JP6291710B2 - High frequency amplifier - Google Patents
High frequency amplifier Download PDFInfo
- Publication number
- JP6291710B2 JP6291710B2 JP2013003615A JP2013003615A JP6291710B2 JP 6291710 B2 JP6291710 B2 JP 6291710B2 JP 2013003615 A JP2013003615 A JP 2013003615A JP 2013003615 A JP2013003615 A JP 2013003615A JP 6291710 B2 JP6291710 B2 JP 6291710B2
- Authority
- JP
- Japan
- Prior art keywords
- harmonic
- connection pad
- circuit
- output
- matching circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 73
- 239000004065 semiconductor Substances 0.000 claims description 50
- 239000000758 substrate Substances 0.000 claims description 41
- 239000003990 capacitor Substances 0.000 claims description 18
- 238000010586 diagram Methods 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 12
- 238000004891 communication Methods 0.000 description 12
- 230000002238 attenuated effect Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
- H01L2224/49113—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
Landscapes
- Microwave Amplifiers (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Description
本発明は増幅器に関し、特に高調波を減衰して高周波信号を精度良く検波する検波回路を備えた高周波増幅器に関するものである。 The present invention relates to an amplifier, and more particularly to a high-frequency amplifier including a detection circuit that attenuates higher harmonics and accurately detects a high-frequency signal.
近年、無線LANによるデータ通信が一般化しており、無線通信装置の重要性がでてきている。高周波増幅器は入力信号をトランジスタで増幅して外部へ送信する機能を有しており携帯電話等の移動体通信機器にも組み込まれており、無線通信装置で広く用いられている。 In recent years, data communication using a wireless LAN has been generalized, and the importance of wireless communication devices has been increasing. A high-frequency amplifier has a function of amplifying an input signal with a transistor and transmitting the amplified signal to the outside. The high-frequency amplifier is also incorporated in a mobile communication device such as a mobile phone and is widely used in a wireless communication device.
ここで、無線通信装置における検波回路は、アンテナから入力された受信信号の強度に応じて受信系の増幅器やミキサの利得を自動制御するためや、高周波増幅器の出力信号レベルを検出して送信系の高周波増幅器の利得を自動制御するために用いられており、高周波増幅器にとっては重要な回路の一つとなっている。 Here, the detection circuit in the wireless communication apparatus is used to automatically control the gain of the amplifier and mixer of the reception system according to the intensity of the reception signal input from the antenna, or to detect the output signal level of the high-frequency amplifier to transmit the signal. It is used to automatically control the gain of the high frequency amplifier, and is an important circuit for the high frequency amplifier.
例えば、下記特許文献1では、増幅用トランジスタよりも小さいトランジスタを用いて二乗平均回路と合わせて構成された検波回路が開示されている。
For example,
なお、無線通信装置の送信機において、高周波増幅器の出力整合回路を半導体集積回路基板上に構成した場合、出力整合回路を調整させることができず、Q値の高いチップインダクタやチップコンデンサなどを使用することが出来ないことから、伝送損失を少なくすることができない。このことから、高出力増幅器の出力整合回路は、半導体集積回路基板上ではなく半導体実装基板上に構成している。また、近年小型化が進んでいることから検波回路は半導体集積回路基板上に構成することが主流となっている。 When the output matching circuit of a high frequency amplifier is configured on a semiconductor integrated circuit board in a transmitter of a wireless communication device, the output matching circuit cannot be adjusted and a chip inductor or chip capacitor having a high Q value is used. It is impossible to reduce transmission loss. For this reason, the output matching circuit of the high-power amplifier is configured on the semiconductor mounting substrate, not on the semiconductor integrated circuit substrate. In recent years, since the miniaturization has progressed, it is the mainstream to configure the detection circuit on a semiconductor integrated circuit substrate.
また、高速無線通信規格であるWiMAXでは、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式を用いており、子機での送信電力は200mWと高出力であるため、送信機の消費電力を低減させた増幅器からは高調波が発生する。 In addition, WiMAX, which is a high-speed wireless communication standard, uses an OFDM (Orthogonal Frequency Division Multiplexing) system, and the transmission power of the slave unit is as high as 200 mW, so the power consumption of the transmitter is reduced. Harmonics are generated from the reduced amplifier.
従来例として図10を説明する。半導体集積回路基板107上には電力増幅部101と検波回路102と高調波減衰回路105とコンデンサ106とを構成し、電力増幅部101の出力側と出力整合回路103の入力側は、接続部材104を介して電気的に接続されており、電力増幅部101の出力側はコンデンサ106を介して高調波減衰回路105の入力側に接続され、高調波減衰回路105の出力側は検波回路102の入力側に接続されている。
FIG. 10 will be described as a conventional example. A
電力増幅部101で発生した高調波を含む高周波信号は、接続部材104とコンデンサ106とに分岐される。その分岐された一方の高調波を含む高周波信号は、接続部材104を介して出力整合回路103の入力側に入力され、高調波を減衰させる機能を有した出力整合回路103により高調波は減衰され、基本波はインピーダンスを変えて出力整合回路の出力側に出力される。
A high-frequency signal including harmonics generated in the
よって、出力整合回路103から出力される高周波信号は、高調波が減衰された高周波信号となる。
Therefore, the high frequency signal output from the
また、分岐されたもう一方の高調波を含む高周波信号は、コンデンサ106を介して高調波減衰回路105の入力側に入力され、高調波減衰回路105にて高調波が減衰された高周波信号となる。
The high-frequency signal including the other branched harmonic is input to the input side of the
このように検波回路102は、出力整合回路103から出力される高周波信号と同等の高調波が減衰された高周波信号を検波するため、高調波による検波電圧誤差を低減している。なお、本発明でいう高調波とは、基本波の整数倍である高次の周波数成分のことである。
As described above, the
しかしながら、小型化のために半導体集積回路基板上に構成する高調波減衰回路を削減した場合、検波回路には高調波を含む高周波信号が入力され、検波電圧は高調波を含んだ電圧となる。したがって、出力整合回路から出力される高周波信号は、高調波を含んでいない高周波信号のため、検波電圧に誤差が生じてしまう。さらに、高調波減衰回路を半導体集積回路基板上に構成することが必要となり、小型化することが難しい。 However, when the harmonic attenuation circuit configured on the semiconductor integrated circuit substrate is reduced for miniaturization, a high-frequency signal including harmonics is input to the detection circuit, and the detection voltage becomes a voltage including harmonics. Therefore, since the high-frequency signal output from the output matching circuit is a high-frequency signal that does not include harmonics, an error occurs in the detection voltage. Furthermore, it is necessary to configure the harmonic attenuation circuit on the semiconductor integrated circuit substrate, and it is difficult to reduce the size.
本発明は上記の問題に鑑みてなされたものであり、高調波の減衰によって検波電圧誤差を低減させると共に小型化ができる検波回路を備えた高周波増幅器を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-frequency amplifier including a detection circuit that can reduce the detection voltage error and reduce the size by harmonic attenuation.
上記目的を達成するための本発明に係る高周波増幅器は、電力増幅部と電力増幅部の出力側に設けた第一の接続パッドと、電力増幅部の出力信号を検出する検波回路と、検波回路の入力側にコンデンサを介して設けた第三の接続パッドとを具備した半導体集積回路基板と、出力整合回路と出力整合回路の入力側に設けた第二の接続パッドを具備した半導体実装基板とが、第一の接続部材によって半導体集積回路基板の第一の接続パッドと半導体集積回路基板の第二の接続パッドとで電気的に接続されるとともに、第二の接続部材によって半導体集積回路基板の第三の接続パッドと半導体実装基板の第二の接続パッドとが電気的に接続されていることを第1の特徴とする。 In order to achieve the above object, a high-frequency amplifier according to the present invention includes a power amplifying unit, a first connection pad provided on the output side of the power amplifying unit, a detection circuit that detects an output signal of the power amplifying unit, and a detection circuit A semiconductor integrated circuit board having a third connection pad provided via a capacitor on the input side, and a semiconductor mounting board having a second connection pad provided on the input side of the output matching circuit and the output matching circuit; Are electrically connected by the first connection member between the first connection pad of the semiconductor integrated circuit substrate and the second connection pad of the semiconductor integrated circuit substrate, and the second connection member of the semiconductor integrated circuit substrate. The first feature is that the third connection pad and the second connection pad of the semiconductor mounting substrate are electrically connected.
上記特徴の高周波増幅器によれば、半導体集積回路基板上に高調波を反射させる高調波減衰回路を構成することなく、高調波信号を減衰させた信号を検波回路に入力することができ、整合回路から出力される高周波信号と同等の信号を検波することで検波電圧の誤差を低減することができる。 According to the high frequency amplifier having the above characteristics, it is possible to input a signal obtained by attenuating the harmonic signal to the detection circuit without forming a harmonic attenuation circuit that reflects the harmonic on the semiconductor integrated circuit substrate, and to match the matching circuit. By detecting a signal equivalent to the high-frequency signal output from, an error in the detection voltage can be reduced.
また、半導体集積回路基板上に高調波を反射させる高調波減衰回路を必要としないため、半導体集積回路基板のサイズを小型化することが可能である。 Further, since a harmonic attenuation circuit that reflects harmonics is not required on the semiconductor integrated circuit substrate, the size of the semiconductor integrated circuit substrate can be reduced.
さらに本発明に係る高周波増幅器は、第一および第二の接続部材がボンディングワイヤであることを第2の特徴とする。 Furthermore, the high-frequency amplifier according to the present invention has a second feature that the first and second connecting members are bonding wires.
上記特徴の高周波増幅器によれば、ボンディングワイヤで接続することで、ボンディングワイヤのインダクタンス成分と第三の接続パッドと検波回路の間のコンデンサによるキャパシタンス成分とが基本周波数で共振するように調整した場合、共振の効果により基本波信号のみが通過し高調波を反射することが可能となる。 According to the high frequency amplifier having the above characteristics, when the bonding wire is connected so that the inductance component of the bonding wire and the capacitance component of the capacitor between the third connection pad and the detection circuit resonate at the fundamental frequency. Due to the resonance effect, only the fundamental wave signal can pass and the harmonics can be reflected.
