JP6288756B2 - Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method - Google Patents

Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method Download PDF

Info

Publication number
JP6288756B2
JP6288756B2 JP2013147495A JP2013147495A JP6288756B2 JP 6288756 B2 JP6288756 B2 JP 6288756B2 JP 2013147495 A JP2013147495 A JP 2013147495A JP 2013147495 A JP2013147495 A JP 2013147495A JP 6288756 B2 JP6288756 B2 JP 6288756B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display cell
rubber
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013147495A
Other languages
Japanese (ja)
Other versions
JP2015021984A (en
Inventor
橋本 昌典
昌典 橋本
正弘 内藤
正弘 内藤
大輔 今岡
大輔 今岡
堅太 菅原
堅太 菅原
栄一 西原
栄一 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2013147495A priority Critical patent/JP6288756B2/en
Publication of JP2015021984A publication Critical patent/JP2015021984A/en
Application granted granted Critical
Publication of JP6288756B2 publication Critical patent/JP6288756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液晶表示セルの製造方法及びその方法によって製造される液晶表示セルに関する。より詳細には、製造工程中に液晶が液晶シール剤へ差し込まず、安定に液晶表示セルを製造することができる製造方法、及びその方法によって製造される液晶表示セルに関する。   The present invention relates to a method for manufacturing a liquid crystal display cell and a liquid crystal display cell manufactured by the method. More specifically, the present invention relates to a manufacturing method capable of stably manufacturing a liquid crystal display cell without liquid crystal being inserted into a liquid crystal sealant during the manufacturing process, and a liquid crystal display cell manufactured by the method.

近年の液晶表示セルの大型化に伴い、液晶表示セルの製造方法として、より量産性の高い、いわゆる液晶滴下工法が提案されている(特許文献1、特許文献2)。この液晶滴下工法は、具体的には、一方の基板に形成された液晶シール剤からなる堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後液晶シール剤を硬化する製造方法である。   With the recent increase in size of liquid crystal display cells, a so-called liquid crystal dropping method with higher mass productivity has been proposed as a method for manufacturing liquid crystal display cells (Patent Document 1 and Patent Document 2). Specifically, this liquid crystal dropping method is a manufacturing method in which a liquid crystal is dropped inside a weir made of a liquid crystal sealing agent formed on one substrate, and then the other substrate is bonded, and then the liquid crystal sealing agent is cured. It is.

しかし、液晶滴下工法では、液晶シール剤が硬化する前に液晶と液晶シール剤とが接触するため、液晶による圧力によって液晶シール剤に差込現象が発生し、最悪の場合には、液晶シール剤からなる堰が決壊し、液晶が漏れ出してしまうこともあり、問題とされている。この問題は、光及び熱を併用する液晶滴下工法においても、配線等の影になって十分な紫外線が照射されない部分が存在する場合には発生する。また、紫外線照射を行わず、熱のみで液晶シール剤を硬化する場合には特に大きな問題である。この解決のためには、液晶の滴下量の精度を高めることが必要であるが、それでも液晶シール剤の硬化工程である加熱時に液晶が膨脹するため、上記差込現象を完全に抑えるのは困難である。   However, in the liquid crystal dropping method, the liquid crystal sealant comes into contact with the liquid crystal sealant before the liquid crystal sealant is cured, so that an insertion phenomenon occurs in the liquid crystal sealant due to the pressure of the liquid crystal. The weir is broken, causing liquid crystals to leak out, which is a problem. This problem occurs even in a liquid crystal dropping method using both light and heat when there is a portion that is shaded by wiring or the like and is not irradiated with sufficient ultraviolet rays. Further, it is a particularly serious problem when the liquid crystal sealant is cured only by heat without performing ultraviolet irradiation. In order to solve this problem, it is necessary to improve the accuracy of the liquid crystal dripping amount, but it is still difficult to completely suppress the above-mentioned insertion phenomenon because the liquid crystal expands during heating, which is the curing process of the liquid crystal sealant. It is.

この課題を解決するため、液晶シール剤に関して様々な技術が提案されている。
特許文献3では、有機ベントナイトを用いて上記課題の解決を図っている。この方法は、液晶の差し込みに対して一定の成果は有するものの、十分であるとは言いがたい。
特許文献4には、ヒュームドシリカ、ポリチオールを用いた液晶シール剤を用い、液晶シール剤のBステージ化処理を行う方法が記載されている。しかし、この方法には、工程が長くなってしまう、その工程のための装置が必要となってしまうという欠点がある。
特許文献5には、熱ラジカル重合開始剤を用いて、硬化速度を上げることにより差し込みを防止する液晶滴下工法用液晶シール剤が開示されている。
In order to solve this problem, various techniques have been proposed for liquid crystal sealants.
In patent document 3, the solution of the said subject is aimed at using organic bentonite. Although this method has certain results for liquid crystal insertion, it is difficult to say that this method is sufficient.
Patent Document 4 describes a method of performing a B-stage treatment of a liquid crystal sealant using a liquid crystal sealant using fumed silica and polythiol. However, this method has a drawback that the process becomes long and an apparatus for the process becomes necessary.
Patent Document 5 discloses a liquid crystal sealing agent for a liquid crystal dropping method that uses a thermal radical polymerization initiator to prevent insertion by increasing the curing rate.

このように、上記課題は、液晶シール剤の改良のみによって解決が図られているが、現実的には達成が困難である。このため、液晶表示セルの設計及びそれに合わせた液晶シール剤の設計という2つの側面からの改良が必要となっている。しかし、上記課題を解決するための方法は未だ提案されておらず、液晶の液晶シール剤への差し込みを十分に抑えた液晶表示セルの製造方法は確立されていない。   As described above, the above problem has been solved only by improving the liquid crystal sealant, but it is difficult to achieve in practice. For this reason, improvement from the two aspects of the design of the liquid crystal display cell and the design of the liquid crystal sealant corresponding to the design is required. However, a method for solving the above problem has not yet been proposed, and a method for manufacturing a liquid crystal display cell in which insertion of liquid crystal into a liquid crystal sealant is sufficiently suppressed has not been established.

特開昭63−179323号公報JP-A 63-179323 特開平10−239694号公報JP-A-10-239694 特開2010−14771号公報JP 2010-14771 A 特開2011−150181号公報JP 2011-150181 A 国際公開第2011/061910号International Publication No. 2011/061910

本発明は、液晶表示セル及びその製造方法に関する。より詳細には、製造工程中に液晶が液晶シール剤へ差し込まず、安定に液晶表示セルを製造することができる製造方法、及びその方法によって製造される液晶表示セルを提案するものである。   The present invention relates to a liquid crystal display cell and a manufacturing method thereof. More specifically, the present invention proposes a manufacturing method capable of stably manufacturing a liquid crystal display cell without liquid crystal being inserted into the liquid crystal sealant during the manufacturing process, and a liquid crystal display cell manufactured by the method.

本発明者らは、鋭意検討の結果、2枚の基板により構成される液晶表示セルのセルギャップと液晶シール剤中に含有される有機フィラーの平均粒径とが一定の関係にある場合に、液晶の液晶シール剤への差し込みのない液晶表示セルの製造方法を実現できることを発見し、本発明に至った。
なお、本明細書中、「(メタ)アクリル」とは「アクリル及び/又はメタクリル」を意味し、「(メタ)アクリロイル基」とは「アクリロイル基及び/又はメタクリロイル基」を意味する。
また、本明細書中、平均粒子径は平均粒径と記載する場合もあるが、両者は同じ意味を表すものとする。
As a result of intensive studies, the inventors have a fixed relationship between the cell gap of a liquid crystal display cell composed of two substrates and the average particle size of the organic filler contained in the liquid crystal sealant. It has been discovered that a method for manufacturing a liquid crystal display cell without inserting liquid crystal into a liquid crystal sealant can be realized, and the present invention has been achieved.
In the present specification, “(meth) acryl” means “acryl and / or methacryl”, and “(meth) acryloyl group” means “acryloyl group and / or methacryloyl group”.
Moreover, in this specification, although an average particle diameter may be described as an average particle diameter, both shall represent the same meaning.

