JP6289876B2 - Steel member and method for manufacturing steel member - Google Patents

Steel member and method for manufacturing steel member Download PDF

Info

Publication number
JP6289876B2
JP6289876B2 JP2013236644A JP2013236644A JP6289876B2 JP 6289876 B2 JP6289876 B2 JP 6289876B2 JP 2013236644 A JP2013236644 A JP 2013236644A JP 2013236644 A JP2013236644 A JP 2013236644A JP 6289876 B2 JP6289876 B2 JP 6289876B2
Authority
JP
Japan
Prior art keywords
cementite
steel member
base material
surface layer
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013236644A
Other languages
Japanese (ja)
Other versions
JP2015096630A (en
Inventor
憲志 山本
憲志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2013236644A priority Critical patent/JP6289876B2/en
Publication of JP2015096630A publication Critical patent/JP2015096630A/en
Application granted granted Critical
Publication of JP6289876B2 publication Critical patent/JP6289876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本開示の技術は、鉄鋼部材及び鉄鋼部材の製造方法に関する。   The technology of the present disclosure relates to a steel member and a method for manufacturing the steel member.

鉄鋼材は、鉄鋼材における炭素含有量に応じて、鉄、炭素鋼、鋳鉄、これら3つの種類に大別される。こうした鉄鋼材を原材料とする鉄鋼部材は、例えば、自動車においては例えば特許文献1のように車体やエンジンのシリンダーブロックとして用いられ、建物においては柱や梁として用いられている。   Steel materials are roughly classified into three types, iron, carbon steel, cast iron, according to the carbon content in the steel material. Steel members made of such steel materials are used, for example, in automobiles as cylinder blocks of car bodies and engines as in Patent Document 1, for example, and in buildings as columns and beams.

特開2002−188508号公報JP 2002-188508 A

ところで、上述した鉄鋼部材においては、鉄鋼部材の経年劣化を抑える要請や、鉄鋼部材の適用範囲を広げる要請に応えるうえで、鉄鋼部材の表面において腐食を抑えることが望まれている。   By the way, in the steel member mentioned above, in order to respond to the request | requirement which suppresses aged deterioration of a steel member, and the request | requirement which expands the application range of a steel member, it is desired to suppress corrosion on the surface of a steel member.

本開示の技術は、鉄鋼部材の表面における耐食性が高められた鉄鋼部材、および、鉄鋼部材の製造方法を提供することを目的とする。   An object of the technology of the present disclosure is to provide a steel member having improved corrosion resistance on the surface of the steel member, and a method for manufacturing the steel member.

上記課題を解決する鉄鋼部材は、セメンタイトとフェライトとを組織として有する基材の表面に対する圧縮加工によって形成された表面層を備え、前記表面層が、前記セメンタイトの体積率が前記基材のなかで前記表面層以外の体積率よりも高く、且つ、前記セメンタイトの体積率が90%以上である。   A steel member that solves the above problem includes a surface layer formed by compression processing on the surface of a base material having cementite and ferrite as a structure, and the surface layer has a volume fraction of the cementite in the base material. It is higher than the volume fraction other than the surface layer, and the volume fraction of the cementite is 90% or more.

上記課題を解決する鉄鋼部材の製造方法は、セメンタイトとフェライトとを組織として有する基材の表面に対して圧縮加工を施す工程を含み、前記圧縮加工を施す工程では、前記基材のうち前記基材の表面を含む部分で前記組織を塑性流動させて、前記セメンタイトの体積率が前記基材のなかで表面層以外の体積率よりも高く、且つ、前記セメンタイトの体積率が90%以上である前記表面層を形成する。   A method of manufacturing a steel member that solves the above problem includes a step of compressing a surface of a base material having cementite and ferrite as a structure. In the step of applying the compression processing, The structure is plastically flowed at a portion including the surface of the material, and the volume fraction of the cementite is higher than the volume fraction other than the surface layer in the base material, and the volume fraction of the cementite is 90% or more. The surface layer is formed.

