JP6288757B2 - Motor function improver - Google Patents

Motor function improver Download PDF

Info

Publication number
JP6288757B2
JP6288757B2 JP2013173445A JP2013173445A JP6288757B2 JP 6288757 B2 JP6288757 B2 JP 6288757B2 JP 2013173445 A JP2013173445 A JP 2013173445A JP 2013173445 A JP2013173445 A JP 2013173445A JP 6288757 B2 JP6288757 B2 JP 6288757B2
Authority
JP
Japan
Prior art keywords
glutathione
exercise
muscle
group
motor function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013173445A
Other languages
Japanese (ja)
Other versions
JP2015040204A (en
Inventor
青井 渉
渉 青井
享 小西
享 小西
勇亮 佐内
勇亮 佐内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Kohjin Life Sciences Co Ltd
Original Assignee
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Kohjin Life Sciences Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, Kohjin Life Sciences Co Ltd filed Critical KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Priority to JP2013173445A priority Critical patent/JP6288757B2/en
Publication of JP2015040204A publication Critical patent/JP2015040204A/en
Application granted granted Critical
Publication of JP6288757B2 publication Critical patent/JP6288757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、グルタチオンを有効成分として含む運動機能性向上剤に関する。   The present invention relates to a motor function improver containing glutathione as an active ingredient.

通常、運動を行なうと、筋肉にあるグリコーゲン由来のグルコースが利用され、無酸素的な解糖反応が進行して筋肉の収縮に必要なATPが合成される。その代謝産物である乳酸が蓄積することで筋肉中のpH低下し、筋収縮の効率が落ちてくる。このため、筋肉中のpHを低下させないことが運度機能を持続させるためには必要となる。   Normally, when exercise is performed, glycogen-derived glucose in muscle is utilized, and an anaerobic glycolysis reaction proceeds to synthesize ATP necessary for muscle contraction. Accumulation of lactic acid, which is a metabolite, lowers the pH in the muscle and reduces the efficiency of muscle contraction. For this reason, it is necessary to maintain the mobility function not to lower the pH in the muscle.

また、骨格筋のエネルギー代謝制御に関与する因子PGC−1αが知られている(非特許文献1)。マウスを寒冷環境下におくと骨格筋でのPGC−1αが増加する。そのため骨格筋組織での熱産生の制御に関わることが知られている。また、PGC−1αを強制発現させると、ミトコンドリア呼吸鎖に関わる因子の転写を促すNRFや、ミトコンドリアにおいてエネルギー消費を起こすと考えられている脱共役蛋白質、uncoupling protein(UCP)の発現が誘導されるほか、ミトコンドリアのゲノム複製や転写反応過程に重要な役割を果たすmitochondrial transcription factor A(mtTFA)の発現が誘導され、これら分子の機能発現によって細胞内のミトコンドリア数が増加し、また細胞の酸素消費量が増大することも明らかとなった。このことから、ヒト由来細胞内において、ミトコンドリアの機能が活性化することで、熱産生、即ちエネルギー消費を引き起こし、さらには細胞内でエネルギー源となる糖や脂質の代謝を活性化させることが知られている(非特許文献2)。   In addition, a factor PGC-1α involved in the energy metabolism control of skeletal muscle is known (Non-Patent Document 1). When the mouse is placed in a cold environment, PGC-1α in skeletal muscle increases. Therefore, it is known to be involved in the control of heat production in skeletal muscle tissue. In addition, forced expression of PGC-1α induces the expression of NRF that promotes transcription of factors related to the mitochondrial respiratory chain and uncoupling protein (UCP), which is thought to cause energy consumption in mitochondria. In addition, the expression of mitochondrial transcription factor A (mtTFA), which plays an important role in mitochondrial genome replication and transcription reaction processes, is induced, and the functional expression of these molecules increases the number of mitochondria in the cell, and the oxygen consumption of the cell. It has also been revealed that increases. From this, it is known that activation of mitochondrial functions in human-derived cells causes heat production, that is, energy consumption, and also activates metabolism of sugars and lipids that are energy sources in the cells. (Non-Patent Document 2).

これまで、運動機能改善剤について、抗疲労剤として、ビタミン類(特許文献1)、カツオやマグロの多量に含まれるイミダゾール化合物(特許文献2)、オルニチン(特許文献3)などが知られている。抗酸化物質として知られているグルタチオンは、特許文献3では、オルニチンと相乗効果により、ストレス性抗疲労効果があることが記載されている。   Until now, vitamins (Patent Document 1), imidazole compounds (Patent Document 2), ornithine (Patent Document 3) contained in large amounts of bonito and tuna are known as anti-fatigue agents for motor function improvers. . Glutathione, which is known as an antioxidant, is described in Patent Document 3 as having a stress anti-fatigue effect due to a synergistic effect with ornithine.

しかし、グルタチオンが、運動機能を維持、向上させることについては、これまで知られていなかった。   However, it has not been known so far that glutathione maintains and improves motor function.

特開2010−138170号公報JP 2010-138170 A 特開2002−338473号公報JP 2002-338473 A 国際公開番号WO2007/142286International Publication Number WO2007 / 142286

Cell,92,829−838,1998Cell, 92, 829-838, 1998. Cell,98,115−124,1999Cell, 98, 115-124, 1999

本願発明は、安全な物質で運動機能を維持、向上させる、運動機能向上剤を提供することを課題とする。   This invention makes it a subject to provide the motor function improving agent which maintains and improves motor function with a safe substance.

本願発明者らは、グルタチオンに筋肉中のpHの低下を抑制する機能と、PGC−1αを活性化し、ミトコンドリアDNAの産生量が増加することを見出し、本願発明を完成させた。   The inventors of the present invention have found that glutathione has a function of suppressing pH reduction in muscle and that PGC-1α is activated to increase the production amount of mitochondrial DNA, thereby completing the present invention.

本発明は、
(1)グルタチオンを有効成分として含む、ミトコンドリア活性(ミトコンドリアDNA量増加)による運動機能性向上剤、
(2)グルタチオンを有効成分として含む、筋肉pH低下抑制による運動機能性向上剤、
(3)グルタチオンを有効成分として含む、ミトコンドリア活性(ミトコンドリアDNA量増加)及び筋肉pH低下抑制による運動機能性向上剤。
を提供する。
The present invention
(1) an agent for improving motor function by mitochondrial activity (increased mitochondrial DNA), comprising glutathione as an active ingredient,
(2) An agent for improving motor function by suppressing muscle pH reduction, comprising glutathione as an active ingredient,
(3) An agent for improving motor function, comprising glutathione as an active ingredient, by suppressing mitochondrial activity (increasing mitochondrial DNA) and reducing muscle pH.
I will provide a.

本発明により、筋肉中のpH低下を抑制する効果により、運動機能を持続させることができる。また、PGC-1αの活性化によりミトコンドリアが活性化するため、体内中の脂肪の取り込みや脂肪の燃焼が効率的に進むため、運動機能の維持だけでなく、体内の脂肪代謝を促進する効果を有する。そのため、糖尿病などの生活習慣病を予防する効果も有する。
According to the present invention, the motor function can be sustained by the effect of suppressing the pH drop in the muscle. In addition, since the activation of PGC-1α activates mitochondria, the intake of fat in the body and the burning of fat progress efficiently, so it not only maintains motor function but also promotes fat metabolism in the body. Have. Therefore, it also has an effect of preventing lifestyle-related diseases such as diabetes.

骨格筋におけるpH(グルタチオン)PH in skeletal muscle (glutathione) 骨格筋におけるpH(ビタミンC)PH in skeletal muscle (vitamin C) 骨格筋におけるPGC-1α発現量(グルタチオン)PGC-1α expression level in skeletal muscle (glutathione) 骨格筋におけるPGC-1α発現量(ビタミンC)PGC-1α expression level in skeletal muscle (vitamin C) 骨格筋におけるミトコンドリアDNA量 (グルタチオン)Mitochondrial DNA content in skeletal muscle (glutathione)

本発明の運動機能向上とは、疲労を抑制することではなく、競技等における運動実行力の向上から一般的なジョギング、ウオーキングのような軽度の運動実行力を向上させる機能である。また、運動時だけでなく平常時や歩行等の日常生活における体内の脂肪代謝を促進する機能も含む。 The improvement of the exercise function of the present invention is a function of improving a light exercise execution force such as general jogging and walking from the improvement of the exercise execution force in competition or the like, not suppressing fatigue. Moreover, the function which promotes fat metabolism in the body not only at the time of exercise but also in daily life such as normal time and walking is included.

本願発明の筋組織中のpH低下抑制とは、一般的には、筋組織中の乳酸の蓄積により筋肉中のpHが低下し、酸性化する。筋組織中のpHが低下することにより、筋組織の代謝活性が低下し、運動を持続することができなくなる。本発明は、筋組織中のpH低下を抑制するため、運動を持続させることが可能であり、さらに運動だけでなく、日常生活における歩行等においても、同様な効果を有するため、日常生活におけるグルコース等の消費が活発化する。 The suppression of pH decrease in muscle tissue of the present invention generally means that the pH in muscle decreases due to the accumulation of lactic acid in muscle tissue, resulting in acidification. When the pH in the muscle tissue is lowered, the metabolic activity of the muscle tissue is lowered and the exercise cannot be continued. Since the present invention suppresses the decrease in pH in muscle tissue, it is possible to continue exercise, and it has the same effect not only in exercise but also in walking in daily life. Etc. will be activated.

pGC1αとは、Peroxisome proliferator-activated receptor γ co-activator 1αであり、ミトコンドリアの合成を促進する働きを有すること、血液中のブドウ糖(血糖)を骨格筋に取り込む糖輸送体であるGLUT4を増加させることがしられている。また、ヒトの筋肉でのPGC1α発現量が糖尿病や老化によってミトコンドリア機能とともに低下し、PGC1αはエネルギー消費量の低下によるメタボリックシンドロームなどの生活習慣病の疾患治療標的となることが知られている。 pGC1α is Peroxisome proliferator-activated receptor γ co-activator 1α, which has the function of promoting mitochondrial synthesis, and increases GLUT4, a sugar transporter that takes glucose (blood sugar) in blood into skeletal muscle It has been done. In addition, it is known that the expression level of PGC1α in human muscle decreases with mitochondrial function due to diabetes and aging, and PGC1α is a therapeutic target for lifestyle-related diseases such as metabolic syndrome due to a decrease in energy consumption.

本発明は、筋組織中のpH低下抑制機能とPGC1αを活性化することで、ミトコンドリアDNA量を増加させ、結果的にミトコンドリアの合成を促進している。そのため、本発明は、生活習慣病の予防として使用することもできる。 The present invention activates PGC1α and pH lowering suppression function in muscle tissue, thereby increasing the amount of mitochondrial DNA and consequently promoting mitochondrial synthesis. Therefore, this invention can also be used as prevention of a lifestyle-related disease.

本発明でいうグルタチオンは、グルタミン酸、システイン、グリシンの3アミノ酸から構成されるトリペプタイドである。また、還元型グルタチオン、酸化型グルタチオンあるいはこれらの混合物でもよい。還元型グルタチオンとはγ−L−Glu−L−Cys−Glyの構造を有するトリペプチドを表し、酸化型グルタチオンとは還元型グルタチオン2 分子がSS結合により結合したものである。グルタチオンの形態は、グルタチオンを有効成分として含有するものであれば何でもよい。   Glutathione as used in the present invention is a tripeptide composed of three amino acids, glutamic acid, cysteine and glycine. Further, reduced glutathione, oxidized glutathione, or a mixture thereof may be used. Reduced glutathione represents a tripeptide having the structure of γ-L-Glu-L-Cys-Gly, and oxidized glutathione is obtained by binding two reduced glutathione molecules through SS bonds. The form of glutathione may be anything as long as it contains glutathione as an active ingredient.

本願の運動機能改善効果を得るためには、前段のグルタチオンを有効成分として含むものを投与する。投与の方法は、特に限定されず、経口投与、静脈内、腹膜内もしくは皮下投与等の非経口投与をあげることができる。具体的には、錠剤、散剤、顆粒剤、丸剤、懸濁剤、乳剤、浸剤・煎剤、カプセル剤、シロップ剤、液剤、エリキシル剤、エキス剤、チンキ剤、流エキス剤等の経口剤、又は注射剤、点滴剤、クリーム剤、坐剤等の非経口剤のいずれでもよい。   In order to obtain the effect of improving the motor function of the present application, one containing glutathione in the previous stage as an active ingredient is administered. The method of administration is not particularly limited, and examples thereof include oral administration, parenteral administration such as intravenous, intraperitoneal or subcutaneous administration. Specifically, oral preparations such as tablets, powders, granules, pills, suspensions, emulsions, soaking and decoction, capsules, syrups, solutions, elixirs, extracts, tinctures, fluid extracts, Or any of parenteral preparations such as injections, drops, creams, suppositories, etc. may be used.

グルタチオンを含有する酵母を経口投与することもできる。グルタチオンを多く含有する酵母としては「ハイチオンコーボMG」(興人ライフサイエンス社製)、グルタチオンを含有する酵母エキスとしては「ハイチオンエキスYH」(興人ライフサイエンス社製)などがある。   Yeast containing glutathione can also be administered orally. Examples of yeasts containing a large amount of glutathione include “Hythion Cobo MG” (manufactured by Kojin Life Sciences), and examples of yeast extracts containing glutathione include “Hythion Extract YH” (manufactured by Kojin Life Sciences).

本発明の投与量は、前述の機能が発現する量でれば特に限定されない。ヒトに投与する場合の投与量および投与回数は、投与形態、被投与者の年齢、体重等により異なるが、成人一日当り、グルタチオンを通常は50mg〜30g、好ましくは100mg〜10g、特に好ましくは200mg〜3gとなるように一日一回乃至数回投与する。   The dose of the present invention is not particularly limited as long as it is an amount that exhibits the above-described function. When administered to humans, the dose and frequency of administration vary depending on the dosage form, age of the recipient, body weight, etc., but glutathione is usually 50 mg to 30 g, preferably 100 mg to 10 g, particularly preferably 200 mg per adult day. Administer once to several times a day to achieve ~ 3 g.

投与間隔は、特に限定されない。継続的に投与することが好ましい。通常は1日間〜 1年間、好ましくは1週間〜3ヶ月間である。なお、本発明の製剤は、ヒトだけでなく、ヒト以外の動物に対しても使用することができる。
The administration interval is not particularly limited. It is preferable to administer continuously. Usually, it is 1 day to 1 year, preferably 1 week to 3 months. The preparation of the present invention can be used not only for humans but also for animals other than humans.

以下に実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例により限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

本発明及び実施例における測定条件は以下の通りである。
(筋組織pHの測定)
麻酔後, 微小ガラス電極(CMN−141, Chemical Instruments)を用いて前脛骨筋と腓腹筋の間質pHを測定した。
The measurement conditions in the present invention and examples are as follows.
(Measurement of muscle tissue pH)
After anesthesia, the interstitial pH of the anterior tibialis and gastrocnemius was measured using a micro glass electrode (CMN-141, Chemical Instruments).

(PGC−1α活性の測定)
筋中のPGC−1α量をwestern-blottingにより測定した。安静群の平目筋をホモジナイズし, BCA法(BCATM Protein Assay Kit, Thermo SCIENTIFIC)を用いてタンパク質濃度を測定した。調製したタンパク質サンプルを10%ゲル(Wako)に流し込み, 電気泳動により分離し, 転写装置(iBlot, Invitrogen)を用いてメンブレンに転写した。30分間のブロッキング後(EzBlockChemi, ATTO CORPORATION), Tris buffered saline(BIO-RAD Laboratories)-Tween20(Wako)、TBS−Tで5分間, 3回洗浄し, 1次抗体にanti−PGC−1α抗体(CHEMICON International)を用いて室温で60分間反応させた。TBSTで5分間, 3回洗浄し, 2次抗体にanti-rabbit抗体(GE Healthcare)を用いて室温で60分間反応させた。TBSTで5分間, 3回洗浄し, 発色剤(ECL plus, GE Healthcare)を4分間反応させた。画像解析装置(ImageQuant LAS 4000, GE Healthcare)を用いてバンドを検出し, 数値化した。その後, コントロール群に対する相対比を求めた。
(Measurement of PGC-1α activity)
The amount of PGC-1α in the muscle was measured by western-blotting. The flat muscles of the resting group were homogenized and the protein concentration was measured using the BCA method (BCA Protein Assay Kit, Thermo SCIENTIFIC). The prepared protein sample was poured into a 10% gel (Wako), separated by electrophoresis, and transferred to a membrane using a transfer device (iBlot, Invitrogen). After blocking for 30 minutes (EzBlockChemi, ATTO CORPORATION), Tris buffered saline (BIO-RAD Laboratories) -Tween20 (Wako), washed 5 times with TBS-T for 5 minutes, and anti-PGC-1α antibody as the primary antibody ( CHEMICON International) for 60 minutes at room temperature. The plate was washed 3 times with TBST for 5 minutes, and reacted with the secondary antibody at room temperature for 60 minutes using an anti-rabbit antibody (GE Healthcare). The plate was washed 3 times with TBST for 5 minutes, and reacted with a color former (ECL plus, GE Healthcare) for 4 minutes. Bands were detected and digitized using an image analyzer (ImageQuant LAS 4000, GE Healthcare). Then, the relative ratio to the control group was obtained.

(ミトコンドリアDNAの測定)
安静群の平目筋をDNA分離試薬(DNA zol BD Reagent, Invitrogen)でホモジナイズした後,DNAを抽出した。β−actin(核DNAコード)とcytochrome oxidase II(COX−II)(ミトコンドリアDNAコード)をpolymerase chain reactionで増幅し, DNAコピー数を定量した。両者の比を用いてミトコンドリアDNA(mtDNA)量を求めた。
(Measurement of mitochondrial DNA)
Rest the flat muscles of the rest group with DNA separation reagent (DNA zol DNA was extracted after homogenization with BD Reagent, Invitrogen. β-actin (nuclear DNA code) and cytochrome oxidase II (COX-II) (mitochondrial DNA code) were amplified by polymerase chain reaction, and the DNA copy number was quantified. The ratio of both was used to determine the amount of mitochondrial DNA (mtDNA).

以下の方法で、グルタチオンの運動機能性向上効果を測定した。
試験例1
飼育方法および実験プロトコール
実験動物には7週齢のICR雄性マウス(清水実験材料)を用いて実験を行った。1週間の予備飼育後, 体重をもとにグルタチオン群(n=21)と対照群(n=21)の2群にわけた。グルタチオン(興人ライフサイエンス株式会社)を2.0%溶液に調整し, グルタチオン群に5μl/g体重を1日1回,2週間経口投与した。対照群には蒸留水を同量,同期間経口投与した。飼育室は12時間の明暗サイクルが保たれ,プラスティックゲージ内で水と飼料は自由に摂取できるものとした。
最終日にさらに対照安静群(n=13), 対照運動群(n=8),グルタチオン安静群(n=13)およびグルタチオン運動群(n=8)の4群にわけた。運動群にはトレッドミル走運動を負荷し, その後, 全群解剖を行った。
The effect of improving glutathione's motor functionality was measured by the following method.
Test example 1
Breeding Method and Experimental Protocol Experiments were conducted using 7-week-old ICR male mice (Shimizu Experimental Materials) as experimental animals. After one week of preliminary breeding, the group was divided into two groups based on body weight: glutathione group (n = 21) and control group (n = 21). Glutathione (Kojin Life Science Co., Ltd.) was adjusted to a 2.0% solution, and 5 μl / g body weight was orally administered to the glutathione group once a day for 2 weeks. In the control group, the same amount of distilled water was orally administered during the same period. The breeding room maintained a 12-hour light-dark cycle, and water and feed could be freely consumed within the plastic gauge.
On the final day, it was further divided into 4 groups: a control rest group (n = 13), a control exercise group (n = 8), a glutathione rest group (n = 13), and a glutathione exercise group (n = 8). The exercise group was loaded with treadmill running, and then the whole group was dissected.

試験例2
運動および解剖プロトコール
運動負荷試験は, トレッドミル(MK680, 室町機械)を用いた。運動負荷実施日に, 安静群は運動負荷を行わず解剖し, 運動群には速度25m/分で30分間のトレッドミル走運動を負荷し, 運動負荷終了直後に解剖を行った。麻酔下にて筋組織pHを測定した後, 両脚の平目筋を摘出した。筋肉はドライアイスで凍結後, 測定まで−80℃で保存した。
Test example 2
Exercise and dissection protocol A treadmill (MK680, Muromachi Kikai) was used for the exercise load test. On the day of exercise, the rest group was dissected without any exercise load, the exercise group was subjected to a treadmill running exercise for 30 minutes at a speed of 25 m / min, and dissection was performed immediately after the end of the exercise load. The muscle tissue pH was measured under anesthesia, and then the flat muscles of both legs were removed. Muscles were stored at -80 ° C until measurement after freezing in dry ice.

筋組織pH
筋組織pHは, 安静時と比較して運動後で有意に低値を示した(p < 0.001)。また, 対照運動群と比較してグルタチオン運動群で有意に高値を示した(p < 0.05)。(図1、図2)
比較として、ビタミンCをグルタチオンと同様に投与したデータを取得した。
Muscle tissue pH
Muscle tissue pH was significantly lower after exercise than at rest (p <0.001). The glutathione exercise group was significantly higher than the control exercise group (p <0.05). (Fig. 1 and Fig. 2)
For comparison, data obtained by administering vitamin C in the same manner as glutathione was obtained.

骨格筋PGC−1αおよびmtDNA
平目筋におけるPGC−1α発現量は対照群と比較してグルタチオン群で有意に高値を示した(p < 0.05)。mtDNA量(COX−II/β−actin)の相対比は、対照群と比較してグルタチオン群で有意に高値を示した(p < 0.05)。(図3、図4)
比較としてビタミンCのPGC−1αの発現量をグルタチオンと同条件でデータを取得した。
Skeletal muscle PGC-1α and mtDNA
The expression level of PGC-1α in the flat eye muscle was significantly higher in the glutathione group than in the control group (p <0.05). The relative ratio of mtDNA amount (COX-II / β-actin) was significantly higher in the glutathione group than in the control group (p <0.05). (Fig. 3, Fig. 4)
As a comparison, data were obtained under the same conditions as the glutathione expression level of vitamin C PGC-1α.

データはすべて平均値±標準誤差で示した。4群間の比較には二元配置分散分析を行った後, 多重比較検定(Bonferroni)を行った。2群間の比較にはStudentのt検定を行った。有意水準は5%とした。   All data are shown as mean ± standard error. For comparison between the four groups, a two-way analysis of variance was performed, followed by a multiple comparison test (Bonferroni). For comparison between the two groups, Student's t-test was performed. The significance level was 5%.

測定の結果、グルタチオンを投与した群については、筋組織pHの低下が見られず、PGC−1α発現量の増加、mtDNA量の増加が見られた。このことから、グルタチオンを投与することで、運動機能の向上が確認された。一方、ビタミンCでは、グルタチオンの効果が確認されなかった。   As a result of the measurement, in the group to which glutathione was administered, no decrease in muscle tissue pH was observed, but an increase in the expression level of PGC-1α and an increase in the amount of mtDNA were observed. From this, improvement of motor function was confirmed by administering glutathione. On the other hand, with vitamin C, the effect of glutathione was not confirmed.

以上より、グルタチオンを有効成分として含む、安全な運動機能性向上剤を提供することができる。また、PGC−1αの活性化により、運動時だけでなく、安静時においても、筋肉組織中の代謝を活性化させ体内の脂肪代謝を促進するため、糖尿病などの生活習慣病を予防することも可能となる。 From the above, it is possible to provide a safe motor function improver containing glutathione as an active ingredient. In addition, activation of PGC-1α activates metabolism in muscle tissue not only during exercise but also at rest, and promotes fat metabolism in the body, thus preventing lifestyle-related diseases such as diabetes. It becomes possible.

Claims (1)

200mg〜3gのグルタチオンを有効成分として含む、運動代謝促進剤。 An exercise metabolism promoter comprising 200 mg to 3 g of glutathione as an active ingredient.
JP2013173445A 2013-08-23 2013-08-23 Motor function improver Active JP6288757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173445A JP6288757B2 (en) 2013-08-23 2013-08-23 Motor function improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173445A JP6288757B2 (en) 2013-08-23 2013-08-23 Motor function improver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017224123A Division JP2018027983A (en) 2017-11-22 2017-11-22 Physical function improver

Publications (2)

Publication Number Publication Date
JP2015040204A JP2015040204A (en) 2015-03-02
JP6288757B2 true JP6288757B2 (en) 2018-03-07

Family

ID=52694556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173445A Active JP6288757B2 (en) 2013-08-23 2013-08-23 Motor function improver

Country Status (1)

Country Link
JP (1) JP6288757B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491942B2 (en) * 2015-04-30 2019-03-27 ユニ・チャーム株式会社 Animal toilet
JP2019123697A (en) * 2018-01-18 2019-07-25 京都府公立大学法人 Myokine excretion promoter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916912A (en) * 1997-06-16 1999-06-29 The Regents Of The University Of California Dietary composition for enhancing metabolism and alleviating oxidative stress
JP2003018955A (en) * 2001-07-10 2003-01-21 Ko Gijutsu Kenkyusho:Kk Health food
AT502435B1 (en) * 2002-11-19 2008-01-15 Oekopharm Forschungs Und Entwi PHARMACEUTICAL COMPOSITION COMPRISING A HYDROGEN-TRANSFERRING COENZYME AND CHLOROPHYLL
US20090047340A1 (en) * 2006-03-29 2009-02-19 Guilford F Timothy Liposomal reduced glutathione and 1-arginine, including with other ingredient(s), capable of multipath administration for reversal and prevention of obesity and for mitochondrial biogenesis
KR20090064398A (en) * 2006-10-05 2009-06-18 디에스엠 아이피 어셋츠 비.브이. Olive extracts for promoting muscle health
JP2009107962A (en) * 2007-10-29 2009-05-21 Asahi Breweries Ltd Yeast extract-containing composition
JP6423275B2 (en) * 2013-01-21 2018-11-14 協和発酵バイオ株式会社 Nitric oxide concentration increasing agent

Also Published As

Publication number Publication date
JP2015040204A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
Allerton et al. l-Citrulline supplementation: impact on cardiometabolic health
Nieman et al. Immunometabolism: a multi-omics approach to interpreting the influence of exercise and diet on the immune system
Drummond et al. Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging
Duan et al. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice
Etheridge et al. Effects of hypoxia on muscle protein synthesis and anabolic signaling at rest and in response to acute resistance exercise
Moreira et al. Update on metabolism and nutrition therapy in critically ill burned patients
Semaming et al. Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats
Abdelhafiz et al. Diabetes, nutrition, and exercise
Unoki-Kubota et al. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice
Ansari et al. Emblica officinalis improves glycemic status and oxidative stress in STZ induced type 2 diabetic model rats
Liu et al. Roux-en-Y gastric bypass-induced improvement of glucose tolerance and insulin resistance in type 2 diabetic rats are mediated by glucagon-like peptide-1
Weksler-Zangen et al. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: in vivo and in vitro studies
Kim et al. Regulation of signaling molecules associated with insulin action, insulin secretion and pancreatic β-cell mass in the hypoglycemic effects of Korean red ginseng in Goto-Kakizaki rats
Na et al. Anti-fatigue activity of Hovenia dulcis on a swimming mouse model through the inhibition of stress hormone expression and antioxidation
Capece et al. Alpha-lipoic acid and glucose metabolism: A comprehensive update on biochemical and therapeutic features
Panza et al. Vitamin D in the development and progression of alzheimer’s disease: Implications for clinical management
Mantuano et al. Ergogenic effect of BCAAs and L-alanine supplementation: proof-of-concept study in a murine model of physiological exercise
JP6288757B2 (en) Motor function improver
Cho et al. Exercise training improves whole body insulin resistance via adiponectin receptor 1
Wang et al. Cardiovascular disease and exercise: from molecular mechanisms to clinical applications
Tsai et al. High-fat diet reduces the hippocampal content level of lactate which is correlated with the expression of glial glutamate transporters
WO2016141775A1 (en) Uses of jilin ginseng oligopeptide in preparing food product or healthcare food product for combating fatigue
JP2018027983A (en) Physical function improver
Kalko «Korvitin®»-new therapeutic opportunities
Bazyar et al. The effects of rutin supplement on blood pressure markers, some serum antioxidant enzymes, and quality of life in patients with type 2 diabetes mellitus compared with placebo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6288757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250