すなわち本発明は、次の1)〜6)に関するものである。
1)
2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された液晶シール剤からなる堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、次いで紫外線及び/又は熱で上記液晶シール剤を硬化する液晶表示セルの製造方法において、
上記液晶シール剤が(a)有機フィラーを含有し、該(a)有機フィラーの平均粒子径をA(μm)、液晶表示セルのセルギャップをB(μm)とした場合に、下記数式(I)を満たす液晶表示セルの製造方法。

1.2 ≦ A/B ≦ 4.0・・・(I)

2)
上記液晶シール剤の硬化工程が、熱のみによって行われる上記1)に記載の液晶表示セルの製造方法。
3)
上記液晶シール剤が、(b)熱ラジカル重合開始剤、(c)(メタ)アクリロイル基を有する硬化性化合物をさらに含有する上記1)又は2)に記載の液晶表示セルの製造方法。
4)
上記(a)有機フィラーがゴム微粒子である上記1)乃至3)のいずれか一項に記載の液晶表示セルの製造方法。
5)
上記ゴム微粒子がアクリルゴム、スチレンゴム、スチレンオレフィンゴム、又はシリコーンゴムからなる上記4)に記載の液晶表示セルの製造方法。
6)
上記1)乃至5のいずれか一項に記載の製造方法によって製造される液晶表示セル。
That is, the present invention relates to the following 1) to 6).
1)
In a liquid crystal display cell composed of two substrates, after the liquid crystal is dropped inside a weir made of a liquid crystal sealant formed on one substrate, the other substrate is bonded, and then UV and / or heat is applied. In the method for producing a liquid crystal display cell for curing the liquid crystal sealant,
When the liquid crystal sealant contains (a) an organic filler, the average particle diameter of the (a) organic filler is A (μm), and the cell gap of the liquid crystal display cell is B (μm), the following formula (I A method for producing a liquid crystal display cell satisfying

1.2 ≦ A / B ≦ 4.0 (I)

2)
The method for producing a liquid crystal display cell according to 1), wherein the curing step of the liquid crystal sealant is performed only by heat.
3)
The method for producing a liquid crystal display cell according to the above 1) or 2), wherein the liquid crystal sealing agent further contains (b) a thermal radical polymerization initiator and (c) a curable compound having a (meth) acryloyl group.
4)
The method for producing a liquid crystal display cell according to any one of 1) to 3), wherein the (a) organic filler is rubber fine particles.
5)
4. The method for producing a liquid crystal display cell according to 4) above, wherein the rubber fine particles are made of acrylic rubber, styrene rubber, styrene olefin rubber, or silicone rubber.
6)
A liquid crystal display cell manufactured by the manufacturing method according to any one of 1) to 5 above.

本発明の液晶表示セルの製造方法によれば、製造工程中に液晶が液晶シール剤へ差し込むことがないため、極めて安定に液晶表示セルを製造することができる。また、生産タクトの短縮も可能となるため、より一層の量産性向上を実現できる。   According to the method for manufacturing a liquid crystal display cell of the present invention, the liquid crystal is not inserted into the liquid crystal sealant during the manufacturing process, and thus the liquid crystal display cell can be manufactured extremely stably. Moreover, since the production tact can be shortened, further improvement in mass productivity can be realized.

本発明の液晶表示セルの製造方法は、2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された液晶シール剤からなる堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、次いで紫外線及び/又は熱で上記液晶シール剤を硬化する製造方法に関する。すなわち、液晶滴下工法に関するものである。
背景技術の項でも述べたとおり、液晶滴下工法では、液晶シール剤が硬化する前に液晶と液晶シール剤とが接触するため、液晶による圧力によって液晶シール剤に差込現象が発生し、また液晶シール剤からなる堰が決壊し、液晶が漏れ出してしまうこともある。
The method for producing a liquid crystal display cell according to the present invention is a liquid crystal display cell constituted by two substrates, in which a liquid crystal is dropped inside a weir made of a liquid crystal sealant formed on one substrate, and then the other substrate. And then, the liquid crystal sealant is cured by ultraviolet rays and / or heat. That is, it relates to a liquid crystal dropping method.
As described in the background section, in the liquid crystal dropping method, the liquid crystal and the liquid crystal sealant come into contact with each other before the liquid crystal sealant is cured. The weir made of the sealing agent may break down and the liquid crystal may leak out.

この液晶滴下工法において、液晶シール剤中に含有される有機フィラーの平均粒子径A(μm)と、液晶表示セルのセルギャップB(μm)とを一定の関係に保った場合に、液晶の液晶シール剤への差し込みは極めて少なくなる。これは、上下基板の圧力によって圧縮された有機フィラーが堰として作用して、液晶が膨張する圧力に対抗するためであると考えられる。
この一定の関係とは、上記数式(I)で表される関係である。A/Bの値が、1.2より小さい場合には、有機フィラーの圧縮が不十分であり、また、4.0より大きくなると、液晶表示セルのセルギャップが目的のギャップまで潰れなくなる場合がある。A/Bの値として、さらに好ましくは1.5以上3.8以下であり、特に好ましくは2.0以上3.5以下である。
ここで、有機フィラーの平均粒径は、レーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)等により測定することができる。
また、本明細書において、セルギャップとは上下基板間の液晶シール剤の厚み(シールギャップ)と定義する。
In this liquid crystal dropping method, when the average particle diameter A (μm) of the organic filler contained in the liquid crystal sealing agent and the cell gap B (μm) of the liquid crystal display cell are maintained in a certain relationship, the liquid crystal liquid crystal There is very little insertion into the sealant. This is considered to be because the organic filler compressed by the pressure of the upper and lower substrates acts as a weir to counter the pressure at which the liquid crystal expands.
This fixed relationship is a relationship represented by the above mathematical formula (I). When the value of A / B is smaller than 1.2, the compression of the organic filler is insufficient, and when it is larger than 4.0, the cell gap of the liquid crystal display cell may not be crushed to the target gap. is there. The value of A / B is more preferably 1.5 or more and 3.8 or less, and particularly preferably 2.0 or more and 3.5 or less.
Here, the average particle size of the organic filler can be measured with a laser diffraction / scattering particle size distribution measuring device (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
In this specification, the cell gap is defined as the thickness of the liquid crystal sealant between the upper and lower substrates (seal gap).

本発明の液晶表示セルの製造方法に使用される液晶シール剤は、(a)有機フィラー(以下、成分(a)ともいう。)を含有する。この(a)有機フィラーは平均粒径において上記条件を満たす限り特に限定されるものではなく、例えばナイロン6、ナイロン12、ナイロン66等のポリアミド微粒子、テトラフルオロエチレン、フッ化ビニリデン等のフッ素系微粒子、ポリエチレン、ポリプロピレン等のオレフィン系微粒子、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系微粒子、天然ゴム、イソプレンゴム、アクリルゴム等のゴム微粒子等が挙げられる。   The liquid crystal sealing agent used in the method for producing a liquid crystal display cell of the present invention contains (a) an organic filler (hereinafter also referred to as component (a)). The (a) organic filler is not particularly limited as long as the above average particle diameter satisfies the above conditions. For example, polyamide fine particles such as nylon 6, nylon 12 and nylon 66, and fluorine fine particles such as tetrafluoroethylene and vinylidene fluoride. Olefin-based fine particles such as polyethylene and polypropylene, polyester-based fine particles such as polyethylene terephthalate and polyethylene naphthalate, and rubber fine particles such as natural rubber, isoprene rubber and acrylic rubber.

上記(a)有機フィラーは、ゴム微粒子である場合が好ましい。ゴム微粒子としては、例えば天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン・ブタジエンゴム(SBR)、ブチルゴム(IIR)、二トリルゴム(NBR)、エチレン・プロピレンゴム( EPM、EP)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)、クロロスルホン化ポリエチレンゴム(CSM)、ウレタンゴム(PUR)、シリコーンゴム(Si、SR)、フッ素ゴム(FKM、FPM)、多硫化ゴム(チオコール)等が挙げられ、単独のゴム微粒子でも良いし、2種以上を用いてコアシェル構造としても良い。また2種以上を併用しても良い。これらのうち、好ましくは、ウレタンゴム、アクリルゴム、スチレンゴム、スチレンオレフィンゴム、又はシリコーンゴムであり、特に好ましくはアクリルゴム又はシリコーンゴムである。
アクリルゴムを使用する場合、2種類のアクリルゴムからなるコアシェル構造のアクリルゴムである場合が好ましく、コア層がn−ブチルアクリレートであり、シェル層がメチルメタクリレートであるものが特に好ましい。これはゼフィアックRTMF−351としてアイカ工業株式会社から販売されている。
また、上記シリコーンゴムとしては、オルガノポリシロキサン架橋物粉体、直鎖のジメチルポリシロキサン架橋物粉体等が挙げられる。また、複合シリコーンゴムとしては、上記シリコーンゴムの表面にシリコーン樹脂(例えば、ポリオルガノシルセスキオキサン樹脂)を被覆したものが挙げられる。これらのゴム微粒子のうち、特に好ましいのは、直鎖のジメチルポリシロキサン架橋粉末のシリコーンゴム又はシリコーン樹脂被覆直鎖ジメチルポリシロキサン架橋粉末の複合シリコーンゴム微粒子である。これらのものは、単独で用いても良いし、2種以上を併用しても良い。また、ゴム粉末の形状は、添加後の粘度の増粘が少ない球状が良い。
上記有機フィラー(a)の具体例としては、シリコーンゴムとしては、KMP594、KMP597、KMP598(信越化学工業株式会社製)、EP2001(東レダウコーニング株式会社製)、ウレタンゴムとしてはJB−800T、HB−800BK(根上工業株式会社)、アクリルゴムとしては、AFX−8(積水化成品工業株式会社製)、F351S(アイカ工業株式会社製)、W−341、メタブレンシリーズ(三菱レーヨン株式会社製)スチレンゴムとしては、ラバロンシリーズ(三菱化学株式会社製)、スチレンオレフィンゴムとしてはTRシリーズ(JSR株式会社製)、セプトンシリーズ(株式会社クラレ)等を挙げることができる。ただし、これらに限定されることはない。
本発明で使用される液晶シール剤における(a)有機フィラーの含有量は、液晶シール剤の総量を100質量部とした場合に、5〜50質量部、好ましくは5〜40質量部である。
The (a) organic filler is preferably rubber fine particles. Examples of the rubber fine particles include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene / butadiene rubber (SBR), butyl rubber (IIR), nitrile rubber (NBR), ethylene / propylene rubber (EPM, EP), chloroprene rubber (CR), acrylic rubber (ACM, ANM), chlorosulfonated polyethylene rubber (CSM), urethane rubber (PUR), silicone rubber (Si, SR), fluoro rubber (FKM, FPM), polysulfide Examples thereof include rubber (thiocol) and the like, and may be a single rubber fine particle, or a core-shell structure using two or more kinds. Two or more kinds may be used in combination. Among these, urethane rubber, acrylic rubber, styrene rubber, styrene olefin rubber, or silicone rubber is preferable, and acrylic rubber or silicone rubber is particularly preferable.
When the acrylic rubber is used, it is preferably a core-shell structure acrylic rubber composed of two kinds of acrylic rubbers, particularly preferably the core layer is n-butyl acrylate and the shell layer is methyl methacrylate. This is sold by Aika Industries as Zefiac RTM F-351.
Examples of the silicone rubber include crosslinked organopolysiloxane powder and linear dimethylpolysiloxane crosslinked powder. Examples of the composite silicone rubber include those obtained by coating the silicone rubber surface with a silicone resin (for example, polyorganosilsesquioxane resin). Among these rubber fine particles, a silicone rubber of a linear dimethylpolysiloxane crosslinked powder or a composite silicone rubber fine particle of a silicone resin-coated linear dimethylpolysiloxane crosslinked powder is particularly preferable. These may be used alone or in combination of two or more. The shape of the rubber powder is preferably a sphere with little increase in viscosity after addition.
Specific examples of the organic filler (a) include KMP594, KMP597, KMP598 (manufactured by Shin-Etsu Chemical Co., Ltd.), EP2001 (manufactured by Toray Dow Corning Co., Ltd.) as silicone rubber, and JB-800T and HB as urethane rubber. -800BK (Negami Kogyo Co., Ltd.) and acrylic rubber include AFX-8 (manufactured by Sekisui Plastics Kogyo Co., Ltd.), F351S (manufactured by Aika Kogyo Co., Ltd.), W-341, metabrene series (manufactured by Mitsubishi Rayon Co., Ltd.) Examples of the styrene rubber include the Lavalon series (manufactured by Mitsubishi Chemical Corporation), and examples of the styrene olefin rubber include the TR series (manufactured by JSR Corporation) and the Septon series (Kuraray Co., Ltd.). However, it is not limited to these.
The content of the (a) organic filler in the liquid crystal sealant used in the present invention is 5 to 50 parts by mass, preferably 5 to 40 parts by mass when the total amount of the liquid crystal sealant is 100 parts by mass.

また、本願発明の構成を実現する為に、有機フィラー(a)に分級操作を行い、所望の平均粒子径のものを得ることができる。この操作を行うと粗大粒子の除去にも役立ちシャープな粒度分布をもつ有機フィラー(a)を準備することができる。粗大粒子は液晶のセルギャップ不良を引き起こし易くする為、この分級操作を行う方が好ましい。
分級操作は例えばジェットミル粉砕機JM−0202(株式会社セイシン企業製)にて解砕後、気流式分級機クラッシールN05(株式会社セイシン企業製)を用いて行うことができる。なお、より効率的にこの操作を行う為に、分散剤等を使用しても良い。
Moreover, in order to implement | achieve the structure of this invention, a classification operation is performed to an organic filler (a) and the thing of a desired average particle diameter can be obtained. When this operation is performed, it is useful for removing coarse particles, and an organic filler (a) having a sharp particle size distribution can be prepared. Since the coarse particles are liable to cause a cell gap defect of the liquid crystal, it is preferable to perform this classification operation.
The classification operation can be performed, for example, by using an airflow classifier crusheal N05 (manufactured by Seishin Enterprise Co., Ltd.) after being crushed by a jet mill pulverizer JM-0202 (manufactured by Seishin Enterprise Co., Ltd.). In order to perform this operation more efficiently, a dispersant or the like may be used.

本発明の液晶表示セルの製造方法は、液晶の液晶シール剤への差し込みが極めて少ない為、熱のみによる液晶滴下工法への適用も可能であり、生産タクト等の観点から、より好ましい。   The method for producing a liquid crystal display cell of the present invention is more preferable from the viewpoint of production tact and the like because it can be applied to a liquid crystal dropping method only by heat because the insertion of liquid crystal into a liquid crystal sealant is extremely small.

本発明の液晶表示セルの製造方法に使用される液晶シール剤は、上記条件を満たす有機フィラー(a)を含有すれば、他の構成成分は特に限定されないが、(b)熱ラジカル重合開始剤、(c)(メタ)アクリロイル基を有する硬化性化合物を含有する場合が特に好ましい。   The liquid crystal sealing agent used in the method for producing a liquid crystal display cell of the present invention is not particularly limited as long as it contains an organic filler (a) that satisfies the above conditions, but (b) a thermal radical polymerization initiator. (C) A case where a curable compound having a (meth) acryloyl group is contained is particularly preferable.

上記成分(b)熱ラジカル重合開始剤は、加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されないが、有機過酸化物、アゾ化合物、ベンゾイン化合物、ベンゾインエーテル化合物、アセトフェノン化合物、ベンゾピナコール等が挙げられ、ベンゾピナコールが好適に用いられる。例えば、有機過酸化物としては、カヤメックRTMA、M、R、L、LH、SP-30C、パーカドックスCH−50L、BC−FF、カドックスB−40ES、パーカドックス14、トリゴノックスRTM22−70E、23−C70、121、121−50E、121−LS50E、21−LS50E、42、42LS、カヤエステルRTMP−70、TMPO−70、CND−C70、OO−50E、AN、カヤブチルRTMB、パーカドックス16、カヤカルボンRTMBIC−75、AIC−75(以上、化薬アクゾ株式会社製)、パーメックRTMN、H、S、F、D、G、パーヘキサRTMH、HC、パTMH、C、V、22、MC、パーキュアーRTMAH、AL、HB、パーブチルRTMH、C、ND、L、パークミルRTMH、D、パーロイルRTMIB、IPP、パーオクタRTMND、(以上、日油株式会社製)等などが市販品として入手可能である。また、アゾ化合物としては、VA−044、V−070、VPE−0201、VSP−1001等(以上、和光純薬工業株式会社製)等が市販品として入手可能である。なお、本明細書中、上付きのRTMは登録商標を意味する。
上記(b)熱ラジカル重合開始剤として、好ましいのは、分子内に酸素−酸素結合(−O−O−)又は窒素−窒素結合(−N=N−)を有さない熱ラジカル重合開始剤である。分子内に酸素−酸素結合(−O−O−)や窒素−窒素結合(−N=N−)を有する熱ラジカル重合開始剤は、ラジカル発生時に多量の酸素や窒素を発するため、液晶シール剤中に気泡を残した状態で硬化し、接着強度等の特性を低下させる虞がある。ベンゾピナコール系の熱ラジカル重合開始剤(ベンゾピナコールを化学的に修飾したものを含む)が特に好適である。具体的には、ベンゾピナコール、1, 2−ジメトキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ジエトキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ジフェノキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ジメトキシ−1,1, 2,2−テトラ(4−メチルフェニル)エタン、1, 2−ジフェノキシ−1,1, 2,2−テトラ(4−メトキシフェニル)エタン、1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(トリエチルシロキシ)−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(t−ブチルジメチルシロキシ)−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1, 2,2−テトラフェニルエタン等、が挙げられ、好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1, 2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンであり、さらに好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1, 2,2−テトラフェニルエタン、1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンであり、特に好ましくは1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンである。
上記ベンゾピナコールは東京化成工業株式会社、和光純薬工業株式会社等から市販されている。また、ベンゾピナコールのヒドロキシ基をエーテル化することは、周知の方法によって容易に合成可能である。また、ベンゾピナコールのヒドロキシ基をシリルエーテル化することは、対応するベンゾピナコールと各種シリル化剤をピリジン等の塩基性触媒下で加熱させる方法により合成して得ることができる。シリル化剤としては、一般に知られているトリメチルシリル化剤であるトリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)やトリエチルシリル化剤としてトリエチルクロロシラン(TECS)、t−ブチルジメチルシリル化剤としてt−ブチルメチルシラン(TBMS)等が挙げられる。これらの試薬はシリコン誘導体メーカー等の市場から容易に入手することが出来る。シリル化剤の反応量としては対象化合物の水酸基1モルに対して1.0〜5.0倍モルが好ましい。さらに好ましくは1.5〜3.0倍モルである。1.0倍モルより少ないと反応効率が悪く、反応時間が長くなるため熱分解を促進してしまう。5.0倍モルより多いと回収の際に分離が悪くなったり、精製が困難になったりしてしまう。
The component (b) thermal radical polymerization initiator is not particularly limited as long as it is a compound that generates radicals by heating and initiates a chain polymerization reaction, but is not limited to organic peroxides, azo compounds, benzoin compounds, benzoin ether compounds, acetophenone compounds. Benzopinacol and the like, and benzopinacol is preferably used. For example, examples of the organic peroxide include Kayamek RTM A, M, R, L, LH, SP-30C, Parkadox CH-50L, BC-FF, Kadox B-40ES, Parkadox 14, Trigonox RTM 22-70E, 23-C70, 121, 121-50E, 121-LS50E, 21-LS50E, 42, 42LS, Kaya Ester RTM P-70, TMPO-70, CND-C70, OO-50E, AN, Kayabutyl RTM B, Parkardox 16 , Kayacarbon RTM BIC-75, AIC-75 (manufactured by Kayaku Akzo Co., Ltd.), Permec RTM N, H, S, F, D, G, Perhexa RTM H, HC, Pat TMH, C, V, 22, MC, Percure RTM AH, AL, HB, Perbutyl RTM H, C, ND, L, Parkmi Le RTM H, D, Parroyl RTM IB, IPP, Per Octa RTM ND, (manufactured by NOF CORPORATION) and the like are available as commercial products. Moreover, as an azo compound, VA-044, V-070, VPE-0201, VSP-1001, etc. (above, Wako Pure Chemical Industries Ltd. make) etc. are available as a commercial item. In the present specification, the superscript RTM means a registered trademark.
As the thermal radical polymerization initiator (b), a thermal radical polymerization initiator having no oxygen-oxygen bond (—O—O—) or nitrogen-nitrogen bond (—N═N—) in the molecule is preferable. It is. A thermal radical polymerization initiator having an oxygen-oxygen bond (—O—O—) or a nitrogen-nitrogen bond (—N═N—) in the molecule emits a large amount of oxygen or nitrogen when a radical is generated. There exists a possibility that it hardens | cures in the state which left the bubble inside, and characteristics, such as adhesive strength, may be reduced. Particularly preferred are benzopinacol-based thermal radical polymerization initiators (including those obtained by chemically modifying benzopinacol). Specifically, benzopinacol, 1,2-dimethoxy-1,1,2,2-tetraphenylethane, 1,2-diethoxy-1,1,2,2-tetraphenylethane, 1,2-diphenoxy- 1,1,2,2-tetraphenylethane, 1,2-dimethoxy-1,1,2,2-tetra (4-methylphenyl) ethane, 1,2-diphenoxy-1,1,2,2-tetra (4-methoxyphenyl) ethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, 1,2-bis (triethylsiloxy) -1,1,2,2-tetraphenyl Ethane, 1,2-bis (t-butyldimethylsiloxy) -1,1,2,2-tetraphenylethane, 1-hydroxy-2-trimethylsiloxy-1,1,2,2-tetraphenylethane, 1- Hydroxy 2-triethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-tert-butyldimethylsiloxy-1,1,2,2-tetraphenylethane, and the like are preferable, and preferably 1- Hydroxy-2-trimethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-triethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-t-butyldimethyl Siloxy-1,1,2,2-tetraphenylethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, more preferably 1-hydroxy-2-trimethylsiloxy- 1,1,2,2-tetraphenylethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, especially The Mashiku 1, 2- bis (trimethylsiloxy) -1,1, 2,2-tetraphenyl ethane.
The benzopinacol is commercially available from Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd. Moreover, etherification of the hydroxy group of benzopinacol can be easily synthesized by a known method. Moreover, silyl etherification of the hydroxy group of benzopinacol can be obtained by synthesizing by a method in which the corresponding benzopinacol and various silylating agents are heated under a basic catalyst such as pyridine. Examples of silylating agents include trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and triethylsilylating agents, which are generally known trimethylsilylating agents. Examples of triethylchlorosilane (TECS) and t-butyldimethylsilylating agent include t-butylmethylsilane (TBMS). These reagents can be easily obtained from markets such as silicon derivative manufacturers. The reaction amount of the silylating agent is preferably 1.0 to 5.0 times mol for 1 mol of the hydroxyl group of the target compound. More preferably, it is 1.5-3.0 times mole. When the amount is less than 1.0 times mol, the reaction efficiency is poor and the reaction time is prolonged, so that thermal decomposition is promoted. When the amount is more than 5.0 times mol, separation may be deteriorated during collection or purification may be difficult.

該(b)熱ラジカル重合開始剤は粒径を細かくし、均一に分散することが好ましい。その平均粒径は、大きすぎると狭ギャップの液晶表示セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成が上手くできない等の不良要因となるため、5μm以下が好ましく、より好ましくは3μm以下である。また、際限なく細かくしても差し支えないが、通常下限は0.1μm程度である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定できる。   The (b) thermal radical polymerization initiator preferably has a fine particle size and is uniformly dispersed. The average particle size is preferably 5 μm or less, more preferably 3 μm or less, because if the average particle size is too large, it becomes a cause of defects such as inability to successfully form a gap when the upper and lower glass substrates are bonded together during the production of a narrow gap liquid crystal display cell. . Moreover, although it does not matter even if it makes it infinitely small, usually a minimum is about 0.1 micrometer. The particle size can be measured by a laser diffraction / scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).

(b)該熱ラジカル重合開始剤の含有量としては、本発明で使用される液晶シール剤の総量を100質量部とした場合、0.0001〜10質量部であることが好ましく、さらに好ましくは0.0005〜5質量部であり、0.001〜3質量部が特に好ましい。   (B) The content of the thermal radical polymerization initiator is preferably 0.0001 to 10 parts by mass, more preferably 100 parts by mass when the total amount of the liquid crystal sealant used in the present invention is 100 parts by mass. It is 0.0005-5 mass parts, and 0.001-3 mass parts is especially preferable.

上記(c)(メタ)アクリロイル基を有する硬化性化合物は、例えば(メタ)アクリルエステル、エポキシ(メタ)アクリレート等が挙げられる。(メタ)アクリルエステルとしては、ベンジルメタクリレート、シクロヘキシルメタクリレート、グリセロールジメタクリレート、グリセロールトリアクリレート、EO変性グリセロールトリアクリレート、ペンタエリスリトールアクリレート、トリメチロールプロパントリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、フロログリシノールトリアクリレート等が挙げられる。エポキシ(メタ)アクリレートは、エポキシ樹脂と(メタ)アクリル酸との反応により公知の方法で得られる。原料となるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点から、レゾルシン骨格を有するエポキシ樹脂が好ましく、例えばレゾルシンジグリシジルエーテル等である。また、エポキシ基と(メタ)アクリロイル基との比率は限定されるものではなく、工程適合性及び液晶汚染性の観点から適切に選択される。
したがって、好ましい(メタ)アクリロイル基を有する硬化性化合物は、(メタ)アクリロイル基を有し、さらにレゾルシン骨格を有する硬化性化合物であり、例えば、レゾルシンジグリシジルエーテルのアクリル酸エステルやレゾルシンジグリシジルエーテルのメタクリル酸エステルである。
また、(c)(メタ)アクリロイル基を有する硬化性化合物の液晶滴下工法用液晶シール剤中に占める含有率としては、液晶シール剤の総量を100質量部とした場合に、30〜90質量部の範囲内であることが好ましく、さらに好ましくは40〜80質量部程度である。
Examples of the curable compound having (c) (meth) acryloyl group include (meth) acrylic ester and epoxy (meth) acrylate. (Meth) acrylic esters include benzyl methacrylate, cyclohexyl methacrylate, glycerol dimethacrylate, glycerol triacrylate, EO-modified glycerol triacrylate, pentaerythritol acrylate, trimethylolpropane triacrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol. Examples include hexaacrylate and phloroglucinol triacrylate. Epoxy (meth) acrylate is obtained by a known method by a reaction between an epoxy resin and (meth) acrylic acid. Although it does not specifically limit as an epoxy resin used as a raw material, An epoxy resin more than bifunctional is preferable, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a phenol novolac type epoxy resin , Cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin , Isocyanurate type epoxy resins, phenol novolac type epoxy resins having a triphenolmethane skeleton, and other difunctional phenolic diglycidyl esters such as catechol and resorcinol Ether compound, bi-functional alcohol diglycidyl ethers of, and their halides, and the like hydrogenated product. Among these, from the viewpoint of liquid crystal contamination, an epoxy resin having a resorcin skeleton is preferable, such as resorcin diglycidyl ether. Further, the ratio of the epoxy group to the (meth) acryloyl group is not limited, and is appropriately selected from the viewpoint of process compatibility and liquid crystal contamination.
Therefore, a preferable curable compound having a (meth) acryloyl group is a curable compound having a (meth) acryloyl group and further having a resorcin skeleton, such as an acrylic acid ester of resorcin diglycidyl ether or resorcin diglycidyl ether. Methacrylic acid ester.
Further, (c) the content of the curable compound having a (meth) acryloyl group in the liquid crystal sealant for the liquid crystal dropping method is 30 to 90 parts by mass when the total amount of the liquid crystal sealant is 100 parts by mass. It is preferable that it is in the range, and more preferably about 40 to 80 parts by mass.

上記成分(c)(メタ)アクリロイル基を有する硬化性化合物中には、一分子中に(メタ)アクリロイル基を3個以上有する化合物を含有する場合が好ましい。一分子中に(メタ)アクリロイル基を3個以上有する化合物は、架橋速度(反応速度)が速いため、優れた差込耐性を実現できる。なお、この方法を用いた場合、熱ラジカル重合開始剤等の量を増やして、反応性を向上させる方法とは異なり、ハンドリング性にも優れる。
一分子中に(メタ)アクリロイル基を3個以上有する化合物としては、KAYARADRTMPET−30、DPHA、DPCA−20、DPCA−30、DPCA−60、DPCA−120、DPEA−12、GPO−303、TMPTA、THE-330、TPA−320、TPA−330、D−310,D−330、RP−1040、UX−5000、DPHA−40H(以上、日本化薬株式会社製)、NKエステルRTMA−9300、A−9300−1CL、A−GLY−9E、A−GLY−20E、A−TMM−3、A−TMM−3LM−N、A−TMPT、AD−TMP、ATM−35E、A−TMMT、A−9550、A−DPH(以上、新中村化学工業株式会社)、SR295、SR350、SR355、SR399、SR494、CD501、SR502、CD9021、SR9035、SR9041(以上、サートマー社製)等を挙げることができる。これらのうち、モル平均分子量が800以上である場合が好ましく、例えばKAYARADRTMDPCA−20、DPCA−30、DPEA−12が好ましい。また、分子内にC1−C4アルキレンオキサイド(−O−R−O−)を含有する硬化性化合物である場合が好ましく、KAYARADRTMDPEA−12が特に好ましい。
The curable compound having a component (c) (meth) acryloyl group preferably contains a compound having 3 or more (meth) acryloyl groups in one molecule. Since a compound having three or more (meth) acryloyl groups in one molecule has a high crosslinking rate (reaction rate), excellent insertion resistance can be realized. In addition, when this method is used, it is excellent in handling property unlike the method of increasing the amount of the thermal radical polymerization initiator and the like to improve the reactivity.
As a compound having three or more (meth) acryloyl groups in one molecule, KAYARAD RTM PET-30, DPHA, DPCA-20, DPCA-30, DPCA-60, DPCA-120, DPEA-12, GPO-303, TMPTA, THE-330, TPA-320, TPA-330, D-310, D-330, RP-1040, UX-5000, DPHA-40H (above, Nippon Kayaku Co., Ltd.), NK Ester RTM A-9300 A-9300-1CL, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3LM-N, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A -9550, A-DPH (above, Shin-Nakamura Chemical Co., Ltd.), SR295, SR350, SR355, SR399, S R494, CD501, SR502, CD9021, SR9035, SR9041 (above, manufactured by Sartomer) and the like. Among these, the case where a molar average molecular weight is 800 or more is preferable, for example, KAYARAD RTM DPCA-20, DPCA-30, and DPEA-12 are preferable. Moreover, the case where it is a curable compound containing C1-C4 alkylene oxide (—O—R—O—) in the molecule is preferable, and KAYARAD RTM DPEA-12 is particularly preferable.

本発明の本発明の液晶表示セルの製造方法に使用される液晶シール剤は、上記成分(a)及び必要な場合に含有される成分(b)、(c)以外に、エポキシ基を有する硬化性化合物、熱硬化剤、シランカップリング剤、無機フィラー、硬化促進剤、顔料、レベリング剤、消泡剤、溶剤等を含有するものであってもよい。   The liquid crystal sealant used in the method for producing a liquid crystal display cell of the present invention is a cured product having an epoxy group in addition to the component (a) and the components (b) and (c) contained when necessary. It may contain a functional compound, a thermosetting agent, a silane coupling agent, an inorganic filler, a curing accelerator, a pigment, a leveling agent, an antifoaming agent, a solvent and the like.

上記エポキシ基を有する硬化性化合物を用いることにより、接着強度向上を図ることができる。エポキシ基を有する硬化性樹としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、及びそれらのハロゲン化物、水素添加物等が挙げられる。これらのうち液晶汚染性の観点より好ましいのはビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂である。エポキシ基を有する硬化性化合物の液晶シール剤中に占める含有量は、液晶シール剤の総量を100質量部とした場合に、1〜30質量部程度である。   By using the curable compound having the epoxy group, the adhesive strength can be improved. The curable tree having an epoxy group is not particularly limited, but is preferably a bifunctional or higher epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type. Epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type Epoxy resins, isocyanurate type epoxy resins, phenol novolac type epoxy resins having a triphenolmethane skeleton, other diglycidyl ethers of bifunctional phenols, bifunctional alcohols Diglycidyl ethers of classes, and their halides, hydrogenated product and the like. Among these, bisphenol type epoxy resin and novolac type epoxy resin are preferable from the viewpoint of liquid crystal contamination. The content of the curable compound having an epoxy group in the liquid crystal sealant is about 1 to 30 parts by mass when the total amount of the liquid crystal sealant is 100 parts by mass.

上記熱硬化剤は特に限定されるものではなく、多価アミン類、多価フェノール類、ヒドラジド化合物等を挙げることができるが、固形の有機酸ヒドラジドが特に好適に用いられる。例えば、芳香族ヒドラジドであるサリチル酸ヒドラジド、安息香酸ヒドラジド、1−ナフトエ酸ヒドラジド、テレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、2,6−ナフトエ酸ジヒドラジド、2,6−ピリジンジヒドラジド、1,2,4−ベンゼントリヒドラジド、1,4,5,8−ナフトエ酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等をあげることが出来る。また、脂肪族ヒドラジド化合物であれば、例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、セバシン酸ジヒドラジド、1,4−シクロヘキサンジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、N,N’−ヘキサメチレンビスセミカルバジド、クエン酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド、1,3−ビス(ヒドラジノカルボノエチル)−5−イソプロピルヒダントイン等のヒダントイン骨格、好ましくはバリンヒダントイン骨格(ヒダントイン環の炭素原子がイソプロピル基で置換された骨格)を有するジヒドラジド化合物、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレート、ビス(2−ヒドラジノカルボニルエチル)イソシアヌレート等をあげることができる。この熱硬化剤は、単独で用いても2種以上混合しても良い。硬化反応性と潜在性とのバランスから好ましくは、イソフタル酸ジヒドラジド、マロン酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレートであり、特に好ましくはマロン酸ジヒドラジド、セバシン酸ジヒドラジドである。かかる熱硬化剤を使用する場合の含有量としては、液晶シール剤の総量を100質量部とした場合に、1〜30質量部程度である。   The thermosetting agent is not particularly limited, and examples thereof include polyvalent amines, polyhydric phenols, hydrazide compounds, and the like, and solid organic acid hydrazide is particularly preferably used. For example, the aromatic hydrazide salicylic acid hydrazide, benzoic acid hydrazide, 1-naphthoic acid hydrazide, terephthalic acid dihydrazide, isophthalic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 2,6-pyridinedihydrazide, 1,2,4-benzene Examples include trihydrazide, 1,4,5,8-naphthoic acid tetrahydrazide, pyromellitic acid tetrahydrazide and the like. Examples of aliphatic hydrazide compounds include form hydrazide, acetohydrazide, propionic acid hydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, sebacic acid dihydrazide. 1,4-cyclohexanedihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, N, N'-hexamethylenebissemicarbazide, citric acid trihydrazide, nitriloacetic acid trihydrazide, cyclohexanetricarboxylic acid trihydrazide, 1,3-bis ( Hydantoin skeletons such as hydrazinocarbonoethyl) -5-isopropylhydantoin, preferably valine hydantoin skeleton (the carbon atom of the hydantoin ring is Dihydrazide compounds having a skeleton substituted with a propyl group), tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (3-hydrazinocarbonylpropyl) isocyanurate, bis (2-hydrazinocarbonylethyl) isocyanurate and the like can be mentioned. These thermosetting agents may be used alone or in combination of two or more. Preferably, from the balance of curing reactivity and latency, isophthalic acid dihydrazide, malonic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) Isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, and tris (3-hydrazinocarbonylpropyl) isocyanurate, particularly preferably malonic acid dihydrazide and sebacic acid dihydrazide. When the thermosetting agent is used, the content is about 1 to 30 parts by mass when the total amount of the liquid crystal sealant is 100 parts by mass.

上記シランカップリング剤を用いて、接着強度向上や耐湿信頼性向上を図ることができる。シランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリメトキシシラン塩酸塩、3−メタクリロキシプロピルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤はKBMシリーズ、KBEシリーズ等として信越化学工業株式会社等によって販売されているため、市場から容易に入手可能である。シランカップリング剤の液晶シール剤に占める含有量は、本発明で使用される液晶シール剤の全体を100質量部とした場合、0.05〜3質量部が好適である。   By using the silane coupling agent, it is possible to improve adhesive strength and moisture resistance reliability. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxy. Silane, N-phenyl-γ-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3 -Black Propyl methyl dimethoxy silane, 3-chloropropyl trimethoxy silane, and the like. Since these silane coupling agents are sold by Shin-Etsu Chemical Co., Ltd. as KBM series, KBE series, etc., they are easily available from the market. The content of the silane coupling agent in the liquid crystal sealant is preferably 0.05 to 3 parts by mass when the total liquid crystal sealant used in the present invention is 100 parts by mass.

上記無機フィラーを用いて、接着強度向上や耐湿信頼性向上を図ることができる。無機フィラーとしては、溶融シリカ、結晶シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは溶融シリカ、結晶シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムであり、さらに好ましくは溶融シリカ、結晶シリカ、アルミナ、タルクである。これら無機フィラーは2種以上を混合して用いても良い。その平均粒径は、大きすぎると狭ギャップの液晶セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成がうまくできない等の不良要因となるため、3μm以下が適当であり、好ましくは2μm以下である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定できる。無機フィラーの液晶シール剤中の含有量は、本発明で使用される液晶シール剤の全体を100質量部とした場合、通常1〜60質量部、好ましくは1〜40質量部である。無機フィラーの含有量が少なすぎる場合、ガラス基板に対する接着強度が低下し、また耐湿信頼性も劣るために、吸湿後の接着強度の低下も大きくなる場合がある。一方、無機フィラーの含有量が多すぎる場合、つぶれにくく液晶セルのギャップ形成ができなくなってしまう虞がある。   By using the inorganic filler, it is possible to improve adhesive strength and moisture resistance reliability. Inorganic fillers include fused silica, crystalline silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, Examples include magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc., preferably fused silica, crystalline silica, silicon nitride, boron nitride , Calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate, more preferably fused silica, crystalline silica, alumina, A torque. These inorganic fillers may be used in combination of two or more. If the average particle size is too large, it becomes a cause of defects such as inability to form a gap when the upper and lower glass substrates are bonded together during the production of a narrow gap liquid crystal cell. . The particle size can be measured by a laser diffraction / scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30). Content in the liquid crystal sealing agent of an inorganic filler is 1-60 mass parts normally, when the whole liquid crystal sealing agent used by this invention is 100 mass parts, Preferably it is 1-40 mass parts. When there is too little content of an inorganic filler, since the adhesive strength with respect to a glass substrate falls and moisture resistance reliability is also inferior, the fall of the adhesive strength after moisture absorption may also become large. On the other hand, when there is too much content of an inorganic filler, there exists a possibility that it may become difficult to collapse and the gap formation of a liquid crystal cell may become impossible.

上記硬化促進剤としては、有機酸やイミダゾール等を挙げることができる。
有機酸としては、有機カルボン酸や有機リン酸等が挙げられるが、有機カルボン酸である場合が好ましい。具体的には、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、フランジカルボン酸等の芳香族カルボン酸、コハク酸、アジピン酸、ドデカン二酸、セバシン酸、チオジプロピオン酸、シクロヘキサンジカルボン酸、トリス(2−カルボキシメチル)イソシアヌレート、トリス(2−カルボキシエチル)イソシアヌレート、トリス(2−カルボキシプロピル)イソシアヌレート、ビス(2−カルボキシエチル)イソシアヌレート等を挙げることができる。
また、イミダゾール化合物としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン、2
,4−ジアミノ−6(2 ’−エチル−4−メチルイミダゾール(1’))エチル−s−トリアジン、2,4− ジアミノ−6(2’−メチルイミダゾール(1 ’))エチル−s−トリアジン・イソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾール等が挙げられる。
硬化促進剤の液晶シール剤中の含有量は、硬化促進剤を使用する場合には、液晶シール剤の総量を100質量部とした場合に、通常0.1〜10質量部、好ましくは0.5〜5質量部である。
Examples of the curing accelerator include organic acids and imidazoles.
Examples of the organic acid include organic carboxylic acids and organic phosphoric acids, but organic carboxylic acids are preferred. Specifically, aromatic carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, benzophenone tetracarboxylic acid, furandicarboxylic acid, succinic acid, adipic acid, dodecanedioic acid, sebacic acid, thiodipropionic acid , Cyclohexanedicarboxylic acid, tris (2-carboxymethyl) isocyanurate, tris (2-carboxyethyl) isocyanurate, tris (2-carboxypropyl) isocyanurate, bis (2-carboxyethyl) isocyanurate and the like. .
Examples of imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, and 1-benzyl. 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′ )) Ethyl-s-triazine, 2,4-diamino-6 (2'-undecylimidazole (1 ')) ethyl-s-triazine, 2
, 4-Diamino-6 (2'-ethyl-4-methylimidazole (1 ')) ethyl-s-triazine, 2,4-Diamino-6 (2'-methylimidazole (1')) ethyl-s-triazine Isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5 -Methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole and the like.
When the curing accelerator is used, the content of the curing accelerator in the liquid crystal sealing agent is usually 0.1 to 10 parts by mass, preferably 0. 5 to 5 parts by mass.

本発明の液晶表示セルは、基板に所定の電極を形成した一対の基板を所定の間隔に対向配置し、周囲を液晶シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は特に限定されない。ここで、基板とはガラス、石英、プラスチック、シリコン等からなる少なくとも一方に光透過性がある組み合わせの基板から構成される。その製法としては、液晶シール剤に、グラスファイバー等のスペーサー(間隙制御材)を添加後、該一対の基板の一方にディスペンサー、スクリーン印刷装置等を用いて該液晶シール剤を塗布した後、必要に応じて、80〜120℃で仮硬化を行う。その後、該液晶シール剤からなる堰の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。場合によっては、液晶シール剤を塗布していない基板に液晶を滴下することもあるが、どちらでも本願発明の効果に影響はない。また、適正なセルのギャップを実現するためには、面内スペーサー(例えばナトコスペーサー等)を一方の基板に、事前に塗布しておくことが好ましい。ギャップ形成後、必要に応じて1000mJ/cm〜6000mJ/cmの紫外線を照射し、その後90〜130℃で1〜2時間硬化することにより本発明の液晶表示セルを得ることができる。 In the liquid crystal display cell of the present invention, a pair of substrates each having a predetermined electrode formed on a substrate are arranged opposite to each other at a predetermined interval, the periphery is sealed with a liquid crystal sealant, and liquid crystal is sealed in the gap. The kind of liquid crystal to be sealed is not particularly limited. Here, the substrate is composed of a combination of substrates made of at least one of glass, quartz, plastic, silicon, etc. and having light transmission properties. As the manufacturing method, after adding a spacer (gap control material) such as glass fiber to the liquid crystal sealant, the liquid crystal sealant is applied to one of the pair of substrates using a dispenser, a screen printing device, etc. Depending on, temporary hardening is performed at 80-120 ° C. Thereafter, the liquid crystal is dropped inside the weir made of the liquid crystal sealant, and the other glass substrate is overlaid in a vacuum, and a gap is created. In some cases, the liquid crystal may be dropped on a substrate not coated with a liquid crystal sealant, but neither of them affects the effect of the present invention. In order to achieve an appropriate cell gap, it is preferable to apply an in-plane spacer (for example, NATCO spacer) to one substrate in advance. After gap formation, as required by irradiation with ultraviolet rays of 1000mJ / cm 2 ~6000mJ / cm 2 , it can then obtain a liquid crystal display cell of the present invention by curing for 1-2 hours at 90 to 130 ° C..

本発明の液晶表示セルの製造方法に使用される液晶シール剤は、例えば次の方法によって得ることができる。まず、(c)成分に必要に応じ、エポキシ基を有する硬化性化合物を溶解混合する。次いでこの混合物に必要に応じてシランカップリング剤を溶解する。次いで(a)成分、(b)成分、必要に応じ、熱硬化剤、無機フィラー、消泡剤、レベリング剤、溶剤等を添加し、公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合し、金属メッシュにて濾過する。   The liquid crystal sealing agent used in the method for producing a liquid crystal display cell of the present invention can be obtained, for example, by the following method. First, if necessary, a curable compound having an epoxy group is dissolved and mixed in the component (c). Next, a silane coupling agent is dissolved in this mixture as necessary. Next, component (a), component (b), and if necessary, a thermosetting agent, an inorganic filler, an antifoaming agent, a leveling agent, a solvent, etc. are added, and a known mixing device such as a three roll, sand mill, ball mill or the like is added. Mix evenly and filter through a metal mesh.

本発明の液晶表示セルの製造方法によれば、製造工程中に、液晶が液晶シール剤へ差し込むことがないため、極めて安定に液晶表示セルを製造することができる。また、生産タクトの短縮も可能となるため、より一層の量産性向上を実現できる。
また、本発明の液晶表示セルは、電圧保持率が高く、イオン密度が低いという液晶表示セルとして必要な特性も充足される。
According to the method for producing a liquid crystal display cell of the present invention, since the liquid crystal is not inserted into the liquid crystal sealant during the production process, the liquid crystal display cell can be produced extremely stably. Moreover, since the production tact can be shortened, further improvement in mass productivity can be realized.
In addition, the liquid crystal display cell of the present invention satisfies the characteristics required for a liquid crystal display cell that has a high voltage holding ratio and a low ion density.

以下、合成例、製造例、実施例により本発明をさらに詳細に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。   EXAMPLES Hereinafter, although a synthesis example, a manufacture example, and an Example demonstrate this invention further in detail, this invention is not limited to an Example. Unless otherwise specified, “part” and “%” in the text are based on mass.

[合成例1]
[1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンの合成]
市販ベンゾピナコール(東京化成工業株式会社製)100部(0.28モル)をジメチルホルムアルデヒド350部に溶解させた。これに塩基触媒としてピリジン32部(0.4モル)、シリル化剤としてBSTFA(信越化学工業株式会社製)150部(0.58モル)を加え70℃まで昇温し、2時間攪拌した。得られた反応液を冷却し、攪拌しながら、水200部を入れ、生成物を沈殿させると共に未反応シリル化剤を失活させた。沈殿した生成物を濾別分離した後、十分に水洗した。次いで得られた生成物をアセトンに溶解し、水を加えて再結晶させ、精製した。目的の1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンを105.6部(収率88.3%)得た。
HPLC(高速液体クロマトグラフィー)で分析した結果、純度は99.0%(面積百分率)であった。
[Synthesis Example 1]
[Synthesis of 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane]
100 parts (0.28 mol) of commercially available benzopinacol (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 350 parts of dimethylformaldehyde. To this were added 32 parts (0.4 mol) of pyridine as a base catalyst and 150 parts (0.58 mol) of BSTFA (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silylating agent, and the mixture was heated to 70 ° C. and stirred for 2 hours. The obtained reaction solution was cooled and stirred while adding 200 parts of water to precipitate the product and deactivate the unreacted silylating agent. The precipitated product was separated by filtration and thoroughly washed with water. Subsequently, the obtained product was dissolved in acetone, recrystallized by adding water and purified. 105.6 parts (yield 88.3%) of the desired 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane were obtained.
As a result of analysis by HPLC (high performance liquid chromatography), the purity was 99.0% (area percentage).

[合成例2]
[レゾルシンジグリシジルエーテルの全アクリル化物の合成]
レゾルシンジグリシジルエーテル181.2g(EX−201:ナガセケムテックス株式会社製)をトルエン266.8gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン0.8gを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸117.5gを加え、さらに80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライド0.6gを添加して、98℃で約30時間攪拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とするレゾルシンジグリシジルエーテルのエポキシアクリレート293gを得た。得られたエポキシアクリレートの反応性基当量は理論値で183である。
[Synthesis Example 2]
[Synthesis of total acrylate of resorcin diglycidyl ether]
Resorcin diglycidyl ether 181.2 g (EX-201: manufactured by Nagase ChemteX Corporation) was dissolved in 266.8 g of toluene, and 0.8 g of dibutylhydroxytoluene was added thereto as a polymerization inhibitor, and the temperature was raised to 60 ° C. Thereafter, 117.5 g of acrylic acid having 100% equivalent of epoxy group was added, and the temperature was further raised to 80 ° C., and 0.6 g of trimethylammonium chloride as a reaction catalyst was added thereto, followed by stirring at 98 ° C. for about 30 hours. A reaction solution was obtained. This reaction solution was washed with water, and toluene was distilled off to obtain 293 g of the desired resorcin diglycidyl ether epoxy acrylate. The reactive group equivalent of the obtained epoxy acrylate is 183 in theory.

[液晶シール剤の製造例1〜6]
下記表1に示す量の成分(a)、(b)、(c)等を用い、液晶シール剤の製造を行った。製造方法は以下に示すとおりである。
まず、(c)成分に、エポキシ基を有する硬化性化合物を加熱溶解混合した。室温まで冷却後、シランカップリング剤、(a)成分、(b)成分、熱硬化剤、無機フィラー、硬化促進剤を順次添加し、3本ロールにより均一に混合し、金属メッシュ(635メッシュ)にて濾過した。
なお、成分(a)−3は、成分(a)−2を分級したものである。分級操作はジェットミル粉砕機JM−0202(株式会社セイシン企業製)にて解砕後、気流式分級機クラッシールN05(株式会社セイシン企業製)を用いて行った。
[Liquid crystal sealant production examples 1 to 6]
A liquid crystal sealing agent was produced using the components (a), (b), (c) and the like shown in Table 1 below. The manufacturing method is as follows.
First, the curable compound which has an epoxy group was heat-dissolved and mixed with (c) component. After cooling to room temperature, a silane coupling agent, component (a), component (b), thermosetting agent, inorganic filler, and curing accelerator are sequentially added, and mixed uniformly with three rolls to obtain a metal mesh (635 mesh). And filtered.
In addition, component (a) -3 classifies component (a) -2. Classification operation was carried out using an airflow classifier crusheal N05 (manufactured by Seishin Enterprise Co., Ltd.) after being crushed by a jet mill pulverizer JM-0202 (manufactured by Seishin Enterprise Co., Ltd.).

Figure 0006288756
Figure 0006288756

[液晶の差込耐性評価]
液晶シール剤の製造例1〜6で製造された液晶シール剤を用いて、セルシールギャップ3μm、4μm、5μm、及び7μmの4種類の液晶表示セルを作成し、差し込み性について観察した。試験方法を以下に示す。
液晶シール剤各100gにスペーサーとして直径3μm、4μm、5μm、又は7μmのグラスファイバー1g(PF−30S、PF−40S、PF−50S又はPF−70S;日本電気硝子株式会社製)を添加して混合撹拌脱泡を行い、シリンジに充填した。ITO透明電極付きガラス基板に先にシリンジに充填した液晶シール剤をディスペンサー(SHOTMASTER300:武蔵エンジニアリング株式会社製)を使って、シールパターン及びダミーシールパターンの塗布を行い、次いで液晶(MLC−3007;メルク株式会社製)の微小滴をシールパターンの枠内に滴下した。さらにもう一枚のラビング処理済みガラス基板に面内スペーサ(ナトコスペーサKSEB−310F、KSEB−410NPF、、KSEB−525F又はKSEB−735F;ナトコ株式会社製;貼り合せ後のギャップ幅3μm、4μm、5μm、又は7μm)を散布、熱固着し、貼り合せ装置を用いて真空中で先の液晶滴下済み基板と貼り合せた。大気開放してギャップ形成した後、10分間放置した、120℃オーブンに投入して1時間加熱硬化させた後に偏光顕微鏡にてシールと液晶との界面を観察し、以下の基準に従って評価を行った。結果を表2に示す。
○:シール剤に液晶の差し込みが観察されない。
△:シール剤にわずかに液晶の差し込みが観察される。
×:シール剤に液晶の差し込みが観察される。
[LCD insertion resistance evaluation]
Four types of liquid crystal display cells having a cell seal gap of 3 μm, 4 μm, 5 μm, and 7 μm were prepared using the liquid crystal sealants manufactured in Production Examples 1 to 6 of the liquid crystal sealant, and the plugging property was observed. The test method is shown below.
Add 1 g glass fiber (PF-30S, PF-40S, PF-50S or PF-70S; manufactured by Nippon Electric Glass Co., Ltd.) having a diameter of 3 μm, 4 μm, 5 μm, or 7 μm as a spacer to each 100 g of liquid crystal sealant. Stirring and degassing were performed and the syringe was filled. Using a dispenser (SHOTMASTER300: manufactured by Musashi Engineering Co., Ltd.), a liquid crystal sealant previously filled in a syringe on a glass substrate with an ITO transparent electrode is applied to a seal pattern and a dummy seal pattern, and then a liquid crystal (MLC-3007; Merck) Co., Ltd.) was dropped into the frame of the seal pattern. Furthermore, an in-plane spacer (NATOCO spacer KSEB-310F, KSEB-410NPF, KSEB-525F or KSEB-735F; manufactured by NATCO Corporation; gap width after bonding: 3 μm, 4 μm, 5 μm) Or 7 [mu] m) was sprayed and heat-fixed, and was bonded to the liquid crystal dropped substrate in a vacuum using a bonding apparatus. After forming a gap by opening to the atmosphere, it was allowed to stand for 10 minutes, put into an oven at 120 ° C. and cured by heating for 1 hour, and then the interface between the seal and the liquid crystal was observed with a polarizing microscope and evaluated according to the following criteria. . The results are shown in Table 2.
○: No liquid crystal is inserted into the sealant.
Δ: A slight insertion of liquid crystal is observed in the sealant.
X: Insertion of liquid crystal into the sealant is observed.

Figure 0006288756
Figure 0006288756

表2の結果より、実施例1乃至11では、液晶が差し込むことなく液晶表示セルを製造できたが、比較例1、2では、差し込みやギャップ不良によって液晶表示セルを製造できなかった。したがって、本願発明の優位性が確認できる。   From the results in Table 2, in Examples 1 to 11, liquid crystal display cells could be manufactured without inserting liquid crystal, but in Comparative Examples 1 and 2, the liquid crystal display cells could not be manufactured due to insertion or gap failure. Therefore, the superiority of the present invention can be confirmed.

本発明の液晶表示セルの製造方法によれば、製造工程中に、液晶が液晶シール剤へ差し込むことがないため、極めて安定に液晶表示セルを製造することができる。また、生産タクトの短縮も可能となるため、より一層の量産性向上を実現できる。   According to the method for producing a liquid crystal display cell of the present invention, since the liquid crystal is not inserted into the liquid crystal sealant during the production process, the liquid crystal display cell can be produced extremely stably. Moreover, since the production tact can be shortened, further improvement in mass productivity can be realized.

Claims (4)

2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された液晶シール剤からなる堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、次いで紫外線及び/又は熱で前記液晶シール剤を硬化する液晶表示セルの製造方法において、
前記液晶シール剤が(a)有機フィラーを含有し、前記(a)有機フィラーがアクリルゴム、スチレンゴム、スチレンオレフィンゴムからなるゴム微粒子であり、
該(a)有機フィラーの平均粒子径をA(μm)、前記液晶表示セルのセルギャップをB(μm)とした場合に、下記数式(I)を満たす液晶表示セルの製造方法。
1.6≦A/B≦4.0・・・(I)
In a liquid crystal display cell composed of two substrates, after the liquid crystal is dropped inside a weir made of a liquid crystal sealant formed on one substrate, the other substrate is bonded, and then UV and / or heat is applied. In the method for producing a liquid crystal display cell for curing the liquid crystal sealant,
The liquid crystal sealant contains (a) an organic filler, and the (a) organic filler is rubber fine particles made of acrylic rubber, styrene rubber, styrene olefin rubber,
(A) A method for producing a liquid crystal display cell satisfying the following formula (I) when the average particle diameter of the organic filler is A (μm) and the cell gap of the liquid crystal display cell is B (μm).
1.6 ≦ A / B ≦ 4.0 (I)
前記液晶シール剤の硬化工程が、熱のみによって行われる請求項1に記載の液晶表示セルの製造方法。   The manufacturing method of the liquid crystal display cell according to claim 1, wherein the curing step of the liquid crystal sealant is performed only by heat. 前記液晶シール剤が、(b)熱ラジカル重合開始剤、(c)(メタ)アクリロイル基を有する硬化性化合物をさらに含有する請求項1又は2に記載の液晶表示セルの製造方法。   The manufacturing method of the liquid crystal display cell of Claim 1 or 2 in which the said liquid-crystal sealing compound further contains the curable compound which has (b) thermal radical polymerization initiator and (c) (meth) acryloyl group. 請求項1乃至のいずれか一項に記載の製造方法によって製造される液晶表示セル。
The liquid crystal display cell manufactured by the manufacturing method as described in any one of Claims 1 thru | or 3 .
JP2013147495A 2013-07-16 2013-07-16 Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method Active JP6288756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147495A JP6288756B2 (en) 2013-07-16 2013-07-16 Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147495A JP6288756B2 (en) 2013-07-16 2013-07-16 Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method

Publications (2)

Publication Number Publication Date
JP2015021984A JP2015021984A (en) 2015-02-02
JP6288756B2 true JP6288756B2 (en) 2018-03-07

Family

ID=52486520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147495A Active JP6288756B2 (en) 2013-07-16 2013-07-16 Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method

Country Status (1)

Country Link
JP (1) JP6288756B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478788B2 (en) * 2015-04-24 2019-03-06 日本化薬株式会社 Liquid crystal sealing agent and liquid crystal display cell using the same
JP7164470B2 (en) * 2019-03-15 2022-11-01 日本化薬株式会社 Liquid crystal sealant for liquid crystal drop method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612521B (en) * 2009-11-17 2015-10-07 日本化药株式会社 Novel hot free-radical generating agent, its manufacture method, liquid crystal sealing agent and liquid crystal display
CN105359034A (en) * 2013-07-03 2016-02-24 积水化学工业株式会社 Sealant for liquid crystal dropping method, vertical-conduction material, liquid crystal display element, and light-shielding flexible silicone particles

Also Published As

Publication number Publication date
JP2015021984A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP2015069011A (en) Liquid crystal sealant, and liquid crystal display cell using the same
JP6253638B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6289372B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6304803B2 (en) Method for producing resin composition
JP6235297B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6482371B2 (en) Method for producing resin composition
JP6212055B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
WO2014136284A1 (en) Method for manufacturing liquid-crystal display cells and liquid-crystal display cells obtained via said method
JP6288756B2 (en) Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method
JP6238761B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2018022052A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2017198726A (en) Sealant for liquid crystal optical element and liquid crystal optical element using the same
JP5531166B1 (en) Manufacturing method of liquid crystal display cell and liquid crystal display cell obtained by the method
JP2017027043A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6615019B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2017219604A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6465741B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6366069B2 (en) Method for producing resin composition
JP6465740B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2015166814A (en) Liquid crystal display cell manufacturing method and liquid crystal display cell obtained thereby
JP2017198725A (en) Sealant for liquid crystal optical element and liquid crystal optical element using the same
JP2016038507A (en) Liquid crystal sealing agent and liquid crystal display cell having the same
JP6584132B2 (en) Method for producing resin composition
JP2018146813A (en) Liquid crystal sealing agent for liquid crystal one-drop-fill process and method for manufacturing liquid crystal display cell using the same
JP2017219605A (en) Liquid crystal sealant and liquid crystal display cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6288756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250