さらに本発明に係る高周波増幅器は、第一および第二の接続部材がバンプであるフリップチップ実装であることを第3の特徴とする。 The third feature of the high-frequency amplifier according to the present invention is that the first and second connecting members are flip-chip mounting in which bumps are used.
上記特徴の高周波増幅器によれば、フリップチップ実装することにより接続部材にボンディングワイヤを使ったときより実装面積を削減することが可能になる。 According to the high-frequency amplifier having the above characteristics, the mounting area can be reduced by flip-chip mounting than when a bonding wire is used for the connection member.
さらに本発明に係る高周波増幅器は、半導体実装基板上に設けた出力整合回路内に2倍波の周波数で短絡となる直列共振回路を具備し、直列共振回路の片側が第二の接続パッドに接続されるとともに、直列共振回路のもう一方がGNDに接続され、半導体実装基板上に設けた第二の接続パッドにおける出力整合回路側の2倍波の位相が−30〜+60度にあることを第4の特徴とする。 The high-frequency amplifier according to the present invention further includes a series resonant circuit that is short-circuited at a frequency of the second harmonic in the output matching circuit provided on the semiconductor mounting substrate, and one side of the series resonant circuit is connected to the second connection pad. In addition, it is confirmed that the other side of the series resonant circuit is connected to GND, and the phase of the second harmonic on the output matching circuit side in the second connection pad provided on the semiconductor mounting substrate is -30 to +60 degrees. 4 features.
上記特徴の高周波増幅器によれば、出力整合回路内に直列共振回路を設けて2倍波の位相を−30〜+60度にすることによって、基本周波数の出力電力に対して、2倍波高調波の出力電力が−5dBc発生した際に、2倍波の影響による検波電圧の誤差を0.2V以下とすることができる。 According to the high frequency amplifier having the above characteristics, by providing a series resonance circuit in the output matching circuit and setting the phase of the second harmonic to -30 to +60 degrees, the second harmonic is higher than the output power of the fundamental frequency. When the output power of −5 dBc is generated, the error of the detection voltage due to the influence of the second harmonic can be set to 0.2 V or less.
さらに本発明に係る高周波増幅器は、出力整合回路内にローパスフィルタが接続され、半導体実装基板上に設けた第二の接続パッドにおける出力整合回路側の2倍波の位相が−20〜+30度にあることを第5の特徴とする。 Furthermore, in the high frequency amplifier according to the present invention, a low pass filter is connected in the output matching circuit, and the second harmonic phase on the output matching circuit side in the second connection pad provided on the semiconductor mounting substrate is -20 to +30 degrees. It is a fifth feature.
上記特徴の高周波増幅器によれば、出力整合回路内にローパスフィルタを形成し2倍波以上の高調波を減衰させ、接続パッドにおける2倍波の位相を−20〜+30度にすることによって、基本周波数の出力電力に対して、2倍波高調波の出力電力が−5dBc発生しても、2倍波の影響による検波電圧の誤差を±0.2V以内に抑えることができる。 According to the high frequency amplifier having the above characteristics, a low-pass filter is formed in the output matching circuit to attenuate higher harmonics of the second harmonic and higher, and the phase of the second harmonic in the connection pad is set to -20 to +30 degrees. Even if the output power of the second harmonic wave is -5 dBc with respect to the output power of the frequency, the error of the detection voltage due to the influence of the second harmonic can be suppressed to within ± 0.2V.
本発明によれば、高調波の減衰によって検波電圧誤差を低減させると共に小型化ができる検波回路を備えた高周波増幅器を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the high frequency amplifier provided with the detection circuit which can reduce a detection voltage error and can be reduced in size by attenuation | damping of a harmonic can be provided.
本発明を実施するための好適な形態につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、均等の範囲のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Preferred embodiments for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are equivalent. Furthermore, the constituent elements described below can be appropriately combined. In addition, various omissions, substitutions, or changes of components can be made without departing from the scope of the present invention.
(第1の実施形態)
図1は第1の実施形態に係る高周波増幅器の全体構成を示すブロック図である。半導体集積回路基板7上に電力増幅部1と第一の接続パッド9と第三の接続パッド11とコンデンサ6と検波回路2とが構成されており、半導体実装基板8上に出力整合回路3と第二の接続パッド10とが構成されている。
(First embodiment)
FIG. 1 is a block diagram showing the overall configuration of the high-frequency amplifier according to the first embodiment. A
電力増幅器1の出力側に第一の接続パッド9が接続されており、第一の接続パッド9は第一の接続部材4を介して第二の接続パッド10に接続されている。第二の接続パッド10は出力整合回路3の入力側に接続され、第二の接続パッド10は第二の接続部材5を介して第三の接続パッド11にも接続されている。第三の接続パッド11はコンデンサ6を介して検波回路2の入力側に接続されている。
The
本実施形態では、電力増幅部1は高調波を含む高周波信号を出力し、第一の接続部材4を通して、高周波信号は出力整合回路3と第二の接続部材5に入力される。出力整合回路3は高調波を反射させる回路と基本波を整合する整合回路で構成されており、接続パッド10から出力整合回路3側を見た高調波周波数のインピーダンスが短絡もしくは低インピーダンスの場合、高調波は第二の接続部材5に伝わることなく、電力増幅部1に反射される。
In the present embodiment, the
ここで、高調波を2倍波に限定した場合を説明する。第二の接続パッド10から出力整合回路3を見た時の2倍波周波数におけるインピーダンスをZm、第二の接続パッド10から第二の接続部材5を通して検波回路2側を見た時の2倍波周波数におけるインピーダンスをZdとする。
Here, the case where a harmonic is limited to a 2nd harmonic is demonstrated. The impedance at the second harmonic frequency when the
第一の接続部材4の出力側から第二の接続パッド10の2倍波周波数の合成インピーダンスは式(1)となる。
(Zm*Zd)/(Zm+Zd) (1)
The combined impedance of the second harmonic frequency of the
(Zm * Zd) / (Zm + Zd) (1)
Zdに対してZmが十分に小さい場合は、合成インピーダンスはZmに近似されることとなる。 When Zm is sufficiently smaller than Zd, the combined impedance is approximated to Zm.
そのことから、電力増幅部1で発生した2倍波信号は、第二の接続パッド10でZmのインピーダンスで反射され、検波回路2には伝わらず、電力増幅部1に反射されることになる。
Therefore, the second harmonic signal generated in the
ここでは、高調波を2倍波に限定したが、2倍波に限定するものではなく、n次の高調波にも適用でき同様な結果となる。よって、半導体集積回路基板上に高調波を反射させる高調波減衰回路を構成することなく、高調波信号を減衰させた信号を検波回路に入力することができ、整合回路から出力される高周波信号と同等の信号を検波することで検波電圧の誤差を低減することができる。 Here, the harmonic is limited to the second harmonic, but is not limited to the second harmonic, and the present invention can be applied to the n-th harmonic and gives the same result. Therefore, without configuring a harmonic attenuation circuit that reflects harmonics on the semiconductor integrated circuit substrate, a signal obtained by attenuating the harmonic signal can be input to the detection circuit, and the high-frequency signal output from the matching circuit and By detecting an equivalent signal, an error in the detection voltage can be reduced.
電力増幅部1が1つの高周波増幅器になっているが本発明においては多段構成の高周波増幅器でもよい。また第一の接続部材4と第二の接続部材5は高周波増幅器を構成する半導体集積回路基板7と、出力整合回路3が電気的に接続するものであり、例えばボンディングワイヤなどでもよい。出力整合回路3内に構成される高調波を減衰させる回路は高調波を減衰できる回路ならよく、例えば直列共振回路などでもよい。
Although the
本発明の実施形態において半導体実装基板8とは半導体集積回路基板7が搭載することができる少なくとも1つ以上の導体層で構成されている基板である。材料としては例えばFR−4やLTCC、アルミナなどでもよい。
In the embodiment of the present invention, the
(第2の実施形態)
図2は本発明に係る第2の実施形態による高周波増幅器の模式図である。図1に示す第1の実施形態に係る高周波増幅器との異なる点は、接続部材として第一のボンディングワイヤ12と第二のボンディングワイヤ13を使用している点である。入力された高周波信号を増幅する半導体集積回路基板7上に構成された電力増幅部1と半導体実装基板8上に構成された出力整合回路3が第一のボンディングワイヤ12によって半導体集積回路基板7上に構成された第一の接続パッド9と半導体実装基板8上に構成された第二の接続パッド10とが接続され、コンデンサ6を介して接続されている半導体集積回路基板7上に構成された検波回路2と半導体実装基板8上に構成された出力整合回路3が第二のボンディングワイヤ13によって半導体実装基板8上に構成された第二の接続パッド10と半導体集積回路基板7上に構成された第三の接続パッド11とが接続されることで構成されている。
(Second Embodiment)
FIG. 2 is a schematic diagram of a high-frequency amplifier according to a second embodiment of the present invention. The difference from the high-frequency amplifier according to the first embodiment shown in FIG. 1 is that a
本実施形態ではボンディングワイヤで接続することで、ボンディングワイヤのインダクタンス成分と第三の接続パッド11と検波回路2の間のコンデンサによるキャパシタンス成分とが基本周波数で共振するように調整した場合LC直列共振回路となり、検波回路2には基本波周波数のみが通過し高調波を反射することが可能となる。
In this embodiment, when the connection is made with a bonding wire, the inductance component of the bonding wire and the capacitance component due to the capacitor between the
また、ボンディングワイヤの長さを変えることでインダクタンス成分を調節できるため、製造における半導体集積回路基板のばらつきなどにおいて整合の調整も可能となる。 In addition, since the inductance component can be adjusted by changing the length of the bonding wire, matching can be adjusted in the case of variations in the semiconductor integrated circuit substrate during manufacture.
(第3の実施形態)
図3は本発明に係る第3の実施形態による高周波増幅器の模式図である。図1に示す第1の実施形態に係る高周波増幅器との異なる点は、接続部材としてバンプを用いており、第一のバンプ14と第二のバンプ15を使用したフリップチップ実装によって構成している点である。入力された高周波信号を増幅する半導体集積回路基板7上に構成された電力増幅部1と半導体実装基板8上に構成された出力整合回路3が第一のバンプ14によって接続され、コンデンサ6を介して接続されている半導体集積回路基板7上に構成された検波回路2と出力整合回路3が第二のバンプ15で接続されることで構成されている。フリップチップ実装であるため半導体集積回路基板7上に設けられた第一の接続パッド9と第三の接続パッド11と半導体実装基板8上に構成された第二の接続パッド10が向かい合うようにし、第一のバンプ14で第一の接続パッド9と第二の接続パッド10を電気的に接続し、第二のバンプ15で第三の接続パッド11と第二の接続パッド10を電気的に接続する。
(Third embodiment)
FIG. 3 is a schematic diagram of a high-frequency amplifier according to a third embodiment of the present invention. The difference from the high-frequency amplifier according to the first embodiment shown in FIG. 1 is that bumps are used as connecting members, and the
本実施形態ではバンプ電極で接続するとパッドを重ねるのでボンディングワイヤによって接続するときのようなパッド間の距離が必要なく、実装面積を削減することが可能になる。 In this embodiment, since the pads are overlapped when connected by the bump electrodes, the distance between the pads as in the case of connecting by the bonding wires is not required, and the mounting area can be reduced.
(第4の実施形態)
図4は本発明に係る第4の実施形態による高周波増幅器のブロック図である。図1に示す第1の実施形態に係る高周波増幅器との異なる点は、半導体実装基板8上に構成された出力整合回路3が2倍波の周波数で短絡となる直列共振回路17と整合回路16で構成され、直列共振回路17の片側を整合回路16の入力側に接続され、直列共振回路のもう一方をGNDに接続する構成している点である。このことより、検波電圧の誤差を更に低減することができる。
(Fourth embodiment)
FIG. 4 is a block diagram of a high frequency amplifier according to a fourth embodiment of the present invention. The difference from the high-frequency amplifier according to the first embodiment shown in FIG. 1 is that the
以下、本発明の具体的な特性結果を図5に示す特性図を参照して説明する。図5は本発明に係る図4による高周波増幅器の通過特性を示す特性図である。一例としてWiMAXの場合を想定する。WiMAXでの周波数帯域は、2.3〜2.4GHz、および2.496〜2.69GHzである。そこで基本波を2.5GHz、高調波である2倍波を5GHzとした場合を説明する。電力増幅部1の出力から接続部材4を通って、出力整合回路3の出力までの通過特性を出力整合回路側減衰量201とし、電力増幅部1の出力から接続部材4を通って、接続部材5よりコンデンサ6と検波回路2の入力までの通過特性を検波回路側減衰量202とした。2倍波の周波数にて短絡となる直列共振回路17を備えていない場合の減衰量を破線で示し、2倍波の周波数にて短絡となる直列共振回路17を備えている場合の減衰量を実線で示している。
Hereinafter, specific characteristic results of the present invention will be described with reference to a characteristic diagram shown in FIG. FIG. 5 is a characteristic diagram showing pass characteristics of the high-frequency amplifier according to FIG. 4 according to the present invention. As an example, the case of WiMAX is assumed. The frequency bands in WiMAX are 2.3 to 2.4 GHz and 2.496 to 2.69 GHz. Therefore, a case where the fundamental wave is 2.5 GHz and the second harmonic wave is 5 GHz will be described. The passing characteristic from the output of the
また、検波回路側減衰量202の実線と破線の比較により、図4において、半導体集積回路基板7上に高調波信号を反射させる共振回路が無いにもかかわらず、2倍波である5GHzの高調波信号が減衰されていることがわかる。一例として、WiMAXの場合を検討したが、WiMAXに特化するものではない。別の通信規格であるW−CDMA(Wideband Code Division Multiple Access:広帯域富豪分割多元接続)の場合では、周波数帯域は1.920〜1.980GHzであり、基本波を1.95GHz、高調波である2倍波を3.9GHzとした場合も、図5における横軸周波数の値を2.5GHzから1.95GHzに置き換え、5GHzから3.9GHzに置き換えた場合には同様の結果が得られる。
Further, by comparing the solid line and the broken line of the detection circuit
さらに、図6は本発明に係る図4による2倍波の電力と検波電圧との関係を示す特性図である。電力増幅部1から出力される高周波信号は、基本波を2.5GHz、高調波である2倍波を5GHzとし、基本波の電力を23dBmとした。横軸は電力増幅部1から出力される2倍波の電力である。縦軸は、電力増幅部1から基本波のみが23dBmの電力で出力されたときの検波電圧を基準電圧とし、基本波と2倍波が出力されたときの検波電圧と基準電圧の差分を計算した値(△Vdet[V])である。言い換えれば、縦軸は2倍波のみの影響による検波電圧を示した値である。
Further, FIG. 6 is a characteristic diagram showing the relationship between the power of the second harmonic wave and the detection voltage according to FIG. 4 according to the present invention. The high frequency signal output from the
ここで、基本波の電力を23dBmとしたが、WiMAXの通信規格では、送信機の最大送信出力を23dBm、アンテナ利得を最大2dBi、アンテナからの最終出力の最大を25dBmと規定している。このことから、電力増幅部1からアンテナまでの伝送ロスを考慮し、電力増幅部1での基本波の電力を23dBmとした。
Here, although the power of the fundamental wave is 23 dBm, the WiMAX communication standard defines the maximum transmission output of the transmitter as 23 dBm, the antenna gain as a maximum of 2 dBi, and the maximum final output from the antenna as 25 dBm. From this, the transmission power from the
これに対してW−CDMAの通信規格では、Power Class3における送信機の最大送信出力を24dBmとし、許容範囲を+1dB〜−3dBと規定している。W−CDMAの場合は、電力増幅部1からアンテナまでの伝送ロスを考慮し、電力増幅部1での基本波の電力を22dBmとして計算すれば、同様の結果を得ることができる。
On the other hand, in the W-CDMA communication standard, the maximum transmission output of the transmitter in
ここで、第一の続部材4からの第二の接続パッド10側のインピーダンス特性の2倍波が短絡である場合、スミスチャート(図示せず)にて2倍波の位相が0度となり、2倍波の位相が90度または−90度の時を開放となる2倍波の位相における検波電圧値を計算した結果を図6に示す。
Here, when the second harmonic of the impedance characteristic on the
したがって、図6の特性図より、第一の接続部材4から第二の接続パッド10を見た2倍波の位相が0度からずれた場合、検波電圧に誤差が生じてしまうことがわかる。さらに、2倍波の信号の電力が大きくなるにしたがって検波電圧誤差も大きくなることがわかる。
Therefore, it can be seen from the characteristic diagram of FIG. 6 that an error occurs in the detection voltage when the phase of the second harmonic wave when the
一般的には、OFDM信号を増幅するとき、基本波に対して2倍波の電力は−5dBc程度発生してしまう。つまり、基本波の電力を23dBmとしたときは2倍波の電力は18dBmが出力される。 In general, when an OFDM signal is amplified, the power of the second harmonic wave is generated about -5 dBc with respect to the fundamental wave. That is, when the fundamental wave power is 23 dBm, 18 dBm is output as the double wave power.
また、電力増幅部1の出力電力を23dBm±2dBの範囲とした場合、一般的に用いられる倍電圧検波回路の検波電圧の範囲は±0.2V以内となる。ここで、出力電力の許容範囲を±2dBとしたが、WiMAXの通信規格では、送信機の最大送信出力を23dBm、アンテナ利得を最大2dBi、アンテナからの最終出力の最大を25dBmと規定しており、アンテナ利得が最大2dBiであることから、送信機の送信出力の許容上限を+2dBとした。そして、送信機の送信出力が低下すると通信距離が短くなるため、送信機の送信出力の許容下限は−2dBが要求されている。
Further, when the output power of the
さらに、W−CDMAの通信規格では、Power Class3における送信機の最大送信出力を24dBmとし、許容範囲を+1dB〜−3dBと規定している。このことから送信出力の許容範囲を±2dBとした場合、同様に検波電圧の範囲は±0.2V以内となる。
Furthermore, in the W-CDMA communication standard, the maximum transmission output of the transmitter in
本実施形態によれば、2倍波の位相を−30〜+60度にすることによって基本周波数の出力電力に対して、2倍波高調波の出力電力が−5dBc発生した際に、位相20度のときの検波電圧、位相60度のときの検波電圧、位相−30度のときの検波電圧に示すように2倍波の影響による検波電圧の誤差を0.2V以下とすることができる。 According to the present embodiment, when the second harmonic output power is -5 dBc relative to the output power of the fundamental frequency by setting the phase of the second harmonic to -30 to +60 degrees, the phase is 20 degrees. As shown in the detection voltage at the time of, the detection voltage at the phase of 60 degrees, and the detection voltage at the phase of -30 degrees, the error of the detection voltage due to the influence of the double wave can be 0.2 V or less.
(第5の実施形態)
図7は本発明に係る第5の実施形態による高周波増幅器のブロック図である。図1に示す第1の実施形態に係る高周波増幅器との異なる点は、半導体実装基板8上に構成された出力整合回路3がローパスフィルタ18と整合回路16によって構成している点である。なおローパスフィルタ18は基本波を通過し、2倍波の周波数で低インピーダンスであり、高調波を減衰させる機能を持つことが好ましい。このことより、検波電圧の誤差を更に低減することができる。
(Fifth embodiment)
FIG. 7 is a block diagram of a high-frequency amplifier according to a fifth embodiment of the present invention. The difference from the high-frequency amplifier according to the first embodiment shown in FIG. 1 is that the
以下、本発明の具体的な特性結果を図8に示す特性図を参照して説明する。図8は本発明に係る図7による高周波増幅器の通過特性を示す特性図である。一例として基本波を2.5GHz、高調波である2倍波を5GHzとした場合を説明する。電力増幅部1の出力から接続部材4を通って、出力整合回路3の出力までの通過特性を出力整合回路側減衰量203とし、電力増幅部1の出力から接続部材4を通って、接続部材5よりコンデンサ6と検波回路2の入力までの通過特性を検波回路側減衰量204とした。2倍波の周波数にて低インピーダンスとなるローパスフィルタ18を備えていない場合の減衰量を破線で示し、2倍波の周波数にて低インピーダンスとなるローパスフィルタ18を備えている場合の減衰量を実線で示している。
Hereinafter, specific characteristic results of the present invention will be described with reference to a characteristic diagram shown in FIG. FIG. 8 is a characteristic diagram showing pass characteristics of the high-frequency amplifier according to FIG. 7 according to the present invention. As an example, a case where the fundamental wave is 2.5 GHz and the second harmonic wave is 5 GHz will be described. The passing characteristic from the output of the
また、検波回路側減衰量204の実線と破線の比較により、図7において、半導体集積回路基板7上に高調波信号を反射させる共振回路が無いにもかかわらず、ローパスフィルタ18を備えることにより2倍波以上の高調波信号が減衰されていることがわかる。
Further, by comparing the solid line and the broken line of the detection circuit-
さらに、図9は本発明に係る図7による2倍波の電力と検波電圧との関係を示す特性図である。電力増幅部1から出力される高周波信号は、基本波を2.5GHz、高調波である2倍波を5GHzとし、基本波の電力を23dBmとした。横軸は電力増幅部1から出力される2倍波の電力である。縦軸は、電力増幅部1から基本波のみが23dBmの電力で出力されたときの検波電圧を基準電圧とし、基本波と2倍波が出力されたときの検波電圧と基準電圧の差分を計算した値(△Vdet[V])である。言い換えれば、縦軸は2倍波のみの影響による検波電圧を示した値である。
Further, FIG. 9 is a characteristic diagram showing the relationship between the power of the second harmonic wave and the detection voltage according to FIG. 7 according to the present invention. The high frequency signal output from the
ここで、第一の接続部材4からの第二の接続パッド10側のインピーダンス特性の2倍波が短絡である場合、スミスチャート(図示せず)にて2倍波の位相が0度となり、2倍波の位相が90度または−90度の時が開放となる2倍波の位相における検波電圧値を計算した結果を図9に示す。
Here, when the second harmonic of the impedance characteristic on the
したがって、図9の特性図より、第一の接続部材4から第二の接続パッド10を見た2倍波の位相が0度からずれた場合、検波電圧に誤差が生じてしまうことがわかる。さらに、2倍波の信号の電力が大きくなるにしたがって検波電圧誤差も大きくなることがわかる。
Therefore, it can be seen from the characteristic diagram of FIG. 9 that an error occurs in the detected voltage when the phase of the second harmonic wave when the
一般的には、OFDM信号を増幅するとき、基本波に対して2倍波の電力は−5dBc程度発生してしまう。つまり、基本波の電力を23dBmとしたときは2倍波の電力は18dBmが出力される。 In general, when an OFDM signal is amplified, the power of the second harmonic wave is generated about -5 dBc with respect to the fundamental wave. That is, when the fundamental wave power is 23 dBm, 18 dBm is output as the double wave power.
また、増幅器の出力電力を23dBm±2dBの範囲とした場合、一般的に用いられる倍電圧検波回路の検波電圧の範囲は±0.2V以内となる。本実施形態によれば、出力整合回路3内にローパスフィルタ18を形成し2倍波以上の高調波を減衰させ、接続パッドにおける2倍波の位相を−20〜+30度にすることによって基本周波数の出力電力に対して、2倍波高調波の出力電力が−5dBc発生した際に、位相−20度のときの検波電圧、位相0度のときの検波電圧、位相30度のときの検波電圧に示すように2倍波の影響による検波電圧の誤差を±0.2V以内とすることができる。
When the output power of the amplifier is in the range of 23 dBm ± 2 dB, the detection voltage range of the commonly used voltage doubler detection circuit is within ± 0.2V. According to the present embodiment, the low-
なお、図11は本発明に係る本発明で設けられた検波回路の回路図の一例である。電源端子111の出力側に抵抗112を設け、第二のダイオード110の入力側に抵抗113を設け、第一のダイオード109の入力側に接続し、第一のダイオード109の出力側には抵抗114とコンデンサ115が並列に接続されている。
FIG. 11 is an example of a circuit diagram of a detection circuit provided in the present invention according to the present invention. A
以上のように、本発明の高周波増幅器は高周波信号の送受信を行う増幅素子を用いた装置(例えば、携帯電話端末)等に利用可能であり、特に、OFDM方式のような高出力で検波するときに高調波の影響を受けやすい場合等に適している。 As described above, the high-frequency amplifier according to the present invention can be used for a device (for example, a mobile phone terminal) using an amplifying element for transmitting and receiving a high-frequency signal, and particularly when detecting at a high output as in the OFDM method. It is suitable for cases that are susceptible to harmonics.
