JP6287528B2 - Method for producing optically active 3,3-difluorolactic acid derivative - Google Patents

Method for producing optically active 3,3-difluorolactic acid derivative Download PDF

Info

Publication number
JP6287528B2
JP6287528B2 JP2014086030A JP2014086030A JP6287528B2 JP 6287528 B2 JP6287528 B2 JP 6287528B2 JP 2014086030 A JP2014086030 A JP 2014086030A JP 2014086030 A JP2014086030 A JP 2014086030A JP 6287528 B2 JP6287528 B2 JP 6287528B2
Authority
JP
Japan
Prior art keywords
formula
optically active
difluoro
represented
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014086030A
Other languages
Japanese (ja)
Other versions
JP2015204762A (en
Inventor
祥子 石井
祥子 石井
哲郎 西井
哲郎 西井
直己 澤井
直己 澤井
石井 章央
章央 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2014086030A priority Critical patent/JP6287528B2/en
Publication of JP2015204762A publication Critical patent/JP2015204762A/en
Application granted granted Critical
Publication of JP6287528B2 publication Critical patent/JP6287528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、医農薬中間体として重要な光学活性3,3−ジフルオロ乳酸誘導体の製造方法に関する。   The present invention relates to a method for producing an optically active 3,3-difluorolactic acid derivative that is important as an intermediate for medicines and agricultural chemicals.

光学活性3,3−ジフルオロ乳酸やその誘導体は、種々の医農薬中間体として重要な化合物である。これまでに、本化合物の製造方法として、ジフルオロメチル基を有するフラノールを基質として、酵素による不斉加水分解反応を行い、光学活性体を得た後に酸化反応を行う方法(非特許文献1)や、ラセミ3,3−ジフルオロ乳酸と光学活性アミンからなるジアステレオマー塩の再結晶により光学分割する方法(非特許文献2)が開示されている。   Optically active 3,3-difluorolactic acid and its derivatives are important compounds as various pharmaceutical and agrochemical intermediates. So far, as a method for producing this compound, a method of performing an asymmetric hydrolysis reaction with an enzyme using a furanol having a difluoromethyl group as a substrate and obtaining an optically active substance, followed by an oxidation reaction (Non-patent Document 1) or Discloses a method of optical resolution by recrystallization of a diastereomeric salt composed of racemic 3,3-difluorolactic acid and an optically active amine (Non-patent Document 2).

Tetrahedron Asymmetry,4,p.889−892(1993年)Tetrahedron Asymmetry, 4, p. 889-892 (1993) CrystEngComm,8,p.320−326(2006年)CrystEngComm, 8, p. 320-326 (2006)

種々の光学活性3,3−ジフルオロ乳酸誘導体を合成する上で、式[4]で表される光学活性3,3−ジフルオロ乳酸   In synthesizing various optically active 3,3-difluorolactic acid derivatives, the optically active 3,3-difluorolactic acid represented by the formula [4]

Figure 0006287528
Figure 0006287528

(*は不斉原子を現す。以下本明細書において同じ。)
は鍵化合物の1つであり、この化合物を製造することは重要である。
(* Represents an asymmetric atom. The same applies hereinafter.)
Is one of the key compounds, and it is important to produce this compound.

しかし光学活性3,3−ジフルオロ乳酸の合成例は少なく、いずれも、実験室レベルでは優れた合成法であるが、大量規模での合成に際しては、なお課題の残るものであった。非特許文献1の方法は、ジフルオロメチル基を有するフラノールを原料に用いて酵素による加水分解反応を行うことにより、変換率47%の時点で共に98%ee以上という高い光学純度で未反応原料と生成物を得ることができ、高い収率で光学活性体が得られる方法ではあるが、原料のフラノールを合成する際に多数の工程を必要とし、酵素反応後も原料と生成物とを単離し、それぞれ酸化反応を行う必要があるため全体的に見れば煩雑であり、経済的な方法とは言えなかった。また、非特許文献2では、ラセミ3,3−ジフルオロ乳酸に対して光学活性アミンを作用させてジアステレオマー塩を形成させ再結晶を行うことにより光学活性3,3−ジフルオロ乳酸を簡便に得ることができるが、医農薬中間体に求められる高い光学純度の3,3−ジフルオロ乳酸を得るためには再結晶を繰り返し行う必要があった。   However, there are few examples of synthesis of optically active 3,3-difluorolactic acid, and all are excellent synthesis methods at the laboratory level, but problems still remain in the synthesis on a large scale. In the method of Non-Patent Document 1, the hydrolysis reaction by an enzyme is performed using furanol having a difluoromethyl group as a raw material, so that the unreacted raw material can be obtained with a high optical purity of 98% ee or more at a conversion rate of 47%. Although a product can be obtained and an optically active form can be obtained with a high yield, many steps are required for synthesizing the raw material furanol, and the raw material and the product are isolated after the enzymatic reaction. However, since it is necessary to carry out an oxidation reaction for each, it is complicated as a whole and cannot be said to be an economical method. In Non-patent Document 2, optically active 3,3-difluorolactic acid is easily obtained by reacting racemic 3,3-difluorolactic acid with an optically active amine to form a diastereomeric salt and recrystallization. However, in order to obtain 3,3-difluorolactic acid having a high optical purity required for a pharmaceutical and agrochemical intermediate, recrystallization must be repeated.

他方、式[4]で表される光学活性3,3−ジフルオロ乳酸を製造するための方法として、その「加水分解を受ける直前の化学種」にあたる、「ラセミ又は光学純度の低い、式[5a]又は式[5b]で表される化合物」   On the other hand, as a method for producing the optically active 3,3-difluorolactic acid represented by the formula [4], a “racemic or low optical purity formula [5a] corresponding to the“ chemical species immediately before being subjected to hydrolysis ”. Or a compound represented by the formula [5b] "

Figure 0006287528
Figure 0006287528

Figure 0006287528
Figure 0006287528

(式中、R1は置換基を有してもよい炭素数2〜11の直鎖又は分岐鎖のアシル基、Rは置換基を有してもよい炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、シクロアルキル基を示す。)
を原料とし、これに加水分解酵素を接触させて、各々の化学種の光学異性体(R体、S体)の一方を選択的に加水分解させ、光学活性な目的物に誘導するという不斉加水分解反応が考えられる。
(In the formula, R 1 is a linear or branched acyl group having 2 to 11 carbon atoms which may have a substituent, and R 2 is a linear or branched chain having 1 to 10 carbon atoms which may have a substituent. A branched alkyl group, aryl group, or cycloalkyl group is shown.)
As a raw material, a hydrolase is brought into contact with this to selectively hydrolyze one of the optical isomers (R isomer, S isomer) of each chemical species and to lead to an optically active target product. Hydrolysis reaction is conceivable.

Figure 0006287528
Figure 0006287528

しかしながら、本発明者らが、上記式[5a]の化合物を反応原料として加水分解反応を試みたところ、加水分解は進行するものの、酵素の立体選択性が低いことがわかった(後述の「比較例」を参照)。酵素の立体選択性が低いと、式[5a]の化合物を加水分解して生成する式[4]で表される光学活性3,3−ジフルオロ乳酸は、低光学純度のものとなる。   However, when the present inventors tried a hydrolysis reaction using the compound of the formula [5a] as a reaction raw material, it was found that although the hydrolysis proceeds, the stereoselectivity of the enzyme is low (see “Comparison” described later). See Example). When the stereoselectivity of the enzyme is low, the optically active 3,3-difluorolactic acid represented by the formula [4] produced by hydrolyzing the compound of the formula [5a] has a low optical purity.

一方、この加水分解反応が進行するのに伴い、式[5a]で表される化合物のうち、酵素と反応しない方の光学異性体が、式[3a]の化合物として系内に残存する。この化合物を取り出して、さらなる加水分解に付せば、式[4]で表される光学活性3,3−ジフルオロ乳酸(上記、式[5a]の化合物の加水分解で得られるものとは、逆の光学異性を持つもの)に誘導できる。しかしながら、前記の通り、この反応における酵素の立体選択性が低いために、高光学純度の式[3a]の化合物を得ようとして反応を過剰に進行させると、式[3a]の化合物の収率が極端に低くなってしまう。すなわち、式[3a]の化合物を加水分解して式[4]で表される光学活性3,3−ジフルオロ乳酸を得る方法によっては、実用的な収率で目的物を得ることは難しいという問題があった(これを「比較発明」と呼ぶことがある)。   On the other hand, as the hydrolysis reaction proceeds, among the compounds represented by the formula [5a], the optical isomer that does not react with the enzyme remains in the system as the compound of the formula [3a]. When this compound is taken out and subjected to further hydrolysis, the optically active 3,3-difluorolactic acid represented by the formula [4] (as opposed to that obtained by hydrolysis of the compound of the formula [5a] above) Having the same optical isomerism). However, as described above, since the stereoselectivity of the enzyme in this reaction is low, when the reaction is allowed to proceed excessively in order to obtain a compound of formula [3a] with high optical purity, the yield of the compound of formula [3a] Becomes extremely low. That is, there is a problem that it is difficult to obtain the target product in a practical yield depending on the method of obtaining the optically active 3,3-difluorolactic acid represented by the formula [4] by hydrolyzing the compound of the formula [3a]. (This is sometimes referred to as “comparative invention”).

一方、[5b]の化合物については、加水分解後の未反応の原料と生成物とが抽出操作等による効率的な分離法が採用できないことから、目的物を単離する上で課題があった。
すなわち、酵素による不斉加水分解法によって効率的に光学活性を向上させ、効率的に単離することが可能な光学活性3,3−ジフルオロ乳酸を製造する方法が求められていた。
On the other hand, the compound [5b] has a problem in isolating the target product because the unreacted raw material after hydrolysis and the product cannot adopt an efficient separation method such as extraction operation. .
That is, there has been a demand for a method for producing optically active 3,3-difluorolactic acid that can be efficiently isolated and efficiently isolated by an enzymatic asymmetric hydrolysis method.

本発明者は上記課題を解決すべく鋭意検討した。その結果、式[1]で表される「ラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステル」を原料とし、この物質を酵素による不斉加水分解に付することによって、課題を解決できることを見出した。   The inventor has intensively studied to solve the above problems. As a result, the “racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester” represented by the formula [1] is used as a raw material, and this substance is subjected to asymmetric hydrolysis by an enzyme. It was found that can be solved.

すなわち、発明者らは、式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステル   That is, the inventors have obtained a racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1].

Figure 0006287528
Figure 0006287528

(式中、R1は置換基を有してもよい炭素数2〜11の直鎖又は分岐鎖のアシル基、Rは置換基を有してもよい炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、シクロアルキル基を示す。)
を酵素による不斉加水分解に付すと、高立体選択的な不斉加水分解反応が起こり、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)が、高い光学純度で得られることがわかった。
(In the formula, R 1 is a linear or branched acyl group having 2 to 11 carbon atoms which may have a substituent, and R 2 is a linear or branched chain having 1 to 10 carbon atoms which may have a substituent. A branched alkyl group, aryl group, or cycloalkyl group is shown.)
Is subjected to asymmetric hydrolysis by an enzyme, a highly stereoselective asymmetric hydrolysis reaction occurs, and the optically active compound represented by the formula [3a] or the formula [3b] (respectively R-form or S-form) It was found that high optical purity was obtained.

Figure 0006287528
Figure 0006287528

Figure 0006287528
Figure 0006287528

これら式[3a]の化合物、式[3b]の化合物は、上記比較発明における式[4]の化合物に対応する生成物であるが、比較発明で生成する式[4]の化合物に比べて、本発明で生成する式[3a]の化合物又は式[3b]の化合物の光学純度は、有意に高いものとなる。   The compound of the formula [3a] and the compound of the formula [3b] are products corresponding to the compound of the formula [4] in the comparative invention, but compared with the compound of the formula [4] generated in the comparative invention, The optical purity of the compound of formula [3a] or the compound of formula [3b] produced in the present invention is significantly high.

得られた、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)は、その後、酸を触媒とする加水分解に付することにより、光学純度を損なうことなく、目的物である式[4]で表される光学活性3,3−ジフルオロ乳酸へと円滑に誘導することができることもわかった。   The obtained optically active compound represented by the formula [3a] or the formula [3b] (respectively R-form or S-form) is subjected to hydrolysis using an acid as a catalyst, thereby impairing optical purity. It was also found that the compound can be smoothly induced to the optically active 3,3-difluorolactic acid represented by the formula [4].

一方、上記不斉加水分解に伴い、当該化合物のうち、酵素と反応しない方の光学異性体が式[2]   On the other hand, along with the asymmetric hydrolysis, among the compounds, the optical isomer that does not react with the enzyme is represented by the formula [2].

Figure 0006287528
Figure 0006287528

(RとRの意味は上記と同じ。*は不斉炭素を表す。)
で表される、光学活性3,3−ジフルオロ−2−アシル乳酸エステル(R体又はS体)として、系内に残存するという知見も得た。式[2]の化合物は、上記比較発明における生成物である式[3a]の物質に対応する。本発明においては、不斉加水分解反応に伴う、式[2]の化合物の光学純度の向上が、上記比較発明における式[3a]の化合物の光学純度の向上に比べて、有意に速く、収率の低下を生じるよりも早い時点で、式[2]の化合物の光学純度が上がるため、高い収率で該化合物が得られることが判明した。
(The meanings of R 1 and R 2 are the same as above. * Represents an asymmetric carbon.)
The knowledge that it remains in the system as an optically active 3,3-difluoro-2-acyl lactic acid ester (R-form or S-form) represented by the following formula was also obtained. The compound of the formula [2] corresponds to the substance of the formula [3a] which is a product in the comparative invention. In the present invention, the improvement in the optical purity of the compound of the formula [2] accompanying the asymmetric hydrolysis reaction is significantly faster than the improvement in the optical purity of the compound of the formula [3a] in the above comparative invention. Since the optical purity of the compound of the formula [2] is increased at a time earlier than the rate reduction, it has been found that the compound can be obtained in a high yield.

次に、こうして得られた式[2]の化合物を取り出し、これをあらためて加水分解(酸性条件下の加水分解)に付すことによって、式[4]で表される光学活性3,3−ジフルオロ乳酸に効率よく誘導できることがわかった。   Next, the optically active 3,3-difluorolactic acid represented by the formula [4] is obtained by taking out the compound of the formula [2] thus obtained and subjecting it again to hydrolysis (hydrolysis under acidic conditions). It was found that it can be guided efficiently.

Figure 0006287528
Figure 0006287528

式[1]で表される化合物は、「エステル結合部位」を2つ有し、本発明の目的物質である式[4]で表される光学活性3,3−ジフルオロ乳酸から見た場合、「前駆体のさらなる前駆体」にあたる。敢えてそのような化合物を原料として選択し、これを、酵素を用いた不斉加水分解に付することによって、未反応原料として残存する式[2]の化合物、式[3a]の化合物あるいは式[3b]の化合物を、光学純度、収率の両面からバランス良く得られる点が、本発明の大きな特徴である。   The compound represented by the formula [1] has two “ester bond sites” and when viewed from the optically active 3,3-difluorolactic acid represented by the formula [4] which is the target substance of the present invention, It corresponds to “an additional precursor of the precursor”. The compound of formula [2], the compound of formula [3a], or the compound of formula [3a] remaining as an unreacted raw material by subjecting such a compound to selection as a raw material and subjecting it to asymmetric hydrolysis using an enzyme A significant feature of the present invention is that the compound 3b] can be obtained in a balanced manner from both the viewpoints of optical purity and yield.

なお、本発明者は、当該第1段階目の加水分解(不斉加水分解)に用いる酵素として、リパーゼが好ましいことも見出した。該不斉加水分解における、より好ましい反応条件も見出した。   In addition, this inventor also discovered that a lipase was preferable as an enzyme used for the hydrolysis (asymmetric hydrolysis) of the said 1st step. More preferable reaction conditions in the asymmetric hydrolysis were also found.

本発明においては、第1段階目の加水分解(不斉加水分解)によって、式[2]で表される3,3−ジフルオロ−2−アシル乳酸エステル(R体又はS体)が、あらかじめ目標値として設定した任意の光学純度に達した時点で、加水分解反応を停止させることが、加水分解の反応条件の制御によって容易に達成できる点も重要である。このため第1段階目の加水分解(不斉加水分解)の終了後、式[2]で表される光学活性体化合物を、系内から効率的に取り出すことができ、[2]で表される光学活性体化合物と、式[3a]又は式[3b]で表される光学活性化合物を相互に分離できる。   In the present invention, the 3,3-difluoro-2-acyl lactic acid ester (R-form or S-form) represented by the formula [2] is obtained in advance by the first stage hydrolysis (asymmetric hydrolysis). It is also important that stopping the hydrolysis reaction when the optical purity set as a value is reached can be easily achieved by controlling the reaction conditions of the hydrolysis. For this reason, after completion of the first stage hydrolysis (asymmetric hydrolysis), the optically active compound represented by the formula [2] can be efficiently removed from the system, represented by [2]. And the optically active compound represented by the formula [3a] or the formula [3b] can be separated from each other.

なお、上述の通り、式[2]で表される化合物の加水分解、式[3a]又は式[3b]で表される光学活性体化合物の加水分解を両方とも実施すれば、式[4]の化合物の両方の異性体を得ることができる。しかし、目的に応じ、一方の異性体のみを製造することもできる。   As described above, if both hydrolysis of the compound represented by the formula [2] and hydrolysis of the optically active compound represented by the formula [3a] or the formula [3b] are carried out, the formula [4] Both isomers of the compound can be obtained. However, depending on the purpose, only one isomer can be produced.

さらに、このような式[2]で表される3,3−ジフルオロ−2−アシル乳酸エステル(R体又はS体)又は、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)に対して行う、酸を触媒とする加水分解は、反応変換率も高く、反応を通じ光学純度も損なわれないことから、特に好適であるという有用な知見を、発明者らは見出した。   Further, the 3,3-difluoro-2-acyl lactic acid ester (R-form or S-form) represented by the formula [2] or the optically active compound represented by the formula [3a] or the formula [3b] Hydrolysis using an acid as a catalyst to be performed on (each R-form or S-form) has a high reaction conversion rate, and the optical purity is not impaired through the reaction. They found out.

このように、本発明によって、重要な光学活性3,3−ジフルオロ乳酸やその誘導体を、酵素を用いた不斉加水分解反応を利用して効率よく製造でき、それによって、該化合物をより効率的に、大量規模で生産できることとなった。   As described above, according to the present invention, an important optically active 3,3-difluorolactic acid or a derivative thereof can be efficiently produced by utilizing an asymmetric hydrolysis reaction using an enzyme, thereby making the compound more efficient. It was also possible to produce on a large scale.

本発明のように、ラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルを酵素により立体選択的に加水分解する知見は、従来全く知られていなかった。   As in the present invention, the knowledge of stereoselectively hydrolyzing 3,3-difluoro-2-acyl lactic acid esters with racemic or low optical purity has never been known.

本明細書において、以下の工程を各々、次のように呼ぶことがある。   In this specification, each of the following steps may be called as follows.

(1)式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルを酵素による不斉加水分解に付し、未反応原料として残存する式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルとして得、それと同時に、式[3a]又は式[3b]の光学活性体化合物(各々R体又はS体)を系内に生成させる工程;「第1工程」。   (1) In Formula [2], the racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by Formula [1] is subjected to asymmetric hydrolysis by an enzyme and remains as an unreacted raw material. It is obtained as an optically active 3,3-difluoro-2-acyl lactic acid ester represented, and at the same time, an optically active compound of formula [3a] or formula [3b] (respectively R-form or S-form) is produced in the system. Step; “first step”.

(2)前記第1工程で得た反応混合物を精製し、式[2]で表される光学活性3,3−ジフルオロ-2-アシル乳酸エステルを取り出す工程;「第2工程」。   (2) A step of purifying the reaction mixture obtained in the first step and taking out the optically active 3,3-difluoro-2-acyl lactic acid ester represented by the formula [2]; “Second step”.

(3)前記第2工程で得た式[2]で表される光学活性3,3−ジフルオロ-2-アシル乳酸エステルを酸による加水分解に付して、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程;「第3工程」。   (3) The optically active 3,3-difluoro-2-acyl lactic acid ester represented by the formula [2] obtained in the second step is subjected to hydrolysis with an acid to produce an optical compound represented by the formula [4]. Step of obtaining active 3,3-difluorolactic acid; “third step”.

(4)前記第1工程で得た反応混合物を精製し、式[3a]又は式[3b]の光学活性体化合物を取り出す工程;「第4工程」。   (4) A step of purifying the reaction mixture obtained in the first step and taking out the optically active compound of the formula [3a] or the formula [3b]; “fourth step”.

(5)前記第4工程で得た式[3a]又は式[3b]の光学活性体化合物を酸による加水分解に付して、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程;「第5工程」。   (5) The optically active 3,3-difluorolactic acid represented by the formula [4] by subjecting the optically active compound of the formula [3a] or the formula [3b] obtained in the fourth step to hydrolysis with an acid. Step 5: obtaining a “fifth step”.

本発明に関わる工程を、次にまとめる。   The steps related to the present invention are summarized below.

Figure 0006287528
Figure 0006287528

[置換基について]
本発明の式[1]、式[2]、式[3a]、式[3b]の官能基R、Rについて説明する。本発明において、不斉加水分解反応の選択性において重要なのは、原料化合物が3,3−ジフルオロ乳酸という基本骨格を持つこと、Rが「置換基を有してもよい炭素数2〜11の直鎖又は分岐鎖のアシル基」であること、およびRが「置換基を有してもよい炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、又はシクロアルキル基」であることであって、その条件が満たされる限り、RおよびRは広範な種類の基を取ることができる。
[Substituent]
The functional groups R 1 and R 2 in the formula [1], formula [2], formula [3a], and formula [3b] of the present invention will be described. In the present invention, what is important in the selectivity of the asymmetric hydrolysis reaction is that the raw material compound has a basic skeleton of 3,3-difluorolactic acid, and R 1 is “having a substituent having 2 to 11 carbon atoms. A linear or branched acyl group, and R 2 is an optionally substituted linear or branched alkyl group, aryl group, or cycloalkyl group having 1 to 10 carbon atoms. Certainly, R 1 and R 2 can take a wide variety of groups as long as the condition is met.

1は「置換基を有してもよい炭素数2〜11の直鎖又は分岐鎖のアシル基」であるが、原料の入手の容易さから、炭素数2〜7の無置換のアシル基が好ましい。具体的にはホルミル基、アセチル基、プロピオニル基、ブタノイル基、ブタノイル基、ペンタノイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基が好ましいものとして挙げられる。中でも、アセチル基はコスト面で特に有利であり、本発明の反応も良好に進行することから、特に好ましい。なお、これらのアシル基はさらに、反応不活性な置換基を有していてもよく、そのような置換基としては、例えば炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、トルイル基、ハロゲン基(−F,Cl,Br,I)、ハロゲン化アルキル基(−CF、−Cなど)などが挙げられる(ただし、R1の「主鎖」と「置換基」は同一種類のもの(例えばアルキル)を意味しない)。しかし、最終的には、目的物である式[4]の化合物を得るときにR1は脱離するので、コスト面から、置換基を持たないアシル基を用いた方が好ましい。 R 1 is “an optionally substituted linear or branched acyl group having 2 to 11 carbon atoms”, but from the availability of raw materials, an unsubstituted acyl group having 2 to 7 carbon atoms. Is preferred. Specifically, formyl group, acetyl group, propionyl group, butanoyl group, butanoyl group, pentanoyl group, hexanoyl group, cyclohexanoyl group and benzoyl group are preferable. Of these, an acetyl group is particularly advantageous in terms of cost, and the reaction of the present invention also proceeds favorably, so that it is particularly preferable. These acyl groups may further have a reaction-inactive substituent. Examples of such a substituent include an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, phenyl group, tolyl group, a halogen group (-F, Cl, Br, I), a halogenated alkyl group (-CF 3, -C etc. 2 F 5), and the like (provided that the R 1 and "backbone""Substituent" does not mean the same type (eg alkyl). However, in the end, R 1 is eliminated when obtaining the target compound of the formula [4]. From the viewpoint of cost, it is preferable to use an acyl group having no substituent.

は「置換基を有してもよい炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、又はシクロアルキル基」であるが、原料の入手の容易さから、炭素数1〜6の無置換のアルキル基が好ましい。具体的にはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、フェニル基である。中でも、メチル基、エチル基はコスト面で有利であり、本発明の反応も良好に進行することから、特に好ましい。なお、これらのアルキル基、アリール基、又はシクロアルキル基はさらに、反応不活性な置換基を有していてもよく、そのような置換基としては、例えば炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、フェニル基、トルイル基、ハロゲン基(−F,Cl,Br,I)、ハロゲン化アルキル基(−CF、−Cなど)などが挙げられる(ただし、Rの「主鎖」と「置換基」は同一種類のもの(例えばアルキル)を意味しない)。「置換基を有するアルキル基」の例としては、ベンジル基(−CH−Ph:Phはフェニル基を表す)が挙げられる。しかし、最終的には、目的物である式[4]の化合物を得るときにRは脱離するので、コスト面から、置換基を持たない基を用いた方が好ましい。 R 2 is “an optionally substituted linear or branched alkyl group, aryl group, or cycloalkyl group having 1 to 10 carbon atoms”. From the availability of raw materials, R 2 has 1 carbon atom. -6 unsubstituted alkyl groups are preferred. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, and a phenyl group. Among them, a methyl group and an ethyl group are particularly preferable because they are advantageous in terms of cost and the reaction of the present invention proceeds well. In addition, these alkyl groups, aryl groups, or cycloalkyl groups may further have a reaction-inactive substituent. Examples of such a substituent include an alkyl group having 1 to 6 carbon atoms and carbon. Examples include an alkoxy group of formulas 1 to 6, a phenyl group, a toluyl group, a halogen group (—F, Cl, Br, I), a halogenated alkyl group (—CF 3 , —C 2 F 5 etc.), etc. The “main chain” and the “substituent” of R 2 do not mean the same kind (eg, alkyl). Examples of the “alkyl group having a substituent” include a benzyl group (—CH 2 —Ph: Ph represents a phenyl group). However, in the end, R 2 is eliminated when obtaining the target compound of the formula [4]. From the viewpoint of cost, it is preferable to use a group having no substituent.

このように、本発明においては、Rが炭素数2〜7の無置換のアシル基で且つ、Rが炭素数1〜6の無置換のアルキル基であることは、特に好ましい態様である。 As described above, in the present invention, R 1 is an unsubstituted acyl group having 2 to 7 carbon atoms, and R 2 is an unsubstituted alkyl group having 1 to 6 carbon atoms. .

このように、本発明者らは、酵素を使った不斉加水分解反応による光学活性3,3−ジフルオロ乳酸誘導体の優れた製造方法を見出し、本発明を完成させた。   Thus, the present inventors have found an excellent method for producing an optically active 3,3-difluorolactic acid derivative by an asymmetric hydrolysis reaction using an enzyme, and completed the present invention.

すなわち、本発明は、以下の[発明1]〜[発明11]に記載する発明を提供する。   That is, the present invention provides the inventions described in the following [Invention 1] to [Invention 11].

[発明1]
式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステル
[Invention 1]
Racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1]

Figure 0006287528
Figure 0006287528

に加水分解酵素を接触させ、不斉加水分解反応を行う工程を含む、
式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステル
Including a step of bringing a hydrolase into contact with the asymmetric hydrolysis reaction,
Optically active 3,3-difluoro-2-acyl lactic acid ester represented by the formula [2]

Figure 0006287528
Figure 0006287528

と、
式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)
When,
Optically active compound represented by formula [3a] or formula [3b] (R-form or S-form, respectively)

Figure 0006287528
Figure 0006287528

Figure 0006287528
Figure 0006287528

と、
式[4]で表される光学活性3,3−ジフルオロ乳酸
When,
Optically active 3,3-difluorolactic acid represented by the formula [4]

Figure 0006287528
Figure 0006287528

のうち、少なくとも1つの化合物を製造する方法。
(上記各式中、*は不斉炭素原子を示す。R1は置換基を有してもよい炭素数2〜11の直鎖又は分岐鎖のアシル基、Rは置換基を有してもよい炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、シクロアルキル基を示す。)
Among them, a method for producing at least one compound.
(In the above formulas, * represents an asymmetric carbon atom. R 1 is a linear or branched acyl group having 2 to 11 carbon atoms that may have a substituent, and R 2 has a substituent. A C1-C10 linear or branched alkyl group, aryl group or cycloalkyl group.

[発明2]
次の第1工程〜第3工程を含む、式[4]で表される光学活性3,3−ジフルオロ乳酸の製造方法。
(第1工程)
式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルに加水分解酵素を接触させ、不斉加水分解反応を行って、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルならびに、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)を含む反応混合物を得る工程。
(第2工程)
前記第1工程で得られた反応混合物を精製し、該反応混合物から、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルを取り出す工程。
(第3工程)
前記第2工程で取り出した式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルを、酸性条件下で加水分解することにより、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程。
(ここで、式[1]、式[2]、式[3a]、式[3b]、式[4]の意味は、発明1と同じである。)
[Invention 2]
The manufacturing method of the optically active 3, 3- difluoro lactic acid represented by Formula [4] including the following 1st process-3rd process.
(First step)
A racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] is brought into contact with a hydrolase and subjected to an asymmetric hydrolysis reaction, thereby being represented by the formula [2]. A step of obtaining a reaction mixture containing the optically active 3,3-difluoro-2-acyl lactic acid ester and the optically active compound represented by the formula [3a] or the formula [3b] (each R-form or S-form).
(Second step)
The step of purifying the reaction mixture obtained in the first step and taking out the optically active 3,3-difluoro-2-acyl lactic acid ester represented by the formula [2] from the reaction mixture.
(Third step)
The optical activity represented by the formula [4] is obtained by hydrolyzing the optically active 3,3-difluoro-2-acyl lactic acid ester represented by the formula [2] taken out in the second step under an acidic condition. A step of obtaining 3,3-difluorolactic acid.
(Here, the meanings of Formula [1], Formula [2], Formula [3a], Formula [3b], and Formula [4] are the same as in Invention 1.)

[発明3]
次の第1工程、第4工程および第5工程を含む、式[4]で表される光学活性3,3−ジフルオロ乳酸の製造方法。
(第1工程)
式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルに加水分解酵素を接触させ、不斉加水分解反応を行って、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルならびに、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)を含む反応混合物を得る工程。
(第4工程)
前記第1工程で得られた反応混合物を精製し、該反応混合物から、式[3a]で表される光学活性3,3−ジフルオロ乳酸エステルおよび式[3b]で表される光学活性3,3−ジフルオロ−2−アシル乳酸のうち、少なくとも一方を取り出す工程。
(第5工程)
前記第4工程で取り出した式[3a]で表される光学活性3,3−ジフルオロ乳酸エステルおよび式[3b]で表される光学活性3,3−ジフルオロ−2−アシル乳酸のうちの一方を、酸性条件下で加水分解することにより、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程。
(ここで、式[1]、式[2]、式[3a]、式[3b]、式[4]の意味は、発明1と同じである。)
[Invention 3]
A method for producing an optically active 3,3-difluorolactic acid represented by the formula [4], comprising the following first step, fourth step and fifth step.
(First step)
A racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] is brought into contact with a hydrolase and subjected to an asymmetric hydrolysis reaction, thereby being represented by the formula [2]. A step of obtaining a reaction mixture containing the optically active 3,3-difluoro-2-acyl lactic acid ester and the optically active compound represented by the formula [3a] or the formula [3b] (each R-form or S-form).
(4th process)
The reaction mixture obtained in the first step is purified, and the optically active 3,3-difluorolactic acid ester represented by the formula [3a] and the optically active 3,3 represented by the formula [3b] are obtained from the reaction mixture. A step of removing at least one of difluoro-2-acyllactic acid.
(5th process)
One of the optically active 3,3-difluorolactic acid ester represented by the formula [3a] taken out in the fourth step and the optically active 3,3-difluoro-2-acyllactic acid represented by the formula [3b] The process of obtaining the optically active 3,3-difluorolactic acid represented by Formula [4] by hydrolyzing under acidic conditions.
(Here, the meanings of Formula [1], Formula [2], Formula [3a], Formula [3b], and Formula [4] are the same as in Invention 1.)

[発明4]
が炭素数2〜7の無置換のアシル基で且つ、Rが炭素数1〜6の無置換のアルキル基である、発明1乃至3のいずれかに記載の方法。
[Invention 4]
The method according to any one of Inventions 1 to 3, wherein R 1 is an unsubstituted acyl group having 2 to 7 carbon atoms, and R 2 is an unsubstituted alkyl group having 1 to 6 carbon atoms.

[発明5]
3,3−ジフルオロ−2−アシル乳酸エステルが3,3−ジフルオロ−2−アセチル乳酸エチルであることを特徴とする発明1乃至3のいずれかに記載の方法。
[Invention 5]
The method according to any one of Inventions 1 to 3, wherein the 3,3-difluoro-2-acyl lactic acid ester is 3,3-difluoro-2-acetyl ethyl lactate.

[発明6]
加水分解酵素がリパーゼであることを特徴とする発明1乃至5のいずれかに記載の方法。
[Invention 6]
6. The method according to any one of inventions 1 to 5, wherein the hydrolase is a lipase.

[発明7]
リパーゼがRhizomucor miehei由来、又は、Thermomyces lanuginosa由来であることを特徴とする発明6に記載の方法。
[Invention 7]
The method according to invention 6, wherein the lipase is derived from Rhizomucor miehei or Thermomyces langinosa.

[発明8]
前記不斉加水分解反応をリン酸緩衝液の存在下に行い、該リン酸緩衝液の原液の濃度が0.2mol/l(mol/dm)〜2mol/l(mol/dm)であることを特徴とする発明1乃至7のいずれかに記載の方法。
[Invention 8]
The asymmetric hydrolysis reaction is performed in the presence of a phosphate buffer, and the concentration of the phosphate buffer stock solution is 0.2 mol / l (mol / dm 3 ) to 2 mol / l (mol / dm 3 ). The method according to any one of inventions 1 to 7, wherein:

[発明9]
不斉加水分解反応の温度が10℃〜60℃であることを特徴とする発明1乃至8のいずれかに記載の方法。
[Invention 9]
The method according to any one of inventions 1 to 8, wherein the temperature of the asymmetric hydrolysis reaction is 10 ° C to 60 ° C.

[発明10]
不斉加水分解反応を、pHが5.0〜9.0の条件で行うことを特徴とする発明1乃至9のいずれかに記載の方法。
[Invention 10]
The method according to any one of Inventions 1 to 9, wherein the asymmetric hydrolysis reaction is carried out under the condition of a pH of 5.0 to 9.0.

[発明11]
発明1乃至発明10のいずれかに記載の方法によって、式[4]で表される光学活性3,3−ジフルオロ乳酸を得た後、該光学活性3,3−ジフルオロ乳酸を再結晶又は再沈殿のうち少なくとも1つの精製手段に付すことを特徴とする、光学活性3,3−ジフルオロ乳酸を製造する方法。
[Invention 11]
After obtaining the optically active 3,3-difluorolactic acid represented by the formula [4] by the method according to any one of Inventions 1 to 10, the optically active 3,3-difluorolactic acid is recrystallized or reprecipitated. A method for producing optically active 3,3-difluorolactic acid, which is subjected to at least one purification means.

医農薬中間体として重要な光学活性3,3−ジフルオロ乳酸やその誘導体を、酵素を用いた不斉加水分解反応を利用して効率よく製造できるという効果を奏する。それによって、該化合物をより効率的に、大量規模で生産できるという効果を奏する。   The optically active 3,3-difluorolactic acid and its derivatives, which are important as pharmaceutical and agricultural chemical intermediates, can be efficiently produced using an asymmetric hydrolysis reaction using an enzyme. Thereby, the compound can be produced more efficiently and on a large scale.

以下に本発明について詳細に説明する。まず、前述した「第1工程」〜「第5工程」の順に説明する。最後に[精製工程](第3工程又は第5工程で得た式[4]の化合物を精製する工程)についても説明する。   The present invention is described in detail below. First, the “first step” to “fifth step” will be described in this order. Finally, the [purification step] (the step of purifying the compound of the formula [4] obtained in the third step or the fifth step) will also be described.

(1)[第1工程について]
まず第1工程について説明する。第1工程は、式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルを酵素による不斉加水分解に付し、未反応原料として残存する、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステル(R体又はS体)を得、それと同時に式[3a]又は式[3b]の光学活性体化合物(各々R体又はS体)を系内に生成させる工程である。
(1) [About the first step]
First, the first step will be described. In the first step, the racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] is subjected to asymmetric hydrolysis by an enzyme, and remains as an unreacted raw material. 2] optically active 3,3-difluoro-2-acyl lactic acid ester (R-form or S-form) represented by the formula [3a] or formula [3b] at the same time (each R-form or R-form) S-form) is generated in the system.

前述のように、この工程を実施する過程において、式[1]で表される化合物のうち、酵素と反応しない方の光学異性体が、式[2]の光学活性3,3−ジフルオロ−2−アシル乳酸エステルとして、系内に残存し、光学純度が有意に向上する。それと同時に、式[3a]又は式[3b]の光学活性体化合物を得る。すなわち、第1工程は、本願各発明に共通する、最も特徴的な工程である。   As described above, in the process of performing this step, among the compounds represented by the formula [1], the optical isomer that does not react with the enzyme is the optically active 3,3-difluoro-2 of the formula [2]. -As an acyl lactic acid ester, it remains in the system and the optical purity is significantly improved. At the same time, an optically active compound of formula [3a] or formula [3b] is obtained. That is, the first step is the most characteristic step common to the inventions of the present application.

本発明で用いる式[1]で表される3,3−ジフルオロ−2−アシル乳酸エステルは公知の化合物であり、従来技術を基に当業者が適宜調整してもよいし、市販されているものを用いてもよい。ここで「ラセミ又は光学純度の低い」とは、「ラセミ(eeが0%のもの:なおeeとは鏡像体過剰率を示す、enantiomeric excess)」又は、医農薬中間体として通常要求される光学純度である「eeが99%」を下回るものを広く指すものとする。そして、そのような広範なeeを示す3,3−ジフルオロ−2−アシル乳酸エステルに対して、第1工程の反応を施せば、3,3−ジフルオロ−2−アシル乳酸エステルのeeはさらに有意に向上する。本発明の第1工程の本質は、酵素を用いた不斉加水分解反応を通じて、光学活性を向上させるところにある。このため、原料化合物は式[1]のように「ラセミ」としての表記をし、生成物は式[2]、あるいは式[3a]、式[3b]のように「キラル化合物」としての表記をしているが、本発明は決して、「光学純度が0%の原料」を用いる態様に限定されるものではない。また、生成物である式[2]、あるいは式[3a]、式[3b]の化合物のeeも常に「99%以上」となることを求めるわけではなく、光学純度が、有意に高いことが満たされればよい。   The 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] used in the present invention is a known compound, and may be appropriately adjusted by those skilled in the art based on the prior art, or is commercially available. A thing may be used. Here, “racemic or low optical purity” means “racemic (with 0% ee: where ee is an enantiomeric excess indicating enantiomeric excess)” or optically usually required as an intermediate for medicines and agricultural chemicals The purity of “ee is less than 99%” shall be broadly indicated. Then, when the reaction of the first step is performed on 3,3-difluoro-2-acyl lactic acid ester exhibiting such a wide range of ee, the ee of 3,3-difluoro-2-acyl lactic acid ester is further significant. To improve. The essence of the first step of the present invention is to improve the optical activity through an asymmetric hydrolysis reaction using an enzyme. Therefore, the raw material compound is expressed as “racemic” as in formula [1], and the product is expressed as “chiral compound” as in formula [2], or in formulas [3a] and [3b]. However, the present invention is by no means limited to an embodiment using “a raw material having an optical purity of 0%”. Further, the ee of the product of the formula [2], the formula [3a], or the formula [3b] as a product is not always required to be “99% or more”, and the optical purity is significantly high. It only has to be satisfied.

3,3−ジフルオロ−2−アシル乳酸エステルは酵素反応によってエステル基が加水分解される場合とアシル基が加水分解される場合、又は両方が加水分解される場合があるが、いずれの部位が加水分解されてもよい。すなわち式[1]で表される3,3−ジフルオロ−2−アシル乳酸エステルのエステル基は酵素により加水分解されるものであればよく、当該エステル部位を構成するRとしては、メチル基、エチル基、ブチル基などの炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、シクロアルキル基が利用できる。 In 3,3-difluoro-2-acyl lactic acid ester, the ester group may be hydrolyzed by enzymatic reaction, the acyl group may be hydrolyzed, or both may be hydrolyzed. It may be decomposed. That is, the ester group of the 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] may be any one that can be hydrolyzed by an enzyme, and R 2 constituting the ester moiety includes a methyl group, A linear or branched alkyl group, aryl group, or cycloalkyl group having 1 to 10 carbon atoms such as an ethyl group or a butyl group can be used.

同様に、アシル基(R1)は、アセチル基、プロパノイル基、ブタノイル基、ベンゾイル基などの炭素数2〜11の直鎖又は分岐鎖のアシル基が利用できる。 Similarly, as the acyl group (R 1 ), a linear or branched acyl group having 2 to 11 carbon atoms such as an acetyl group, a propanoyl group, a butanoyl group, and a benzoyl group can be used.

式[1]の化合物の中でR1がアセチル基、Rがエチル基である3,3−ジフルオロ−2−アセチル乳酸エチルは、入手が特に容易であり、本発明の不斉加水分解反応の反応性、立体選択性も良好となるから、特に好ましいものの1つである。 Among the compounds of the formula [1], 3,3-difluoro-2-acetylethyl lactate in which R 1 is an acetyl group and R 2 is an ethyl group is particularly easy to obtain, and the asymmetric hydrolysis reaction of the present invention Since the reactivity and stereoselectivity are also good, it is one of the particularly preferred ones.

第1工程の反応は溶液中で好ましく実施することができる。溶液中の基質(式[1]で表される化合物を言う。)の濃度(反応開始時点の濃度)は酵素反応が円滑に進み、且つ反応後の反応液から基質又は生成物が容易に回収できる濃度であればよく、好ましくは5〜80質量%、より好ましくは10〜50質量%である。また、酵素反応の進み具合により基質を反応液に追加することもできる(分解された基質は濃度から除外し、残存する基質の量を基準として、酵素の量が上記範囲となる様、基質を添加すればよい)。   The reaction in the first step can be preferably carried out in a solution. The concentration of the substrate (referred to as the compound represented by the formula [1]) in the solution (concentration at the start of the reaction) proceeds smoothly, and the substrate or product is easily recovered from the reaction solution after the reaction. It is sufficient that the concentration is as high as possible, preferably 5 to 80% by mass, and more preferably 10 to 50% by mass. In addition, the substrate can be added to the reaction solution according to the progress of the enzyme reaction (the decomposed substrate is excluded from the concentration, and the substrate is added so that the amount of the enzyme is within the above range based on the amount of the remaining substrate. Just add).

本発明に使用する酵素は市販されている幅広い範囲の加水分解酵素(リパーゼ、アシラーゼ、エステラーゼ、ペプチターゼ、プロテアーゼ)が利用できるが、立体選択性が高く、且つ基質濃度が高い場合でも反応が進む酵素がよく、好ましくはリパーゼである。リパーゼとしては、Rhizomucor miehei由来のリパーゼ、ならびにThermomyces lanuginosa由来のリパーゼが、高い反応性、立体選択性を示すから、特に好ましい。   As the enzyme used in the present invention, a wide range of commercially available hydrolases (lipase, acylase, esterase, peptidase, protease) can be used. However, the enzyme is highly stereoselective and the reaction proceeds even when the substrate concentration is high. Lipase is preferable. As the lipase, a lipase derived from Rhizomucor miehei and a lipase derived from Thermomyces lanuginosa are particularly preferable since they exhibit high reactivity and stereoselectivity.

なお、本発明に使用できるこれらの酵素は市販されており、量産化の可能な規模で購入することもできる。   These enzymes that can be used in the present invention are commercially available and can be purchased on a scale that allows mass production.

第1工程の反応に使用する酵素の量は、特に限定されないが、反応が円滑に進行する量であればよく、好ましくは式[1]で表される基質に対して、0.01〜50質量%、より好ましくは0.1〜20質量%である。   The amount of the enzyme used for the reaction in the first step is not particularly limited as long as the reaction proceeds smoothly, and is preferably 0.01 to 50 with respect to the substrate represented by the formula [1]. It is 0.1 mass%, More preferably, it is 0.1-20 mass%.

酵素はあまり多量に使用しても、コスト的に不利である。また、既に説明していたように、第一工程においては、式[2]の化合物が効率よく生成した時点で、効率よく反応を停止させることが、本発明の特に好ましい態様であるから、あまり多量の酵素を用いて急激な速度で反応を行うことは、必ずしも好ましくない。   Enzymes are disadvantageous in cost even if they are used in excessive amounts. In addition, as already explained, in the first step, it is a particularly preferable aspect of the present invention to efficiently stop the reaction when the compound of the formula [2] is efficiently produced. It is not always preferable to perform the reaction at a rapid rate using a large amount of enzyme.

反応に使用する溶媒としては「水を含む溶媒」であれば殊更に限定されるものではないが、水(特に後述の通り、通常の生物の実験で使用される緩衝剤を溶解させた緩衝剤含有の水溶液(本明細書において緩衝液という。))が好ましく使用できる。また、水と共に、t−ブチルメチルエーテル等のエーテル系、エタノール等のアルコール系有機溶媒(好ましくは炭素数1〜4のアルコール)を共溶媒として使用することもできる。   The solvent used in the reaction is not particularly limited as long as it is a “solvent containing water”, but water (in particular, as described later, a buffering agent in which a buffering agent used in a normal biological experiment is dissolved). A containing aqueous solution (referred to herein as a buffer solution) can be preferably used. In addition to water, an ether-based organic solvent such as t-butyl methyl ether or an alcohol-based organic solvent such as ethanol (preferably an alcohol having 1 to 4 carbon atoms) can be used as a cosolvent.

第1工程の結果、生成する、式[3b]で表される光学活性体化合物ならびに、この化合物がさらに加水分解して生成する式[4]で表される光学活性3,3−ジフルオロ乳酸はカルボン酸であることから、これらの生成は、反応液のpHを低下させる。特に基質濃度が高い場合には生成物のカルボン酸によりpHが大幅に低下し、酵素反応が阻害される場合があることから、pHを一定に保つことが好ましい。   As a result of the first step, the optically active compound represented by the formula [3b] and the optically active 3,3-difluorolactic acid represented by the formula [4] produced by further hydrolysis of this compound are: Since they are carboxylic acids, their formation lowers the pH of the reaction solution. In particular, when the substrate concentration is high, the pH is greatly lowered by the product carboxylic acid, and the enzyme reaction may be inhibited. Therefore, it is preferable to keep the pH constant.

反応のpHは、酵素の安定に適したpHであればよく、好ましくは4.0〜10.0、より好ましくは5.0〜9.0であるが、酵素反応の結果、生じる光学活性体がアルカリ側のpHではラセミ化するため、好ましくはpH5.0〜7.0である。例えば、緩衝液を用いてpHを制御する方法や、pH自動制御装置を用いて水酸化ナトリウム等のアルカリを自動的に添加する方法が挙げられる。このうち、緩衝液を用いてpHを制御する方法は簡便であり、本発明の第1工程の反応を行う上では特に好ましい。   The pH of the reaction is not particularly limited as long as it is suitable for the stability of the enzyme, and is preferably 4.0 to 10.0, and more preferably 5.0 to 9.0. Is racemized at an alkaline pH, the pH is preferably 5.0 to 7.0. Examples thereof include a method of controlling pH using a buffer solution and a method of automatically adding an alkali such as sodium hydroxide using a pH automatic controller. Among these, the method of controlling the pH using a buffer solution is simple and is particularly preferable when performing the reaction in the first step of the present invention.

多くの酵素は中性付近で活性を示すため、カコジル酸ナトリウム−塩酸緩衝液、マレイン酸ナトリウム−水酸化ナトリウム緩衝液、リン酸緩衝液、イミダゾール−塩酸緩衝液、2、4、6−トリメチルピリジン−塩酸緩衝液、トリエタノールアミン・塩酸−水酸化ナトリウム緩衝液、ベロナール−塩酸緩衝液、N−エチルモルフォリン−塩酸緩衝液、トリス緩衝液、グリシルグリシン−水酸化ナトリウム緩衝液などpH5〜9で緩衝作用を有する緩衝液が採用できるが、酵素の安定に適した緩衝液であればよく、リン酸緩衝液は特に好ましいものの1つである。   Since many enzymes are active near neutrality, sodium cacodylate-hydrochloric acid buffer, sodium maleate-sodium hydroxide buffer, phosphate buffer, imidazole-hydrochloric acid buffer, 2,4,6-trimethylpyridine -Hydrochloric acid buffer, triethanolamine / hydrochloric acid-sodium hydroxide buffer, veronal-hydrochloric acid buffer, N-ethylmorpholine-hydrochloric acid buffer, Tris buffer, glycylglycine-sodium hydroxide buffer, pH 5-9 Although a buffer solution having a buffering action can be adopted, any buffer solution suitable for enzyme stability may be used, and a phosphate buffer solution is one of the particularly preferable ones.

緩衝液の濃度は、0.01〜3mol/l(mol/dm)の範囲で使用できるが、好ましくは0.2〜2mol/l(mol/dm)である。なおここでいう「濃度」とは、リン酸根の濃度(下記化学種の濃度)を指す。 The buffer concentration can be used in the range of 0.01~3mol / l (mol / dm 3 ), preferably 0.2~2mol / l (mol / dm 3 ). The “concentration” here refers to the concentration of phosphate groups (the concentration of the following chemical species).

Figure 0006287528
Figure 0006287528

不斉加水分解反応の温度は、酵素反応が円滑に進み、且つ基質により酵素が失活しない温度であればよく、好ましくは5〜70℃、より好ましくは10〜45℃である。一般に70℃以上の温度では酵素は変性するため70℃以上は不適であり、また、通常の微生物の生育温度は10〜45℃であるため、微生物由来の酵素の最適な温度域もこれに等しい。酵素の種類により最適な温度が予めわかっている場合は、上記以外の温度でも反応を実施することも可能である。   The temperature of the asymmetric hydrolysis reaction may be a temperature at which the enzyme reaction proceeds smoothly and the enzyme is not inactivated by the substrate, and is preferably 5 to 70 ° C, more preferably 10 to 45 ° C. Generally, an enzyme denatures at a temperature of 70 ° C. or higher, so that the temperature of 70 ° C. or higher is unsuitable. Further, since the growth temperature of a normal microorganism is 10 to 45 ° C., the optimum temperature range of the microorganism-derived enzyme is equal to this . If the optimum temperature is known in advance depending on the type of enzyme, the reaction can be carried out at a temperature other than the above.

反応の温度は、反応速度(変換率)と、得られる化学種の光学活性とが、バランスよく高くなる様に、当業者が上記範囲の中で、適宜設定することができる。   The temperature of the reaction can be appropriately set within the above range by those skilled in the art so that the reaction rate (conversion rate) and the optical activity of the chemical species to be obtained increase in a well-balanced manner.

反応を効率的に進めるには、反応液を撹拌しながら行うのがよく、モーターに連結された撹拌翼、マグネチックスターラー、振盪器、循環式カラムなどが利用できる。撹拌翼、マグネチックスターラー等を使用する場合は、撹拌回転数が50〜1000rpmで行うのが好ましい。   In order to advance the reaction efficiently, the reaction solution is preferably stirred while a stirring blade, a magnetic stirrer, a shaker, a circulation column, or the like connected to a motor can be used. When using a stirring blade, a magnetic stirrer, etc., it is preferable to carry out stirring at 50-1000 rpm.

前述のように、本発明の第1工程においては、反応を進めすぎると、式[2]で表される未反応生成物が過剰な加水分解を受ける場合があり、式[2]の収量は低下する。その結果、後述の「第3工程」(酸による加水分解)で得られる式[4]の目的物の収量も低下してしまう。   As described above, in the first step of the present invention, if the reaction is advanced excessively, the unreacted product represented by the formula [2] may undergo excessive hydrolysis, and the yield of the formula [2] descend. As a result, the yield of the target product of the formula [4] obtained in the “third step” (hydrolysis with acid) described later also decreases.

他方、第1工程の反応を進めすぎると、式[3a]、式[3b]の化合物の光学純度が低下するという問題も生じる。光学純度の低い式[3a]、式[3b]の化合物を得ると、それらを後述の「第5工程」(酸による加水分解)に付すことによって得られる目的物質である式[4]の化合物の光学活性も低いものとなる。   On the other hand, if the reaction in the first step is advanced too much, there arises a problem that the optical purity of the compounds of the formulas [3a] and [3b] is lowered. When the compounds of formula [3a] and formula [3b] having low optical purity are obtained, the compound of formula [4] which is a target substance obtained by subjecting them to the “fifth step” (hydrolysis with acid) described later The optical activity of is also low.

よって第1工程の加水分解反応は、適宜サンプリングを行い、反応混合物の組成をガスクロマトグラフィー等で測定し、式[2]の化合物の光学純度が目標の純度に達した時速やかに、又は式[3a]、式[3b]の光学純度が目標を下回らない時に、反応を止めることが好ましい。反応がモニタリングし易く、且つ工業的に採用できる反応時間としては、例えば、1時間〜3日間が採用できる。   Therefore, the hydrolysis reaction in the first step is appropriately sampled, the composition of the reaction mixture is measured by gas chromatography or the like, and immediately when the optical purity of the compound of the formula [2] reaches the target purity or the formula It is preferable to stop the reaction when the optical purity of [3a] and formula [3b] does not fall below the target. As reaction time which reaction is easy to monitor and can employ | adopt industrially, 1 hour-3 days are employable, for example.

(2)[第2工程について]
次に第2工程について説明する。第2工程は、第1工程で得た反応混合物を精製し、酵素と反応しなかった方の立体異性体である、式[2]で表される光学活性3,3−ジフルオロ-2-アシル乳酸エステルを取り出す工程である。
(2) [About the second step]
Next, the second step will be described. In the second step, the reaction mixture obtained in the first step is purified, and the optically active 3,3-difluoro-2-acyl represented by the formula [2], which is the stereoisomer that has not reacted with the enzyme This is a step of taking out a lactic acid ester.

具体的方法は特に限定されるものではないが、例えば、蒸留や有機溶媒による抽出操作によって分離することができる。有機溶媒による抽出では、第1工程で得た反応混合物を有機溶媒(抽出溶媒)に接触させて、式[2]および式[3a]の光学活性体を有機層に回収し(式[3b]の化合物はカルボン酸であるため、水層中に残る)、次いで蒸留等慣用の手法によって式[2]および式[3a]の光学活性体を相互に分離する、という手段を挙げることができる。   Although the specific method is not particularly limited, for example, it can be separated by distillation or extraction with an organic solvent. In extraction with an organic solvent, the reaction mixture obtained in the first step is brought into contact with an organic solvent (extraction solvent), and optically active substances of the formulas [2] and [3a] are recovered in the organic layer (formula [3b] And the compound of the formula [2] and the formula [3a] are separated from each other by a conventional method such as distillation.

なお、この抽出操作を行うに際しては、水層中のpHを5以上とすると、式[3b]の化合物のカルボキシル基がアニオン(−COO)を形成し、有機層に抽出されにくいことから、一層好ましい。 In performing this extraction operation, if the pH in the aqueous layer is 5 or more, the carboxyl group of the compound of the formula [3b] forms an anion (—COO ), and is difficult to be extracted into the organic layer. Even more preferred.

抽出溶媒は、水層と分離するものなら何でもよく、n−ヘプタン、n−ヘキサンのような脂肪族炭化水素系、ベンゼン、トルエンのような芳香族炭化水素系、塩化メチレン、クロロホルムのようなハロゲン化炭化水素系、酢酸エチルのようなエステル系、ジエチルエーテル、t−ブチルメチルエーテルのようなエーテル系溶媒等が挙げられる。好ましくは、酢酸エチル、t−ブチルメチルエーテルである。   The extraction solvent may be anything as long as it can be separated from the aqueous layer, such as aliphatic hydrocarbons such as n-heptane and n-hexane, aromatic hydrocarbons such as benzene and toluene, halogens such as methylene chloride and chloroform. And hydrocarbons, ester solvents such as ethyl acetate, ether solvents such as diethyl ether and t-butyl methyl ether, and the like. Preferred are ethyl acetate and t-butyl methyl ether.

抽出操作によって得た有機層はその後、蒸留等に付すことによって、式[2]の化合物および式[3a]の光学活性体とに分離することができる。本工程で重要なのは、式[2]の光学活性体化合物を式[3a]又は式[3b]の化合物から分離し、式[2]の化合物の存在量を有意に向上させることである。そうすることによって、次の第3工程おいて、目的とする式[4]の化合物の光学純度の低下を防止できる。なお、このような理由から、式[2]の化合物は必ずしも単離・精製まで行う必要はなく、抽出溶媒等の不純物が共存する状態で、次の第3工程に供してもよい。   The organic layer obtained by the extraction operation can then be separated into a compound of formula [2] and an optically active substance of formula [3a] by subjecting it to distillation or the like. What is important in this step is to separate the optically active compound of the formula [2] from the compound of the formula [3a] or the formula [3b] to significantly improve the abundance of the compound of the formula [2]. By doing so, it is possible to prevent the optical purity of the target compound of the formula [4] from being lowered in the next third step. For this reason, the compound of the formula [2] does not necessarily need to be isolated and purified, and may be subjected to the next third step in the presence of impurities such as an extraction solvent.

(3)[第3工程について]
次に第3工程について説明する。第3工程は、前記第2工程で得た、式[2]で表される化合物を酸性条件下で加水分解に付して、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程である。
(3) [About the third step]
Next, the third step will be described. In the third step, the optically active 3,3-difluorolactic acid represented by the formula [4] is obtained by subjecting the compound represented by the formula [2] obtained in the second step to hydrolysis under acidic conditions. It is the process of obtaining.

この第3工程の反応として、酸を用いた加水分解を適用することで、既に式[2]の化合物において獲得されている高い光学純度を実質的に損なうことなく、加水分解を起こすことができることを、本発明者は見出した。これは、酵素を用いた不斉加水分解に比べると格段に安価である。加水分解に用いる酸性物質は、塩酸、硫酸、硝酸、塩素酸、過塩素酸、臭化水素酸、リン酸、ホウ酸などの無機酸や、酢酸、クエン酸、ギ酸、p−トルエンスルホン酸などの有機酸が挙げられるが、特に好ましくは、塩酸および硫酸、さらに好ましくは塩酸である。   By applying hydrolysis using an acid as the reaction in the third step, hydrolysis can occur without substantially impairing the high optical purity already obtained in the compound of formula [2]. The present inventor found. This is much cheaper than asymmetric hydrolysis using an enzyme. Acidic substances used for hydrolysis include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, chloric acid, perchloric acid, hydrobromic acid, phosphoric acid, boric acid, acetic acid, citric acid, formic acid, p-toluenesulfonic acid, etc. Of these, hydrochloric acid and sulfuric acid are more preferable, and hydrochloric acid is more preferable.

反応温度は反応が円滑に進行する温度であればよく、好ましくは25〜100℃である。反応後は濃縮することで目的物を単離できる。
なお、第3工程としては塩基を用いた加水分解も考えられるが、発明者らの検討によれば、反応を通じてラセミ化が徐々に起こって、式[4]の化合物の光学純度が低下するから、好ましくない。
The reaction temperature may be a temperature at which the reaction proceeds smoothly, and is preferably 25 to 100 ° C. After the reaction, the target product can be isolated by concentration.
In addition, although the hydrolysis using a base is also considered as the third step, according to the study by the inventors, racemization gradually occurs through the reaction, and the optical purity of the compound of the formula [4] decreases. It is not preferable.

以上の操作によって、式[4]で表される光学活性3,3−ジフルオロ乳酸を水溶性画分に得ることができ、第3工程により生じたアルコール類などの有機化合物については、抽出操作などにより除去することもできる。   Through the above operation, the optically active 3,3-difluorolactic acid represented by the formula [4] can be obtained in the water-soluble fraction. For organic compounds such as alcohols produced in the third step, an extraction operation, etc. Can also be removed.

(4)[第4工程について]
第4工程について説明する。第4工程は、第1工程で得た反応混合物を精製し、式[3a]又は式[3b]の光学活性体化合物を取り出す工程である。具体的には、式[3a]又は式[3b]の光学活性体化合物を、さらなる加水分解を生じさせることなく、系内に残存した式[2]で表される化合物から分離する工程である。
(4) [About the fourth step]
The fourth step will be described. The fourth step is a step of purifying the reaction mixture obtained in the first step and taking out the optically active compound of formula [3a] or formula [3b]. Specifically, it is a step of separating the optically active compound of formula [3a] or formula [3b] from the compound represented by formula [2] remaining in the system without causing further hydrolysis. .

第4工程の分離・精製は、上記の目的に適う手段であれば、特に限定はされないが、式[3a]の化合物を回収する場合は、例えば、第1工程で得た反応混合物を抽出溶媒による抽出操作に付すことよって、式[2]と式[3a]の化合物を抽出溶媒中に回収し(カルボン酸である式[3b]の化合物を水層に残す)、次いで抽出溶媒中の式[2]の化合物と式[3a]の化合物を互いに分離し、式[3a]の化合物を取り出す、という方法を挙げることができる。   Separation / purification in the fourth step is not particularly limited as long as it is a means suitable for the above-mentioned purpose. However, when recovering the compound of the formula [3a], for example, the reaction mixture obtained in the first step is used as an extraction solvent. The compounds of formula [2] and formula [3a] are recovered in the extraction solvent (leaving the carboxylic acid compound of formula [3b] in the aqueous layer) and then in the extraction solvent. The method of separating the compound of [2] and the compound of formula [3a] from each other and taking out the compound of formula [3a] can be mentioned.

抽出溶媒は、水層と分離するものなら何でもよく、n−ヘプタン、n−ヘキサンのような脂肪族炭化水素系、ベンゼン、トルエンのような芳香族炭化水素系、塩化メチレン、クロロホルムのようなハロゲン化炭化水素系、酢酸エチルのようなエステル系、ジエチルエーテル、t−ブチルメチルエーテルのようなエーテル系溶媒等が挙げられる。好ましくは、酢酸エチル、t−ブチルメチルエーテルである。   The extraction solvent may be anything as long as it can be separated from the aqueous layer, such as aliphatic hydrocarbons such as n-heptane and n-hexane, aromatic hydrocarbons such as benzene and toluene, halogens such as methylene chloride and chloroform. And hydrocarbons, ester solvents such as ethyl acetate, ether solvents such as diethyl ether and t-butyl methyl ether, and the like. Preferred are ethyl acetate and t-butyl methyl ether.

なお、この抽出操作を行うに際しては、水層中のpHは5以上とすると、式[3b]の化合物のカルボキシル基がアニオン(−COO)を形成し、有機層に抽出されにくいことから、一層好ましい。 In performing this extraction operation, if the pH in the aqueous layer is 5 or more, the carboxyl group of the compound of the formula [3b] forms an anion (—COO ) and is difficult to be extracted into the organic layer. Even more preferred.

このようにして得た抽出液は、蒸留等の慣用の分離手段に付せば、式[2]の化合物と式[3a]の化合物とに分離できる。   The extract thus obtained can be separated into a compound of the formula [2] and a compound of the formula [3a] by subjecting to conventional separation means such as distillation.

一方、第1工程の反応混合物から、式[3b]の化合物を回収する場合は、該反応混合物を、上述の通り、抽出溶媒による抽出操作に付し、式[2]の化合物と式[3a]の化合物を有機層に抽出した後、水層から式[3b]の化合物を分離・精製すればよい。具体的には該水層に塩酸等を加えて強酸性にすれば、[3b]の化合物のカルボキシル基がアニオン(−COO)状態から中性の基(−COOH)に戻り、有機溶媒による抽出が容易になるため、これを有機溶媒で抽出すれば、簡便に取り出すことができる。 On the other hand, when the compound of the formula [3b] is recovered from the reaction mixture of the first step, the reaction mixture is subjected to an extraction operation with an extraction solvent as described above, and the compound of the formula [2] and the formula [3a] The compound of the formula [3b] may be separated and purified from the aqueous layer. Specifically, when hydrochloric acid or the like is added to the aqueous layer to make it strongly acidic, the carboxyl group of the compound [3b] returns from the anion (—COO ) state to the neutral group (—COOH), and depends on the organic solvent. Since extraction becomes easy, if this is extracted with an organic solvent, it can be easily taken out.

なお、第4工程で得られた式[3a]の化合物又は、式[3b]の化合物は、単体を完全に単離精製してから、続く第5工程に供してもよいが、抽出溶媒が共存する状態で第5工程に供しても問題ない。   In addition, the compound of the formula [3a] or the compound of the formula [3b] obtained in the fourth step may be subjected to the subsequent fifth step after completely isolating and purifying the simple substance. There is no problem even if it is used in the fifth step in the coexisting state.

(5)[第5工程について]
次に第5工程について説明する。第5工程は、前記第4工程で得た式[3a]又は式[3b]の光学活性体化合物を酸性条件下でさらに加水分解に付して、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程である。
(5) [About the fifth step]
Next, the fifth step will be described. In the fifth step, the optically active compound of formula [3a] or formula [3b] obtained in the fourth step is further hydrolyzed under acidic conditions to give optical activity 3 represented by formula [4]. , 3-Difluorolactic acid.

この第5工程の反応として、酸を用いた加水分解を適用すると、既に式[3a]又は式[3b]の化合物において獲得されている高い光学純度を実質的に損なうことなく、加水分解を起こすことができる。これは、酵素を用いた不斉加水分解に比べると格段に安価である。加水分解に用いる酸性物質は、塩酸、硫酸、硝酸、塩素酸、過塩素酸、臭化水素酸、リン酸、ホウ酸などの無機酸や酢酸、クエン酸、ギ酸、p−トルエンスルホン酸などの有機酸が挙げられるが、特に好ましくは、塩酸および硫酸、さらに好ましくは塩酸である。   When hydrolysis using an acid is applied as the reaction of the fifth step, hydrolysis occurs without substantially impairing the high optical purity already obtained in the compound of formula [3a] or formula [3b]. be able to. This is much cheaper than asymmetric hydrolysis using an enzyme. Acidic substances used for hydrolysis include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, chloric acid, perchloric acid, hydrobromic acid, phosphoric acid, boric acid, acetic acid, citric acid, formic acid, p-toluenesulfonic acid, etc. Examples of the organic acid include hydrochloric acid and sulfuric acid, and hydrochloric acid is more preferable.

反応温度は反応が円滑に進行する温度であればよく、好ましくは25〜100℃である。反応後は濃縮することで目的物を単離できる。   The reaction temperature may be a temperature at which the reaction proceeds smoothly, and is preferably 25 to 100 ° C. After the reaction, the target product can be isolated by concentration.

なお、第5工程としては塩基を用いた加水分解も考えられるが、発明者らの検討によれば、反応を通じてラセミ化が徐々に起こって、式[4]の化合物の光学純度が低下するから、好ましくない。   As the fifth step, hydrolysis using a base may be considered, but according to the study by the inventors, racemization gradually occurs through the reaction, and the optical purity of the compound of the formula [4] decreases. It is not preferable.

(6)反応後の精製操作について
最後に、反応後の精製操作について説明する。
(6) Purification operation after reaction Finally, the purification operation after reaction will be described.

第3工程および第5工程により得られた、式[4]で表される光学活性ジフルオロ乳酸は、その後再結晶や再沈殿等の操作により光学純度をさらに高めることが可能である。   The optically active difluorolactic acid represented by the formula [4] obtained in the third step and the fifth step can be further improved in optical purity by operations such as recrystallization and reprecipitation.

このうち、再沈殿を行う場合、使用する溶媒は、n−ヘプタン、n−ヘキサンのような脂肪族炭化水素系、ベンゼン、トルエンのような芳香族炭化水素系、塩化メチレン、クロロホルムのようなハロゲン化炭化水素系、酢酸エチルのようなエステル系、ジエチルエーテル、t−ブチルメチルエーテル、ジイソプロピルエーテルのようなエーテル系溶媒が挙げられるが、好ましくは酢酸エチル、ジイソプロピルエーテルである。これらの溶媒は単独又は組み合わせて用いることができる。例えば、光学活性3,3−ジフルオロ乳酸1gに対し、0.1ml(cm)〜50ml(cm)の溶媒を用いて加熱し、懸濁状態の液を形成し、その後冷却、ろ過することにより結晶を得ることができる。 Among these, when performing reprecipitation, the solvent used is an aliphatic hydrocarbon such as n-heptane or n-hexane, an aromatic hydrocarbon such as benzene or toluene, or a halogen such as methylene chloride or chloroform. Examples thereof include ether hydrocarbons, ester solvents such as ethyl acetate, and ether solvents such as diethyl ether, t-butyl methyl ether and diisopropyl ether, with ethyl acetate and diisopropyl ether being preferred. These solvents can be used alone or in combination. For example, to optically active 3,3-difluoro lactic 1g, the heating using a solvent 0.1ml (cm 3) ~50ml (cm 3), to form a liquid suspension, then cooled and filtered Thus, crystals can be obtained.

これらの再結晶や再沈殿操作は、上述の第1〜第5工程を経て、式[4]で表される光学活性ジフルオロ乳酸を得て、さらに光学純度を高めたい場合に、適宜実施すればよい。   These recrystallization and reprecipitation operations can be appropriately performed when it is desired to obtain the optically active difluorolactic acid represented by the formula [4] through the first to fifth steps described above and to further increase the optical purity. Good.

[本発明の特に好ましい態様について]
以下、本発明の特に好ましい態様を説明する。
[About a particularly preferred embodiment of the present invention]
Hereinafter, particularly preferred embodiments of the present invention will be described.

本発明の第1工程の原料として用いる、式[1]で表される「ラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステル」としては、「ラセミ3,3−ジフルオロ−2−アセチル乳酸エチル」が特に好ましいものの一つである。   As the “racemic or 3,3-difluoro-2-acyl lactic acid ester having low optical purity” represented by the formula [1] used as the raw material of the first step of the present invention, “racemic 3,3-difluoro-2” "Ethyl acetyl lactate" is one of the particularly preferred ones.

第1工程に用いる酵素として特に好ましいのは、リパーゼであり、中でもRhizomucor miehei由来、又は、Thermomyces lanuginosa由来のリパーゼが好ましい。不斉加水分解反応は、リン酸緩衝液の存在下に行い、該リン酸緩衝液の原液の濃度が0.2mol/l(mol/dm)〜2mol/l(mol/dm)であることが好ましい。該不斉加水分解反応の温度は10℃〜60℃であることが好ましく、pHが5.0〜9.0の条件で行うことが好ましい。 Particularly preferred as the enzyme used in the first step is a lipase, among which a lipase derived from Rhizomucor miehei or Thermomyces lanuginosa is preferred. The asymmetric hydrolysis reaction is carried out in the presence of a phosphate buffer, and the concentration of the stock solution of the phosphate buffer is 0.2 mol / l (mol / dm 3 ) to 2 mol / l (mol / dm 3 ). It is preferable. The temperature of the asymmetric hydrolysis reaction is preferably 10 ° C. to 60 ° C., and is preferably carried out under conditions where the pH is 5.0 to 9.0.

前述の「ラセミ3,3−ジフルオロ−2−アセチル乳酸エチル」を、Rhizomucor miehei由来、又は、Thermomyces lanuginosa由来のリパーゼを酵素として、不斉加水分解反応(第1工程)に付すと、不斉加水分解を受けない式[2]の化合物としては、「3,3−ジフルオロ−2−アセチル乳酸エチルのS体」が生成する。これと同時に、不斉加水分解の反応生成物としては、式[3a]の化合物として「3,3−ジフルオロ乳酸エチルのS体」、式[3b]の化合物として、「3,3−ジフルオロ−2−アセチル乳酸のR体」が、各々生成する。この反応系においては式[3b]の化合物にあたる「3,3−ジフルオロ−2−アセチル乳酸のR体」がメジャーな生成物、式[3a]の化合物にあたる「3,3−ジフルオロ乳酸エチルのS体」がマイナーな生成物である。   When the above-mentioned “racemic 3,3-difluoro-2-acetylethyl lactate” is subjected to an asymmetric hydrolysis reaction (first step) using a lipase derived from Rhizomucor miehei or Thermomyces lanuginosa as an enzyme, it is asymmetrically hydrolyzed. As the compound of the formula [2] that is not decomposed, “S-form of 3,3-difluoro-2-acetylethyl lactate” is formed. At the same time, the reaction product of the asymmetric hydrolysis includes “S form of ethyl 3,3-difluorolactic acid” as the compound of formula [3a] and “3,3-difluoro- "R-isomers of 2-acetyllactic acid" are produced respectively. In this reaction system, “R-form of 3,3-difluoro-2-acetyllactic acid” corresponding to the compound of formula [3b] is a major product, and “S of ethyl 3,3-difluorolactic acid corresponding to the compound of formula [3a] is used. "Body" is a minor product.

なお、この第1工程の反応において、式[4]で表される「3,3−ジフルオロ乳酸のS体」が僅かに生成するが、量はごく少ない。すでに述べたように、第1工程において式[4]で表される目的物の生成量を増やそうとして、不斉加水分解反応を継続し過ぎると、この化合物の光学純度が減少するばかりか、第1工程の主目的物である式[3a]の化合物、式[3b]の化合物、式[2]の化合物の、収率あるいは光学純度の低下を招くので、好ましくない。   In the reaction of the first step, “S form of 3,3-difluorolactic acid” represented by the formula [4] is slightly produced, but the amount is very small. As already described, if the asymmetric hydrolysis reaction is continued excessively in an attempt to increase the amount of the target compound represented by the formula [4] in the first step, not only the optical purity of the compound decreases, This is not preferable because it decreases the yield or optical purity of the compound of the formula [3a], the compound of the formula [3b], and the compound of the formula [2], which is the main target product of the first step.

この系における第1工程で得られた反応混合物を、好ましくは水層のpHが5以上の状態で、抽出溶媒による抽出操作に付すと、有機層には、「3,3−ジフルオロ−2−アセチル乳酸エチルのS体」(メジャー)と「3,3−ジフルオロ乳酸エチルのS体」(マイナー)が選択的に抽出される。一方、水層には、「3,3−ジフルオロ−2−アセチル乳酸のR体」(メジャー)と「3,3−ジフルオロ乳酸のS体」(マイナー)が残る。   When the reaction mixture obtained in the first step in this system is subjected to an extraction operation with an extraction solvent, preferably in a state where the pH of the aqueous layer is 5 or more, the organic layer contains “3,3-difluoro-2- The “S form of ethyl acetyl lactate” (major) and the “S form of ethyl 3,3-difluorolactate” (minor) are selectively extracted. On the other hand, “R-form of 3,3-difluoro-2-acetyllactic acid” (major) and “S-form of 3,3-difluorolactic acid” (minor) remain in the water layer.

この抽出操作で得られた有機層をさらに蒸留等の分離手段に付せば、メジャーな生成物である「3,3−ジフルオロ−2−アセチル乳酸エチルのS体」を取り出すことができ、この場合、先の溶媒抽出操作と併せて、その分離操作全体が「第2工程」となる。   If the organic layer obtained by this extraction operation is further subjected to separation means such as distillation, the major product “S-form of 3,3-difluoro-2-acetylethyl lactate” can be taken out. In this case, the entire separation operation becomes the “second step” together with the previous solvent extraction operation.

「第2工程」で取り出した「3,3−ジフルオロ−2−アセチル乳酸エチルのS体」をその後、「酸による加水分解(第3工程)」に付すと、実質的に光学純度を損なうことなく、式[4]で表される目的化合物として、「3,3−ジフルオロ乳酸のS体」を得ることができる。   If the "S form of 3,3-difluoro-2-acetylethyl lactate" taken out in the "second step" is subsequently subjected to "hydrolysis with acid (third step)", the optical purity is substantially impaired. In addition, as the target compound represented by the formula [4], “S form of 3,3-difluorolactic acid” can be obtained.

一方、前記抽出操作の結果、得られた水層には「3,3−ジフルオロ−2−アセチル乳酸のR体」(メジャー)と「3,3−ジフルオロ乳酸のS体」(マイナー)が、カルボキシル基が主に「−COO」の状態になって溶存している。この水層に、塩酸などの強酸を加えると、両化合物の−COO基は、−COOHに戻り、有機溶媒に抽出しやすくなる。すなわち、「3,3−ジフルオロ−2−アセチル乳酸のR体」を有機溶媒に抽出できる。続く慣用の精製手段(再結晶など)によって、その純度を高めることもできる(先の溶媒抽出操作と併せて、これら一連の操作が「第4工程」となる)。 On the other hand, as a result of the extraction operation, the obtained water layer contains “R-form of 3,3-difluoro-2-acetyllactic acid” (major) and “S-form of 3,3-difluorolactic acid” (minor). The carboxyl group is dissolved mainly in the state of “—COO ”. When a strong acid such as hydrochloric acid is added to this aqueous layer, the —COO 2 groups of both compounds are returned to —COOH, and are easily extracted into an organic solvent. That is, “R form of 3,3-difluoro-2-acetyllactic acid” can be extracted into an organic solvent. The purity can be increased by subsequent conventional purification means (such as recrystallization) (a series of these operations together with the previous solvent extraction operation is the “fourth step”).

こうして取り出した「3,3−ジフルオロ−2−アセチル乳酸のR体」を、酸性条件下の加水分解に付せば、実質的に光学純度を損なうことなく、式[4]で表される目的化合物として「3,3−ジフルオロ乳酸のR体」を得ることができる(第5工程)。なお、第4工程において、マイナーな生成物とはいえ「3,3−ジフルオロ乳酸のS体」が十分に除けない場合は、この物質の混在によって、第5工程によって生成する「3,3−ジフルオロ乳酸のR体」の光学純度(ee)を押し下げる結果となる。よって、可能な限り、マイナーな「3,3−ジフルオロ乳酸のS体」は精製によって除去してから、第5工程を実施した方がよい。但し、マイナーな「3,3−ジフルオロ乳酸のS体」を敢えて除去しないで、第5工程を実施してもよい(その場合、第5工程後の上述の「反応後の精製操作」によって、目的物の光学純度を高めることができる)。   When the “R form of 3,3-difluoro-2-acetyllactic acid” thus taken out is subjected to hydrolysis under acidic conditions, the objective represented by the formula [4] is obtained without substantially impairing the optical purity. As the compound, “R form of 3,3-difluorolactic acid” can be obtained (fifth step). In the fourth step, if the “S form of 3,3-difluorolactic acid” is not sufficiently removed even though it is a minor product, “3,3- As a result, the optical purity (ee) of the R form of difluorolactic acid is pushed down. Therefore, as much as possible, it is better to carry out the fifth step after removing the minor “S form of 3,3-difluorolactic acid” by purification. However, the fifth step may be carried out without intentionally removing the minor “S form of 3,3-difluorolactic acid” (in that case, by the above-mentioned “purification operation after reaction” described above after the fifth step, The optical purity of the target product can be increased).

第3工程で得られた「3,3−ジフルオロ乳酸のS体」、第5工程で得られた「3,3−ジフルオロ乳酸のR体」は、「反応後の精製操作」すなわち、再結晶又は再沈殿のうち少なくとも1つの精製手段に付すことによって、各々、さらに光学純度を高めることができる。   The “S-form of 3,3-difluorolactic acid” obtained in the third step and the “R-form of 3,3-difluorolactic acid” obtained in the fifth step are the “purification operation after the reaction”, that is, recrystallization. Alternatively, the optical purity can be further increased by subjecting to at least one purification means of reprecipitation.

以下、本発明の実施形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Embodiments of the present invention will be specifically described below, but the present invention is not limited to these examples.

[実施例1〜2]
[酵素による不斉加水分解反応]
0.85mol/l(mol/dm)に調製したリン酸緩衝液(pH7.0)3ml(cm)に各市販酵素0.03gをそれぞれ溶解し、およそ300μl(mm)のラセミ3,3−ジフルオロ−2−アセチル乳酸エチルをそれぞれ添加した。25℃で、攪拌しながら1日間反応を行った。後述の分析条件で分析した光学純度と生成量の結果を表1に示す。
[Examples 1-2]
[Asymmetric hydrolysis by enzyme]
0.03 g of each commercially available enzyme was dissolved in 3 ml (cm 3 ) of phosphate buffer (pH 7.0) prepared to 0.85 mol / l (mol / dm 3 ), and approximately 300 μl (mm 3 ) of racemic 3, 3-Difluoro-2-acetylethyl lactate was added respectively. The reaction was carried out at 25 ° C. for 1 day with stirring. Table 1 shows the results of optical purity and production amount analyzed under the analysis conditions described later.

Figure 0006287528
Figure 0006287528

このように、ラセミ3,3−ジフルオロ−2−アセチル乳酸エチルを原料とし、これに加水分解酵素を接触させ、不斉加水分解反応を行うと、加水分解を受けない異性体   Thus, when racemic 3,3-difluoro-2-acetylethyl lactate is used as a raw material, a hydrolytic enzyme is brought into contact therewith, and an asymmetric hydrolysis reaction is carried out, an isomer that does not undergo hydrolysis.

Figure 0006287528
Figure 0006287528

が有意に高い光学純度で残存することがわかった。これと共に、加水分解を受けた方の異性体が、 Remained with significantly higher optical purity. Along with this, the isomer of the hydrolyzed one is

Figure 0006287528
Figure 0006287528

の形で、やはり高い光学純度で系内に生成することがわかった。これらの化学種の高い光学純度は、後述の比較例1〜5に比較しても明らかである。 In this form, it was found that it was also produced in the system with high optical purity. The high optical purity of these chemical species is clear even when compared with Comparative Examples 1 to 5 described later.

一方、次の2つの化学種   On the other hand, the following two chemical species

Figure 0006287528
Figure 0006287528

Figure 0006287528
Figure 0006287528

は、生成量としては、上記2つの化学種に比べて少ないが、これらも、光学純度が有意に高い状態で生成していることがわかる。 Although the production amount is small compared to the above two chemical species, it can be seen that these are also produced in a state in which the optical purity is significantly high.

[比較例1〜5](基質:ラセミ3,3−ジフルオロ乳酸エチル)
0.85mol/l(mol/dm)に調製したリン酸緩衝液(pH7.0)0.5ml(cm)に各市販酵素0.005gをそれぞれ溶解し、凡そ50μl(mm)のラセミ3,3、−ジフルオロ乳酸エチルをそれぞれ添加した。25℃で、攪拌しながら1日間反応を行った。後述の分析条件で分析した光学純度と生成量の結果を表2に示す。
[Comparative Examples 1 to 5] (Substrate: Racemic 3,3-difluoroethyl lactate)
0.005 g of each commercially available enzyme was dissolved in 0.5 ml (cm 3 ) of a phosphate buffer (pH 7.0) prepared to 0.85 mol / l (mol / dm 3 ), and approximately 50 μl (mm 3 ) of racemic material was dissolved. 3,3, -Difluoroethyl lactate was added respectively. The reaction was carried out at 25 ° C. for 1 day with stirring. Table 2 shows the results of optical purity and production amount analyzed under the analysis conditions described later.

Figure 0006287528
Figure 0006287528

このように、ラセミ体の3,3−ジフルオロ乳酸エチルを原料基質として設定した「比較例1〜5」においても、加水分解反応は進行し、加水分解を受けない異性体が生成し、   Thus, also in “Comparative Examples 1-5” in which racemic 3,3-difluoroethyl lactate was set as a raw material substrate, the hydrolysis reaction proceeded to produce an isomer that was not subjected to hydrolysis,

Figure 0006287528
Figure 0006287528

これと共に、加水分解を受けた方の異性体 Along with this, the hydrolyzed isomer

Figure 0006287528
Figure 0006287528

が生成することが確認された。しかし、その酵素の立体選択性は「実施例」に比べて低く、この反応では光学純度を効率よく高めるのは難しいことがわかった。 Was confirmed to generate. However, the stereoselectivity of the enzyme is lower than that of “Example”, and it has been found that it is difficult to efficiently increase the optical purity in this reaction.

[実施例3]
0.85mol/l(mol/dm)リン酸バッファー200ml(cm)に、ラセミ3,3−ジフルオロ−2−アセチル乳酸エチル20g(101mmol)、Lipozyme(登録商標)RM IMを4g加え、25℃で反応した。88時間後、未反応原料である3,3−ジフルオロ−2−アセチル乳酸エチルの光学純度が十分高くなったので、反応を停止した。反応後、MTBE(t−ブチルメチルエーテル)により抽出を行った。有機層には、3,3−ジフルオロ−2−アセチル乳酸エチル37mmol(99.0%ee(S))と3,3−ジフルオロ乳酸エチル1.8mmol(84.2%ee(S))を回収した。水層には、3,3−ジフルオロ−2−アセチル乳酸54mmol(78.7%ee(R))と3,3−ジフルオロ乳酸5.1mmol(0.4%ee(S))を回収した。
[Example 3]
To 200 ml (cm 3 ) of 0.85 mol / l (mol / dm 3 ) phosphate buffer, 20 g (101 mmol) of racemic 3,3-difluoro-2-acetylethyl lactate and 4 g of Lipozyme® RM IM were added, and 25 Reacted at ° C. After 88 hours, since the optical purity of 3,3-difluoro-2-acetylethyl lactate which was an unreacted raw material became sufficiently high, the reaction was stopped. After the reaction, extraction was performed with MTBE (t-butyl methyl ether). In the organic layer, 37 mmol (99.0% ee (S)) of ethyl 3,3-difluoro-2-acetyl lactate and 1.8 mmol (84.2% ee (S)) of ethyl 3,3-difluoro lactate were recovered. did. In the aqueous layer, 54 mmol (78.7% ee (R)) of 3,3-difluoro-2-acetyllactic acid and 5.1 mmol (0.4% ee (S)) of 3,3-difluorolactic acid were recovered.

次いで、上記水層に、濃塩酸13.5ml(cm)を加え、MTBEにより抽出を行った。その結果、3,3−ジフルオロ−2−アセチル乳酸(R体)41mmol、3,3−ジフルオロ乳酸(S体)3.7mmolを回収した。これを濃縮し、濃塩酸0.3ml(cm)、水1.6g加え、65℃で1日間加水分解反応を行い、目的物である3,3−ジフルオロ乳酸を得た(76%ee(R))。 Next, 13.5 ml (cm 3 ) of concentrated hydrochloric acid was added to the aqueous layer, and extraction was performed with MTBE. As a result, 41 mmol of 3,3-difluoro-2-acetyllactic acid (R-form) and 3.7 mmol of 3,3-difluorolactic acid (S-form) were recovered. This was concentrated, 0.3 ml (cm 3 ) of concentrated hydrochloric acid and 1.6 g of water were added, and a hydrolysis reaction was carried out at 65 ° C. for 1 day to obtain 3,3-difluorolactic acid (76% ee (76% ee ( R)).

このように、3,3−ジフルオロ−2−アセチル乳酸(R体)を、濃塩酸を用いて加水分解することにより、実質的に光学純度を低下させることなく、目的物質に誘導できることが明らかとなった。   Thus, it is clear that hydrolysis of 3,3-difluoro-2-acetyllactic acid (R form) using concentrated hydrochloric acid can be induced to the target substance without substantially reducing the optical purity. became.

なお、本実施例では、マイナーな3,3−ジフルオロ乳酸(S体)を敢えて分離することなく、「酸による加水分解」を実施しているので、最終生成物3,3−ジフルオロ乳酸(R体)の光学純度は中程度の高さとなっている。しかし、このレベルにまで光学純度が上がっていれば、目的物の光学純度は、その後の精製操作(実施例4を参照)によって、十分高めることができる。   In this example, since “hydrolysis with acid” is carried out without intentionally separating minor 3,3-difluorolactic acid (S form), the final product 3,3-difluorolactic acid (R The optical purity of the body is moderate. However, if the optical purity is increased to this level, the optical purity of the target product can be sufficiently increased by the subsequent purification operation (see Example 4).

[実施例4]
3,3−ジフルオロ乳酸(78%ee(R))4.3gに酢酸エチル0.8ml(cm)を加え、35℃で10分間撹拌した。スラリー状態になった後、氷水中で冷却し、ろ過により結晶を回収した。得られた結晶は1.3g(95%ee(R))であった。
このように、78%eeの光学純度を持つ3,3−ジフルオロ乳酸を、酢酸エチルを用いた再沈殿という簡易な方法に付すだけで、光学純度をさらに著しく向上できることが明らかとなった。
[Example 4]
To 4.3 g of 3,3-difluorolactic acid (78% ee (R)), 0.8 ml (cm 3 ) of ethyl acetate was added and stirred at 35 ° C. for 10 minutes. After becoming a slurry, it was cooled in ice water, and the crystals were collected by filtration. The obtained crystal was 1.3 g (95% ee (R)).
Thus, it was revealed that the optical purity can be further improved by simply applying 3,3-difluorolactic acid having an optical purity of 78% ee to a simple method of reprecipitation using ethyl acetate.

[分析条件]
3,3−ジフルオロ乳酸エステルの光学純度分析:3,3−ジフルオロ−2−アセチル乳酸エチル、3,3−ジフルオロ乳酸エチルの光学純度はガスクロマトグラフィー法にて測定した。また、3,3−ジフルオロ−2−アセチル乳酸、3,3−ジフルオロ乳酸はTMSジアゾメタンによりメチルエステル化した後、光学純度をガスクロマトグラフィー法にて測定した。
カラム:BGB(30m×0.25mm×0.25μm)(BGB Analytik AG製)
温度条件:50℃(5min)→5℃/min→150℃(5min)
注入口温度:230℃
検出器温度:230℃
[各エナンチオマーの保持時間]
3,3−ジフルオロ−2−アセチル乳酸エチル:R体16.7min、S体16.3min
3,3−ジフルオロ乳酸エチル:R体19.7min、S体20.6min
3,3−ジフルオロ−2−アセチル乳酸:R体15.8min、S体15.0min
3,3−ジフルオロ乳酸:R体20.2min、S体21.6min
不斉加水分解反応で生成した光学活性3,3−ジフルオロ乳酸誘導体の生成量はベンゾトリフルオリドを内部標準物質として、19F−NMR分析により求めた。
[Analysis conditions]
Optical purity analysis of 3,3-difluorolactic acid ester: The optical purity of 3,3-difluoro-2-acetylethyl lactate and 3,3-difluoroethyl lactate was measured by gas chromatography. Further, 3,3-difluoro-2-acetyllactic acid and 3,3-difluorolactic acid were methyl esterified with TMS diazomethane, and the optical purity was measured by gas chromatography.
Column: BGB (30 m × 0.25 mm × 0.25 μm) (manufactured by BGB Analytic AG)
Temperature conditions: 50 ° C. (5 min) → 5 ° C./min→150° C. (5 min)
Inlet temperature: 230 ° C
Detector temperature: 230 ° C
[Retention time of each enantiomer]
3,3-difluoro-2-acetylethyl lactate: R-form 16.7 min, S-form 16.3 min
3,3-difluoroethyl lactate: R-form 19.7 min, S-form 20.6 min
3,3-difluoro-2-acetyllactic acid: R-form 15.8 min, S-form 15.0 min
3,3-difluorolactic acid: R-form 20.2min, S-form 21.6min
The production amount of the optically active 3,3-difluorolactic acid derivative produced by the asymmetric hydrolysis reaction was determined by 19 F-NMR analysis using benzotrifluoride as an internal standard substance.

本発明で対象とする光学活性ジフルオロ乳酸は、各種光学活性ジフルオロ乳酸に誘導でき、これらは医農薬中間体として利用できる。   The optically active difluorolactic acid targeted in the present invention can be derived into various optically active difluorolactic acids, which can be used as intermediates for medicines and agricultural chemicals.

Claims (11)

式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステル
Figure 0006287528
に加水分解酵素を接触させ、不斉加水分解反応を行う工程を含む、
式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステル
Figure 0006287528
と、
式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)
Figure 0006287528
Figure 0006287528
と、
式[4]で表される光学活性3,3−ジフルオロ乳酸
Figure 0006287528
のうち、少なくとも1つの化合物を製造する方法。
(上記各式中、*は不斉炭素原子を示す。R1は置換基を有してもよい炭素数2〜11の直鎖又は分岐鎖のアシル基、Rは置換基を有してもよい炭素数1〜10の直鎖又は分岐鎖のアルキル基、アリール基、シクロアルキル基を示す。)
Racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1]
Figure 0006287528
Including a step of bringing a hydrolase into contact with the asymmetric hydrolysis reaction,
Optically active 3,3-difluoro-2-acyl lactic acid ester represented by the formula [2]
Figure 0006287528
When,
Optically active compound represented by formula [3a] or formula [3b] (R-form or S-form, respectively)
Figure 0006287528
Figure 0006287528
When,
Optically active 3,3-difluorolactic acid represented by the formula [4]
Figure 0006287528
Among them, a method for producing at least one compound.
(In the above formulas, * represents an asymmetric carbon atom. R 1 is a linear or branched acyl group having 2 to 11 carbon atoms that may have a substituent, and R 2 has a substituent. A C1-C10 linear or branched alkyl group, aryl group or cycloalkyl group.
次の第1工程〜第3工程を含む、式[4]で表される光学活性3,3−ジフルオロ乳酸の製造方法。
(第1工程)
式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルに加水分解酵素を接触させ、不斉加水分解反応を行って、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルならびに、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)を含む反応混合物を得る工程。
(第2工程)
前記第1工程で得られた反応混合物を精製し、該反応混合物から、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルを取り出す工程。
(第3工程)
前記第2工程で取り出した式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルを、酸性条件下で加水分解することにより、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程。
(ここで、式[1]、式[2]、式[3a]、式[3b]、式[4]の意味は、請求項1と同じである。)
The manufacturing method of the optically active 3, 3- difluoro lactic acid represented by Formula [4] including the following 1st process-3rd process.
(First step)
A racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] is brought into contact with a hydrolase and subjected to an asymmetric hydrolysis reaction, thereby being represented by the formula [2]. A step of obtaining a reaction mixture containing the optically active 3,3-difluoro-2-acyl lactic acid ester and the optically active compound represented by the formula [3a] or the formula [3b] (each R-form or S-form).
(Second step)
The step of purifying the reaction mixture obtained in the first step and taking out the optically active 3,3-difluoro- 2-acyl lactic acid ester represented by the formula [2] from the reaction mixture.
(Third step)
The optical activity represented by the formula [4] is obtained by hydrolyzing the optically active 3,3-difluoro- 2-acyl lactic acid ester represented by the formula [2] taken out in the second step under an acidic condition. A step of obtaining 3,3-difluorolactic acid.
(Here, the meanings of Formula [1], Formula [2], Formula [3a], Formula [3b], and Formula [4] are the same as in claim 1).
次の第1工程、第4工程および第5工程を含む、式[4]で表される光学活性3,3−ジフルオロ乳酸の製造方法。
(第1工程)
式[1]で表されるラセミ又は光学純度の低い3,3−ジフルオロ−2−アシル乳酸エステルに加水分解酵素を接触させ、不斉加水分解反応を行って、式[2]で表される光学活性3,3−ジフルオロ−2−アシル乳酸エステルならびに、式[3a]又は式[3b]で表される光学活性体化合物(各々R体又はS体)を含む反応混合物を得る工程。
(第4工程)
前記第1工程で得られた反応混合物を精製し、該反応混合物から、式[3a]で表される光学活性3,3−ジフルオロ−2−アシル乳酸誘導体および式[3b]で表される光学活性3,3−ジフルオロ−2−アシル乳酸誘導体のうち、少なくとも一方を取り出す工程。
(第5工程)
前記第4工程で取り出した式[3a]で表される光学活性3,3−ジフルオロ−2−アシル乳酸誘導体および式[3b]で表される光学活性3,3−ジフルオロ−2−アシル乳酸誘導体のうちの一方を、酸性条件下で加水分解することにより、式[4]で表される光学活性3,3−ジフルオロ乳酸を得る工程。
(ここで、式[1]、式[2]、式[3a]、式[3b]、式[4]の意味は、請求項1と同じである。)
A method for producing an optically active 3,3-difluorolactic acid represented by the formula [4], comprising the following first step, fourth step and fifth step.
(First step)
A racemic or low optical purity 3,3-difluoro-2-acyl lactic acid ester represented by the formula [1] is brought into contact with a hydrolase and subjected to an asymmetric hydrolysis reaction, thereby being represented by the formula [2]. A step of obtaining a reaction mixture containing the optically active 3,3-difluoro-2-acyl lactic acid ester and the optically active compound represented by the formula [3a] or the formula [3b] (each R-form or S-form).
(4th process)
The reaction mixture obtained in the first step is purified, and an optically active 3,3-difluoro-2-acyllactic acid derivative represented by the formula [3a] and an optical represented by the formula [3b] are obtained from the reaction mixture. Removing at least one of the active 3,3-difluoro-2-acyllactic acid derivatives.
(5th process)
The optically active 3,3-difluoro-2-acyllactic acid derivative represented by the formula [3a] and the optically active 3,3-difluoro-2-acyllactic acid derivative represented by the formula [3b] taken out in the fourth step The process of obtaining the optically active 3,3-difluorolactic acid represented by Formula [4] by hydrolyzing one of these under acidic conditions.
(Here, the meanings of Formula [1], Formula [2], Formula [3a], Formula [3b], and Formula [4] are the same as in claim 1).
が炭素数2〜7の無置換のアシル基で且つ、Rが炭素数1〜6の無置換のアルキル基である、請求項1乃至3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein R 1 is an unsubstituted acyl group having 2 to 7 carbon atoms, and R 2 is an unsubstituted alkyl group having 1 to 6 carbon atoms. 3,3−ジフルオロ−2−アシル乳酸エステルが3,3−ジフルオロ−2−アセチル乳酸エチルであることを特徴とする請求項1乃至3のいずれかに記載の方法。   4. The method according to claim 1, wherein the 3,3-difluoro-2-acyl lactic acid ester is 3,3-difluoro-2-acetyl ethyl lactate. 加水分解酵素がリパーゼであることを特徴とする請求項1乃至5のいずれかに記載の方法。   6. The method according to claim 1, wherein the hydrolase is a lipase. リパーゼがRhizomucor miehei由来、又は、Thermomyces lanuginosa由来であることを特徴とする請求項6に記載の方法。   The method according to claim 6, wherein the lipase is derived from Rhizomucor miehei or Thermomyces langinosa. 前記不斉加水分解反応をリン酸緩衝液の存在下に行い、該リン酸緩衝液の原液の濃度が0.2mol/l(mol/dm)〜2mol/l(mol/dm)であることを特徴とする請求項1乃至7のいずれかに記載の方法。 The asymmetric hydrolysis reaction is performed in the presence of a phosphate buffer, and the concentration of the phosphate buffer stock solution is 0.2 mol / l (mol / dm 3 ) to 2 mol / l (mol / dm 3 ). 8. A method according to any one of claims 1 to 7, characterized in that 不斉加水分解反応の温度が10℃〜60℃であることを特徴とする請求項1乃至8のいずれかに記載の方法。   The method according to any one of claims 1 to 8, wherein the temperature of the asymmetric hydrolysis reaction is 10 ° C to 60 ° C. 不斉加水分解反応を、pHが5.0〜9.0の条件で行うことを特徴とする請求項1乃至9のいずれかに記載の方法。   The method according to any one of claims 1 to 9, wherein the asymmetric hydrolysis reaction is carried out under conditions where the pH is 5.0 to 9.0. 請求項1乃至10のいずれかに記載の方法によって、式[4]で表される光学活性3,3−ジフルオロ乳酸を得た後、該光学活性3,3−ジフルオロ乳酸を再結晶又は再沈殿のうち少なくとも1つの精製手段に付すことを特徴とする、光学活性3,3−ジフルオロ乳酸を製造する方法。 By a method according to any one of claims 1乃optimum 1 0, after obtaining the optically active 3,3-difluoro-lactic acid of the formula [4], the optically active 3,3-difluoro lactic recrystallization or A method for producing optically active 3,3-difluorolactic acid, which is subjected to at least one purification means of reprecipitation.
JP2014086030A 2014-04-18 2014-04-18 Method for producing optically active 3,3-difluorolactic acid derivative Active JP6287528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086030A JP6287528B2 (en) 2014-04-18 2014-04-18 Method for producing optically active 3,3-difluorolactic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086030A JP6287528B2 (en) 2014-04-18 2014-04-18 Method for producing optically active 3,3-difluorolactic acid derivative

Publications (2)

Publication Number Publication Date
JP2015204762A JP2015204762A (en) 2015-11-19
JP6287528B2 true JP6287528B2 (en) 2018-03-07

Family

ID=54602207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086030A Active JP6287528B2 (en) 2014-04-18 2014-04-18 Method for producing optically active 3,3-difluorolactic acid derivative

Country Status (1)

Country Link
JP (1) JP6287528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459709B2 (en) * 2015-03-27 2019-01-30 セントラル硝子株式会社 Practical production method of 3,3-difluoro-2-hydroxypropionic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020256A (en) * 2005-07-06 2007-01-25 Nec Access Technica Ltd Charging apparatus and method for controlling the apparatus

Also Published As

Publication number Publication date
JP2015204762A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
CA2724828C (en) Process for the stereoselective enzymatic hydrolysis of 5-methyl-3-nitromethyl-hexanoic acid ester
US7232925B2 (en) Process for producing (4E)-5-chloro-2-isopropyl-4-pentenoate and optically active form thereof
JP6287528B2 (en) Method for producing optically active 3,3-difluorolactic acid derivative
JPH0160239B2 (en)
DE10308350B4 (en) Process for preparing the enantiomeric forms of cis-configured 1,3-cyclohexanediol derivatives
JPWO2004108944A1 (en) Method for producing optically active chromancarboxylic acid ester
JP5266875B2 (en) Process for producing optically active organic carboxylic acid from organic carboxylic acid ester
JP5598330B2 (en) Process for producing optically active organic carboxylic acid
US7094795B2 (en) Process for preparing the enantiomeric forms of cis-configured 1,3-cyclohexanediol derivatives
US20080281125A1 (en) Process for Preparing Enantiopure E-(2S)-Alkyl-5-Halopent-4-Enoic Acids and Esters
KR100650798B1 (en) Process for preparing chiral substituted carboxylic acid
JP3129776B2 (en) Method for producing optically active α-hydroxyalkene derivative
JP4608938B2 (en) Process for producing optically active 3-alkyl-3-arylpropionic acid and optically active 3-alkyl-3-arylpropionic acid alkyl ester
JP3010382B2 (en) Method for producing (R) -2-propoxybenzene derivative
JP3850440B2 (en) Production of optically active 2-halopropionic acid
JPH08119958A (en) Production of optically active chroman compound
JP2005000164A (en) Method for production of optically active ester derivative and/or optically active carboxylic acid derivative
JP2003144190A (en) Method for producing optically active s-6-hydroxy-2,5,7,8- tetramethylcumarone-2-carboxylic acid
JP2004350522A (en) Method for producing optically active ester and / or optically active carboxylic acid
JPWO2008072764A1 (en) Process for producing optically active (R or S) -piperidine-3-carboxylic acid compound and optically active (S or R) -piperidine-3-carboxylic acid alkyl ester compound
JPH11313695A (en) Production of optically active 3,3,3-trifluoro-2-hydroxy-2-methylproptonic acid
JP2010505417A (en) (3) Specific hydrolysis of N-unprotected (R) -esters of (3) -amino-3-arylpropionic acid esters
JPH01247100A (en) Production of optically active carboxylic acid derivative
JP2010207248A (en) Method for producing optically active 3-alkyl-3-arylpropionic acid and optically active 3-alkyl-3-arylpropionate
JP2008295302A (en) Method for producing optically active ester derivative and/or optically active carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250