本発明者は、鉄鋼部材の表面における組織構造について鋭意研究した結果、下記(a)(b)を見出した。
(a)基材の表面に対して圧縮加工がなされることによって、基材の表面に圧縮加工に基づく塑性流動が生じ、軟質のフェライトが圧縮されて硬質のセメンタイトが凝集された表面層が形成されること。
As a result of intensive studies on the structure of the surface of the steel member, the present inventors have found the following (a) and (b).
(A) By compressing the surface of the base material, plastic flow based on the compression processing is generated on the surface of the base material, and a soft ferrite is compressed to form a surface layer in which hard cementite is aggregated To be done.

(b)セメンタイトが凝集された表面層は、セメンタイトの体積率が90%以上であれば鉄鋼部材の耐食性を向上させること。
上記構成によれば、セメンタイトの体積率が90%以上の層である表面層が耐食層として基材に形成される。これにより、鉄鋼部材の耐食性を向上させることができる。
(B) The surface layer in which cementite is aggregated should improve the corrosion resistance of the steel member if the volume fraction of cementite is 90% or more.
According to the said structure, the surface layer which is a layer whose volume fraction of cementite is 90% or more is formed in a base material as a corrosion-resistant layer. Thereby, the corrosion resistance of the steel member can be improved.

上記鉄鋼部材において、前記表面層は、前記表面層の面方向に沿う前記セメンタイトの組織が深さ方向に積み重なった多層構造をなしていることが好ましい。
上記鉄鋼部材の製造方法において、前記表面層は、前記表面層の面方向に沿う前記セメンタイトの組織が深さ方向に積み重なった多層構造をなしていることが好ましい。
In the steel member, the surface layer preferably has a multilayer structure in which the cementite structures along the surface direction of the surface layer are stacked in the depth direction.
In the method for manufacturing a steel member, the surface layer preferably has a multilayer structure in which the cementite structures along the surface direction of the surface layer are stacked in the depth direction.

上記構成のように、表面層は、セメンタイトの組織が深さ方向に積み重なった多層構造とすることができる。
上記鉄鋼部材は、前記基材が鋳鉄材であり、且つ、前記表面層の厚さが5μm以上であることが好ましい。
As in the above configuration, the surface layer can have a multilayer structure in which cementite structures are stacked in the depth direction.
In the steel member, the base material is preferably a cast iron material, and the thickness of the surface layer is preferably 5 μm or more.

上記構成のように、耐食層の形成によって耐食性を向上させる基材として鋳鉄材を用いることが可能である。また、表面層の厚さが5μm以上であれば、鉄鋼部材の耐食性がより確実に高められる。   As in the above configuration, a cast iron material can be used as a base material that improves corrosion resistance by forming a corrosion-resistant layer. Moreover, if the thickness of a surface layer is 5 micrometers or more, the corrosion resistance of a steel member will be improved more reliably.

本開示の技術における鉄鋼部材の製造方法の一実施形態を示す図。The figure which shows one Embodiment of the manufacturing method of the steel member in the technique of this indication. 鉄鋼部材において電子顕微鏡によって撮影された位置を示す図。The figure which shows the position image | photographed with the electron microscope in the steel member. 電子顕微鏡によって撮影された非加工層の画像を示す図。The figure which shows the image of the non-processed layer image | photographed with the electron microscope. 電子顕微鏡によって撮影された耐食層の画像を示す図。The figure which shows the image of the corrosion-resistant layer image | photographed with the electron microscope. 加工前後における鉄鋼部材の硬度及び耐食性を示すグラフ。The graph which shows the hardness and corrosion resistance of the steel member before and behind processing.

以下、図1〜図5を参照して、本開示における鉄鋼部材の製造方法及び鉄鋼部材の一実施形態について説明する。本開示においては、鉄鋼部材の原材料である基材の表面に対して常温下にて圧縮加工が行われる。   Hereinafter, with reference to FIGS. 1-5, one Embodiment of the manufacturing method and the steel member of the steel member in this indication are described. In the present disclosure, compression processing is performed at room temperature on the surface of a base material that is a raw material of a steel member.

図1に示されるように、基材11は、フェライトとセメンタイトとを組織として有する。基材11に対する圧縮加工には、基材11よりも高い硬度を有する円柱状の加工具12が用いられる。この加工具12を基材11に対して相対移動させ、基材11の表面である加工対象面11aに対して加工具12の底面を押しつける。そして、基材11の加工対象面11aに押し付けた状態のままで基材11と加工具12とを加工対象面11aの面方向に相対移動させる。これにより、基材11の加工対象面11aには、軟質のフェライトが圧縮される塑性流動が生じることで硬質のセメンタイトを凝集させた耐食層13が表面層として形成される。なお、以下では、上述した圧縮加工のなされていない部位の表面層を非加工層14という。   As FIG. 1 shows, the base material 11 has a structure | tissue with a ferrite and cementite. For the compression processing on the base material 11, a cylindrical processing tool 12 having a hardness higher than that of the base material 11 is used. The processing tool 12 is moved relative to the base material 11, and the bottom surface of the processing tool 12 is pressed against the processing target surface 11 a which is the surface of the base material 11. Then, the base material 11 and the processing tool 12 are relatively moved in the surface direction of the processing target surface 11a while being pressed against the processing target surface 11a of the base material 11. As a result, a corrosion resistant layer 13 in which hard cementite is aggregated is formed as a surface layer on the surface 11a to be processed of the base material 11 by generating a plastic flow in which soft ferrite is compressed. In the following, the surface layer of the portion not subjected to the compression process described above is referred to as a non-processed layer 14.

上記鉄鋼部材及び鉄鋼部材の製造方法について実施例を挙げてさらに詳しく説明する。
本実施例では、図1に示されるように、基材11として、鋳鉄材であるねずみ鋳鉄(FC250(FC:Ferrum Casting))を用いた。ねずみ鋳鉄は、組織として、初析セメンタイトと、フェライトとセメンタイトとが交互に重なり合った層状をなすパーライトと、を有する。この基材11に対して、直径φ8の加工具12を押し付け荷重14kgfで押し付けて、その押し付け荷重を保持したまま送り速度2.62mm/sで加工具12を摺動させながら所定回数だけ往復させる圧縮加工を施した。
An example is given and the above-mentioned steel member and the manufacturing method of a steel member are explained still in detail.
In this example, as shown in FIG. 1, gray cast iron (FC250 (FC: Ferrum Casting)), which is a cast iron material, was used as the base material 11. Gray cast iron has, as a structure, proeutectoid cementite and layered pearlite in which ferrite and cementite are alternately overlapped. A processing tool 12 having a diameter φ of 8 is pressed against the base material 11 with a pressing load of 14 kgf, and the processing tool 12 is reciprocated a predetermined number of times while sliding at a feeding speed of 2.62 mm / s while maintaining the pressing load. Compression processing was applied.

図2に示されるように、基材11に対する圧縮加工後、耐食層13と非加工層14とを含む切断面15で基材11を切断した。そして、切断面15を研磨したのち、非加工層14を含む領域16の組織と耐食層13を含む領域17の組織とを電子顕微鏡で撮影した。図3に非加工層14の撮影結果を示し、図4に耐食層13の撮影結果を示す。   As shown in FIG. 2, after compression processing on the base material 11, the base material 11 was cut at a cut surface 15 including the corrosion-resistant layer 13 and the non-processed layer 14. Then, after the cut surface 15 was polished, the structure of the region 16 including the non-processed layer 14 and the structure of the region 17 including the corrosion-resistant layer 13 were photographed with an electron microscope. FIG. 3 shows the photographing result of the non-processed layer 14, and FIG. 4 shows the photographing result of the corrosion-resistant layer 13.

図3においては、白色の層状をなしている部分がセメンタイトであり、セメンタイトよりも黒色に近い部分がフェライトである。同図3に示されるように、非加工層14では、フェライトとセメンタイトとが交互に重なった層状の組織であるパーライトであることが認められた。なお、パーライトは、セメンタイトの体積率が0〜30%である。   In FIG. 3, the white layered portion is cementite, and the portion closer to black than cementite is ferrite. As shown in FIG. 3, the non-processed layer 14 was confirmed to be pearlite, which is a layered structure in which ferrite and cementite are alternately stacked. In addition, pearlite has a volume fraction of cementite of 0 to 30%.

一方、図4に示されるように、耐食層13では、加工対象面11aの面方向に沿うセメンタイト層が深さ方向に積層された多層構造が認められた。すなわち、圧縮加工によって軟質のフェライトが圧縮されて硬質のセメンタイトが凝集されていることが認められた。これにより、基材11の加工対象面11aに対する圧縮加工によって、基材11の表面層として、硬質のセメンタイトが緻密化された耐食層13が形成されることが確認された。上記加工条件の下で形成された耐食層13は、厚さt=5μm、切断面15におけるセメンタイトの面積率がほぼ100%であった。   On the other hand, as shown in FIG. 4, the corrosion-resistant layer 13 has a multilayer structure in which cementite layers are laminated in the depth direction along the surface direction of the processing target surface 11a. That is, it was recognized that soft ferrite was compressed and hard cementite was aggregated by compression processing. Thereby, it was confirmed by the compression process with respect to the process target surface 11a of the base material 11 that the corrosion-resistant layer 13 in which hard cementite was densified as a surface layer of the base material 11 was formed. The corrosion-resistant layer 13 formed under the above processing conditions had a thickness t = 5 μm, and the cementite area ratio at the cut surface 15 was almost 100%.

次に、非加工層14を表面層とする鉄鋼部材である試験片A及び耐食層13を表面層とする鉄鋼部材である試験片Bの各々に対してJISZ2244に規定されたビッカーズ硬さ試験に準拠した硬さ試験を行った。試験片A,Bの各々に対して行った硬さ試験の結果を図5に示す。なお、試験片A,Bは、10mm×10mm×10mmの同一形状であり、図5では硬さ試験で得られたビッカーズ硬さの平均値を示している。   Next, the Vickers hardness test specified in JISZ2244 is performed for each of the test piece A which is a steel member having the non-processed layer 14 as a surface layer and the test piece B which is a steel member having the corrosion resistant layer 13 as a surface layer. A compliant hardness test was performed. The result of the hardness test performed on each of the test pieces A and B is shown in FIG. The test pieces A and B have the same shape of 10 mm × 10 mm × 10 mm, and FIG. 5 shows the average value of Vickers hardness obtained in the hardness test.

図5に示されるように、試験片Aのビッカーズ硬さは、約240Hvであることが確認された。一方、試験片Bのビッカーズ硬さは、約320Hvであることが確認された。すなわち、耐食層13を表面層とする試験片Bは、非加工層14を表面層とする試験片Aに対して約1.3倍の硬度を有することが確認された。   As shown in FIG. 5, it was confirmed that the Vickers hardness of the test piece A was about 240 Hv. On the other hand, it was confirmed that the Vickers hardness of the test piece B was about 320 Hv. That is, it was confirmed that the test piece B having the corrosion-resistant layer 13 as the surface layer has a hardness about 1.3 times that of the test piece A having the non-processed layer 14 as the surface layer.

次に、上述した試験片A,Bに対して耐食試験を行った。この耐食試験では、濃度2%の硫酸水溶液に試験片を10分間含浸させた。こうした耐食試験を複数の試験片A,Bに対して行った結果を図5に示す。なお、図5では、試験片A,Bの各々について含浸前の総重量に対する含浸後の総重量の割合を評価値と算出するとともに試験片Aの評価値に対する相対値を示している。すなわち、試験片Bは、相対値が小さいほど試験片Aよりも腐食量が少なく、耐食性に優れているといえる。   Next, a corrosion resistance test was performed on the test pieces A and B described above. In this corrosion resistance test, a test piece was impregnated for 10 minutes in an aqueous sulfuric acid solution having a concentration of 2%. FIG. 5 shows the results of such a corrosion resistance test performed on a plurality of test pieces A and B. In FIG. 5, for each of the test pieces A and B, the ratio of the total weight after impregnation to the total weight before impregnation is calculated as an evaluation value, and the relative value with respect to the evaluation value of the test piece A is shown. That is, it can be said that the smaller the relative value of the test piece B, the smaller the amount of corrosion than the test piece A, and the better the corrosion resistance.

図5に示されるように、試験片Bの評価値は、試験片Aの評価値の約8割であることが認められた。すなわち、耐食層13を表面層とする試験片Bは、試験片Aに対して腐食量が約20%低減されており、試験片Aよりも耐食性に優れていることが認められた。   As shown in FIG. 5, the evaluation value of the test piece B was found to be about 80% of the evaluation value of the test piece A. That is, the test piece B having the corrosion-resistant layer 13 as the surface layer has a corrosion amount reduced by about 20% with respect to the test piece A, and it was confirmed that the test piece B is superior to the test piece A in corrosion resistance.

なお、耐食層13においては、切断面15と同様の組織がランダムに存在していると見なすことが可能である。そのため、切断面15における面積率は、耐食層13における体積率と同等であると言える。また、本発明者によれば、耐食層13におけるセメンタイトの体積率が90%以上であれば鉄鋼部材の耐食性が向上し、より好ましくは95%以上であれば鉄鋼部材の耐食性が顕著に向上することが確認されている。   In the corrosion-resistant layer 13, it can be considered that the same structure as the cut surface 15 is present at random. Therefore, it can be said that the area ratio in the cut surface 15 is equivalent to the volume ratio in the corrosion-resistant layer 13. Further, according to the present inventors, the corrosion resistance of the steel member is improved if the cementite volume ratio in the corrosion-resistant layer 13 is 90% or more, and more preferably 95% or more, the corrosion resistance of the steel member is remarkably improved. It has been confirmed.

ここで、鉄鋼部材の耐食性を向上させる方法としては、例えば塗装や溶射、物理気相成長(PVD:Physical Vapor Deposition)といった方法を用いて鉄鋼部材に耐食膜を形成する方法もある。しかし耐食膜は、経年劣化に起因した脱落や摩耗に起因した剥離が避けられない。そのため、定期的なメンテナンスが必要であるばかりか例えば熱影響といった物理的な理由によって形成位置が限られる場合もある。   Here, as a method for improving the corrosion resistance of the steel member, for example, there is a method of forming a corrosion-resistant film on the steel member using a method such as painting, thermal spraying, or physical vapor deposition (PVD). However, the corrosion-resistant film cannot avoid peeling due to aging or wear due to aging. Therefore, not only regular maintenance is required, but the formation position may be limited due to physical reasons such as thermal effects.

この点、上記構成によれば、鉄鋼部材に表面層として耐食層13が形成されることから、鉄鋼部材そのものの耐食性を向上させることが可能である。すなわち、耐食膜が形成されていなくとも鉄鋼部材の耐食性が向上する。   In this respect, according to the above configuration, since the corrosion-resistant layer 13 is formed as a surface layer on the steel member, it is possible to improve the corrosion resistance of the steel member itself. That is, even if the corrosion resistant film is not formed, the corrosion resistance of the steel member is improved.

上記実施形態に記載の技術によれば、以下に列挙する効果を得ることができる。
(1)鉄鋼部材の表面層が、セメンタイトの体積率が表面層以外の部分よりも高く、かつ、セメンタイトの体積率が90%以上であることから、鉄鋼部材の耐食性が高まる。
According to the technique described in the embodiment, the effects listed below can be obtained.
(1) Since the volume ratio of cementite is higher than the portion other than the surface layer in the surface layer of the steel member and the volume ratio of cementite is 90% or more, the corrosion resistance of the steel member is increased.

(2)耐食層13の厚さtを5μm以上とすることにより、耐食性が確実に高まる。
(3)鋳鉄材は、共析鋼よりも炭素含有量が多い過共析鋼であるため、初析セメンタイトとパーライトとが混じった組織を有する。そのため、鋳鉄材においては、上記耐食層13が形成されやすい。
(2) By setting the thickness t of the corrosion-resistant layer 13 to 5 μm or more, the corrosion resistance is reliably increased.
(3) Since the cast iron is a hypereutectoid steel having a carbon content higher than that of the eutectoid steel, it has a structure in which proeutectoid cementite and pearlite are mixed. Therefore, the corrosion-resistant layer 13 is easily formed in the cast iron material.

(4)耐食層13を鋳鉄材に形成することによって、例えばエンジンのシリンダといった熱的な影響を多分に受ける部位においても耐食性を向上させることができる。   (4) By forming the corrosion-resistant layer 13 on the cast iron material, the corrosion resistance can be improved even in a part that is largely affected by heat, such as an engine cylinder.

なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・上記実施例では、鋳鉄材としてねずみ鋳鉄を用いたが、鋳鉄材は、ねずみ鋳鉄に限らず、例えばダクタイル鋳鉄であってもよい。
In addition, the said embodiment can also be suitably changed and implemented as follows.
In the above embodiment, gray cast iron is used as the cast iron material, but the cast iron material is not limited to gray cast iron, and may be, for example, ductile cast iron.

・耐食層13の厚さtは、基材に対して圧縮加工をすることによってセメンタイトの体積率が90%である耐食層13が表面層として形成されるのであれば、5μm未満であっても5μm超であってもよい。耐食層13の厚さtが5μm超であれば、さらなる耐食性の向上が見込まれる。   The thickness t of the corrosion-resistant layer 13 may be less than 5 μm if the corrosion-resistant layer 13 having a cementite volume ratio of 90% is formed as a surface layer by compressing the substrate. It may be greater than 5 μm. If the thickness t of the corrosion-resistant layer 13 exceeds 5 μm, further improvement in corrosion resistance is expected.

・圧縮加工は、基材11に対して加工具12が移動する形態に限らず、加工具12に対して基材11が移動する形態、あるいは、基材11及び加工具12の双方が移動する形態であってもよい。   The compression processing is not limited to the form in which the processing tool 12 moves relative to the base material 11, but the form in which the base material 11 moves relative to the processing tool 12, or both the base material 11 and the processing tool 12 move. Form may be sufficient.

・圧縮加工は、鉄鋼部材の表面層として耐食層13が形成されるのであれば、円柱状の加工具12を用いた圧縮加工に限らず、例えば、金型を用いた圧縮加工であってもよい。
・上述した鉄鋼部材はフェライトとセメンタイトとを組織として有する鉄鋼材を基材とする鉄鋼部材であればよく、基材は、鋳鉄材に限らず、鋳鉄材よりも炭素含有量の少ない炭素鋼であってよい。
The compression process is not limited to the compression process using the columnar processing tool 12 as long as the corrosion-resistant layer 13 is formed as the surface layer of the steel member. For example, even the compression process using a mold Good.
-The steel member described above may be a steel member whose base material is a steel material having ferrite and cementite as a structure, and the base material is not limited to a cast iron material, but a carbon steel having a lower carbon content than a cast iron material. It may be.

・耐食層13を形成する圧縮加工の条件は、基材の表面に対する圧縮加工によってセメンタイトの体積率が90%である表面層が形成されればよく、基材の種類に応じて適宜変更可能である。   -The conditions of the compression process for forming the corrosion-resistant layer 13 may be appropriately changed according to the type of the substrate, as long as the surface layer having a cementite volume ratio of 90% is formed by the compression process on the surface of the substrate. is there.

・鉄鋼部材は、例えば塗装や溶射、物理気相成長(PVD:Physical Vapor Deposition)といった方法で形成される耐食膜が耐食層13に積層されてもよい。   -As for the steel member, the corrosion-resistant film formed by methods, such as painting, thermal spraying, and physical vapor deposition (PVD: Physical Vapor Deposition), may be laminated | stacked on the corrosion-resistant layer 13, for example.

t…厚さ、11…基材、11a…加工対象面、12…加工具、13…耐食層、14…非加工層、15…切断面、16,17…領域。   t ... thickness, 11 ... base material, 11a ... surface to be processed, 12 ... processing tool, 13 ... corrosion-resistant layer, 14 ... non-working layer, 15 ... cut surface, 16, 17 ... region.

Claims (4)

セメンタイトとフェライトとを組織として有する鋳鉄材である基材の表面に対する圧縮加工によって形成された表面層を備え、
前記表面層が、
前記セメンタイトの体積率が前記基材のなかで前記表面層以外の体積率よりも高く、且つ、前記セメンタイトの体積率が90%以上であり、且つ、前記表面層の面方向に沿う前記セメンタイトの組織が深さ方向に積み重なった多層構造をなしている
鉄鋼部材。
A surface layer formed by compression processing on the surface of a base material which is a cast iron material having cementite and ferrite as a structure,
The surface layer is
The volume ratio of cementite is higher than the volume ratio other than the surface layer among the base material, and state, and are the volume ratio of the cementite 90% or more and the cementite along the surface direction of the surface layer A steel member that has a multi-layered structure in which the structures are stacked in the depth direction .
記表面層の厚さが5μm以上である
請求項に記載の鉄鋼部材。
Steel member according to claim 1 thickness before Symbol surface layer is 5μm or more.
セメンタイトとフェライトとを組織として有する鋳鉄材である基材の表面に対して圧縮加工を施す工程を含み、
前記圧縮加工を施す工程では、
前記基材のうち前記基材の表面を含む部分で前記組織を塑性流動させて、前記セメンタイトの体積率が前記基材のなかで表面層以外の体積率よりも高く、且つ、前記セメンタイトの体積率が90%以上であり、且つ、前記表面層の面方向に沿う前記セメンタイトの組織が深さ方向に積み重なった多層構造をなしている前記表面層を形成する
鉄鋼部材の製造方法。
Including a step of compressing the surface of the base material, which is a cast iron material having cementite and ferrite as a structure,
In the step of applying the compression process,
The structure is plastically flowed at a portion including the surface of the base material of the base material, and the volume ratio of the cementite is higher than the volume ratio of the base material other than the surface layer, and the volume of the cementite. rate is Ri der 90%, and method for producing a steel member forming the surface layer forms a multilayer structure tissue stacked in the depth direction of the cementite along the surface direction of the surface layer.
前記表面層の厚さが5μm以上である  The surface layer has a thickness of 5 μm or more.
請求項3に記載の鉄鋼部材の製造方法。  The manufacturing method of the steel member of Claim 3.
JP2013236644A 2013-11-15 2013-11-15 Steel member and method for manufacturing steel member Expired - Fee Related JP6289876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236644A JP6289876B2 (en) 2013-11-15 2013-11-15 Steel member and method for manufacturing steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236644A JP6289876B2 (en) 2013-11-15 2013-11-15 Steel member and method for manufacturing steel member

Publications (2)

Publication Number Publication Date
JP2015096630A JP2015096630A (en) 2015-05-21
JP6289876B2 true JP6289876B2 (en) 2018-03-07

Family

ID=53374044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236644A Expired - Fee Related JP6289876B2 (en) 2013-11-15 2013-11-15 Steel member and method for manufacturing steel member

Country Status (1)

Country Link
JP (1) JP6289876B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240971B2 (en) * 2006-09-28 2013-07-17 株式会社峰製作所 High carbon steel rail member and method of hardening the same
JP5757756B2 (en) * 2011-03-14 2015-07-29 日野自動車株式会社 Cast iron and cylinder liner manufactured by the cast iron
JP5757755B2 (en) * 2011-03-14 2015-07-29 日野自動車株式会社 Cast iron and cylinder liner manufactured by the cast iron

Also Published As

Publication number Publication date
JP2015096630A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
US20060246701A1 (en) Method for manufacturing clad components
EP2422902A2 (en) Cylinder liner for insert casting use
JP2012517901A5 (en)
US10094325B2 (en) Cylinder liner
US8956049B2 (en) Method for producing a fracture-divided component, and component produced according to the method
EP2650398A1 (en) Spray powder with a superferritic iron base compound and a substrate, in particular brake disc with a thermal spray coating
US10145330B2 (en) Cylinder liner for insert casting and method for manufacturing the same
CA2840534A1 (en) Screw
JP4984214B2 (en) Iron-based sprayed thin film for cylinder block and cylinder block
JP6289876B2 (en) Steel member and method for manufacturing steel member
US10407761B2 (en) Strengthening layer attached to cylinder bore
JP5765490B2 (en) Sliding member and manufacturing method of sliding member
KR20220011619A (en) Profile nut of screw drive, in particular, ball screw nut of ball screw drive, and method of manufacturing the same
EP3116678B1 (en) Electric arc wire spray layer on the raceway of a cylinder crankcase made of an aluminium alloy
DE102013221617A1 (en) Thin-walled insert for a cylinder of a piston engine and method for its production
JP5755820B2 (en) Film formation method
CN104736742B (en) The surface modifying method and piston for IC engine of piston for IC engine
KR20190072993A (en) Method of manufacturing thick steel plate using welded metal plate
US10662891B2 (en) Laser remelting to enhance cylinder bore mechanical properties
EP2747941B1 (en) Method for producing bearing shells for plain bearings
DE102019113117A1 (en) Process for producing improved forming tools for high-strength and ultra-high-strength steels and forming tools
US11623387B2 (en) Method of spray forming an object
JP7386508B2 (en) Surface modified metal and its manufacturing method
JP2009002410A (en) Sliding member and its manufacturing method
RU2510319C2 (en) Method of making wearproof coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees