JP6294137B2 - Consumer equipment operation management system and method - Google Patents

Consumer equipment operation management system and method Download PDF

Info

Publication number
JP6294137B2
JP6294137B2 JP2014085979A JP2014085979A JP6294137B2 JP 6294137 B2 JP6294137 B2 JP 6294137B2 JP 2014085979 A JP2014085979 A JP 2014085979A JP 2014085979 A JP2014085979 A JP 2014085979A JP 6294137 B2 JP6294137 B2 JP 6294137B2
Authority
JP
Japan
Prior art keywords
hot water
heat pump
management system
water heater
operation management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014085979A
Other languages
Japanese (ja)
Other versions
JP2015206499A (en
Inventor
浩人 佐々木
浩人 佐々木
正雄 露崎
正雄 露崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014085979A priority Critical patent/JP6294137B2/en
Publication of JP2015206499A publication Critical patent/JP2015206499A/en
Application granted granted Critical
Publication of JP6294137B2 publication Critical patent/JP6294137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、デマンドレスポンス(以下、DRという)により所定の機器制御量が得られるように需要家機器の電力需要を調整する需要家機器運用管理システム及び方法に関する。   The present invention relates to a consumer equipment operation management system and method for adjusting power demand of consumer equipment so that a predetermined equipment control amount can be obtained by demand response (hereinafter referred to as DR).

近年のデマンド・サイド・マネジメントの技術開発においては、管轄対象の分散エネルギー源を統合的に管理し、余剰電力の売買や負荷量の調整などを通して系統側と電力を融通し、仮想的な発電プラントとして運用するサービスが検討されている。サービスの運用は系統運用者以外の第三者が実施する事も議論されており、運用を行う事業者はアグリゲータと呼ばれる。対象となる分散エネルギー源としては、古くは非常用発電機や小型水力の統合に遡ることができ、通信手段の発達を理由に近年では対象となる機器が需要家機器まで拡大してきている。対象となる需要家機器には、電力の供給源となるものに分散型電源、負荷となるものにヒートポンプやエアコン、供給源および負荷のどちらにもなり得るものに電気自動車や蓄電池などがある。   In recent demand-side management technology development, the distributed energy sources subject to jurisdiction are integratedly managed, and power is exchanged with the grid side through the purchase and sale of surplus power and adjustment of the load, etc. Service to be operated as is being studied. It is also discussed that the service operation is performed by a third party other than the grid operator, and the operator who operates the service is called an aggregator. The target distributed energy source can be traced back to the integration of emergency generators and small hydropower in the old days, and in recent years the target equipment has expanded to consumer equipment because of the development of communication means. The target consumer devices include a distributed power source as a power supply source, a heat pump and an air conditioner as a load, and an electric vehicle and a storage battery as a source and load.

本技術分野の背景技術として、例えば非特許文献1がある。これは、分散エネルギー源より得られる制御量の最大値および最小値を分布として予測し、予測した分布を利用する機能が考えられる。   As a background art in this technical field, for example, there is Non-Patent Document 1. This may be a function that predicts the maximum and minimum values of the control amount obtained from the distributed energy source as a distribution and uses the predicted distribution.

Electric Power Research Institute :“Enterprise Integration Functions for Distributed Energy Resources : Phase 1”、Technical Update、2013.12Electric Power Research Institute: “Enterprise Integration Functions for Distributed Energy Resources: Phase 1”, Technical Update, 2013.12

しかしながら、従来技術及び上記非特許文献1では、所定の制御量を得るために、管理する需要家機器群の中から、DR制御対象とする複数の需要家機器を選択していたが、機器制御量の不確実性により、制御する機器の容量と実際に得られる制御量と間に差が生じており、当該対象機器の選択が効率的では無く、精度が低いものであった。   However, in the prior art and Non-Patent Document 1 described above, in order to obtain a predetermined control amount, a plurality of consumer devices to be controlled by the DR are selected from a group of consumer devices to be managed. Due to the uncertainty of the quantity, there is a difference between the capacity of the device to be controlled and the actually obtained control amount, and the selection of the target device is not efficient and the accuracy is low.

上記課題を解決するために、ヒートポンプ給湯器を含む需要家機器の運用計画を作成する需要家機器運用管理システムにおいて、前記ヒートポンプ給湯器の機器運転スケジュールを含む機器情報と、前記ヒートポンプ給湯器に対して要求する制御量を示す調整量とを取得し、前記機器運転スケジュールに基づいて機器運転制約を作成する運用計画作成部と、前記機器運転スケジュール、前記機器運転制約及び前記調整量に基づいて、前記ヒートポンプ給湯器が所定の期間内で前記調整量が得られる確率を予測する予測部と、を備え、前記運用計画作成部は、前記確率に基づいて制御を行うヒートポンプ給湯器を選択して前記運用計画を作成する。また、本システム発明に対応する方法発明も含まれる。   In order to solve the above problems, in a consumer equipment operation management system for creating a consumer equipment operation plan including a heat pump water heater, equipment information including an equipment operation schedule of the heat pump water heater, and the heat pump water heater Obtaining an adjustment amount indicating a control amount to be requested, and an operation plan creation unit that creates device operation constraints based on the device operation schedule, and based on the device operation schedule, the device operation constraints and the adjustment amount, A predicting unit that predicts the probability that the heat pump water heater can obtain the adjustment amount within a predetermined period, and the operation plan creation unit selects a heat pump water heater that performs control based on the probability, and Create an operational plan. A method invention corresponding to the system invention is also included.

本発明によりDR対象とする機器について効率的かつ高精度な選択が可能となる。   According to the present invention, it is possible to efficiently and highly accurately select a device to be a DR target.

需要家機器運用管理システムの構成を含む全体システム構成の例である。It is an example of the whole system configuration including the configuration of a customer equipment operation management system. 不確実性考慮型運用計画作成部の運用計画作成フローの例である。It is an example of the operation plan preparation flow of an uncertainty consideration type operation plan preparation part. 不確実性考慮型運用計画作成部が作成する運用計画の例である。It is an example of the operation plan created by the uncertainty-considered operation plan creation unit. 不確実性考慮型運用計画作成部の一日前計画の作成フローの例である。It is an example of the preparation flow of the one-day plan of an uncertainty consideration type operation plan preparation part. 機器運転スケジュールの例である。It is an example of an apparatus driving schedule. 不確実性考慮型運用計画作成部の機器制御量の最適化フロー例である。It is an example of the optimization flow of the device control amount of an uncertainty consideration type operation plan creation part. ヒートポンプを用いたヒートポンプ給湯器107の例である。It is an example of the heat pump water heater 107 using a heat pump. ヒートポンプ給湯器107の蓄熱サイクルの例である。It is an example of the thermal storage cycle of the heat pump water heater 107. 不確実性考慮型運用計画作成部の運用計画の修正フロー例である。It is an example of a correction flow of the operation plan of an uncertainty consideration type operation plan creation part. 機器制御量の不確実性を説明するための図である。It is a figure for demonstrating the uncertainty of apparatus control amount. ヒートポンプの状態遷移モデルを説明するための図である。It is a figure for demonstrating the state transition model of a heat pump. DR成功確率の予測フロー例である。It is an example of the prediction flow of DR success probability.

以下、本発明を適用して成る需要家機器制御方式および制御システムの実施例について、図面を用いて説明する。   Embodiments of a consumer equipment control system and control system to which the present invention is applied will be described below with reference to the drawings.

図1は需要家機器運用管理システム101の構成図を含む全体システム構成例である。市場取引部102はアンシラリー市場、キャパシティ市場、スポット市場など各種市場114と取引を行い、DRよるヒートポンプの制御量(以下、DR調整量という)及びその対価(以下、DR対価という)を決定する。該DR調整量を満たす様にアグリゲータは管理するヒートポンプの運用計画を作成する必要がある。該運用計画を作成する際、まず、DRを実施する制御周期において所定の制御量が得られるか否かを各ヒートポンプについてDR成功確率予測部103が確率的に予測する。以下、予測した値をDR成功確率と呼ぶ。予測した該DR成功確率を用いて、DRの制御結果として前記DR調整量が得られる確率が運用上十分に高くなるように不確実性考慮型運用計画作成部104が運用計画を作成する。運転実行部105は該運用計画に従い、機器管理部106にヒートポンプの制御指令を出力する。機器管理部106は該制御指令に従い、各ヒートポンプ給湯器107に設定された機器運転スケジュールを書き換え、または、各ヒートポンプ給湯器107に、直接、制御命令を出力することにより、通信部108を介して各ヒートポンプ給湯器107を制御する。系統接続部109はヒートポンプ給湯器107と電力系統の接続を監視しており、測定した電力量などを機器管理部106に通信部108を介して送信する。機器管理部106は該電力量などを基に、各ヒートポンプ給湯器107の制御量(以下、機器制御量という)など、DRにおける制御結果を料金計算部110に通知する。料金計算部110は通知された該制御結果を基に、各ヒートポンプ給湯器107の貢献度を算出し、前記DR対価の中から各需要家へ支払う実施報酬を計算する。これらに必要な情報は各種データベース(以下、DBという)が保持する。取引管理DB111は、該実施報酬や契約期間などの需要家取引情報、および前記DR調整量や前記DR対価などの市場取引情報を保持する。機器情報DB113は、各ヒートポンプ給湯器107の貯湯残量やDR成功確率などの機器状態、各ヒートポンプ給湯器107の機器運転スケジュールや該機器運転スケジュールの変更履歴、各ヒートポンプ給湯器107の成績係数や貯湯タンクの大きさなどの機器仕様、各ヒートポンプ給湯器107が設置されている地域情報といった需要家機器情報を保持する。計測値DB112は、 系統接続部109が測定した電力量や、DR成功確率予測部103が予測に用いる各ヒートポンプ給湯器107の貯湯タンク内の湯温などの計測値情報を保持する。   FIG. 1 shows an example of the overall system configuration including a configuration diagram of the customer equipment operation management system 101. The market trading unit 102 conducts trading with various markets 114 such as an ancillary market, a capacity market, and a spot market, and determines a heat pump control amount (hereinafter referred to as DR adjustment amount) by DR and its consideration (hereinafter referred to as DR consideration). . The aggregator needs to create an operation plan for the heat pump to be managed so as to satisfy the DR adjustment amount. When creating the operation plan, first, the DR success probability prediction unit 103 predicts probabilistically for each heat pump whether or not a predetermined control amount can be obtained in a control cycle in which DR is performed. Hereinafter, the predicted value is referred to as DR success probability. Using the predicted DR success probability, the uncertainty-considered operation plan creation unit 104 creates an operation plan so that the probability that the DR adjustment amount is obtained as a DR control result is sufficiently high in operation. The operation execution unit 105 outputs a heat pump control command to the device management unit 106 in accordance with the operation plan. The equipment management unit 106 rewrites the equipment operation schedule set in each heat pump water heater 107 in accordance with the control command, or directly outputs a control command to each heat pump water heater 107 via the communication unit 108. Each heat pump water heater 107 is controlled. The system connection unit 109 monitors the connection between the heat pump water heater 107 and the power system, and transmits the measured power amount and the like to the device management unit 106 via the communication unit 108. The device management unit 106 notifies the charge calculation unit 110 of the control results in DR, such as the control amount of each heat pump water heater 107 (hereinafter referred to as device control amount), based on the amount of power. The fee calculation unit 110 calculates the contribution of each heat pump water heater 107 based on the notified control result, and calculates an execution fee to be paid to each customer from the DR consideration. Information necessary for these is held in various databases (hereinafter referred to as DB). The transaction management DB 111 holds customer transaction information such as the execution fee and contract period, and market transaction information such as the DR adjustment amount and the DR consideration. The device information DB 113 stores the device status such as the remaining hot water storage amount and DR success probability of each heat pump water heater 107, the device operation schedule of each heat pump water heater 107, the change history of the device operation schedule, the coefficient of performance of each heat pump water heater 107, It holds consumer equipment information such as equipment specifications such as the size of the hot water storage tank and area information where each heat pump water heater 107 is installed. The measurement value DB 112 holds measurement value information such as the amount of power measured by the system connection unit 109 and the hot water temperature in the hot water storage tank of each heat pump water heater 107 used by the DR success probability prediction unit 103 for prediction.

これらの需要家機器運用管理システム101の構成要素は、全てをアグリゲータが管理していても良いし、一部または全てを配電事業者などの系統運用者が管理していても良い。   The constituent elements of these consumer equipment operation management systems 101 may be all managed by an aggregator, or some or all of them may be managed by a system operator such as a power distribution company.

なお、DR成功確率予測部103や不確実性考慮型運用計画作成部104などの各部はCPU等のプロセッサによって処理され、各種データベースはメモリやハードディスク等の記憶媒体に格納される。   Each unit such as the DR success probability prediction unit 103 and the uncertainty-considered operation plan creation unit 104 is processed by a processor such as a CPU, and various databases are stored in a storage medium such as a memory or a hard disk.

図2は不確実性考慮型運用計画作成部104の運用計画作成フローの例である。不確実性考慮型運用計画作成部104はステップS201でDR前日の例えば18時などの決められた時刻に1日前計画として運用計画を作成する。DR当日は例えば30分周期などの監視周期で、不確実性考慮型運用計画作成部104はステップS202で該運用計画の修正を繰り返す。   FIG. 2 is an example of an operation plan creation flow of the uncertainty-considered operation plan creation unit 104. In step S201, the uncertainty-considered operation plan creation unit 104 creates an operation plan as a one day advance plan at a predetermined time such as 18:00 on the day before the DR. The DR day is a monitoring cycle such as a 30-minute cycle, and the uncertainty-considering operation plan creation unit 104 repeats the correction of the operation plan in step S202.

図3は運用計画の例である。運用計画は、需要家機器リスト301と、制御周期毎の各時間303における各需要家機器の機器運転モード304とから成る。機器運転モード304には、シャワー等で蓄熱を消費する蓄熱消費運転305、需要家の設定した機器運転スケジュールに従って蓄熱運転を行う需要家蓄熱運転306、DRにより制御して蓄熱運転を行うDR蓄熱運転307がある。   FIG. 3 shows an example of an operation plan. The operation plan includes a consumer device list 301 and a device operation mode 304 of each consumer device at each time 303 for each control cycle. The device operation mode 304 includes a heat storage consumption operation 305 that consumes heat storage in a shower, a customer heat storage operation 306 that performs a heat storage operation according to a device operation schedule set by a consumer, and a DR heat storage operation that performs a heat storage operation controlled by DR. There are 307.

図4はステップS201において不確実性考慮型運用計画作成部104が一日前計画を作成するフロー例である。不確実性考慮型運用計画作成部104はステップS401において機器情報DB113から機器情報を取得する。不確実性考慮型運用計画作成部104はステップS402において、該機器情報の一部である機器運転スケジュールを用いて機器運転制約を作成する。該機器運転制約は、各機器の蓄熱時間帯と、該蓄熱時間帯で必要な蓄熱時間とである。不確実性考慮型運用計画作成部104はステップS403において、取引管理DB111からDR調整量を取得する。該DR調整量は、電力系統の需給バランスを調整する為に必要なDRを実施する時刻と、該時刻における機器制御量総計の目標値である。また、不確実性考慮型運用計画作成部104は、ステップS401において取得した機器情報の一部である機器運転スケジュールと、ステップS402において作成した機器運転制約と、ステップS403において取得したDR調整量とからステップS405においてDR成功確率を考慮した機器制御量の最適化を行い、運用計画を作成する。   FIG. 4 is an example of a flow in which the uncertainty-considering operation plan creation unit 104 creates a one-day advance plan in step S201. The uncertainty-considered operation plan creation unit 104 acquires device information from the device information DB 113 in step S401. In step S402, the uncertainty-considered operation plan creation unit 104 creates a device operation constraint using a device operation schedule that is a part of the device information. The device operation restrictions are a heat storage time zone of each device and a heat storage time required in the heat storage time zone. In step S403, the uncertainty-considered operation plan creation unit 104 acquires the DR adjustment amount from the transaction management DB 111. The DR adjustment amount is a time at which DR necessary for adjusting the supply and demand balance of the power system is performed, and a target value of the total device control amount at the time. In addition, the uncertainty-considered operation plan creation unit 104 includes a device operation schedule that is a part of the device information acquired in step S401, a device operation constraint created in step S402, and the DR adjustment amount acquired in step S403. In step S405, the device control amount is optimized in consideration of the DR success probability, and an operation plan is created.

図5はステップS402において不確実性考慮型運用計画作成部104が使用する機器運転スケジュールの一例である。ある需要家機器について、制御周期毎の各時間501と、需要家が設定した各時間における運転モード502と、一サイクルのスケジュール単位を示す区間505とがある。該運転モード502には前記蓄熱消費運転503および前記需要家蓄熱運転504が設定されている。区間505は、蓄熱消費運転503の終了時点から、次の蓄熱消費運転503が終了する時間までの時間帯を指す。需要家機器は該区間中で、蓄熱消費運転503が始まるまでに蓄熱運転をする必要があるため、不確実性考慮型運用計画作成部104は、ステップS402において機器運転制約として、各機器の各区間について蓄熱消費運転503を除く蓄熱時間帯と、該蓄熱時間帯で必要な蓄熱時間とを機器運転スケジュールから作成する。図5の例では区間2(506)に関する機器運転制約は、該蓄熱時間帯が10時から17時であり、該蓄熱時間が1時間である。   FIG. 5 is an example of an equipment operation schedule used by the uncertainty-considering operation plan creation unit 104 in step S402. For a certain consumer device, there are each time 501 for each control cycle, an operation mode 502 at each time set by the consumer, and a section 505 indicating a schedule unit of one cycle. In the operation mode 502, the heat storage consumption operation 503 and the customer heat storage operation 504 are set. A section 505 indicates a time period from the end of the heat storage consumption operation 503 to the time when the next heat storage consumption operation 503 ends. Since the consumer device needs to perform a heat storage operation before the heat storage consumption operation 503 starts in the section, the uncertainty-considered operation plan creation unit 104 sets each of each device as a device operation constraint in step S402. A heat storage time zone excluding the heat storage consumption operation 503 and a heat storage time required in the heat storage time zone are created from the device operation schedule. In the example of FIG. 5, the apparatus operation restriction regarding the section 2 (506) is that the heat storage time zone is from 10:00 to 17:00, and the heat storage time is 1 hour.

図6は不確実性考慮型運用計画作成部104の機器制御量の最適化フロー例である。不確実性考慮型運用計画作成部104は、ステップS401で機器情報として取得した機器運転スケジュールから、ステップS402で作成した機器運転制約に従って、機器制御量の総和がステップS403で取得したDR調整量を満たす様に、ステップS601で需要家機器の機器制御量を探索する。探索は、図5の機器運転スケジュールの例では需要家蓄熱運転504の内の幾つかまたは全部をDR蓄熱運転に変更して実施する。不確実性考慮型運用計画作成部104は、ステップS604で、該探索後の機器制御量についてDR成功確率予測部103に各ヒートポンプ給湯器107のDR成功確率の予測を依頼し、予測結果として各時間303について該DR成功確率を取得する。不確実性考慮型運用計画作成部104は探索後の機器制御量を用いて、ステップS605でDRの目的関数を評価し、ステップS602でDRの制約条件を確認する。不確実性考慮型運用計画作成部104がステップS604で取得したDR成功確率は、直接目的関数に用いても良いし、制約条件として用いても良い。例えば、ステップS403で取得したDR調整量と、DR対象機器として確保するヒートポンプの容量全体との差異をできるだけ少なくするためには、該DR成功確率の分散を最小化する様にすれば良い。また、ステップS403で取得したDR調整量以上の機器制御量を確保する事が確実な運用計画を立てる場合は、該DR成功確率の信頼区間を考慮した機器制御量の期待値が前記DR調整量よりも大きくなる様に制約条件を設ければ良い。目的関数や制約条件は、これら以外にも設定可能であり、少なくとも1つの目的関数あるいは制約条件に該DR成功確率を用いることにより、機器制御量の不確実性を考慮することができる。ステップS602で制約条件に問題が無ければ(S603)、ステップS606で不確実性考慮型運用計画作成部104は機器制御量とステップS605における目的関数の評価結果を一時保存する。ステップS601における需要家機器の機器制御量の探索をさらに実施することで、ステップS605における目的関数の評価結果がより良くなることが期待できる間は、ステップS607において不確実性考慮型運用計画作成部104はステップS601からステップS606までを繰り返し実施する。S607におけるステップS601からステップS606までの繰り返し演算については、一般的な最適化手法を用いて良く、例えば、混合整数計画法や、粒子群最適化といった手法等が考えられ、最適化に十分な繰り返し回数を指定する。不確実性考慮型運用計画作成部104はステップS608において、ステップS606で一時保存された複数組の機器制御量の内、ステップS605における目的関数の評価結果が最も良い最適な機器制御量を選択する。不確実性考慮型運用計画作成部104はステップS609において、該最適な機器制御量に基づき運用計画を作成する。   FIG. 6 is an example of an optimization flow of the device control amount of the uncertainty-considered operation plan creation unit 104. The uncertainty-considered operation plan creation unit 104 uses the device operation schedule acquired as device information in step S401, and the DR adjustment amount that the sum of the device control amounts is acquired in step S403 in accordance with the device operation constraint created in step S402. In step S601, the device control amount of the consumer device is searched so as to satisfy. The search is performed by changing some or all of the customer heat storage operation 504 to the DR heat storage operation in the example of the equipment operation schedule of FIG. In step S604, the uncertainty-considered operation plan creation unit 104 requests the DR success probability prediction unit 103 to predict the DR success probability of each heat pump water heater 107 with respect to the device control amount after the search. The DR success probability is acquired for time 303. The uncertainty-considered operation plan creation unit 104 evaluates the DR objective function in step S605 using the device control amount after the search, and confirms the DR constraint condition in step S602. The DR success probability acquired in step S604 by the uncertainty-considered operation plan creation unit 104 may be used directly for the objective function or may be used as a constraint condition. For example, in order to minimize the difference between the DR adjustment amount acquired in Step S403 and the overall capacity of the heat pump secured as the DR target device, the variance of the DR success probability may be minimized. In addition, when an operation plan that ensures the device control amount equal to or greater than the DR adjustment amount acquired in step S403 is made, the expected value of the device control amount considering the confidence interval of the DR success probability is the DR adjustment amount. The constraint condition may be set so as to be larger than that. The objective function and the constraint condition can be set in addition to these, and the uncertainty of the device control amount can be taken into account by using the DR success probability for at least one objective function or constraint condition. If there is no problem with the constraint condition in step S602 (S603), the uncertainty-considered operation plan creation unit 104 temporarily stores the device control amount and the evaluation result of the objective function in step S605 in step S606. While further searching for the device control amount of the consumer device in step S601 can be expected to improve the objective function evaluation result in step S605, the uncertainty-considered operation plan creation unit in step S607 Step 104 repeats steps S601 to S606. For the iterative calculation from step S601 to step S606 in S607, a general optimization method may be used. For example, a mixed integer programming method, a particle swarm optimization method, or the like may be considered, and iterative sufficient for optimization. Specify the number of times. In step S608, the uncertainty-considered operation plan creation unit 104 selects an optimal device control amount with the best evaluation result of the objective function in step S605 from among a plurality of sets of device control amounts temporarily stored in step S606. . In step S609, the uncertainty-considered operation plan creation unit 104 creates an operation plan based on the optimal device control amount.

図7はヒートポンプを用いたヒートポンプ給湯器107の例である。ヒートポンプ給湯器701はヒートポンプ702と貯湯タンク703から構成される。ヒートポンプ702は外界から熱を取込み、貯湯タンク703から汲み上げた水を熱交換により加熱し、貯湯タンク703に戻す。貯湯タンク703は湯あるいは水で満たされており、温度の高い上部より給湯し、温度の低い下部より水を補給する。貯湯タンクには1つあるいは複数の温度センサ504が備えられており、貯湯タンク703の計測した水温により貯湯タンク703内の平均水温を計測できる。ここで図示したのはヒートポンプ給湯器107の一例であり、他の構造を持つヒートポンプ給湯器であっても、貯湯タンク703の平均水温を計測できれば、本発明を適用できる。   FIG. 7 shows an example of a heat pump water heater 107 using a heat pump. The heat pump water heater 701 includes a heat pump 702 and a hot water storage tank 703. The heat pump 702 takes in heat from the outside world, heats the water pumped from the hot water storage tank 703 by heat exchange, and returns it to the hot water storage tank 703. The hot water storage tank 703 is filled with hot water or water, and hot water is supplied from an upper part having a high temperature, and water is supplied from a lower part having a low temperature. One or more temperature sensors 504 are provided in the hot water storage tank, and the average water temperature in the hot water storage tank 703 can be measured based on the water temperature measured by the hot water storage tank 703. Shown here is an example of the heat pump water heater 107, and even if the heat pump water heater has another structure, the present invention can be applied if the average water temperature of the hot water storage tank 703 can be measured.

図8はヒートポンプ給湯器107の蓄熱サイクルの例である。ヒートポンプ給湯器107は、定常時、需要家が少量の湯を利用するのに備え、貯湯タンク703内の一定の割合の湯量を確保して待機している。以降、この状態を定常時待機802とする。ここで、ヒートポンプ給湯器107が蓄熱運転(306、307)を行うと、貯湯タンク703内の湯量が、時間あるいは貯湯タンク703内の平均水温で指定された制御量の分だけ増える。この湯量が増えている状態を蓄熱803とする。蓄熱終了後は、需要家が湯を使用するまで待機している。この状態を定常時待機804とする。需要家が蓄熱消費運転305時に湯を消費すると、は貯湯タンク703内の湯量が減少する。この湯量が減っている状態を熱消費805とする。熱消費805後は、定常時待機802に戻り、貯湯タンク703内の一定の割合の湯量を確保する運転を行う。   FIG. 8 shows an example of a heat storage cycle of the heat pump water heater 107. The heat pump water heater 107 is on standby with a certain amount of hot water in the hot water storage tank 703 in preparation for a consumer to use a small amount of hot water during normal operation. Hereinafter, this state is referred to as a standby at normal time 802. Here, when the heat pump water heater 107 performs the heat storage operation (306, 307), the amount of hot water in the hot water storage tank 703 increases by the control amount specified by the time or the average water temperature in the hot water storage tank 703. This state in which the amount of hot water is increasing is referred to as heat storage 803. After the end of heat storage, the customer is on standby until they use hot water. This state is referred to as a stand-by standby 804. When the consumer consumes hot water during the heat storage consumption operation 305, the amount of hot water in the hot water storage tank 703 decreases. The state where the amount of hot water is reduced is defined as heat consumption 805. After the heat consumption 805, the process returns to the stand-by state 802, and an operation for securing a certain amount of hot water in the hot water storage tank 703 is performed.

図9は不確実性考慮型運用計画作成部104の運用計画の修正フロー例である。不確実性考慮型運用計画作成部104は、ステップS901において、ステップS402で作成した機器運転制約を取得する。次に、不確実性考慮型運用計画作成部104はステップS902において、取引管理DB111からDR調整量を取得する。さらに、不確実性考慮型運用計画作成部104は、ステップS903において、機器情報DB113から機器情報として、各ヒートポンプ給湯器107の貯湯残量など機器状態の履歴、各ヒートポンプ給湯器107の成績係数や貯湯タンクの大きさなどの機器仕様、各ヒートポンプ給湯器107が設置されている地域情報といった需要家機器情報を取得する。不確実性考慮型運用計画作成部104は、ステップS904で、運用計画上想定される複数種の機器制御量についてDR成功確率予測部103に各ヒートポンプ給湯器107のDR成功確率の予測を依頼し、予測結果として各時間303および各機器制御量について該DR成功確率を取得する。最後に、不確実性考慮型運用計画作成部104はステップS905において各ヒートポンプ給湯器107の機器制御量を修正し、運用計画を更新する。より具体的には、ステップS904で取得したDR成功確率を監視し、ステップS901で取得した機器運転制約、およびステップS902で取得したDR調整量を満たす様に、該DR成功確率の高い機器の機器制御量と該DR成功確率の低い機器の機器制御量とを入れ替える、もしくは、該DR成功確率の低い機器の機器制御量を減少させる。   FIG. 9 is an example of an operation plan correction flow of the uncertainty-considered operation plan creation unit 104. In step S901, the uncertainty-considered operation plan creation unit 104 acquires the device operation restriction created in step S402. Next, the uncertainty-considered operation plan creation unit 104 acquires the DR adjustment amount from the transaction management DB 111 in step S902. Further, in step S903, the uncertainty-considered operation plan creation unit 104 obtains device information from the device information DB 113 as a device information history such as the remaining amount of hot water stored in each heat pump water heater 107, the coefficient of performance of each heat pump water heater 107, and the like. Consumer equipment information such as equipment specifications such as the size of a hot water storage tank and regional information where each heat pump water heater 107 is installed is acquired. In step S904, the uncertainty-considered operation plan creation unit 104 requests the DR success probability prediction unit 103 to predict the DR success probability of each heat pump water heater 107 for a plurality of types of device control amounts assumed in the operation plan. The DR success probability is acquired for each time 303 and each device control amount as a prediction result. Finally, the uncertainty-considered operation plan creation unit 104 corrects the device control amount of each heat pump water heater 107 in step S905 and updates the operation plan. More specifically, the DR success probability acquired in step S904 is monitored, and the device of the device having the high DR success probability is satisfied so as to satisfy the device operation restriction acquired in step S901 and the DR adjustment amount acquired in step S902. The control amount and the device control amount of the device having the low DR success probability are exchanged, or the device control amount of the device having the low DR success probability is reduced.

需要家のヒートポンプ利用状況に応じた該DR成功確率を予測する事ができれば、この構成により、DR当日の需要家のヒートポンプ使用状況に応じて、DR対象とするヒートポンプの機器制御量の不確実性を低減することが可能となる。   If the DR success probability can be predicted according to the heat pump usage status of the customer, this configuration allows the uncertainty of the device control amount of the heat pump to be a DR target according to the customer heat pump usage status on the DR day. Can be reduced.

図10は機器制御量の不確実性を説明するための図である。理想的な一日のヒートポンプ給湯器の負荷パターン例1001において、0時より夜間の蓄熱運転504により蓄熱し、朝方のシャワーなど7時からの蓄熱消費運転503によって熱消費する。また、14時より再度蓄熱運転504により蓄熱し、夕方の炊事など17時からの蓄熱消費運転503によって熱消費する。理想的な条件下では、事前に設定する機器の蓄熱スケジュールと実際の熱消費とが対応し、蓄熱量と熱消費量が等しくなる。しかし、実際の機器運転では蓄熱スケジュール通りに需要家が熱消費を行うとは限らず、DR蓄熱運転が停止してしまう例1002の様に蓄熱量と熱消費量が等しくならない場合がある。この時の蓄熱量と熱消費量との差である誤差1003が大きい場合にはDRの開始時刻1004になりDRにより指定された時間分のDR蓄熱運転307を開始しても、予定したDR蓄熱時間を経過する前にDR蓄熱運転が停止してしまい(1005)、期待した機器制御量が得られない可能性がある。この機器制御量の不確実性を扱うために、ヒートポンプ給湯器107の蓄熱サイクル毎の状態遷移モデルを用いる。   FIG. 10 is a diagram for explaining the uncertainty of the device control amount. In an ideal load pattern example 1001 for a heat pump water heater for one day, heat is stored by a heat storage operation 504 at night from 0 o'clock and is consumed by a heat storage consumption operation 503 from 7 o'clock such as a morning shower. Further, heat is stored again by the heat storage operation 504 from 14:00, and heat is consumed by the heat storage consumption operation 503 from 17:00 such as cooking in the evening. Under ideal conditions, the heat storage schedule of the device set in advance corresponds to the actual heat consumption, and the heat storage amount and the heat consumption amount are equal. However, in actual device operation, the consumer does not necessarily consume heat according to the heat storage schedule, and the heat storage amount and the heat consumption amount may not be equal as in Example 1002 in which the DR heat storage operation stops. If the error 1003, which is the difference between the heat storage amount and the heat consumption at this time, is large, the DR start time 1004 is reached and the DR heat storage operation 307 for the time specified by the DR is started. Before the time elapses, the DR heat storage operation stops (1005), and the expected device control amount may not be obtained. In order to handle the uncertainty of the device control amount, a state transition model for each heat storage cycle of the heat pump water heater 107 is used.

図11はヒートポンプ給湯器107の状態遷移モデル1101を説明するための図である。ヒートポンプ給湯器107の蓄熱サイクルは、図8で説明した通り、定常時待機802、蓄熱803、蓄熱時待機804、熱消費805を状態として持つ。そこで、DR蓄熱運転307で蓄熱運転を行う事を考慮して順番を入れ替え、状態遷移モデル1101は蓄熱時待機1102、熱消費1103、定常時待機1104、蓄熱1105を1サイクルする。各状態は出力分布として貯湯量および温水消費量の確率分布1106を持つ。該貯湯量および温水消費量の確率分布1106は、過去の計測データとして得られた貯湯タンク703の平均湯温から、貯湯残量および温水消費量の実績データを求め、該貯湯残量および温水消費量の実績データを状態遷移モデル1101のサイクル毎に切り出し、切り出した該貯湯残量および温水消費量の実績データが似通った時系列パターンを持つ複数のデータ毎に、それぞれの状態遷移モデル1101について貯湯量および温水消費量の確率分布1106の形状を決定するパラメータを学習する。尚、貯湯残量は定常時待機1104の場合の貯湯タンク703の平均湯温と各時刻における貯湯タンク703の平均湯温との差分であり、温水消費量は該貯湯残量の監視周期毎の変動分である。また、各状態遷移モデル1101について蓄熱1105開始時の蓄熱残量の確率分布1109を学習する。これには、各状態遷移モデル1101の前記貯湯量および温水消費量の確率分布を学習した際に使用した、似通った時系列パターンを持つ複数のデータの蓄熱1105開始時の蓄熱残量を用いる。各ヒートポンプ給湯器107の蓄熱上限1107から、蓄熱残量1110を除く事で、蓄熱制御可能範囲1108が求まるので、該蓄熱制御可能範囲1108の確率を蓄熱残量の確率分布1109から求めることができ、各ヒートポンプ給湯器107の機器制御量が与えられれば、該機器制御量が前記蓄熱制御可能範囲1108に収まる確率が分かる。   FIG. 11 is a diagram for explaining a state transition model 1101 of the heat pump water heater 107. As described with reference to FIG. 8, the heat storage cycle of the heat pump water heater 107 has a standby state 802 during normal operation, a heat storage unit 803, a standby state 804 during heat storage state, and a heat consumption 805. Therefore, the order is changed in consideration of performing the heat storage operation in the DR heat storage operation 307, and the state transition model 1101 performs one cycle of the heat storage standby 1102, the heat consumption 1103, the stationary standby 1104, and the heat storage 1105. Each state has a probability distribution 1106 of hot water storage and hot water consumption as an output distribution. The hot water storage amount and hot water consumption probability distribution 1106 is obtained from the average hot water temperature of the hot water storage tank 703 obtained as past measurement data, and the actual hot water storage amount and hot water consumption result data is obtained. The amount of actual data is cut out for each cycle of the state transition model 1101, and the hot water storage is stored for each state transition model 1101 for each of a plurality of pieces of data having a similar time series pattern of the extracted remaining hot water storage and hot water consumption. A parameter for determining the shape of the probability distribution 1106 of the quantity and the hot water consumption is learned. Note that the remaining amount of hot water is the difference between the average hot water temperature of the hot water storage tank 703 and the average hot water temperature of the hot water storage tank 703 at each time in the stand-by state 1104. It is a fluctuation. Further, the probability distribution 1109 of the remaining heat storage amount at the start of the heat storage 1105 is learned for each state transition model 1101. For this, the remaining heat storage amount at the start of the heat storage 1105 of a plurality of data having similar time series patterns used when learning the probability distribution of the hot water storage amount and the hot water consumption amount of each state transition model 1101 is used. Since the heat storage controllable range 1108 is obtained by removing the heat storage remaining amount 1110 from the heat storage upper limit 1107 of each heat pump water heater 107, the probability of the heat storage controllable range 1108 can be obtained from the probability distribution 1109 of the heat storage remaining amount. If the device control amount of each heat pump water heater 107 is given, the probability that the device control amount falls within the heat storage controllable range 1108 is known.

図12はDR成功確率の予測フロー例である。DR成功確率予測部103はステップS1201で、貯湯量および温水消費量の確率分布1106および蓄熱1105開始時の蓄熱残量の確率分布1109を学習後の状態遷移モデルを取得する。次に、DR成功確率予測部103は、各ヒートポンプ給湯器107の貯湯タンク703の平均湯温を取得あるいは想定し、貯湯残量および温水消費量を計算する。DR成功確率予測部103はステップS1203で、該状態遷移モデルおよび該貯湯残量および温水消費量から当該時点の各機器の蓄熱サイクルにおける蓄熱1105開始時の蓄熱残量を予測する。DR成功確率予測部103はステップS1204で、ステップS903で機器情報として取得した各ヒートポンプ給湯器107が設置されている地域情報から、各ヒートポンプ給湯器107が置かれている気象条件を取得し、該気象条件に基づき、ステップS903で機器情報として取得した各ヒートポンプ給湯器107の成績係数およびタンク容量を用いて各ヒートポンプ給湯器107の機器制御量を補正する。DR成功確率予測部103はステップS1205で、該補正した機器制御量が得られる確率を前記蓄熱残量の確率分布1109から求め、DR成功確率とする。   FIG. 12 is an example of a DR success probability prediction flow. In step S1201, the DR success probability prediction unit 103 obtains a state transition model after learning the probability distribution 1106 of the hot water storage amount and hot water consumption and the probability distribution 1109 of the remaining heat storage amount at the start of the heat storage 1105. Next, the DR success probability prediction unit 103 acquires or assumes the average hot water temperature of the hot water storage tank 703 of each heat pump water heater 107, and calculates the remaining hot water storage amount and the hot water consumption. In step S1203, the DR success probability prediction unit 103 predicts the remaining heat storage amount at the start of the heat storage 1105 in the heat storage cycle of each device at that time from the state transition model, the remaining hot water storage amount, and the hot water consumption. In step S1204, the DR success probability prediction unit 103 acquires the weather condition in which each heat pump water heater 107 is placed from the area information in which each heat pump water heater 107 acquired as device information in step S903 is installed. Based on the weather conditions, the device control amount of each heat pump water heater 107 is corrected using the coefficient of performance and tank capacity of each heat pump water heater 107 acquired as device information in step S903. In step S1205, the DR success probability prediction unit 103 obtains the probability that the corrected device control amount is obtained from the probability distribution 1109 of the remaining heat storage amount and sets it as the DR success probability.

以上の構成を取ることにより、需要家のヒートポンプ使用状況に応じて、DR対象とするヒートポンプの機器制御量の不確実性を低減することが可能となる。   By taking the above configuration, it is possible to reduce the uncertainty of the device control amount of the heat pump that is the DR target, according to the heat pump usage situation of the consumer.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

101 需要家機器運用管理システム
102 市場取引部
103 DR成功確率予測部
104 不確実性考慮型運用計画作成部
105 運転実行部
106 機器管理部
107 ヒートポンプ給湯器
108 通信部
109 系統接続部
110 料金計算部
111 取引管理DB
112 計測値DB
113 機器情報DB
701 ヒートポンプ給湯器
702 ヒートポンプ
703 貯湯タンク
101 Consumer Equipment Operation Management System 102 Market Trading Department
103 DR success probability prediction unit 104 uncertainty considering operation plan creation unit 105 operation execution unit 106 device management unit 107 heat pump water heater 108 communication unit 109 system connection unit 110 charge calculation unit 111 transaction management DB
112 Measurement DB
113 Device information DB
701 Heat pump water heater 702 Heat pump 703 Hot water storage tank

Claims (10)

ヒートポンプ給湯器を含む需要家機器の運用計画を作成する需要家機器運用管理システムにおいて、
前記ヒートポンプ給湯器の機器運転スケジュールを含む機器情報と、前記ヒートポンプ給湯器に対して要求する制御量を示す調整量とを取得し、前記機器運転スケジュールに基づいて機器運転制約を作成する運用計画作成部と、
前記機器運転スケジュール、前記機器運転制約及び前記調整量に基づいて、前記ヒートポンプ給湯器が所定の期間内で前記調整量が得られる確率を予測する予測部と、を備え、
前記運用計画作成部は、前記確率に基づいて制御を行うヒートポンプ給湯器を選択して前記運用計画を作成することを特徴とする需要家機器運用管理システム。
In a customer equipment operation management system that creates an operation plan for consumer equipment including heat pump water heaters,
Operation plan creation for acquiring device information including a device operation schedule of the heat pump water heater and an adjustment amount indicating a control amount required for the heat pump water heater, and creating device operation constraints based on the device operation schedule And
A prediction unit that predicts a probability that the heat pump water heater can obtain the adjustment amount within a predetermined period based on the device operation schedule, the device operation constraint, and the adjustment amount;
The said operation plan preparation part selects the heat pump water heater which controls based on the said probability, and produces the said operation plan, The consumer equipment operation management system characterized by the above-mentioned.
請求項1に記載の需要家運用管理システムにおいて、
前記運用計画作成部は、前記確率が所定値より高い前記ヒートポンプ給湯器を制御対象として選択することを特徴とする需要家機器運用管理システム。
In the customer operation management system according to claim 1,
The said operation plan preparation part selects the said heat pump water heater with the said probability higher than a predetermined value as a control object, The consumer equipment operation management system characterized by the above-mentioned.
請求項1に記載の需要家運用管理システムにおいて、
前記運用計画作成部は、前記確率の分散を最小化して前記選択を行うことを特徴とする需要家機器運用管理システム。
In the customer operation management system according to claim 1,
The customer equipment operation management system, wherein the operation plan creation unit performs the selection by minimizing the variance of the probability.
請求項1に記載の需要家運用管理システムにおいて、
前記予測部は、前記ヒートポンプ給湯器により蓄熱される貯湯タンクの蓄熱残量の確率分布に基づいて前記確率を求めること
を特徴とする需要家機器運用管理システム。
In the customer operation management system according to claim 1,
The said prediction part calculates | requires the said probability based on the probability distribution of the heat storage residual amount of the hot water storage tank heat-stored by the said heat pump water heater, The consumer equipment operation management system characterized by these.
請求項4に記載の需要家機器運用管理システムにおいて、
前記予測部は、前記ヒートポンプ給湯器の蓄熱時待機、熱消費、定常時待機及び蓄熱の状態の順番からなる蓄熱サイクル毎に貯湯タンクの貯湯残量及び温水消費量のデータを切り出して前記貯湯残量及び温水消費量の確率分布を求め、前記貯湯残量及び温水消費量の確率分布に基づいて前記蓄熱残量を予測することを特徴とする需要家機器運用管理システム。
In the consumer equipment operation management system according to claim 4,
The predicting unit cuts out the remaining hot water consumption and hot water consumption data of the hot water storage tank for each heat storage cycle consisting of the heat pump standby time of heat storage, heat consumption, steady state standby and heat storage state. A consumer equipment operation management system characterized by obtaining a probability distribution of amount and hot water consumption, and predicting the remaining heat storage based on the remaining hot water storage and the probability distribution of hot water consumption.
請求項5に記載の需要家機器運用管理システムにおいて、
前記貯湯残量は、前記定常時待機の場合の前記貯湯タンクの平均湯温と各時刻における前記貯湯タンクの平均湯温との差分から求め、前記温水消費量は前記貯湯残量の監視周期毎の変動分から求めることを特徴とする需要家機器運用管理システム。
In the consumer equipment operation management system according to claim 5,
The hot water storage remaining amount is obtained from the difference between the average hot water temperature of the hot water storage tank in the stationary standby and the average hot water temperature of the hot water storage tank at each time, and the hot water consumption is calculated every monitoring period of the remaining hot water storage amount. A customer equipment operation management system characterized by obtaining from the fluctuations of.
請求項5に記載の需要家機器運用管理システムにおいて、
前記機器情報には前記ヒートポンプ給湯器が設置されている地域情報を含み、前記予測部は、前記地域情報から気象条件を取得し、前記気象条件に基づいて、前記調整量を補正することを特徴とする需要家機器運用管理システム。
In the consumer equipment operation management system according to claim 5,
The equipment information includes area information where the heat pump water heater is installed, and the prediction unit acquires weather conditions from the area information and corrects the adjustment amount based on the weather conditions. A consumer equipment operation management system.
請求項1に記載の需要家機器運用管理システムにおいて、
前記運用計画作成部は、前記調整量を繰り返し計算し、前記調整量から求まる目的関数の評価値が高い前記調整量に基づいて前記運用計画を作成することを特徴とする需要家機器運用管理システム。
In the consumer equipment operation management system according to claim 1,
The operation plan creation unit repeatedly calculates the adjustment amount, and creates the operation plan based on the adjustment amount having a high evaluation value of an objective function obtained from the adjustment amount. .
請求項8に記載の需要家機器運用管理システムにおいて、
前記運用計画作成部は、前記繰り返し計算には、混合整数計画法又は粒子群最適化法が含まれることを特徴とする需要家機器運用管理システム。
In the consumer equipment operation management system according to claim 8,
The operation plan creation unit may include a mixed integer programming method or a particle swarm optimization method in the iterative calculation.
ヒートポンプ給湯器を含む需要家機器の運用計画を作成する需要家機器運用管理方法において、
前記ヒートポンプ給湯器の機器運転スケジュールを含む機器情報と、前記ヒートポンプ給湯器に対して要求する制御量を示す調整量とを取得し、前記機器運転スケジュールに基づいて機器運転制約を作成するステップと、
前記機器運転スケジュール、前記機器運転制約及び前記調整量に基づいて、前記ヒートポンプ給湯器が所定の期間内で前記調整量が得られる確率を予測するステップと、
前記確率に基づいて制御を行うヒートポンプ給湯器を選択して前記運用計画を作成するステップとを含むことを特徴とする需要家機器運用管理方法。
In the consumer equipment operation management method of creating a consumer equipment operation plan including a heat pump water heater,
Acquiring device information including a device operation schedule of the heat pump water heater, an adjustment amount indicating a control amount required for the heat pump water heater, and creating device operation constraints based on the device operation schedule;
Predicting the probability that the heat pump water heater will obtain the adjustment amount within a predetermined period based on the device operation schedule, the device operation constraint and the adjustment amount;
Selecting a heat pump water heater that performs control based on the probability and creating the operation plan.
JP2014085979A 2014-04-18 2014-04-18 Consumer equipment operation management system and method Active JP6294137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085979A JP6294137B2 (en) 2014-04-18 2014-04-18 Consumer equipment operation management system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085979A JP6294137B2 (en) 2014-04-18 2014-04-18 Consumer equipment operation management system and method

Publications (2)

Publication Number Publication Date
JP2015206499A JP2015206499A (en) 2015-11-19
JP6294137B2 true JP6294137B2 (en) 2018-03-14

Family

ID=54603430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085979A Active JP6294137B2 (en) 2014-04-18 2014-04-18 Consumer equipment operation management system and method

Country Status (1)

Country Link
JP (1) JP6294137B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642291B2 (en) * 2016-06-15 2020-02-05 住友電気工業株式会社 Success probability calculation device, success probability calculation method, and success probability calculation program
JP7035352B2 (en) * 2017-07-03 2022-03-15 富士電機株式会社 Aggregation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295193A (en) * 2007-05-24 2008-12-04 Nippon Telegr & Teleph Corp <Ntt> Device, system and method for controlling power demand
JP5016704B2 (en) * 2010-05-31 2012-09-05 株式会社エナリス Power demand management apparatus and power demand management system
JP2013066330A (en) * 2011-09-20 2013-04-11 Shimizu Corp Power usage schedule adjusting device, power usage schedule adjusting method, and program
JP5603318B2 (en) * 2011-12-22 2014-10-08 株式会社日立製作所 Power demand adjustment system, apparatus, and method
JP5994282B2 (en) * 2012-02-27 2016-09-21 ダイキン工業株式会社 Heat pump equipment energy management device
JP5919881B2 (en) * 2012-02-27 2016-05-18 ダイキン工業株式会社 Heat pump type water heater

Also Published As

Publication number Publication date
JP2015206499A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
US11454999B2 (en) Method and apparatus for automatically reconfiguring multi-phased networked energy storage devices at a site
JP5959783B1 (en) Power management equipment
JP3980541B2 (en) Distributed energy community control system, central controller, distributed controller, and control method thereof
JP2023129546A (en) System and method for optimal control of energy storage system
JP7179500B2 (en) Storage battery management device, storage battery management method, and storage battery management program
JP2019054718A (en) Building energy system with stochastic model predictive control and demand charge incorporation
JP6239631B2 (en) Management system, management method, management program, and recording medium
TW201714378A (en) Virtual power plant
US11164126B2 (en) Cost optimization of a central energy facility with block-and-index rate structure
CN103377400A (en) Power plant operation enhancement
US10333304B2 (en) Automatic system for monitoring electric power consumption
EP2916416B1 (en) Consumer apparatus operation management system and method
JP7252906B2 (en) Power distribution control by resource assimilation and optimization
JP7131920B2 (en) Storage battery management device, storage battery management method, and storage battery management program
KR101712944B1 (en) Apparatus and method for charge and discharge scheduling in energy storage device
EP2818801B1 (en) Method and device for controlling heater devices
JP6520462B2 (en) Operation plan creation device for distributed energy system and operation plan creation method
JP6133447B2 (en) Power accommodation management system and power accommodation management method
KR102173207B1 (en) Building energy management system with distributed energy resources of scheduling and real time control
JP6294137B2 (en) Consumer equipment operation management system and method
JP6315563B2 (en) Equipment operation system and equipment operation method
JP6823581B2 (en) Demand response system
KR102458380B1 (en) Method and server for controlling energy storage system
US20210233185A1 (en) Energy management system and energy management method
JP2018025962A (en) Operation plan planning method, operation plan planning device, and program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180215

R150 Certificate of patent or registration of utility model

Ref document number: 6294137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150