1、101 電力増幅部
2、102 検波回路
3、103 出力整合回路
4 第一の接続部材
5 第二の接続部材
6、106、115 コンデンサ
7、107 半導体集積回路基板
8、108 半導体実装基板
9 第一の接続パッド
10 第二の接続パッド
11 第三の接続パッド
12 第一のボンディングワイヤ
13 第二のボンディングワイヤ
14 第一のバンプ
15 第二のバンプ
16 整合回路
17 直列共振回路
18 ローパスフィルタ
104 接続部材
105 高調波減衰回路
109 第一のダイオード
110 第二のダイオード
111 電源端子
112、113、114 抵抗
201、203 出力整合回路側減衰量
202、204 検波回路側減衰量
DESCRIPTION OF SYMBOLS 1,101 Power amplification part 2,102 Detection circuit 3,103
Claims (4)
出力整合回路と前記出力整合回路の入力側に設けた第二の接続パッドを具備した半導体実装基板とを有し、
第一の接続部材によって前記第一の接続パッドと前記第二の接続パッドとが電気的に接続されるとともに、
第二の接続部材によって前記第三の接続パッドと前記第二の接続パッドとが電気的に接続されており、
前記第一の接続部材および前記第二の接続部材のインダクタ成分と前記コンデンサによるキャパシタンス成分とが、前記出力信号の基本周波数で共振するLC直列共振回路をなすことを特徴とする高周波増幅器。 A power amplifying unit; a first connection pad provided on the output side of the power amplifying unit; a detection circuit for detecting an output signal of the power amplifying unit; and a third provided on the input side of the detection circuit via a capacitor. A semiconductor integrated circuit board having a connection pad of
An output matching circuit and a semiconductor mounting substrate having a second connection pad provided on the input side of the output matching circuit;
The first connection pad and the second connection pad are electrically connected by the first connection member,
The third connection pad and the second connection pad are electrically connected by a second connection member,
A high-frequency amplifier, wherein an inductor component of the first connection member and the second connection member and a capacitance component due to the capacitor form an LC series resonance circuit that resonates at a fundamental frequency of the output signal.
前記直列共振回路のもう一方がGNDに接続され、前記半導体実装基板上に設けた前記第二の接続パッドにおける前記出力整合回路側の2倍波の位相が−30〜+60度にあることを特徴とする請求項1または2に記載された高周波増幅器。 The output matching circuit provided on the semiconductor mounting substrate includes a series resonance circuit that is short-circuited at a frequency of a second harmonic, and one side of the series resonance circuit is connected to the second connection pad,
The other of the series resonant circuits is connected to GND, and the phase of the second harmonic on the output matching circuit side in the second connection pad provided on the semiconductor mounting substrate is -30 to +60 degrees. A high-frequency amplifier according to claim 1 or 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013003615A JP6291710B2 (en) | 2013-01-11 | 2013-01-11 | High frequency amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013003615A JP6291710B2 (en) | 2013-01-11 | 2013-01-11 | High frequency amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014135682A JP2014135682A (en) | 2014-07-24 |
JP6291710B2 true JP6291710B2 (en) | 2018-03-14 |
Family
ID=51413654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013003615A Active JP6291710B2 (en) | 2013-01-11 | 2013-01-11 | High frequency amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6291710B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018040624A (en) | 2016-09-06 | 2018-03-15 | 三菱電機株式会社 | Transmitter, integrated circuit, detection unit, and method of testing integrated circuit |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS628604A (en) * | 1985-07-05 | 1987-01-16 | Nec Corp | Broad band power amplifier |
JPH066152A (en) * | 1992-06-18 | 1994-01-14 | Japan Energy Corp | High frequency amplifier |
JP2004228989A (en) * | 2003-01-23 | 2004-08-12 | Renesas Technology Corp | Semiconductor device |
JP2004328555A (en) * | 2003-04-28 | 2004-11-18 | Renesas Technology Corp | High-frequency electric power amplifying electronic component, and radio communications system |
JP2005217562A (en) * | 2004-01-28 | 2005-08-11 | Renesas Technology Corp | High frequency power amplifier circuit |
JP2005311852A (en) * | 2004-04-23 | 2005-11-04 | Toshiba Corp | High frequency amplifying device |
JP2007005995A (en) * | 2005-06-22 | 2007-01-11 | Renesas Technology Corp | Bias circuit and high-frequency power amplification circuit |
-
2013
- 2013-01-11 JP JP2013003615A patent/JP6291710B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014135682A (en) | 2014-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6528845B2 (en) | Antenna matching circuit, antenna circuit, front end circuit and communication device | |
US20200076393A1 (en) | Coupled Resonator On-Die Filters for WiFi Applications | |
KR101472932B1 (en) | Communication device | |
US11916528B2 (en) | Band pass filter | |
US9941859B2 (en) | Ladder-type filter, duplexer, and module | |
KR20150030155A (en) | Power amplifier | |
JP2013110619A (en) | Amplifier | |
US9780755B1 (en) | On flex circuit desense filter for wireless communications | |
US7675397B2 (en) | Transformer | |
US9602076B1 (en) | Resonators with balancing capacitor | |
JP6291710B2 (en) | High frequency amplifier | |
US10277262B2 (en) | Communication module | |
US11558028B2 (en) | Filter module | |
US10348251B2 (en) | Power supply circuit | |
WO2019208173A1 (en) | Wireless communication module | |
JP4969193B2 (en) | Duplexer | |
WO2017104454A1 (en) | High frequency module and transmission module | |
WO2024050705A1 (en) | Qfn packaging structure, radio frequency transceiving module structure and electronic device | |
JP4275554B2 (en) | Switch semiconductor integrated circuit | |
TWI527394B (en) | Communication system and near field wireless communication device of the same | |
JP2012186723A (en) | Limiter circuit | |
JP2012160494A (en) | Integrated circuit and relay board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6291710 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |