP4012933A1 (en) | Lora advanced receiver | |
US20080008269A1 (en) | Method for compensation for any phase and/or amplitude error in a receiver | |
JP3809432B2 (en) | Received signal processing apparatus and satellite positioning system | |
WO2016075879A1 (en) | Signal processing device and signal processing method | |
US10419136B2 (en) | Communication device and orthogonal error measurement method for communication device | |
JP2017216499A (en) | Signal detector and signal detection method | |
EP2797225B1 (en) | Method of and apparatus for demodulating an amplitude modulated signal | |
JP6809814B2 (en) | Signal detection device and signal detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171011 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6296453 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |