WO2017104454A1 - High frequency module and transmission module - Google Patents

High frequency module and transmission module Download PDF

Info

Publication number
WO2017104454A1
WO2017104454A1 PCT/JP2016/085988 JP2016085988W WO2017104454A1 WO 2017104454 A1 WO2017104454 A1 WO 2017104454A1 JP 2016085988 W JP2016085988 W JP 2016085988W WO 2017104454 A1 WO2017104454 A1 WO 2017104454A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
inductance element
inductor
frequency module
disposed
Prior art date
Application number
PCT/JP2016/085988
Other languages
French (fr)
Japanese (ja)
Inventor
崇央 豊村
武 小暮
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017104454A1 publication Critical patent/WO2017104454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present invention relates to a high frequency module and a transmission module for processing a high frequency signal.
  • FIG. 3 of Patent Document 1 discloses a circuit configuration of a multimode multiband compatible PA (power amplifier) module.
  • This PA module has a matching circuit for matching the PA (power amplifier) and the duplexer in a signal path between the PA (power amplifier) and the duplexer for band 1.
  • FIG. 7C of Patent Document 1 discloses a two-stage matching circuit used as the matching circuit. This two-stage matching circuit is composed of two inductors and two capacitors. With the above configuration, the PA module can configure a multi-mode multi-band front-end unit that can perform signal processing for each band.
  • mounting components such as an inductor and a capacitor are included in a multilayer substrate as a mounting substrate.
  • the circuit inductor is constituted by a laminated coil built in a laminated substrate.
  • the inductor of the matching circuit is formed only of the laminated coils built in the laminated substrate, the amount of inductance required for the high-frequency circuit can be finely adjusted due to the coupling between the laminated coils. It becomes difficult. Also, as more layers are required to obtain a large inductance value, the unintended magnetic field mutual coupling becomes stronger, so that the Q value is lowered and the signal propagation loss is increased.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a high-frequency module and a transmission module that can finely adjust an inductance value while realizing a reduction in size or a reduction in height.
  • a high-frequency module is a high-frequency module having an input terminal and an output terminal, and is disposed between a mounting board, the input terminal, and the output terminal. And an inductor provided on the mounting board, the inductor including a first inductance element and a second inductance element connected in series, and the first inductance element is built in the mounting board, The second inductance element is mounted on the surface of the mounting substrate.
  • One way to reduce the size and height of a high-frequency front-end circuit is to form an inductor with laminated coils in the mounting board, but this is required for high-frequency circuits due to the coupling between the laminated coils. It becomes difficult to fine tune the inductance value of the quantity. Further, as the inductance value increases and windings are required for multiple layers, the unintentional mutual coupling of magnetic fields becomes stronger, so there is a concern that the Q value will decrease and the signal propagation loss will increase. On the other hand, according to the above configuration, since a part of the inductor is constituted by the surface mount type second inductance element, the second inductance element secures an inductance value of an amount required for the high frequency circuit. It becomes possible to do.
  • the number of layers of the laminated coil of the first inductance element can be reduced by arranging the second inductance element, and the interlayer distance can be secured, so that the inductance value by the first inductance element can be finely adjusted.
  • a high Q value can be maintained.
  • the size and the height can be reduced by the amount that the first inductance element is built in the substrate.
  • the inductance value of the inductor can be a value obtained by adding the inductance values of the two inductance elements, so that a large inductance value can be secured. .
  • first inductance element and the second inductance element may overlap when the mounting substrate is viewed in plan.
  • first inductance element and the second inductance element can be electromagnetically coupled.
  • An amplifier for amplifying a high frequency signal disposed on the mounting substrate; and a matching circuit disposed between the amplifier and the output terminal for impedance matching between the amplifier and the output terminal.
  • the matching circuit may include the inductor.
  • the first inductance element is configured by a laminated wiring pattern
  • the second inductance element is configured by a coil
  • the winding axis of the coil is parallel to the winding axis of the stacked wiring pattern. It may be.
  • the laminated coil constituting the first inductance element can be opposed to the coil constituting the second inductance element, and the two inductance elements can be electrically coupled. Therefore, a band attenuating filter such as a harmonic filter can be realized by a resonance circuit composed of the first inductance element and the second inductance element.
  • the amplifier is disposed on the mounting substrate and amplifies a high-frequency signal, and is disposed between the amplifier and a power supply terminal to which a power supply voltage is applied, and supplies a bias voltage corresponding to the power supply voltage to the amplifier.
  • the bias circuit may include the inductor.
  • the direction of the magnetic field generated by the second inductance element and the direction of the magnetic field generated by the first inductance element may intersect.
  • the amplifier is disposed on the mounting board and amplifies a high-frequency signal
  • the first circuit is disposed between the input terminal and the output terminal, and is disposed between the input terminal and the output terminal.
  • a second circuit wherein the first circuit includes the first inductor, the second circuit includes the second inductor, and a magnetic field generated by the second inductance element of the first circuit. And the direction of the magnetic field generated by the second inductance element of the second circuit may intersect each other.
  • the amplifier is disposed on the mounting board and amplifies a high-frequency signal
  • the first circuit is disposed between the input terminal and the output terminal, and is disposed between the input terminal and the output terminal.
  • a second circuit wherein the first circuit includes the first inductor, the second circuit includes the second inductor, and the magnetic field generated by the first inductance element of the first circuit. And the direction of the magnetic field generated by the first inductance element of the second circuit may be aligned.
  • the inductor of the first circuit and the inductor of the second circuit can be positively coupled, and the inductance value can be increased while realizing a reduction in size and height.
  • the amplifier is disposed on the mounting board and amplifies a high-frequency signal
  • the first circuit is disposed between the input terminal and the output terminal, and is disposed between the input terminal and the output terminal.
  • a second circuit wherein the first circuit includes the first inductor, the second circuit includes the second inductor, and the magnetic field generated by the first inductance element of the first circuit. The direction may be opposite to the direction of the magnetic field generated by the first inductance element of the second circuit.
  • the transmission module may include the high-frequency module, and the amplifier may be a transmission power amplifier.
  • the inductance value of the inductor can be a value obtained by adding the inductance values of the two inductance elements, a large inductance value can be ensured.
  • the high-frequency module and the transmission module according to the present invention it is possible to provide a high-frequency module capable of fine adjustment of the inductance value while realizing miniaturization or low profile.
  • FIG. 1 is a diagram illustrating a circuit configuration of the high-frequency module according to the first embodiment.
  • 2A is a circuit diagram of a matching circuit of the high-frequency module according to Embodiment 1.
  • FIG. 2B is a circuit diagram of a bias circuit of the high-frequency module according to Embodiment 1.
  • FIG. 3 is a diagram showing a characteristic configuration of the inductor according to the present invention.
  • 4A is a perspective view illustrating a matching circuit portion of the high-frequency module according to Embodiment 1.
  • FIG. 4B is a cross-sectional view and a plan view of a matching circuit portion of the high-frequency module according to Embodiment 1.
  • FIG. 5 is a graph comparing the pass characteristics of the high-frequency modules according to the example and the comparative example.
  • FIG. 6A is a perspective view illustrating a part of a bias circuit of the high-frequency module according to Embodiment 2.
  • 6B is a cross-sectional view and a plan view of a bias circuit portion of the high-frequency module according to Embodiment 2.
  • FIG. 7 is a circuit configuration diagram of the high-frequency module according to the third embodiment.
  • FIG. 8 is a cross-sectional view of a high-frequency module according to a modification of the third embodiment.
  • FIG. 1 is a diagram illustrating a circuit configuration of the high-frequency module 1 according to the first embodiment.
  • the high frequency module 1 shown in the figure includes a power amplifier (power amplifier) 11, a matching circuit 12, a bias circuit 13, an input terminal RFin, and an output terminal RFout.
  • the high-frequency module 1 according to the present embodiment is disposed in a front end portion of a mobile phone or the like that supports multimode / multiband or carrier aggregation (CA), for example, and has a predetermined frequency band input from an input terminal RFin.
  • CA carrier aggregation
  • PA Power Amplifier
  • the input terminal RFin is connected to, for example, an RFIC (Radio Frequency Integrated Circuit), and the output terminal RFout is connected to an antenna via, for example, an antenna matching circuit.
  • RFIC Radio Frequency Integrated Circuit
  • a transmission filter or duplexer having the predetermined frequency band as a pass band may be disposed between the matching circuit 12 and the output terminal RFout.
  • the power amplifier 11 is a power amplifier that amplifies a high-frequency transmission signal in a predetermined frequency band (for example, 700 to 800 MHz band).
  • the power amplifier 11 includes, for example, a multimode / multiband power amplifier that includes a plurality of amplifying elements and filter circuits connected in multiple stages and can be used in a plurality of communication systems and a plurality of communication bands. It may be.
  • the matching circuit 12 is arranged between the power amplifier 11 and the output terminal RFout, and matches the output impedance of the power amplifier 11 and the input impedance of a circuit arranged at the subsequent stage of the matching circuit 12.
  • FIG. 2A is a circuit diagram of the matching circuit 12 of the high-frequency module 1 according to the first embodiment.
  • FIG. 2A shows an example of the circuit configuration of the matching circuit 12 included in the high-frequency module 1 according to the present embodiment.
  • the matching circuit 12 shown in FIG. 2A includes an inductor 121 and capacitors 122, 123 and 124.
  • the inductor 121 is connected in series to the signal path, and the capacitors 122 and 123 are connected in parallel to the signal path and shunted to the ground.
  • the capacitor 124 is connected in series with the signal path.
  • FIG. 2B is a circuit diagram of the bias circuit 13 of the high-frequency module 1 according to Embodiment 1.
  • FIG. 2B shows an example of the circuit configuration of the bias circuit 13 included in the high-frequency module 1 according to the present embodiment.
  • the bias circuit 13 illustrated in FIG. 2B includes an inductor 131 and a capacitor 132.
  • the inductor 131 is connected between the power supply (power supply voltage Vcc) and the collector terminal of the power amplifier 11, and the capacitor 132 is connected to a connection point between the power supply and the inductor 131 and shunted to the ground.
  • the bias circuit 13 constitutes a low-pass filter, which suppresses leakage of the high-frequency transmission signal input from the input terminal RFin to the power supply side, and the power supply is stable with respect to the power amplifier 11.
  • the voltage Vcc can be supplied.
  • the high frequency module 1 is not limited to a PA module, and may be a receiving module.
  • the power amplifier 11 can be replaced with a low noise amplifier, and the input terminal RFin is connected to the antenna via, for example, an antenna matching circuit, and the output terminal RFout is connected to RFIC, for example.
  • a receiving filter or a duplexer is disposed between the matching circuit 12 and the input terminal RFin.
  • the matching circuit 12 is disposed between the reception-side filter or duplexer and the low-noise amplifier, and is a circuit that matches the output impedance of the reception-side filter or duplexer and the input impedance of the low-noise amplifier.
  • the high-frequency module 1 may be a module in which a PA module and a receiving module are combined in order to support multimode / multiband and CA.
  • the transmission side filter, reception side filter, and duplexer described above include, for example, a surface acoustic wave filter, a boundary acoustic wave filter, an elastic wave filter using a BAW (Bulk Acoustic Wave), and an inductance element and a capacitor element.
  • a surface acoustic wave filter for example, a surface acoustic wave filter, a boundary acoustic wave filter, an elastic wave filter using a BAW (Bulk Acoustic Wave), and an inductance element and a capacitor element.
  • BAW Bulk Acoustic Wave
  • FIG. 3 is a diagram showing a characteristic configuration of the inductor 121 (and 131) according to the present invention.
  • one inductor 121 is divided into two inductance elements 121A and 121B connected in series.
  • the inductance element 121A is configured as a substrate built-in type
  • the inductance element 121B is configured as a surface mount type.
  • the bias circuit 13 one inductor 131 is divided into two inductance elements 131A and 131B connected in series.
  • the inductance element 131A is configured as a substrate built-in type
  • the inductance element 131B is configured as a surface mount type.
  • a part of the inductor 121 (or 131) is configured by the surface mount type inductance element 121B (or 131B), and thus the surface mount type inductance element 121B (or 131B). ), It is possible to secure an inductance value of an amount required for the high-frequency circuit.
  • the arrangement of the inductance element 121B (or 131B) can reduce the number of wiring patterns in which the substrate built-in type inductance element 121A (or 131A) is stacked, and can also secure an interlayer distance, so that the inductance element 121A (or 131A) facilitates fine adjustment of the inductance value.
  • the inductor 121 (or 131) can be maintained. Further, downsizing and reduction in height can be achieved by the amount that the inductance element 121A (or 131A) is built in the substrate.
  • the inductance value of the inductor 121 (or 131) can be a value obtained by adding the inductance values of the two inductance elements, which is necessary for a high frequency circuit. It is possible to ensure a large inductance value.
  • the inductance value required by the inductor 121 (131) is constituted by a surface-mount type inductance element 121B (131B) that does not vary, and the minimum necessary variation
  • the range is constituted by a substrate built-in type inductance element 121A (131A).
  • FIG. 4A is a perspective view illustrating a matching circuit portion of the high-frequency module 1 according to the first embodiment.
  • FIG. 4B is a cross-sectional view and a plan view of the matching circuit portion of the high-frequency module 1 according to Embodiment 1.
  • the high-frequency module 1 includes a mounting substrate 10, and an inductance element 121A and an inductance element 121B provided on the mounting substrate 10.
  • other circuit elements mounted on the mounting substrate 10 are omitted.
  • the mounting substrate 10 is a multilayer substrate in which a plurality of layers are stacked, and examples thereof include a ceramic multilayer substrate and a PCB substrate.
  • the inductance element 121A and the inductance element 121B are connected in series to form an inductor 121 (not shown in FIGS. 4A and 4B, see FIG. 3).
  • the inductance element 121A is a board-embedded first inductance element. More specifically, the inductance element 121 ⁇ / b> A is formed on each layer of the mounting substrate 10.
  • the wiring patterns 224 are stacked, via conductors 225 that connect the stacked wiring patterns 224 to each other, and on the surface of the mounting substrate 10.
  • the electrode 222 is formed and the electrode 223 formed on the back surface of the mounting substrate 10 is formed.
  • the inductance element 121B is a surface-mounted second inductance element mounted on the surface of the mounting substrate 10 and is a discrete (individual) SMD (Surface Mounted Device) that does not include the mounting substrate 10 as a component. More specifically, the inductance element 121B is formed of an element body 226 in which a coil is formed and electrodes 227 and 228.
  • the electrode 222 of the inductance element 121A and the electrode 227 of the inductance element 121B are directly connected by solder or bumps. That is, the inductance element 121B is connected and disposed on the inductance element 121A without using a high-frequency element including, for example, a strip line.
  • One terminal of the inductor 121 is an electrode 221 connected to the electrode 228 of the inductance element 121B, and the other terminal of the inductor 121 is an electrode 223 of the inductance element 121A. These terminals are external elements or external circuits. Connected.
  • the circuit element connected in series is not interposed in the connection path between the inductance element 121A and the inductance element 121B. That is, the inductor 121 composed of two inductance elements connected in series as shown in FIG. 3 is realized.
  • the inductance value of the inductor 121 can be finely adjusted in the matching circuit 12 disposed in the signal path through which the high-frequency signal propagates.
  • the high Q value of the inductor 121 can be maintained. Therefore, since highly accurate impedance matching is realized, it is possible to reduce signal propagation loss in the passband.
  • the inductance element 121A and the inductance element 121B overlap when the mounting substrate 10 is viewed in plan.
  • the inductance element 121A and the inductance element 121B can be electromagnetically coupled.
  • the direction of the magnetic field H B2 generated by the inductance element 121B can be aligned with the direction of the magnetic field H A2 generated by the inductance element 121A, and the inductance value of the entire inductor 121 is increased. It becomes possible.
  • overlapping when the mounting substrate 10 is viewed in plan view does not represent only an aspect in which the inductance element 121B completely overlaps with the inductance element 121A in the plan view.
  • a mode in which a part of the inductance element 121A and a part of the inductance element 121B are overlapped in the plan view is also included. This also makes it possible to reduce the area of the matching circuit 12 and the high-frequency module 1.
  • winding axis of the coil constituting the inductance element 121B may be parallel to the winding axis of the laminated coil 224 constituting the inductance element 121A.
  • the laminated coil 224 constituting the inductance element 121A and the coil constituting the inductance element 121B can be made to face each other.
  • the two inductance elements can be electrically coupled, and for example, a parallel capacitance can be added between the two inductance elements.
  • an LC resonance circuit is formed by the inductance element and the parallel capacitor, and by optimizing the LC resonance circuit, for example, a function of a harmonic filter that attenuates harmonics of a high-frequency transmission signal is added. It becomes possible.
  • FIG. 5 is a graph comparing the pass characteristics of the high-frequency modules according to the example and the comparative example. This figure shows the pass characteristic of a high-frequency signal from the output terminal of the power amplifier 11 to the output terminal RFout in the circuit of the high-frequency module shown in FIG.
  • the example represents the pass characteristics of the high-frequency module of the present embodiment having the configuration of the matching circuit 12 shown in FIGS. 4A and 4B.
  • the comparative example represents the pass characteristic of a high-frequency module in which the inductor 121 of the matching circuit 12 is configured by only a substrate-embedded inductance element.
  • the inductance value of the inductor for impedance matching in the transmission path requires 10 nH.
  • the inductance element 121B is set to 5 nH
  • the inductance element 121A is set to 5 nH, thereby realizing a harmonic attenuation function by self-resonance by the inductance element 121B and the parallel capacitance while realizing a reduction in size and height.
  • the matching adjustment function by the inductance elements 121A and 121B can be made compatible.
  • the high frequency module according to the present embodiment is different from the high frequency module 1 according to the first embodiment in that the matching circuit 12 of the high frequency module 1 includes the inductor 121 and the bias circuit 13 includes the inductor 131.
  • the high frequency module according to the present embodiment will not be described for the same points as the high frequency module 1 according to the first embodiment, and will be described with a focus on the different points.
  • the high frequency module according to the present embodiment has the circuit configuration shown in FIG. 1 and is the same as the circuit configuration of the high frequency module 1 according to the first embodiment.
  • the inductor 131 shown in FIG. 3 is a circuit element constituting the bias circuit 13.
  • FIG. 6A is a perspective view showing a circuit portion of the high-frequency module according to the embodiment.
  • FIG. 6B is a cross-sectional view and a plan view of a circuit portion of the high-frequency module according to the embodiment.
  • the high-frequency module includes a mounting substrate 10, and an inductance element 131A and an inductance element 131B provided on the mounting substrate 10.
  • other circuit elements mounted on the mounting substrate 10 are omitted.
  • An inductance element 131A and an inductance element 131B are connected in series to constitute an inductor 131 (not shown in FIGS. 6A and 6B, see FIG. 3).
  • the inductance element 131A is a first built-in inductance element. More specifically, the inductance element 131A includes a wiring pattern 234 formed and stacked for each layer of the mounting substrate 10, via conductors 235 that connect the stacked wiring patterns 234 to each other, and a surface of the mounting substrate 10. The formed electrode 232 and the electrode 233 formed on the back surface of the mounting substrate 10 are formed.
  • the inductance element 131B is a surface-mount type second inductance element mounted on the surface of the mounting substrate 10 and is a discrete (individual) SMD that does not include the mounting substrate 10 as a component. More specifically, the inductance element 131 ⁇ / b> B is formed by an element body 236 in which a coil is formed and electrodes 237 and 238.
  • the electrode 232 of the inductance element 131A and the electrode 237 of the inductance element 131B are directly connected by solder or bumps. That is, the inductance element 131B is connected and arranged on the inductance element 131A without using a high-frequency element including, for example, a strip line.
  • One terminal of the inductor 131 is an electrode 231 connected to the electrode 238 of the inductance element 131B, and the other terminal of the inductor 131 is an electrode 233 of the inductance element 131A. These terminals are external elements or external circuits. Connected.
  • the circuit element connected in series is not interposed in the connection path between the inductance element 131A and the inductance element 131B. That is, the inductor 131 composed of two inductance elements connected in series as shown in FIG. 3 is realized.
  • the inductance element 131A and the inductance element 131B overlap when the mounting substrate 10 is viewed in plan view.
  • overlapping when the mounting substrate 10 is viewed in a plan view does not represent only an aspect in which the inductance element 131B completely overlaps with the inductance element 131A in the plan view.
  • a mode in which a part of the inductance element 131A and a part of the inductance element 131B are overlapped in the plan view is also included. This also makes it possible to reduce the area of the bias circuit 13 and the high-frequency module.
  • the direction of the magnetic field H B3 generated by the inductance element 131B and the direction of the magnetic field H A3 generated by the inductance element 131A may intersect.
  • the winding axis of the coil constituting the inductance element 131B (parallel to the surface of the mounting substrate 10) is the winding axis of the wiring pattern 234 constituting the inductance element 131A (see FIG. 6A). And perpendicular to the surface of the mounting substrate 10.
  • the two lines intersecting is not limited to the two lines being in contact with each other, but in a case where the two lines are in contact with each other when viewed from a predetermined direction without contacting each other. Including.
  • the high-frequency module according to the present embodiment has the circuit configuration shown in FIG. 1 and is the same as the circuit configuration of the high-frequency module according to the first and second embodiments, and thus description thereof is omitted.
  • FIG. 7 is a circuit configuration diagram of the high-frequency module according to the third embodiment.
  • the high-frequency module according to the present embodiment includes a power amplifier 11, a matching circuit 12, a bias circuit 13, an input terminal RFin, and an output terminal RFout.
  • the circuit configuration of the matching circuit 12 according to the present embodiment is the same as the circuit configuration of the matching circuit 12 according to the first embodiment.
  • the circuit configuration of the bias circuit 13 according to the present embodiment is the same as the circuit configuration of the bias circuit 13 according to the second embodiment.
  • the matching circuit 12 is a first circuit disposed between the input terminal RFin and the output terminal RFout, and includes the inductor 121.
  • the bias circuit 13 is a second circuit disposed between the input terminal RFin and the output terminal RFout, and includes an inductor 131.
  • the direction of the magnetic field H B2 generated by the inductance element 121B of the matching circuit 12 and the direction of the magnetic field H B3 generated by the inductance element 131B of the bias circuit 13 intersect each other.
  • FIG. 8 is a cross-sectional view of a high-frequency module according to a modification of the third embodiment.
  • the direction of the magnetic field H A2 generated by the inductance element 121A of the matching circuit 12 is determined not only by the positional relationship between the surface mount type inductance elements, but also by the magnetic field H generated by the inductance element 131A of the bias circuit 13. You may face in the reverse direction with respect to the direction of A3 .
  • the direction of the magnetic field H A2 generated by the inductance element 121A of the matching circuit 12 and the direction of the magnetic field H A3 generated by the inductance element 131A of the bias circuit 13 may be aligned, contrary to the above aspect.
  • the inductor of the matching circuit 12 and the inductor of the bias circuit can be positively coupled, and the inductance value can be increased while realizing a reduction in size and height.
  • the high frequency module and the transmission module according to the embodiment of the present invention have been described with reference to the embodiment and the modification.
  • the high frequency module and the transmission module of the present invention are limited to the above embodiment and the modification. It is not something.
  • the present invention can be widely used in communication equipment such as a mobile phone as a high-frequency module disposed in a multiband / multimode-compatible front end unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

This high frequency module (1) is provided with: a mounting substrate (10); and an inductor (121) which is arranged between an input terminal (RFin) and an output terminal (RFout) and is provided on the mounting substrate (10). The inductor (121) is configured of an inductive element (121A) and an inductive element (121B) that are connected in series; the inductive element (121A) is built in the mounting substrate (10); and the inductive element (121B) is mounted on the surface of the mounting substrate (10).

Description

高周波モジュールおよび送信モジュールHigh frequency module and transmission module
 本発明は、高周波信号を処理する高周波モジュールおよび送信モジュールに関する。 The present invention relates to a high frequency module and a transmission module for processing a high frequency signal.
 携帯電話などに代表される無線通信端末のフロントエンド部は、小型化および低背化が要求される。特許文献1の図3には、マルチモードマルチバンド対応のPA(電力増幅器)モジュールの回路構成が開示されている。このPAモジュールは、PA(電力増幅器)と、帯域1用のデュプレクサとの間の信号経路において、当該PA(電力増幅器)と当該デュプレクサとを整合するための整合回路を有している。また、特許文献1の図7Cには、この整合回路として使用される2段の整合回路が開示されている。この2段の整合回路は、2つのインダクタおよび2つのキャパシタで構成されている。上記構成により、PAモジュールは、帯域ごとに信号処理が可能なマルチモードマルチバンド対応のフロントエンド部を構成することが可能となる。 The front-end part of a wireless communication terminal typified by a mobile phone is required to be small and low-profile. FIG. 3 of Patent Document 1 discloses a circuit configuration of a multimode multiband compatible PA (power amplifier) module. This PA module has a matching circuit for matching the PA (power amplifier) and the duplexer in a signal path between the PA (power amplifier) and the duplexer for band 1. Further, FIG. 7C of Patent Document 1 discloses a two-stage matching circuit used as the matching circuit. This two-stage matching circuit is composed of two inductors and two capacitors. With the above configuration, the PA module can configure a multi-mode multi-band front-end unit that can perform signal processing for each band.
特開2015-156687号公報JP2015-156687A
 フロントエンド部の小型化および低背化の要求への対応策として、インダクタおよびキャパシタなどの実装部品を、実装基板である積層基板に内蔵することが挙げられ、例えば、特許文献1のような整合回路のインダクタを積層基板に内蔵された積層コイルで構成することが考えられる。 As a countermeasure to meet the demands for reducing the size and height of the front end, mounting components such as an inductor and a capacitor are included in a multilayer substrate as a mounting substrate. It is conceivable that the circuit inductor is constituted by a laminated coil built in a laminated substrate.
 しかしながら、整合回路のインダクタを、積層基板に内蔵された積層コイルのみで形成した場合、積層コイル間の結合などに起因して、高周波回路に必要とされる量のインダクタンス値を微調整することが困難となる。また、大きなインダクタンス値を得るために何層にも巻き線が必要となるにつれ、意図しない磁界の相互結合が強くなるため、Q値が低下、および、信号伝搬損失が増大する。 However, when the inductor of the matching circuit is formed only of the laminated coils built in the laminated substrate, the amount of inductance required for the high-frequency circuit can be finely adjusted due to the coupling between the laminated coils. It becomes difficult. Also, as more layers are required to obtain a large inductance value, the unintended magnetic field mutual coupling becomes stronger, so that the Q value is lowered and the signal propagation loss is increased.
 そこで、本発明は、上記課題を解決するためになされたものであって、小型化または低背化を実現しつつ、インダクタンス値の微調整が可能な高周波モジュールおよび送信モジュールを提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide a high-frequency module and a transmission module that can finely adjust an inductance value while realizing a reduction in size or a reduction in height. And
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、入力端子と出力端子とを有する高周波モジュールであって、実装基板と、前記入力端子と前記出力端子との間に配置され、前記実装基板に設けられたインダクタとを備え、前記インダクタは、直列接続された第1インダクタンス素子および第2インダクタンス素子で構成され、前記第1インダクタンス素子は、前記実装基板に内蔵されており、前記第2インダクタンス素子は、前記実装基板の表面に実装されている。 In order to achieve the above object, a high-frequency module according to one aspect of the present invention is a high-frequency module having an input terminal and an output terminal, and is disposed between a mounting board, the input terminal, and the output terminal. And an inductor provided on the mounting board, the inductor including a first inductance element and a second inductance element connected in series, and the first inductance element is built in the mounting board, The second inductance element is mounted on the surface of the mounting substrate.
 高周波フロントエンド回路の小型化および低背化の方策として、インダクタを実装基板内の積層コイルにより形成することが挙げられるが、積層コイル間の結合などに起因して、高周波回路に必要とされる量のインダクタンス値を微調整することが困難となる。また、インダクタンス値が大きくなり何層にも巻き線が必要となるにつれ、意図しない磁界の相互結合が強くなるため、Q値の低下および信号伝搬損失の増大が懸念される。これに対して、上記構成によれば、インダクタの一部が表面実装型の第2インダクタンス素子で構成されるので、当該第2インダクタンス素子により、高周波回路に必要とされる量のインダクタンス値を確保することが可能となる。一方、第2インダクタンス素子の配置により、第1インダクタンス素子の積層コイルの層数を削減でき、また、層間距離も確保できるので第1インダクタンス素子によるインダクタンス値の微調整が可能となる。また、高いQ値を維持することが可能となる。また、第1インダクタンス素子が基板に内蔵された分だけ小型化および低背化も達成できる。さらに、2つのインダクタンス素子が直列接続された構成とすることにより、インダクタのインダクタンス値を、2つのインダクタンス素子のインダクタンス値が加算された値とできるので、大きなインダクタンス値を確保することが可能となる。 One way to reduce the size and height of a high-frequency front-end circuit is to form an inductor with laminated coils in the mounting board, but this is required for high-frequency circuits due to the coupling between the laminated coils. It becomes difficult to fine tune the inductance value of the quantity. Further, as the inductance value increases and windings are required for multiple layers, the unintentional mutual coupling of magnetic fields becomes stronger, so there is a concern that the Q value will decrease and the signal propagation loss will increase. On the other hand, according to the above configuration, since a part of the inductor is constituted by the surface mount type second inductance element, the second inductance element secures an inductance value of an amount required for the high frequency circuit. It becomes possible to do. On the other hand, the number of layers of the laminated coil of the first inductance element can be reduced by arranging the second inductance element, and the interlayer distance can be secured, so that the inductance value by the first inductance element can be finely adjusted. In addition, a high Q value can be maintained. In addition, the size and the height can be reduced by the amount that the first inductance element is built in the substrate. Furthermore, by adopting a configuration in which two inductance elements are connected in series, the inductance value of the inductor can be a value obtained by adding the inductance values of the two inductance elements, so that a large inductance value can be secured. .
 また、前記第1インダクタンス素子と前記第2インダクタンス素子とは、前記実装基板を平面視した場合に重なっていてもよい。 Further, the first inductance element and the second inductance element may overlap when the mounting substrate is viewed in plan.
 これにより、高周波モジュールの省面積化を実現することが可能となる。また、第1インダクタンス素子および第2インダクタンス素子を電磁気的に結合させることが可能となる。 This makes it possible to reduce the area of the high-frequency module. Further, the first inductance element and the second inductance element can be electromagnetically coupled.
 また、前記実装基板上に配置され、高周波信号を増幅する増幅器と、前記増幅器と前記出力端子との間に配置され、前記増幅器と前記出力端子とのインピーダンス整合をとるための整合回路とを備え、前記整合回路は、前記インダクタを含んでもよい。 An amplifier for amplifying a high frequency signal disposed on the mounting substrate; and a matching circuit disposed between the amplifier and the output terminal for impedance matching between the amplifier and the output terminal. The matching circuit may include the inductor.
 これにより、高周波信号が伝搬する信号経路に配置された整合回路において、インダクタンス値の微調整および高Q値を維持することができる。よって、高精度なインピーダンス整合が実現されるので、通過帯域における信号伝搬損失を低減することが可能となる。 Thereby, fine adjustment of the inductance value and high Q value can be maintained in the matching circuit arranged in the signal path through which the high-frequency signal propagates. Therefore, since highly accurate impedance matching is realized, it is possible to reduce signal propagation loss in the passband.
 また、前記第1インダクタンス素子は、積層された配線パターンで構成され、前記第2インダクタンス素子は、コイルで構成され、前記コイルの巻回軸は、前記積層された配線パターンの巻回軸と平行であってもよい。 In addition, the first inductance element is configured by a laminated wiring pattern, the second inductance element is configured by a coil, and the winding axis of the coil is parallel to the winding axis of the stacked wiring pattern. It may be.
 これにより、第1インダクタンス素子を構成する積層コイルと第2インダクタンス素子を構成するコイルとを対向させることが可能となり、2つのインダクタンス素子を電気的に結合できる。よって、第1インダクタンス素子と第2インダクタンス素子とで構成される共振回路により、高調波フィルタなどの帯域減衰フィルタを実現できる。 Thereby, the laminated coil constituting the first inductance element can be opposed to the coil constituting the second inductance element, and the two inductance elements can be electrically coupled. Therefore, a band attenuating filter such as a harmonic filter can be realized by a resonance circuit composed of the first inductance element and the second inductance element.
 また、前記実装基板上に配置され、高周波信号を増幅する増幅器と、前記増幅器と電源電圧が印加される電源端子との間に配置され、前記増幅器に前記電源電圧に対応したバイアス電圧を供給するためのバイアス回路とを備え、前記バイアス回路は、前記インダクタを含んでもよい。 Further, the amplifier is disposed on the mounting substrate and amplifies a high-frequency signal, and is disposed between the amplifier and a power supply terminal to which a power supply voltage is applied, and supplies a bias voltage corresponding to the power supply voltage to the amplifier. And the bias circuit may include the inductor.
 これにより、増幅器に電源電圧を供給する経路に配置されたバイアス回路において、インダクタンス値の微調整および高Q値を維持することができる。よって、高周波信号が上記経路に漏洩することを精度よく排除できるので、バイアス電圧を安定化できるとともに、電源における消費電力を低減できる。 Thus, fine adjustment of the inductance value and high Q value can be maintained in the bias circuit arranged in the path for supplying the power supply voltage to the amplifier. Therefore, it is possible to accurately eliminate the leakage of the high frequency signal to the path, so that the bias voltage can be stabilized and the power consumption in the power source can be reduced.
 また、前記第2インダクタンス素子が生成する磁界の方向と、前記第1インダクタンス素子が生成する磁界の方向とは交差してもよい。 The direction of the magnetic field generated by the second inductance element and the direction of the magnetic field generated by the first inductance element may intersect.
 これにより、第1インダクタンス素子の磁界方向と第2インダクタンス素子の磁界方向とが交差するので、意図しない磁界の相互干渉の影響を低減できる。また、磁界結合などの影響を必要以上に考慮せずに済むので、バイアス回路の設計を簡素化することが可能となる。 Thereby, since the magnetic field direction of the first inductance element and the magnetic field direction of the second inductance element intersect, the influence of unintended magnetic field mutual interference can be reduced. In addition, since it is not necessary to consider the influence of magnetic coupling or the like more than necessary, the design of the bias circuit can be simplified.
 また、前記実装基板上に配置され、高周波信号を増幅する増幅器と、前記入力端子と前記出力端子との間に配置された第1回路と、前記入力端子と前記出力端子との間に配置された第2回路とを備え、前記第1回路は、第1の前記インダクタを含み、前記第2回路は、第2の前記インダクタを含み、前記第1回路の前記第2インダクタンス素子が生成する磁界の方向と、前記第2回路の前記第2インダクタンス素子が生成する磁界の方向とは、交差していてもよい。 Further, the amplifier is disposed on the mounting board and amplifies a high-frequency signal, the first circuit is disposed between the input terminal and the output terminal, and is disposed between the input terminal and the output terminal. A second circuit, wherein the first circuit includes the first inductor, the second circuit includes the second inductor, and a magnetic field generated by the second inductance element of the first circuit. And the direction of the magnetic field generated by the second inductance element of the second circuit may intersect each other.
 これにより、第1回路と第2回路とが、不要に干渉し合うことを回避できる。また、上記干渉の影響を必要以上に考慮せずに済むので、整合回路およびバイアス回路の設計を簡素化することが可能となる。 This can avoid unnecessary interference between the first circuit and the second circuit. In addition, since it is not necessary to consider the influence of the interference more than necessary, the design of the matching circuit and the bias circuit can be simplified.
 また、前記実装基板上に配置され、高周波信号を増幅する増幅器と、前記入力端子と前記出力端子との間に配置された第1回路と、前記入力端子と前記出力端子との間に配置された第2回路とを備え、前記第1回路は、第1の前記インダクタを含み、前記第2回路は、第2の前記インダクタを含み、前記第1回路の前記第1インダクタンス素子が生成する磁界の方向と、前記第2回路の前記第1インダクタンス素子が生成する磁界の方向とが揃っていてもよい。 Further, the amplifier is disposed on the mounting board and amplifies a high-frequency signal, the first circuit is disposed between the input terminal and the output terminal, and is disposed between the input terminal and the output terminal. A second circuit, wherein the first circuit includes the first inductor, the second circuit includes the second inductor, and the magnetic field generated by the first inductance element of the first circuit. And the direction of the magnetic field generated by the first inductance element of the second circuit may be aligned.
 これにより、第1回路のインダクタと第2回路のインダクタとを積極的に結合させることができ、小型化および低背化を実現しつつインダクタンス値を増加させることが可能となる。 Thereby, the inductor of the first circuit and the inductor of the second circuit can be positively coupled, and the inductance value can be increased while realizing a reduction in size and height.
 また、前記実装基板上に配置され、高周波信号を増幅する増幅器と、前記入力端子と前記出力端子との間に配置された第1回路と、前記入力端子と前記出力端子との間に配置された第2回路とを備え、前記第1回路は、第1の前記インダクタを含み、前記第2回路は、第2の前記インダクタを含み、前記第1回路の前記第1インダクタンス素子が生成する磁界の方向は、前記第2回路の前記第1インダクタンス素子が生成する磁界の方向に対して逆向きであってもよい。 Further, the amplifier is disposed on the mounting board and amplifies a high-frequency signal, the first circuit is disposed between the input terminal and the output terminal, and is disposed between the input terminal and the output terminal. A second circuit, wherein the first circuit includes the first inductor, the second circuit includes the second inductor, and the magnetic field generated by the first inductance element of the first circuit. The direction may be opposite to the direction of the magnetic field generated by the first inductance element of the second circuit.
 これにより、第1回路を伝搬する高周波信号と第2回路を伝搬する高周波信号との相互干渉を打ち消しあうことができる。また、上記干渉の影響を必要以上に考慮せずに済むので、整合回路およびバイアス回路の設計を簡素化することが可能となる。 Thereby, mutual interference between the high-frequency signal propagating through the first circuit and the high-frequency signal propagating through the second circuit can be canceled out. In addition, since it is not necessary to consider the influence of the interference more than necessary, the design of the matching circuit and the bias circuit can be simplified.
 また、本発明の一態様に係る送信モジュールは、前記高周波モジュールを備え、前記増幅器は、送信用パワーアンプであってもよい。 The transmission module according to one aspect of the present invention may include the high-frequency module, and the amplifier may be a transmission power amplifier.
 これにより、大電力の高周波信号を送信する信号経路において、小型化および低背化を実現しつつ、インダクタンス値の微調整をすることが可能となる。また、高いQ値を維持することが可能となる。さらに、インダクタのインダクタンス値を、2つのインダクタンス素子のインダクタンス値が加算された値とできるので、大きなインダクタンス値を確保することが可能となる。 This makes it possible to finely adjust the inductance value while realizing a reduction in size and height in a signal path for transmitting a high-power high-frequency signal. In addition, a high Q value can be maintained. Furthermore, since the inductance value of the inductor can be a value obtained by adding the inductance values of the two inductance elements, a large inductance value can be ensured.
 本発明に係る高周波モジュールおよび送信モジュールによれば、小型化または低背化を実現しつつ、インダクタンス値の微調整が可能な高周波モジュールを提供できる。 According to the high-frequency module and the transmission module according to the present invention, it is possible to provide a high-frequency module capable of fine adjustment of the inductance value while realizing miniaturization or low profile.
図1は、実施の形態1に係る高周波モジュールの回路構成を示す図である。FIG. 1 is a diagram illustrating a circuit configuration of the high-frequency module according to the first embodiment. 図2Aは、実施の形態1に係る高周波モジュールの整合回路の回路図である。2A is a circuit diagram of a matching circuit of the high-frequency module according to Embodiment 1. FIG. 図2Bは、実施の形態1に係る高周波モジュールのバイアス回路の回路図である。FIG. 2B is a circuit diagram of a bias circuit of the high-frequency module according to Embodiment 1. 図3は、本発明に係るインダクタの特徴的な構成を示す図である。FIG. 3 is a diagram showing a characteristic configuration of the inductor according to the present invention. 図4Aは、実施の形態1に係る高周波モジュールの整合回路の部分を表す斜視図である。4A is a perspective view illustrating a matching circuit portion of the high-frequency module according to Embodiment 1. FIG. 図4Bは、実施の形態1に係る高周波モジュールの整合回路の部分の断面図および平面図である。4B is a cross-sectional view and a plan view of a matching circuit portion of the high-frequency module according to Embodiment 1. FIG. 図5は、実施例および比較例に係る高周波モジュールの通過特性を比較したグラフである。FIG. 5 is a graph comparing the pass characteristics of the high-frequency modules according to the example and the comparative example. 図6Aは、実施の形態2に係る高周波モジュールのバイアス回路の部分を表す斜視図である。FIG. 6A is a perspective view illustrating a part of a bias circuit of the high-frequency module according to Embodiment 2. 図6Bは、実施の形態2に係る高周波モジュールのバイアス回路の部分の断面図および平面図である。6B is a cross-sectional view and a plan view of a bias circuit portion of the high-frequency module according to Embodiment 2. FIG. 図7は、実施の形態3に係る高周波モジュールの回路構成図である。FIG. 7 is a circuit configuration diagram of the high-frequency module according to the third embodiment. 図8は、実施の形態3の変形例に係る高周波モジュールの断面図である。FIG. 8 is a cross-sectional view of a high-frequency module according to a modification of the third embodiment.
 以下、本発明の実施の形態について、実施の形態およびその図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the embodiments and the drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments, constituent elements not described in the independent claims are described as optional constituent elements. In addition, the size or size ratio of the components shown in the drawings is not necessarily strict.
 (実施の形態1)
 [1.1 高周波モジュールの回路構成]
 図1は、実施の形態1に係る高周波モジュール1の回路構成を示す図である。同図に示された高周波モジュール1は、パワーアンプ(電力増幅器)11と、整合回路12と、バイアス回路13と、入力端子RFinと、出力端子RFoutとを備える。本実施の形態に係る高周波モジュール1は、例えば、マルチモード/マルチバンド対応またはキャリアアグリゲーション(CA)対応の携帯電話等のフロントエンド部に配置され、入力端子RFinから入力された所定の周波数帯域の高周波送信信号を増幅処理し、当該増幅処理された高周波送信信号を出力端子RFoutに出力するPA(Power Amplifier:電力増幅器)モジュールである。入力端子RFinは、例えば、RFIC(Radio Frequency Integrated Circuit)に接続され、出力端子RFoutは、例えば、アンテナ整合回路を介してアンテナに接続される。
(Embodiment 1)
[1.1 Circuit configuration of high-frequency module]
FIG. 1 is a diagram illustrating a circuit configuration of the high-frequency module 1 according to the first embodiment. The high frequency module 1 shown in the figure includes a power amplifier (power amplifier) 11, a matching circuit 12, a bias circuit 13, an input terminal RFin, and an output terminal RFout. The high-frequency module 1 according to the present embodiment is disposed in a front end portion of a mobile phone or the like that supports multimode / multiband or carrier aggregation (CA), for example, and has a predetermined frequency band input from an input terminal RFin. It is a PA (Power Amplifier) module that amplifies a high-frequency transmission signal and outputs the amplified high-frequency transmission signal to an output terminal RFout. The input terminal RFin is connected to, for example, an RFIC (Radio Frequency Integrated Circuit), and the output terminal RFout is connected to an antenna via, for example, an antenna matching circuit.
 なお、高周波モジュール1は、整合回路12と出力端子RFoutとの間に、上記所定の周波数帯域を通過帯域とする送信側フィルタまたはデュプレクサなどが配置されていてもよい。 In the high-frequency module 1, a transmission filter or duplexer having the predetermined frequency band as a pass band may be disposed between the matching circuit 12 and the output terminal RFout.
 パワーアンプ11は、所定の周波数帯域(例えば、700~800MHz帯)の高周波送信信号を増幅する電力増幅器である。なお、パワーアンプ11は、例えば、多段接続された複数の増幅素子とフィルタ回路とを有し、複数の通信方式および複数の通信帯域で使用することが可能なマルチモード/マルチバンド対応のパワーアンプであってもよい。 The power amplifier 11 is a power amplifier that amplifies a high-frequency transmission signal in a predetermined frequency band (for example, 700 to 800 MHz band). The power amplifier 11 includes, for example, a multimode / multiband power amplifier that includes a plurality of amplifying elements and filter circuits connected in multiple stages and can be used in a plurality of communication systems and a plurality of communication bands. It may be.
 整合回路12は、パワーアンプ11と出力端子RFoutとの間に配置され、パワーアンプ11の出力インピーダンスと整合回路12の後段に配置された回路の入力インピーダンスとの整合をとる回路である。 The matching circuit 12 is arranged between the power amplifier 11 and the output terminal RFout, and matches the output impedance of the power amplifier 11 and the input impedance of a circuit arranged at the subsequent stage of the matching circuit 12.
 図2Aは、実施の形態1に係る高周波モジュール1の整合回路12の回路図である。図2Aには、本実施の形態に係る高周波モジュール1が有する整合回路12の回路構成の一例が示されている。図2Aに示された整合回路12は、インダクタ121と、コンデンサ122、123および124とを有している。インダクタ121は、信号経路に直列接続されており、コンデンサ122および123は、信号経路に並列に接続されグランドにシャントされている。コンデンサ124は、信号経路に直列接続されている。 FIG. 2A is a circuit diagram of the matching circuit 12 of the high-frequency module 1 according to the first embodiment. FIG. 2A shows an example of the circuit configuration of the matching circuit 12 included in the high-frequency module 1 according to the present embodiment. The matching circuit 12 shown in FIG. 2A includes an inductor 121 and capacitors 122, 123 and 124. The inductor 121 is connected in series to the signal path, and the capacitors 122 and 123 are connected in parallel to the signal path and shunted to the ground. The capacitor 124 is connected in series with the signal path.
 図2Bは、実施の形態1に係る高周波モジュール1のバイアス回路13の回路図である。図2Bには、本実施の形態に係る高周波モジュール1が有するバイアス回路13の回路構成の一例が示されている。図2Bに示されたバイアス回路13は、インダクタ131とコンデンサ132とを有している。インダクタ131は、電源(電源電圧Vcc)とパワーアンプ11のコレクタ端子との間に接続されており、コンデンサ132は、電源とインダクタ131との接続点に接続されグランドにシャントされている。この構成により、バイアス回路13は、ローパスフィルタを構成しており、入力端子RFinから入力された高周波送信信号が電源側へと漏洩することを抑制し、電源がパワーアンプ11に対して安定したバイアス電圧Vccを供給することが可能となる。 FIG. 2B is a circuit diagram of the bias circuit 13 of the high-frequency module 1 according to Embodiment 1. FIG. 2B shows an example of the circuit configuration of the bias circuit 13 included in the high-frequency module 1 according to the present embodiment. The bias circuit 13 illustrated in FIG. 2B includes an inductor 131 and a capacitor 132. The inductor 131 is connected between the power supply (power supply voltage Vcc) and the collector terminal of the power amplifier 11, and the capacitor 132 is connected to a connection point between the power supply and the inductor 131 and shunted to the ground. With this configuration, the bias circuit 13 constitutes a low-pass filter, which suppresses leakage of the high-frequency transmission signal input from the input terminal RFin to the power supply side, and the power supply is stable with respect to the power amplifier 11. The voltage Vcc can be supplied.
 なお、高周波モジュール1は、PAモジュールに限られず、受信モジュールであってもよい。この場合、パワーアンプ11は、ローノイズアンプに置き換えることができ、入力端子RFinは、例えば、アンテナ整合回路を介してアンテナに接続され、出力端子RFoutは、例えば、RFICに接続される。さらに、整合回路12と入力端子RFinとの間に、受信側フィルタまたはデュプレクサなどが配置される。このとき、整合回路12は、受信側フィルタまたはデュプレクサとローノイズアンプとの間に配置され、受信側フィルタまたはデュプレクサの出力インピーダンスとローノイズアンプの入力インピーダンスとの整合をとる回路となる。 The high frequency module 1 is not limited to a PA module, and may be a receiving module. In this case, the power amplifier 11 can be replaced with a low noise amplifier, and the input terminal RFin is connected to the antenna via, for example, an antenna matching circuit, and the output terminal RFout is connected to RFIC, for example. Further, a receiving filter or a duplexer is disposed between the matching circuit 12 and the input terminal RFin. At this time, the matching circuit 12 is disposed between the reception-side filter or duplexer and the low-noise amplifier, and is a circuit that matches the output impedance of the reception-side filter or duplexer and the input impedance of the low-noise amplifier.
 さらに、本実施の形態に係る高周波モジュール1は、マルチモード/マルチバンドやCAに対応するために、PAモジュールと受信モジュールとを組み合わせたモジュールであってもよい。 Furthermore, the high-frequency module 1 according to the present embodiment may be a module in which a PA module and a receiving module are combined in order to support multimode / multiband and CA.
 なお、上述した送信側フィルタ、受信側フィルタ、およびデュプレクサは、例えば、弾性表面波フィルタ、弾性境界波フィルタ、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタ、ならびに、インダクタンス素子およびコンデンサ素子で構成されたLCフィルタなどが例示される。 The transmission side filter, reception side filter, and duplexer described above include, for example, a surface acoustic wave filter, a boundary acoustic wave filter, an elastic wave filter using a BAW (Bulk Acoustic Wave), and an inductance element and a capacitor element. An example of the LC filter is shown.
 [1.2 インダクタの構成]
 図3は、本発明に係るインダクタ121(および131)の特徴的な構成を示す図である。
[1.2 Inductor configuration]
FIG. 3 is a diagram showing a characteristic configuration of the inductor 121 (and 131) according to the present invention.
 上述した高周波フロントエンド部に搭載される高周波モジュールには、マルチモード/マルチバンド対応またはCA対応すべく、小型化および低背化への要求が厳しくなっている。回路の小型化および低背化の対応策として、回路素子の1つであるインダクタを、実装基板に内蔵された積層コイルのみで形成することが挙げられる。しかしこの場合には、意図しない積層コイル間の結合などに起因して、高周波回路に必要とされる量のインダクタンス値を微調整することが困難となる。また、大きなインダクタンス値を確保したい場合、巻き線の層数が増加するにつれ、意図しない磁界の相互結合が強くなるため、Q値の低下および信号伝搬損失の増大が懸念される。 Demands for miniaturization and low profile are becoming strict for the high-frequency module mounted in the above-described high-frequency front-end section so as to be compatible with multimode / multiband or CA. As a countermeasure for reducing the size and height of a circuit, it is possible to form an inductor, which is one of circuit elements, only with a laminated coil built in a mounting board. However, in this case, it becomes difficult to finely adjust the amount of inductance required for the high-frequency circuit due to unintentional coupling between laminated coils. Further, when it is desired to secure a large inductance value, unintended magnetic field mutual coupling becomes stronger as the number of winding layers increases, and there is a concern that the Q value will decrease and the signal propagation loss will increase.
 これに対して、本発明の実施の形態1に係る高周波モジュール1では、整合回路12において、1つのインダクタ121を、直列接続された2つのインダクタンス素子121Aと121Bとに分割している。そして、インダクタンス素子121Aを基板内蔵型で構成し、インダクタンス素子121Bを表面実装型で構成している。また、本発明の実施の形態2に係る高周波モジュールでは、バイアス回路13において、1つのインダクタ131を、直列接続された2つのインダクタンス素子131Aと131Bとに分割している。そして、インダクタンス素子131Aを基板内蔵型で構成し、インダクタンス素子131Bを表面実装型で構成している。 On the other hand, in the high frequency module 1 according to the first embodiment of the present invention, in the matching circuit 12, one inductor 121 is divided into two inductance elements 121A and 121B connected in series. The inductance element 121A is configured as a substrate built-in type, and the inductance element 121B is configured as a surface mount type. In the high frequency module according to Embodiment 2 of the present invention, in the bias circuit 13, one inductor 131 is divided into two inductance elements 131A and 131B connected in series. The inductance element 131A is configured as a substrate built-in type, and the inductance element 131B is configured as a surface mount type.
 インダクタ121(または131)の上記構成によれば、インダクタ121(または131)の一部が表面実装型のインダクタンス素子121B(または131B)で構成されるので、表面実装型のインダクタンス素子121B(または131B)により、高周波回路に必要とされる量のインダクタンス値を確保することが可能となる。また、インダクタンス素子121B(または131B)の配置により、基板内蔵型のインダクタンス素子121A(または131A)の積層された配線パターンの数を削減でき、また、層間距離も確保できるので、インダクタンス素子121A(または131A)によるインダクタンス値の微調整が容易となる。また、上述した積層された配線パターンの数を削減および層間距離の確保により、意図しない磁界の相互結合を低減できるので、インダクタ121(または131)の高いQ値を維持することが可能となる。また、インダクタンス素子121A(または131A)が基板に内蔵された分だけ、小型化および低背化も達成できる。 According to the above configuration of the inductor 121 (or 131), a part of the inductor 121 (or 131) is configured by the surface mount type inductance element 121B (or 131B), and thus the surface mount type inductance element 121B (or 131B). ), It is possible to secure an inductance value of an amount required for the high-frequency circuit. In addition, the arrangement of the inductance element 121B (or 131B) can reduce the number of wiring patterns in which the substrate built-in type inductance element 121A (or 131A) is stacked, and can also secure an interlayer distance, so that the inductance element 121A (or 131A) facilitates fine adjustment of the inductance value. Further, by reducing the number of stacked wiring patterns and securing the interlayer distance, it is possible to reduce unintentional mutual coupling of magnetic fields, so that a high Q value of the inductor 121 (or 131) can be maintained. Further, downsizing and reduction in height can be achieved by the amount that the inductance element 121A (or 131A) is built in the substrate.
 さらに、上記2つのインダクタンス素子が直列接続された構成とすることにより、インダクタ121(または131)のインダクタンス値を、2つのインダクタンス素子のインダクタンス値が加算された値とできるので、高周波回路に必要とされる量の大きなインダクタンス値を確保することが可能となる。 Further, by adopting a configuration in which the two inductance elements are connected in series, the inductance value of the inductor 121 (or 131) can be a value obtained by adding the inductance values of the two inductance elements, which is necessary for a high frequency circuit. It is possible to ensure a large inductance value.
 インダクタ121(131)の上記設計指針により、例えば、インダクタ121(131)が必要とするインダクタンス値において、変動しない範囲を表面実装型のインダクタンス素子121B(131B)で構成し、変動する必要最小限の範囲を基板内蔵型のインダクタンス素子121A(131A)で構成する。これにより、基板内蔵型のインダクタンス素子121A(131A)によるQ値の低下を最小限としつつ、小型化および低背化を実現し、インダクタ121(131)が必要とするインダクタンス値を確保することが可能となる。 Based on the above design guidelines for the inductor 121 (131), for example, the inductance value required by the inductor 121 (131) is constituted by a surface-mount type inductance element 121B (131B) that does not vary, and the minimum necessary variation The range is constituted by a substrate built-in type inductance element 121A (131A). As a result, it is possible to realize a reduction in size and height while minimizing a decrease in the Q value due to the substrate-embedded inductance element 121A (131A), and to secure an inductance value required by the inductor 121 (131). It becomes possible.
 つまり、(1)高周波モジュール1の小型化または低背化を実現しつつ、(2)インダクタ121(または131)のインダクタンス値の微調整を可能とし、(3)高周波回路に必要とされる量の大きなインダクタンス値を確保することが可能となる。 In other words, (1) while realizing a reduction in size or height of the high-frequency module 1, (2) fine adjustment of the inductance value of the inductor 121 (or 131) is possible, and (3) an amount required for the high-frequency circuit. It is possible to ensure a large inductance value.
 図4Aは、実施の形態1に係る高周波モジュール1の整合回路の部分を表す斜視図である。また、図4Bは、実施の形態1に係る高周波モジュール1の整合回路の部分の断面図および平面図である。 FIG. 4A is a perspective view illustrating a matching circuit portion of the high-frequency module 1 according to the first embodiment. FIG. 4B is a cross-sectional view and a plan view of the matching circuit portion of the high-frequency module 1 according to Embodiment 1.
 図4Aに示すように、本実施の形態に係る高周波モジュール1は、実装基板10と、実装基板10に設けられたインダクタンス素子121Aおよびインダクタンス素子121Bとを備える。なお、図4Aでは、実装基板10に実装された他の回路素子を省略して表している。 As shown in FIG. 4A, the high-frequency module 1 according to the present embodiment includes a mounting substrate 10, and an inductance element 121A and an inductance element 121B provided on the mounting substrate 10. In FIG. 4A, other circuit elements mounted on the mounting substrate 10 are omitted.
 実装基板10は、複数の層が積層された多層基板であり、例えば、セラミックス多層基板およびPCB基板などが挙げられる。 The mounting substrate 10 is a multilayer substrate in which a plurality of layers are stacked, and examples thereof include a ceramic multilayer substrate and a PCB substrate.
 インダクタンス素子121Aとインダクタンス素子121Bとが直列接続されてインダクタ121(図4Aおよび図4Bには図示せず、図3参照)が構成されている。 The inductance element 121A and the inductance element 121B are connected in series to form an inductor 121 (not shown in FIGS. 4A and 4B, see FIG. 3).
 インダクタンス素子121Aは、基板内蔵型の第1インダクタンス素子である。より具体的には、インダクタンス素子121Aは、実装基板10の層ごとに形成されて積層された配線パターン224と、積層された配線パターン224を層間接続するビア導体225と、実装基板10の表面に形成された電極222と、実装基板10の裏面に形成された電極223とで形成されている。 The inductance element 121A is a board-embedded first inductance element. More specifically, the inductance element 121 </ b> A is formed on each layer of the mounting substrate 10. The wiring patterns 224 are stacked, via conductors 225 that connect the stacked wiring patterns 224 to each other, and on the surface of the mounting substrate 10. The electrode 222 is formed and the electrode 223 formed on the back surface of the mounting substrate 10 is formed.
 インダクタンス素子121Bは、実装基板10の表面に実装された表面実装型の第2インダクタンス素子であり、実装基板10を構成要素としないディスクリートな(個別の)SMD(Surface Mounted Device)である。より具体的には、インダクタンス素子121Bは、コイルが形成された素子本体226と、電極227および228とで形成されている。 The inductance element 121B is a surface-mounted second inductance element mounted on the surface of the mounting substrate 10 and is a discrete (individual) SMD (Surface Mounted Device) that does not include the mounting substrate 10 as a component. More specifically, the inductance element 121B is formed of an element body 226 in which a coil is formed and electrodes 227 and 228.
 ここで、インダクタンス素子121Aの電極222とインダクタンス素子121Bの電極227とは、はんだまたはバンプにより直接接続されている。つまり、インダクタンス素子121Aの上に、例えばストリップラインを含めた高周波素子を介さずに、インダクタンス素子121Bが接続配置されている。 Here, the electrode 222 of the inductance element 121A and the electrode 227 of the inductance element 121B are directly connected by solder or bumps. That is, the inductance element 121B is connected and disposed on the inductance element 121A without using a high-frequency element including, for example, a strip line.
 インダクタ121の一方の端子は、インダクタンス素子121Bの電極228と接続された電極221であり、インダクタ121の他方の端子は、インダクタンス素子121Aの電極223であり、これらの端子は、外部素子または外部回路と接続される。 One terminal of the inductor 121 is an electrode 221 connected to the electrode 228 of the inductance element 121B, and the other terminal of the inductor 121 is an electrode 223 of the inductance element 121A. These terminals are external elements or external circuits. Connected.
 上記構成において、インダクタンス素子121Aとインダクタンス素子121Bとの接続経路には、直列接続された回路素子が介在していない。つまり、図3に示された、直列接続された2つのインダクタンス素子からなるインダクタ121が実現される。 In the above configuration, the circuit element connected in series is not interposed in the connection path between the inductance element 121A and the inductance element 121B. That is, the inductor 121 composed of two inductance elements connected in series as shown in FIG. 3 is realized.
 上記構成によれば、高周波信号が伝搬する信号経路に配置された整合回路12において、インダクタ121のインダクタンス値を微調整することが可能となる。また、インダクタ121の高Q値を維持することが可能となる。よって、高精度なインピーダンス整合が実現されるので、通過帯域における信号伝搬損失を低減することが可能となる。 According to the above configuration, the inductance value of the inductor 121 can be finely adjusted in the matching circuit 12 disposed in the signal path through which the high-frequency signal propagates. In addition, the high Q value of the inductor 121 can be maintained. Therefore, since highly accurate impedance matching is realized, it is possible to reduce signal propagation loss in the passband.
 なお、図4Bに示すように、本実施の形態に係る高周波モジュールにおいて、インダクタンス素子121Aとインダクタンス素子121Bとは、実装基板10を平面視した場合に重なっていることが好ましい。 As shown in FIG. 4B, in the high frequency module according to the present embodiment, it is preferable that the inductance element 121A and the inductance element 121B overlap when the mounting substrate 10 is viewed in plan.
 これにより、整合回路12および高周波モジュール1の省面積化を実現することが可能となる。また、インダクタンス素子121Aおよびインダクタンス素子121Bを電磁気的に結合させることが可能となる。例えば、図4Bに示すように、インダクタンス素子121Bが生成する磁界HB2の方向と、インダクタンス素子121Aが生成する磁界HA2の方向とを揃えることが可能となり、インダクタ121全体のインダクタンス値を大きくすることが可能となる。 Thereby, area saving of the matching circuit 12 and the high frequency module 1 can be realized. In addition, the inductance element 121A and the inductance element 121B can be electromagnetically coupled. For example, as shown in FIG. 4B, the direction of the magnetic field H B2 generated by the inductance element 121B can be aligned with the direction of the magnetic field H A2 generated by the inductance element 121A, and the inductance value of the entire inductor 121 is increased. It becomes possible.
 なお、実装基板10を平面視した場合に重なっているとは、上記平面視において、インダクタンス素子121Bがインダクタンス素子121Aと完全に重複する態様のみを表すものではない。インダクタンス素子121Aの一部とインダクタンス素子121Bの一部とが上記平面視において重なっている態様も含まれる。これによっても、整合回路12および高周波モジュール1の省面積化を実現することが可能となる。 Note that “overlapping when the mounting substrate 10 is viewed in plan view” does not represent only an aspect in which the inductance element 121B completely overlaps with the inductance element 121A in the plan view. A mode in which a part of the inductance element 121A and a part of the inductance element 121B are overlapped in the plan view is also included. This also makes it possible to reduce the area of the matching circuit 12 and the high-frequency module 1.
 また、インダクタンス素子121Bを構成するコイルの巻回軸は、インダクタンス素子121Aを構成する積層コイル224の巻回軸と平行であってもよい。 Further, the winding axis of the coil constituting the inductance element 121B may be parallel to the winding axis of the laminated coil 224 constituting the inductance element 121A.
 これにより、インダクタンス素子121Aを構成する積層コイル224とインダクタンス素子121Bを構成するコイルとを対向させることが可能となる。この結果、2つのインダクタンス素子を電気的に結合でき、例えば、2つのインダクタンス素子の間に並列容量を付加することが可能となる。この場合には、インダクタンス素子と上記並列容量とでLC共振回路が形成され、このLC共振回路を最適化することにより、例えば、高周波送信信号の高調波を減衰させる高調波フィルタの機能を付加することが可能となる。 Thereby, the laminated coil 224 constituting the inductance element 121A and the coil constituting the inductance element 121B can be made to face each other. As a result, the two inductance elements can be electrically coupled, and for example, a parallel capacitance can be added between the two inductance elements. In this case, an LC resonance circuit is formed by the inductance element and the parallel capacitor, and by optimizing the LC resonance circuit, for example, a function of a harmonic filter that attenuates harmonics of a high-frequency transmission signal is added. It becomes possible.
 図5は、実施例および比較例に係る高周波モジュールの通過特性を比較したグラフである。同図には、図1に示された高周波モジュールの回路におけるパワーアンプ11の出力端から出力端子RFoutまでの高周波信号の通過特性が示されている。図5において、実施例は、図4Aおよび図4Bに示された整合回路12の構成を有する本実施の形態の高周波モジュールの通過特性を表している。また、比較例は、整合回路12のインダクタ121を基板内蔵型のインダクタンス素子のみで構成した高周波モジュールの通過特性を表している。図5のグラフに示された通過特性を比較すると、実施例(実線)では通過帯域の高域側における高調波の帯域において減衰極があり、比較例の減衰特性(破線)よりも通過帯域の高域側において実施例の減衰特性が優れていることがわかる。つまり、インダクタンス素子121Aとインダクタンス素子121Bとで構成されるLC共振回路により高調波フィルタの機能を付加することが可能となる。 FIG. 5 is a graph comparing the pass characteristics of the high-frequency modules according to the example and the comparative example. This figure shows the pass characteristic of a high-frequency signal from the output terminal of the power amplifier 11 to the output terminal RFout in the circuit of the high-frequency module shown in FIG. In FIG. 5, the example represents the pass characteristics of the high-frequency module of the present embodiment having the configuration of the matching circuit 12 shown in FIGS. 4A and 4B. In addition, the comparative example represents the pass characteristic of a high-frequency module in which the inductor 121 of the matching circuit 12 is configured by only a substrate-embedded inductance element. When the pass characteristics shown in the graph of FIG. 5 are compared, in the example (solid line), there is an attenuation pole in the higher harmonic band of the pass band, and the pass band is higher than that of the comparative example (dashed line). It can be seen that the attenuation characteristics of the example are excellent on the high frequency side. That is, the function of the harmonic filter can be added by the LC resonance circuit constituted by the inductance element 121A and the inductance element 121B.
 上述したような高調波フィルタ機能を有するには、例えば、インダクタンス値として5nH程度を有する表面実装型のインダクタンス素子を必要とする。一方で、送信経路においてインピーダンス整合をとるためのインダクタのインダクタンス値としては10nHを必要とする。このような場合には、インダクタンス素子121Bを5nHとし、インダクタンス素子121Aを5nHとすることにより、小型化および低背化を実現しつつ、インダクタンス素子121Bと並列容量とによる自己共振による高調波減衰機能と、インダクタンス素子121Aおよび121Bによる整合調整機能との両立が可能となる。 In order to have the harmonic filter function as described above, for example, a surface mount type inductance element having an inductance value of about 5 nH is required. On the other hand, the inductance value of the inductor for impedance matching in the transmission path requires 10 nH. In such a case, the inductance element 121B is set to 5 nH, and the inductance element 121A is set to 5 nH, thereby realizing a harmonic attenuation function by self-resonance by the inductance element 121B and the parallel capacitance while realizing a reduction in size and height. And the matching adjustment function by the inductance elements 121A and 121B can be made compatible.
 (実施の形態2)
 本実施の形態に係る高周波モジュールは、実施の形態1に係る高周波モジュール1の整合回路12がインダクタ121を含んでいる点と比較して、バイアス回路13がインダクタ131を含んでいる点が異なる。以下、本実施の形態に係る高周波モジュールについて、実施の形態1に係る高周波モジュール1と同じ点は説明を省略し、異なる点を中心に説明する。
(Embodiment 2)
The high frequency module according to the present embodiment is different from the high frequency module 1 according to the first embodiment in that the matching circuit 12 of the high frequency module 1 includes the inductor 121 and the bias circuit 13 includes the inductor 131. Hereinafter, the high frequency module according to the present embodiment will not be described for the same points as the high frequency module 1 according to the first embodiment, and will be described with a focus on the different points.
 [2.1 高周波モジュールの回路構成]
 本実施の形態に係る高周波モジュールは、図1に示された回路構成であり、実施の形態1に係る高周波モジュール1の回路構成と同じであるので、説明を省略する。
[2.1 Circuit configuration of high-frequency module]
The high frequency module according to the present embodiment has the circuit configuration shown in FIG. 1 and is the same as the circuit configuration of the high frequency module 1 according to the first embodiment.
 [2.2 インダクタの構成]
 本実施の形態に係る高周波モジュールにおいて、図3に示されたインダクタ131は、バイアス回路13を構成する回路素子である。
[2.2 Inductor configuration]
In the high-frequency module according to the present embodiment, the inductor 131 shown in FIG. 3 is a circuit element constituting the bias circuit 13.
 図6Aは、実施の形態に係る高周波モジュールの回路の部分を表す斜視図である。また、図6Bは、実施の形態に係る高周波モジュールの回路の部分の断面図および平面図である。 FIG. 6A is a perspective view showing a circuit portion of the high-frequency module according to the embodiment. FIG. 6B is a cross-sectional view and a plan view of a circuit portion of the high-frequency module according to the embodiment.
 図6Aに示すように、本実施の形態に係る高周波モジュールは、実装基板10と、実装基板10に設けられたインダクタンス素子131Aおよびインダクタンス素子131Bとを備える。なお、図6Aでは、実装基板10に実装された他の回路素子を省略して表している。 As shown in FIG. 6A, the high-frequency module according to the present embodiment includes a mounting substrate 10, and an inductance element 131A and an inductance element 131B provided on the mounting substrate 10. In FIG. 6A, other circuit elements mounted on the mounting substrate 10 are omitted.
 インダクタンス素子131Aとインダクタンス素子131Bとが直列接続されてインダクタ131(図6Aおよび図6Bには図示せず、図3参照)構成されている。 An inductance element 131A and an inductance element 131B are connected in series to constitute an inductor 131 (not shown in FIGS. 6A and 6B, see FIG. 3).
 インダクタンス素子131Aは、基板内蔵型の第1インダクタンス素子である。より具体的には、インダクタンス素子131Aは、実装基板10の層ごとに形成されて積層された配線パターン234と、積層された配線パターン234を層間接続するビア導体235と、実装基板10の表面に形成された電極232と、実装基板10の裏面に形成された電極233とで形成されている。 The inductance element 131A is a first built-in inductance element. More specifically, the inductance element 131A includes a wiring pattern 234 formed and stacked for each layer of the mounting substrate 10, via conductors 235 that connect the stacked wiring patterns 234 to each other, and a surface of the mounting substrate 10. The formed electrode 232 and the electrode 233 formed on the back surface of the mounting substrate 10 are formed.
 インダクタンス素子131Bは、実装基板10の表面に実装された表面実装型の第2インダクタンス素子であり、実装基板10を構成要素としないディスクリートな(個別の)SMDである。より具体的には、インダクタンス素子131Bは、コイルが形成された素子本体236と、電極237および238とで形成されている。 The inductance element 131B is a surface-mount type second inductance element mounted on the surface of the mounting substrate 10 and is a discrete (individual) SMD that does not include the mounting substrate 10 as a component. More specifically, the inductance element 131 </ b> B is formed by an element body 236 in which a coil is formed and electrodes 237 and 238.
 ここで、インダクタンス素子131Aの電極232とインダクタンス素子131Bの電極237とは、はんだまたはバンプにより直接接続されている。つまり、インダクタンス素子131Aの上に、例えばストリップラインを含めた高周波素子を介さずに、インダクタンス素子131Bが接続配置されている。 Here, the electrode 232 of the inductance element 131A and the electrode 237 of the inductance element 131B are directly connected by solder or bumps. That is, the inductance element 131B is connected and arranged on the inductance element 131A without using a high-frequency element including, for example, a strip line.
 インダクタ131の一方の端子は、インダクタンス素子131Bの電極238と接続された電極231であり、インダクタ131の他方の端子は、インダクタンス素子131Aの電極233であり、これらの端子は、外部素子または外部回路と接続される。 One terminal of the inductor 131 is an electrode 231 connected to the electrode 238 of the inductance element 131B, and the other terminal of the inductor 131 is an electrode 233 of the inductance element 131A. These terminals are external elements or external circuits. Connected.
 上記構成において、インダクタンス素子131Aとインダクタンス素子131Bとの接続経路には、直列接続された回路素子が介在していない。つまり、図3に示された、直列接続された2つのインダクタンス素子からなるインダクタ131が実現される。 In the above configuration, the circuit element connected in series is not interposed in the connection path between the inductance element 131A and the inductance element 131B. That is, the inductor 131 composed of two inductance elements connected in series as shown in FIG. 3 is realized.
 上記構成によれば、パワーアンプ11にバイアス電圧Vccを供給する経路に配置されたバイアス回路13において、インダクタンス値の微調整および高Q値を維持することができる。よって、入力端子RFinから入力された高周波送信信号が上記経路に漏洩することを精度よく排除できるので、バイアス電圧を安定化できるとともに、電源における消費電力を低減することが可能となる。 According to the above configuration, fine adjustment of the inductance value and high Q value can be maintained in the bias circuit 13 disposed in the path for supplying the bias voltage Vcc to the power amplifier 11. Therefore, since it is possible to accurately exclude the high-frequency transmission signal input from the input terminal RFin from leaking to the path, it is possible to stabilize the bias voltage and reduce power consumption in the power supply.
 なお、図6Bに示すように、本実施の形態に係る高周波モジュールにおいて、インダクタンス素子131Aとインダクタンス素子131Bとは、実装基板10を平面視した場合に重なっていることが好ましい。 As shown in FIG. 6B, in the high frequency module according to the present embodiment, it is preferable that the inductance element 131A and the inductance element 131B overlap when the mounting substrate 10 is viewed in plan view.
 これにより、バイアス回路13および高周波モジュールの省面積化を実現することが可能となる。 This makes it possible to reduce the area of the bias circuit 13 and the high-frequency module.
 なお、実装基板10を平面視した場合に重なっているとは、上記平面視において、インダクタンス素子131Bがインダクタンス素子131Aと完全に重複する態様のみを表すものではない。インダクタンス素子131Aの一部とインダクタンス素子131Bの一部とが上記平面視において重なっている態様も含まれる。これによっても、バイアス回路13および高周波モジュールの省面積化を実現することが可能となる。 Note that “overlapping when the mounting substrate 10 is viewed in a plan view” does not represent only an aspect in which the inductance element 131B completely overlaps with the inductance element 131A in the plan view. A mode in which a part of the inductance element 131A and a part of the inductance element 131B are overlapped in the plan view is also included. This also makes it possible to reduce the area of the bias circuit 13 and the high-frequency module.
 また、図6Bに示すように、インダクタンス素子131Bが生成する磁界HB3の方向と、インダクタンス素子131Aが生成する磁界HA3の方向とは交差してもよい。これを実現する態様として、図6Aに示すように、インダクタンス素子131Bを構成するコイルの巻回軸(実装基板10の表面に平行)は、インダクタンス素子131Aを構成する配線パターン234の巻回軸(実装基板10の表面に垂直)と交差していてもよい。 Also, as shown in FIG. 6B, the direction of the magnetic field H B3 generated by the inductance element 131B and the direction of the magnetic field H A3 generated by the inductance element 131A may intersect. As a mode for realizing this, as shown in FIG. 6A, the winding axis of the coil constituting the inductance element 131B (parallel to the surface of the mounting substrate 10) is the winding axis of the wiring pattern 234 constituting the inductance element 131A (see FIG. 6A). And perpendicular to the surface of the mounting substrate 10.
 これにより、意図しない磁界の相互干渉の影響を低減できる。また、磁界結合などの影響を必要以上に考慮せずに済むので、バイアス回路13の設計を簡素化することが可能となる。 This can reduce the influence of unintended magnetic field interference. In addition, since the influence of magnetic field coupling and the like need not be considered more than necessary, the design of the bias circuit 13 can be simplified.
 なお、2つの線が交差するとは、2つの線が接触していることに限定されず、互いに接触せず所定の方向から当該2つの線を見た場合に交差している関係にある場合を含む。 It should be noted that the two lines intersecting is not limited to the two lines being in contact with each other, but in a case where the two lines are in contact with each other when viewed from a predetermined direction without contacting each other. Including.
 (実施の形態3)
 本実施の形態では、本発明に係るインダクタを含む複数の回路間において、相互干渉を規定する態様を説明する。
(Embodiment 3)
In the present embodiment, a mode for defining mutual interference between a plurality of circuits including an inductor according to the present invention will be described.
 [3.1 高周波モジュールの回路構成]
 本実施の形態に係る高周波モジュールは、図1に示された回路構成であり、実施の形態1および2に係る高周波モジュールの回路構成と同じであるので、説明を省略する。
[3.1 Circuit configuration of high-frequency module]
The high-frequency module according to the present embodiment has the circuit configuration shown in FIG. 1 and is the same as the circuit configuration of the high-frequency module according to the first and second embodiments, and thus description thereof is omitted.
 [3.2 インダクタの配置構成]
 図7は、実施の形態3に係る高周波モジュールの回路構成図である。同図において、本実施の形態に係る高周波モジュールは、パワーアンプ11と、整合回路12と、バイアス回路13と、入力端子RFinと、出力端子RFoutとを備える。
[3.2 Inductor configuration]
FIG. 7 is a circuit configuration diagram of the high-frequency module according to the third embodiment. In the figure, the high-frequency module according to the present embodiment includes a power amplifier 11, a matching circuit 12, a bias circuit 13, an input terminal RFin, and an output terminal RFout.
 本実施の形態に係る整合回路12の回路構成は、実施の形態1に係る整合回路12の回路構成と同じである。また、本実施の形態に係るバイアス回路13の回路構成は、実施の形態2に係るバイアス回路13の回路構成と同じである。 The circuit configuration of the matching circuit 12 according to the present embodiment is the same as the circuit configuration of the matching circuit 12 according to the first embodiment. The circuit configuration of the bias circuit 13 according to the present embodiment is the same as the circuit configuration of the bias circuit 13 according to the second embodiment.
 つまり、整合回路12は、入力端子RFinと出力端子RFoutとの間に配置された第1回路であり、インダクタ121を含む。また、バイアス回路13は、入力端子RFinと出力端子RFoutとの間に配置された第2回路であり、インダクタ131を含む。 That is, the matching circuit 12 is a first circuit disposed between the input terminal RFin and the output terminal RFout, and includes the inductor 121. The bias circuit 13 is a second circuit disposed between the input terminal RFin and the output terminal RFout, and includes an inductor 131.
 ここで、図7に示すように、整合回路12のインダクタンス素子121Bが生成する磁界HB2の方向と、バイアス回路13のインダクタンス素子131Bが生成する磁界HB3の方向とは交差している。 Here, as shown in FIG. 7, the direction of the magnetic field H B2 generated by the inductance element 121B of the matching circuit 12 and the direction of the magnetic field H B3 generated by the inductance element 131B of the bias circuit 13 intersect each other.
 これにより、整合回路12とバイアス回路13とが、不要に干渉し合うことを回避できる。また、上記干渉の影響を必要以上に考慮せずに済むので、整合回路12およびバイアス回路13の設計を簡素化することが可能となる。 Thereby, it is possible to avoid the matching circuit 12 and the bias circuit 13 from interfering with each other unnecessarily. In addition, since it is not necessary to consider the influence of the interference more than necessary, the design of the matching circuit 12 and the bias circuit 13 can be simplified.
 図8は、実施の形態3の変形例に係る高周波モジュールの断面図である。同図に示すように、表面実装型のインダクタンス素子どうしの配置関係だけでなく、整合回路12のインダクタンス素子121Aが生成する磁界HA2の方向が、バイアス回路13のインダクタンス素子131Aが生成する磁界HA3の方向に対して逆方向に向いていてもよい。 FIG. 8 is a cross-sectional view of a high-frequency module according to a modification of the third embodiment. As shown in the figure, the direction of the magnetic field H A2 generated by the inductance element 121A of the matching circuit 12 is determined not only by the positional relationship between the surface mount type inductance elements, but also by the magnetic field H generated by the inductance element 131A of the bias circuit 13. You may face in the reverse direction with respect to the direction of A3 .
 これにより、整合回路12を伝搬する信号とバイアス回路13を伝搬する信号との相互干渉を打ち消しあうことができる。また、上記干渉の影響を必要以上に考慮せずに済むので、整合回路およびバイアス回路の設計をより簡素化することが可能となる。 Thereby, mutual interference between the signal propagating through the matching circuit 12 and the signal propagating through the bias circuit 13 can be canceled out. In addition, since the influence of the interference need not be considered more than necessary, the design of the matching circuit and the bias circuit can be further simplified.
 なお、上記態様と反対に、整合回路12のインダクタンス素子121Aが生成する磁界HA2の方向と、バイアス回路13のインダクタンス素子131Aが生成する磁界HA3の方向とを揃えてもよい。 Note that the direction of the magnetic field H A2 generated by the inductance element 121A of the matching circuit 12 and the direction of the magnetic field H A3 generated by the inductance element 131A of the bias circuit 13 may be aligned, contrary to the above aspect.
 これにより、整合回路12のインダクタとバイアス回路のインダクタとを積極的に結合させることができ、小型化および低背化を実現しつつインダクタンス値を増加させることが可能となる。 Thereby, the inductor of the matching circuit 12 and the inductor of the bias circuit can be positively coupled, and the inductance value can be increased while realizing a reduction in size and height.
 (その他の変形例など)
 以上、本発明の実施の形態に係る高周波モジュールおよび送信モジュールついて、実施の形態および変形例を挙げて説明したが、本発明の高周波モジュールおよび送信モジュールは、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の高周波モジュールを内蔵した各種機器も本発明に含まれる。
(Other variations)
As described above, the high frequency module and the transmission module according to the embodiment of the present invention have been described with reference to the embodiment and the modification. However, the high frequency module and the transmission module of the present invention are limited to the above embodiment and the modification. It is not something. Other embodiments realized by combining arbitrary components in the above embodiments and modifications, and various modifications conceivable by those skilled in the art without departing from the gist of the present invention with respect to the above embodiments and modifications. Modifications obtained by applying the above and various devices incorporating the high-frequency module of the present disclosure are also included in the present invention.
 また、上記実施の形態および変形例に係る高周波モジュールにおいて、図面に開示されたインダクタの周辺に別の高周波回路素子および配線などが配置されていてもよい。 Further, in the high-frequency module according to the above-described embodiments and modifications, other high-frequency circuit elements and wirings may be arranged around the inductor disclosed in the drawings.
 本発明は、マルチバンド/マルチモード対応のフロントエンド部に配置される高周波モジュールとして、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication equipment such as a mobile phone as a high-frequency module disposed in a multiband / multimode-compatible front end unit.
 1  高周波モジュール
 10  実装基板
 11  パワーアンプ
 12  整合回路
 13  バイアス回路
 121、131  インダクタ
 121A、121B、131A、131B  インダクタンス素子
 122、123、124、132  コンデンサ
 221、222、223、227、228、231、232、233、237、238  電極
 224、234  配線パターン
 225、235  ビア導体
 226、236  素子本体
DESCRIPTION OF SYMBOLS 1 High frequency module 10 Mounting board 11 Power amplifier 12 Matching circuit 13 Bias circuit 121, 131 Inductor 121A, 121B, 131A, 131B Inductive element 122, 123, 124, 132 Capacitor 221, 222, 223, 227, 228, 231, 232, 233, 237, 238 Electrode 224, 234 Wiring pattern 225, 235 Via conductor 226, 236 Element body

Claims (10)

  1.  入力端子と出力端子とを有する高周波モジュールであって、
     実装基板と、
     前記入力端子と前記出力端子との間に配置され、前記実装基板に設けられたインダクタとを備え、
     前記インダクタは、直列接続された第1インダクタンス素子および第2インダクタンス素子で構成され、
     前記第1インダクタンス素子は、前記実装基板に内蔵されており、前記第2インダクタンス素子は、前記実装基板の表面に実装されている
     高周波モジュール。
    A high-frequency module having an input terminal and an output terminal,
    A mounting board;
    An inductor disposed between the input terminal and the output terminal and provided on the mounting board;
    The inductor includes a first inductance element and a second inductance element connected in series,
    The first inductance element is built in the mounting board, and the second inductance element is mounted on a surface of the mounting board.
  2.  前記第1インダクタンス素子と前記第2インダクタンス素子とは、前記実装基板を平面視した場合に重なっている
     請求項1に記載の高周波モジュール。
    The high frequency module according to claim 1, wherein the first inductance element and the second inductance element overlap each other when the mounting board is viewed in plan.
  3.  前記実装基板上に配置され、高周波信号を増幅する増幅器と、
     前記増幅器と前記出力端子との間に配置され、前記増幅器と前記出力端子とのインピーダンス整合をとるための整合回路とを備え、
     前記整合回路は、前記インダクタを含む
     請求項1または2に記載の高周波モジュール。
    An amplifier disposed on the mounting substrate for amplifying a high-frequency signal;
    A matching circuit disposed between the amplifier and the output terminal, for matching impedance between the amplifier and the output terminal;
    The high-frequency module according to claim 1, wherein the matching circuit includes the inductor.
  4.  前記第1インダクタンス素子は、積層された配線パターンで構成され、
     前記第2インダクタンス素子は、コイルで構成され、
     前記コイルの巻回軸は、前記積層された配線パターンの巻回軸と平行である
     請求項3に記載の高周波モジュール。
    The first inductance element includes a laminated wiring pattern,
    The second inductance element is composed of a coil,
    The high-frequency module according to claim 3, wherein a winding axis of the coil is parallel to a winding axis of the laminated wiring pattern.
  5.  前記実装基板上に配置され、高周波信号を増幅する増幅器と、
     前記増幅器と電源電圧が印加される電源端子との間に配置され、前記増幅器に前記電源電圧に対応したバイアス電圧を供給するためのバイアス回路とを備え、
     前記バイアス回路は、前記インダクタを含む
     請求項1または2に記載の高周波モジュール。
    An amplifier disposed on the mounting substrate for amplifying a high-frequency signal;
    A bias circuit disposed between the amplifier and a power supply terminal to which a power supply voltage is applied, and supplying a bias voltage corresponding to the power supply voltage to the amplifier;
    The high-frequency module according to claim 1, wherein the bias circuit includes the inductor.
  6.  前記第2インダクタンス素子が生成する磁界の方向と、前記第1インダクタンス素子が生成する磁界の方向とは交差する
     請求項5に記載の高周波モジュール。
    The high frequency module according to claim 5, wherein the direction of the magnetic field generated by the second inductance element intersects with the direction of the magnetic field generated by the first inductance element.
  7.  前記実装基板上に配置され、高周波信号を増幅する増幅器と、
     前記入力端子と前記出力端子との間に配置された第1回路と、
     前記入力端子と前記出力端子との間に配置された第2回路とを備え、
     前記第1回路は、第1の前記インダクタを含み、
     前記第2回路は、第2の前記インダクタを含み、
     前記第1回路の前記第2インダクタンス素子が生成する磁界の方向と、前記第2回路の前記第2インダクタンス素子が生成する磁界の方向とは、交差している
     請求項1または2に記載の高周波モジュール。
    An amplifier disposed on the mounting substrate for amplifying a high-frequency signal;
    A first circuit disposed between the input terminal and the output terminal;
    A second circuit disposed between the input terminal and the output terminal;
    The first circuit includes the first inductor;
    The second circuit includes the second inductor;
    3. The high frequency according to claim 1, wherein the direction of the magnetic field generated by the second inductance element of the first circuit intersects the direction of the magnetic field generated by the second inductance element of the second circuit. module.
  8.  前記実装基板上に配置され、高周波信号を増幅する増幅器と、
     前記入力端子と前記出力端子との間に配置された第1回路と、
     前記入力端子と前記出力端子との間に配置された第2回路とを備え、
     前記第1回路は、第1の前記インダクタを含み、
     前記第2回路は、第2の前記インダクタを含み、
     前記第1回路の前記第1インダクタンス素子が生成する磁界の方向と、前記第2回路の前記第1インダクタンス素子が生成する磁界の方向とが揃っている
     請求項1または2に記載の高周波モジュール。
    An amplifier disposed on the mounting substrate for amplifying a high-frequency signal;
    A first circuit disposed between the input terminal and the output terminal;
    A second circuit disposed between the input terminal and the output terminal;
    The first circuit includes the first inductor;
    The second circuit includes the second inductor;
    The high frequency module according to claim 1 or 2, wherein a direction of a magnetic field generated by the first inductance element of the first circuit is aligned with a direction of a magnetic field generated by the first inductance element of the second circuit.
  9.  前記実装基板上に配置され、高周波信号を増幅する増幅器と、
     前記入力端子と前記出力端子との間に配置された第1回路と、
     前記入力端子と前記出力端子との間に配置された第2回路とを備え、
     前記第1回路は、第1の前記インダクタを含み、
     前記第2回路は、第2の前記インダクタを含み、
     前記第1回路の前記第1インダクタンス素子が生成する磁界の方向は、前記第2回路の前記第1インダクタンス素子が生成する磁界の方向に対して逆向きである
     請求項1または2に記載の高周波モジュール。
    An amplifier disposed on the mounting substrate for amplifying a high-frequency signal;
    A first circuit disposed between the input terminal and the output terminal;
    A second circuit disposed between the input terminal and the output terminal;
    The first circuit includes the first inductor;
    The second circuit includes the second inductor;
    3. The high frequency according to claim 1, wherein the direction of the magnetic field generated by the first inductance element of the first circuit is opposite to the direction of the magnetic field generated by the first inductance element of the second circuit. module.
  10.  請求項3~9のいずれか1項に記載の高周波モジュールを備え、
     前記増幅器は、送信用パワーアンプである
     送信モジュール。
    A high-frequency module according to any one of claims 3 to 9,
    The amplifier is a transmission power amplifier.
PCT/JP2016/085988 2015-12-14 2016-12-02 High frequency module and transmission module WO2017104454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-243574 2015-12-14
JP2015243574 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017104454A1 true WO2017104454A1 (en) 2017-06-22

Family

ID=59056389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085988 WO2017104454A1 (en) 2015-12-14 2016-12-02 High frequency module and transmission module

Country Status (1)

Country Link
WO (1) WO2017104454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726088A (en) * 2019-03-20 2020-09-29 株式会社村田制作所 Amplifying circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165163A (en) * 1998-11-27 2000-06-16 Kyocera Corp High frequency power amplifier
JP2002519861A (en) * 1998-06-30 2002-07-02 ラム リサーチ コーポレーション Multiple coil antenna for inductively coupled plasma generation system
JP2007519218A (en) * 2003-07-11 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Inductive system
WO2013008435A1 (en) * 2011-07-08 2013-01-17 株式会社村田製作所 Circuit module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519861A (en) * 1998-06-30 2002-07-02 ラム リサーチ コーポレーション Multiple coil antenna for inductively coupled plasma generation system
JP2000165163A (en) * 1998-11-27 2000-06-16 Kyocera Corp High frequency power amplifier
JP2007519218A (en) * 2003-07-11 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Inductive system
WO2013008435A1 (en) * 2011-07-08 2013-01-17 株式会社村田製作所 Circuit module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726088A (en) * 2019-03-20 2020-09-29 株式会社村田制作所 Amplifying circuit

Similar Documents

Publication Publication Date Title
US11489547B2 (en) Radio frequency module and communication device
WO2017022370A1 (en) Antenna matching circuit, antenna circuit, front end circuit and communication device
US9065506B2 (en) High-frequency switch module
JPWO2016060151A1 (en) High frequency module
WO2019240098A1 (en) High-frequency module and communication device
JP2014207517A (en) High-frequency circuit module
KR101926408B1 (en) High-frequency switch module
US11316544B2 (en) Front-end module and communication device
WO2013157288A1 (en) Communication device
US20190165751A1 (en) Transceiver circuit and configuration method thereof
JPWO2016125515A1 (en) Variable filter circuit, high-frequency module circuit, and communication device
US20130309985A1 (en) Transmission module
US9166285B2 (en) High-frequency module
US7492239B1 (en) Radio frequency combiner
WO2017104454A1 (en) High frequency module and transmission module
US10868518B2 (en) Elastic wave device
US8174323B2 (en) High frequency amplifier
CN112448681B (en) Amplifying circuit
US9088064B2 (en) Non-reciprocal circuit element
US10205437B2 (en) High-frequency switch module
WO2022091852A1 (en) High-frequency module and communication device
US20240120897A1 (en) Filter device, antenna device, and antenna module
WO2023022075A1 (en) High-frequency module and communication device
US20240113732A1 (en) Communication circuit and communication device
JP2015109320A (en) Inductor device and high frequency module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP