JP6287344B2 - Method for producing carbon nitride film - Google Patents

Method for producing carbon nitride film Download PDF

Info

Publication number
JP6287344B2
JP6287344B2 JP2014040781A JP2014040781A JP6287344B2 JP 6287344 B2 JP6287344 B2 JP 6287344B2 JP 2014040781 A JP2014040781 A JP 2014040781A JP 2014040781 A JP2014040781 A JP 2014040781A JP 6287344 B2 JP6287344 B2 JP 6287344B2
Authority
JP
Japan
Prior art keywords
carbon
group
carbon nitride
nitride film
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014040781A
Other languages
Japanese (ja)
Other versions
JP2014196232A (en
Inventor
康巨 鄭
康巨 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2014040781A priority Critical patent/JP6287344B2/en
Publication of JP2014196232A publication Critical patent/JP2014196232A/en
Application granted granted Critical
Publication of JP6287344B2 publication Critical patent/JP6287344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、窒化炭素前駆体組成物、窒化炭素の製造方法及び電極材料に関する。   The present invention relates to a carbon nitride precursor composition, a method for producing carbon nitride, and an electrode material.

窒化炭素は硬度、電気伝導性、熱伝導性、耐食性等に優れるため、パワーデバイスをはじめとする電気素子材料等として有用と考えられている。特に、多孔質窒化炭素は担体、吸着材、電極材料等種々の用途への適用が期待されている。   Since carbon nitride is excellent in hardness, electrical conductivity, thermal conductivity, corrosion resistance and the like, it is considered useful as an electrical element material including a power device. In particular, porous carbon nitride is expected to be applied to various uses such as carriers, adsorbents, and electrode materials.

窒化炭素の製造法として、熱分解法、ビーム蒸着法、高圧衝撃波合成法、レーザーアブレーション法、溶融塩電解法などが知られている(たとえば、特許文献1,2を参照)。他に、炭素源となる第一の化合物と、窒素源となる第二の化合物とのオリゴマー又はポリマーを不活性雰囲気下で焼成する方法が知られている(たとえば、特許文献3,4を参照)。   As a method for producing carbon nitride, a thermal decomposition method, a beam evaporation method, a high-pressure shock wave synthesis method, a laser ablation method, a molten salt electrolysis method, and the like are known (see, for example, Patent Documents 1 and 2). In addition, a method is known in which an oligomer or a polymer of a first compound serving as a carbon source and a second compound serving as a nitrogen source is baked in an inert atmosphere (see, for example, Patent Documents 3 and 4). ).

特開2009−120861号公報JP 2009-120861 A 特開平9−227298JP-A-9-227298 特開平2−206619JP-A-2-206619 国際公開WO2008/126799号 熱分解法、ビーム蒸着法、高圧衝撃波合成法、レーザーアブレーション法、溶融塩電解法はそれぞれ、生産効率、コスト又はエネルギー消費量の点に課題を有している。一方、特許文献3,4に記載の方法は上記課題を一部解決したが、炭素化収率の点で十分なものではなかった。International Publication WO2008 / 126799 Thermal decomposition method, beam evaporation method, high-pressure shock wave synthesis method, laser ablation method, and molten salt electrolysis method each have problems in terms of production efficiency, cost, or energy consumption. On the other hand, the methods described in Patent Documents 3 and 4 have partially solved the above problems, but are not sufficient in terms of carbonization yield.

本発明は、生産効率、コスト及びエネルギー消費量の点で優れ、かつ高い炭素化収率を与える窒化炭素前駆体組成物及び窒化炭素の製造方法を提供する。本発明により得られる窒化炭素は、たとえば電極材料に適している。   The present invention provides a carbon nitride precursor composition that is excellent in terms of production efficiency, cost, and energy consumption, and that provides a high carbonization yield, and a method for producing carbon nitride. The carbon nitride obtained by the present invention is suitable for an electrode material, for example.

本発明に係る窒化炭素前駆体組成物は、下記式(1)で表される化合物の重合体及び溶媒を含む。   The carbon nitride precursor composition according to the present invention includes a polymer of a compound represented by the following formula (1) and a solvent.

(Arは炭素数6〜18の芳香族炭化水素基又はその芳香環上の炭素の一部が窒素原子で置換された基を表す。該芳香族炭化水素基上の水素原子はその一部又は全部がハロゲン原子、アミノ基、シアノ基、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基により置換されていてもよい。Pは重合性基を表す。Pは水素原子又は上記式中の炭素−窒素二重結合と共に共役系を形成する炭素−炭素間不飽和結合を有する有機基を表す。Rは水素原子、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基を表す。mは0又は1以上の整数を表す。)
本発明に係る窒化炭素の製造方法は、下記式(1)で表される化合物の重合体及び溶媒を含む組成物を支持体上に塗布する工程と、
(Ar represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a group in which a part of carbon on the aromatic ring is substituted with a nitrogen atom. The hydrogen atom on the aromatic hydrocarbon group is a part or All may be substituted by a halogen atom, an amino group, a cyano group, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and P 1 represents a polymerizable group. P 2 represents a hydrogen atom or an organic group having a carbon-carbon unsaturated bond which forms a conjugated system together with the carbon-nitrogen double bond in the above formula, R 1 is a hydrogen atom, a C 1-8 fat. Represents an aromatic hydrocarbon group or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and m represents 0 or an integer of 1 or more.)
The method for producing carbon nitride according to the present invention includes a step of applying a composition containing a polymer of a compound represented by the following formula (1) and a solvent on a support,

(Arは炭素数6〜18の芳香族炭化水素基又はその芳香環上の炭素の一部が窒素原子で置換された基を表す。該芳香族炭化水素基上の水素原子はその一部又は全部がハロゲン原子、アミノ基、シアノ基、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基により置換されていてもよい。Pは重合性基を表す。Pは水素原子又は上記式中の炭素−窒素二重結合と共に共役系を形成する炭素−炭素間不飽和結合を有する有機基を表す。Rは水素原子、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基を表す。mは0又は1以上の整数を表す。)
前記組成物が塗布された支持体を不活性気体中で加熱する工程と、
を備える。
(Ar represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a group in which a part of carbon on the aromatic ring is substituted with a nitrogen atom. The hydrogen atom on the aromatic hydrocarbon group is a part or All may be substituted by a halogen atom, an amino group, a cyano group, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and P 1 represents a polymerizable group. P 2 represents a hydrogen atom or an organic group having a carbon-carbon unsaturated bond which forms a conjugated system together with the carbon-nitrogen double bond in the above formula, R 1 is a hydrogen atom, a C 1-8 fat. Represents an aromatic hydrocarbon group or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and m represents 0 or an integer of 1 or more.)
Heating the support coated with the composition in an inert gas;
Is provided.

本発明に係る電極材料は、本発明に係る窒化炭素前駆体組成物を原料として得られるものである。   The electrode material according to the present invention is obtained using the carbon nitride precursor composition according to the present invention as a raw material.

本発明に係る窒化炭素前駆体組成物及び窒化炭素の製造方法は、生産効率、コスト及びエネルギー消費量の点で優れ、かつ高い炭素化収率を与える。   The carbon nitride precursor composition and the method for producing carbon nitride according to the present invention are excellent in terms of production efficiency, cost, and energy consumption, and give a high carbonization yield.

<窒化炭素前駆体組成物>
本発明に係る窒化炭素前駆体組成物は、下記式(1)で表される化合物の重合体及び溶媒を含有する。
<Carbon nitride precursor composition>
The carbon nitride precursor composition according to the present invention contains a polymer of a compound represented by the following formula (1) and a solvent.

(Arは炭素数6〜18の芳香族炭化水素基又はその芳香環上の炭素の一部が窒素原子で置換された基を表す。該芳香族炭化水素基上の水素原子はその一部又は全部がハロゲン原子、アミノ基、シアノ基、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基により置換されていてもよい。Pは重合性基を表す。Pは水素原子又は上記式中の炭素−窒素二重結合と共に共役系を形成する炭素−炭素間不飽和結合を有する有機基を表す。Rは水素原子、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基を表す。mは0又は1以上の整数を表す。)
式(1)で表される化合物は、芳香環Ar、炭素−窒素二重結合及び有機基Pが共役系を形成している。該共役系は炭素−窒素原子間ネットワークを維持し、炭素化収率の向上に寄与する。芳香族炭化水素基Arの例として、ベンゼン環、ナフタレン環、アントラセン環若しくはピレン環等の芳香族炭化水素基、又はその芳香環を構成する炭素原子の一部が窒素原子で置換されたピリジン環、トリアジン環等の含窒素芳香族炭化水素基が挙げられる。
(Ar represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a group in which a part of carbon on the aromatic ring is substituted with a nitrogen atom. The hydrogen atom on the aromatic hydrocarbon group is a part or All may be substituted by a halogen atom, an amino group, a cyano group, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and P 1 represents a polymerizable group. P 2 represents a hydrogen atom or an organic group having a carbon-carbon unsaturated bond which forms a conjugated system together with the carbon-nitrogen double bond in the above formula, R 1 is a hydrogen atom, a C 1-8 fat. Represents an aromatic hydrocarbon group or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and m represents 0 or an integer of 1 or more.)
The compound represented by formula (1) is an aromatic ring Ar, carbon - nitrogen double bond and an organic group P 2 form a conjugated system. The conjugated system maintains a carbon-nitrogen atom network and contributes to an improvement in carbonization yield. Examples of the aromatic hydrocarbon group Ar include an aromatic hydrocarbon group such as a benzene ring, a naphthalene ring, an anthracene ring or a pyrene ring, or a pyridine ring in which a part of carbon atoms constituting the aromatic ring is substituted with a nitrogen atom And nitrogen-containing aromatic hydrocarbon groups such as a triazine ring.

式(1)で表される化合物は重合して用いることが好ましい。該化合物を重合することにより、塗膜の形成が容易となり、均一な窒化炭素膜の形成が容易となる。また、化合物やその分解物の揮散を抑制し、炭素化収率のさらなる向上に寄与する。   The compound represented by formula (1) is preferably used after polymerization. By polymerizing the compound, the coating film can be easily formed, and a uniform carbon nitride film can be easily formed. Moreover, volatilization of a compound and its decomposition product is suppressed and it contributes to the further improvement of a carbonization yield.

式(1)で表される化合物の重合は炭素−窒素間不飽和結合又は有機基Pが有する炭素−炭素間不飽和結合を反応点として行うことができるが、重合性基Pを反応点として行うことが好ましい。重合性基Pを反応点として重合を行うことにより、炭素−窒素間不飽和結合を含む共役系が重合後も維持され、炭素化収率のさらなる向上に寄与する。このため、式(1)においてmは1以上が好ましい。
<溶媒>
本発明に係る組成物は溶媒を含有する。溶媒は式(1)で表される化合物の重合体を溶解可能なものを任意に選択可能である。選択可能な溶媒として、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エーテル系溶媒、エステル系溶媒等が挙げられる。溶媒は、1種単独で又は2種以上を組み合わせて用いることができる。上記アルコール系溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブチルアルコール、iso−ブチルアルコール、sec−ブチルアルコール、t−ブチルアルコール、n−ペンチルアルコール、iso−ペンチルアルコール、sec−ペンチルアルコール、t−ペンチルアルコール等のモノアルコール系溶媒;エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール等の多価アルコール系溶媒などが挙げられる。
Polymerization of the compound represented by the formula (1) can be carried out using a carbon-nitrogen unsaturated bond or a carbon-carbon unsaturated bond of the organic group P 2 as a reaction point, but the polymerizable group P 1 is reacted. It is preferable to carry out as a point. By carrying out the polymerization using the polymerizable group P 1 as a reaction point, a conjugated system containing an unsaturated bond between carbon and nitrogen is maintained even after the polymerization, which contributes to further improvement of the carbonization yield. For this reason, in Formula (1), m is preferably 1 or more.
<Solvent>
The composition according to the present invention contains a solvent. A solvent that can dissolve the polymer of the compound represented by the formula (1) can be arbitrarily selected. Examples of the solvent that can be selected include alcohol solvents, ketone solvents, amide solvents, ether solvents, ester solvents, and the like. A solvent can be used individually by 1 type or in combination of 2 or more types. Examples of the alcohol solvent include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-pentyl alcohol, iso- Monoalcohol solvents such as pentyl alcohol, sec-pentyl alcohol, t-pentyl alcohol; ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, 2,4-pentanediol, 2-methyl-2,4 -Polyhydric alcohol solvents such as pentanediol, 2,5-hexanediol, and 2,4-heptanediol.

上記ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン、メチル−n−ペンチルケトン、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン等の脂肪族ケトン系溶媒;シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;2,4−ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、メチルn−アミルケトンなどが挙げられる。   Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl- aliphatic ketone solvents such as n-hexyl ketone, di-iso-butyl ketone and trimethylnonanone; cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone; 2,4-pentane Examples include dione, acetonyl acetone, diacetone alcohol, acetophenone, methyl n-amyl ketone, and the like.

上記アミド系溶媒としては、例えば、1,3−ジメチル−2−イミダゾリジノン、N−メチル−2−ピロリドン等の環状アミド系溶媒; ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。   Examples of the amide solvent include cyclic amide solvents such as 1,3-dimethyl-2-imidazolidinone and N-methyl-2-pyrrolidone; formamide, N-methylformamide, N, N-dimethylformamide, N , N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide and other chain amide solvents.

上記エーテル系溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル等の多価アルコール部分エーテル系溶媒;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒;ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ブチルメチルエーテル、ブチルエチルエーテル、ジイソアミルエーテル等のジ脂肪族エーテル系溶媒;アニソール、フェニルエチルエーテル等の脂肪族−芳香族エーテル系溶媒;テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環状エーテル系溶媒などが挙げられる。   Examples of the ether solvent include polyhydric alcohol partial ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol dimethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether Polyhydric alcohol partial ether acetate solvents such as acetate (PGMEA) and propylene glycol monoethyl ether acetate; Dialiphatic ethers such as diethyl ether, dipropyl ether, dibutyl ether, butyl methyl ether, butyl ethyl ether, diisoamyl ether Solvent; aliphatic-aromatic ether solvent such as anisole and phenylethyl ether; tetrahydride Furan, tetrahydropyran, and cyclic ether solvents dioxane.

上記エステル系溶媒としては、例えば、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル、アセト酢酸メチル、アセト酢酸エチル等のカルボン酸エステル系溶媒;γ−ブチロラクトン、γ−バレロラクトン等のラクトン系溶媒;ジエチルカーボネート、プロピレンカーボネート等の炭酸エステル系溶媒などが挙げられる。
<化合物>
式(1)で表される化合物の製造方法は限定されない。例えば、アミノ基を有する芳香族化合物と、β−不飽和アルデヒドとを反応させることにより、式(1)で表される化合物が得られる。具体例として、下記式で表される反応が挙げられる。下記式中、TFAはトリフルオロ酢酸を表す。
Examples of the ester solvent include methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, and n-pentyl acetate. Sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, etc. Examples thereof include carboxylic acid ester solvents; lactone solvents such as γ-butyrolactone and γ-valerolactone; and carbonate ester solvents such as diethyl carbonate and propylene carbonate.
<Compound>
The manufacturing method of the compound represented by Formula (1) is not limited. For example, a compound represented by the formula (1) can be obtained by reacting an aromatic compound having an amino group with a β-unsaturated aldehyde. Specific examples include reactions represented by the following formula. In the following formula, TFA represents trifluoroacetic acid.

同様の手法を含窒素化合物とアルデヒドとの組み合わせに適用することにより、種々の窒化炭素前駆体組成物が得られる。該組み合わせの例を以下に示す。   By applying the same technique to the combination of a nitrogen-containing compound and an aldehyde, various carbon nitride precursor compositions can be obtained. Examples of such combinations are shown below.

式(1)で表される化合物の多くは加熱により容易に反応し、オリゴマー又はポリマーを与える。必要に応じて、アゾ系化合物、有機過酸化物等のラジカル発生剤を重合開始剤として併用してもよい。オリゴマー又はポリマーの分子量は限定されないが、例えばゲルパーミエーションクロマトグラフィーにより測定される数平均分子量が約400〜1万、重量平均分子量が約500〜3万程度のオリゴマー又はポリマーを窒化炭素前駆体組成物に用いることができる。
<その他の任意成分>
本発明に係る窒化炭素前駆体組成物は、さらにその他の成分を含有することができる。その他の成分として、界面活性剤、粘度調整剤、ポロジェン、密着助剤等が例示される。本明細書においてポロジェンとは、窒化炭素前駆体組成物中に分散され、焼成時に分解又は揮発することにより孔を形成する添加剤を指す。ポロジェンを配合し、分散させて用いることにより、多孔質窒化炭素が得られる。
[界面活性剤]
界面活性剤は窒化炭素前駆体組成物の塗布性を向上させる。その結果、形成される膜の均一性が向上し、塗布斑の発生が抑制される。界面活性剤は、1種単独で又は2種以上を組み合わせて用いることができる。
Many of the compounds represented by formula (1) react easily by heating to give oligomers or polymers. If necessary, a radical generator such as an azo compound or an organic peroxide may be used in combination as a polymerization initiator. The molecular weight of the oligomer or polymer is not limited. For example, an oligomer or polymer having a number average molecular weight of about 400 to 10,000 and a weight average molecular weight of about 500 to 30,000 measured by gel permeation chromatography is used as a carbon nitride precursor composition. It can be used for things.
<Other optional components>
The carbon nitride precursor composition according to the present invention can further contain other components. Examples of other components include surfactants, viscosity modifiers, porogens, and adhesion aids. As used herein, porogen refers to an additive that is dispersed in a carbon nitride precursor composition and that forms pores by decomposition or volatilization during firing. Porous carbon nitride is obtained by blending and dispersing the porogen.
[Surfactant]
The surfactant improves the coating property of the carbon nitride precursor composition. As a result, the uniformity of the formed film is improved and the occurrence of coating spots is suppressed. Surfactant can be used individually by 1 type or in combination of 2 or more types.

界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン−n−オクチルフェニルエーテル、ポリオキシエチレン−n−ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤等が挙げられる。また、市販品としては、KP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社油脂化学工業製)、エフトップEF101、同EF204、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F172、同F173(以上、大日本インキ化学工業製)、フロラードFC430、同FC431、同FC135、同FC93(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(以上、旭硝子製)等が挙げられる。   Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene-n-octylphenyl ether, polyoxyethylene-n-nonylphenyl ether, polyethylene glycol dilaurate, Nonionic surfactants such as polyethylene glycol distearate are listed. Commercially available products include KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), Ftop EF101, EF204, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F172, F173 (manufactured by Dainippon Ink and Chemicals, Inc.) ), FLORARD FC430, FC431, FC135, FC93 (above, manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass) ) And the like.

界面活性剤の配合量は式(1)で表される化合物100質量部あたり0質量部超10質量部以下が好ましく、0.001質量部〜5質量部がより好ましく、0.005質量部〜1質量部以下がさらに好ましい。界面活性剤の配合量を上記範囲とすることにより、本発明に係る窒化炭素前駆体組成物組成物の塗布性をさらに向上させることができる。
[密着助剤]
密着助剤は支持体との密着性を向上させる。その結果、窒化炭素膜と支持体との密着性を向上させることができる。密着助剤は、1種単独で又は2種以上を組み合わせて用いることができる。
The compounding amount of the surfactant is preferably more than 0 parts by mass and 10 parts by mass or less, more preferably 0.001 parts by mass to 5 parts by mass, and more preferably 0.005 parts by mass to 100 parts by mass of the compound represented by the formula (1). 1 part by mass or less is more preferable. By making the compounding quantity of surfactant into the said range, the applicability | paintability of the carbon nitride precursor composition composition concerning this invention can further be improved.
[Adhesion aid]
The adhesion assistant improves the adhesion with the support. As a result, the adhesion between the carbon nitride film and the support can be improved. The adhesion assistant can be used singly or in combination of two or more.

密着助剤の配合量は式(1)で表される化合物100質量部あたり0質量部超10質量部以下が好ましく、0.01質量部〜10質量部がより好ましく、0.01質量部〜5質量部がさらに好ましい。   The blending amount of the adhesion assistant is preferably more than 0 parts by mass and less than 10 parts by mass, more preferably 0.01 parts by mass to 10 parts by mass, and more preferably 0.01 parts by mass to 100 parts by mass of the compound represented by the formula (1). 5 parts by mass is more preferable.

本発明に係る窒化炭素前駆体組成物は、式(1)で表される化合物の重合体及び溶媒並びに上記その他の成分を混合することにより調製できる。組成物の固形分濃度は0.1質量%〜50質量%が好ましく、1質量%〜30質量%がより好ましく、3質量%〜20質量%がさらに好ましく、5質量%〜15質量%が特に好ましい。
<窒化炭素の製造方法及び窒化炭素膜の形成方法>
本発明に係る窒化炭素の製造方法は、式(1)で表される化合物の重合体及び溶媒を含む組成物を不活性雰囲気下で加熱する工程を備える。不活性ガスは窒素が好ましい。窒化炭素膜を形成する場合、該組成物を支持体表面に塗布し、溶媒を除去して塗膜を形成する。形成された塗膜を不活性雰囲気下で加熱することにより、窒化炭素膜が得られる。
The carbon nitride precursor composition according to the present invention can be prepared by mixing a polymer of the compound represented by the formula (1), a solvent, and the other components described above. The solid content concentration of the composition is preferably 0.1% by mass to 50% by mass, more preferably 1% by mass to 30% by mass, further preferably 3% by mass to 20% by mass, and particularly preferably 5% by mass to 15% by mass. preferable.
<Method for producing carbon nitride and method for forming carbon nitride film>
The method for producing carbon nitride according to the present invention includes a step of heating a composition containing a polymer of the compound represented by formula (1) and a solvent under an inert atmosphere. The inert gas is preferably nitrogen. When forming a carbon nitride film, the composition is applied to the support surface, and the solvent is removed to form a coating film. A carbon nitride film is obtained by heating the formed coating film in an inert atmosphere.

以下、本発明を実施例によりさらに具体的に説明する。この実施例は本発明の技術的範囲を限定するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. This example does not limit the technical scope of the present invention.

ジアミノマレオニトリル(DAMN)(Alpha Aesar社製、純度98%)、3−エチニルアニリン(Alpha Aesar社製)、(アクロレイン(アルドリッチ社製、純度95%)、トリフルオロ酢酸(TFA)(アルドリッチ社製)、プルロニック(登録商標)P123((CO)20(CO)70(CO)20、BASF社製)、ジメチルホルムアミド(DMF)(アルドリッチ社製)、ジメチルスルホキシド(DMSO)及びテトラヒドロフラン(THF)は市販品を精製することなく用いた。シリコン基板はP型シリコン(100)基板(Active Business Company GmbHを通じて入手)を使用した。アクロダム(化学名:(1Z)-1-Amino-1,2-dicyano-3-aza-1,3,5-hexatriene))は公知文献に記載の方法により合成した(D. M. Johnson et al, Macromolecules 2005, 38, 3615)。得られたアクロダムの構造は既報のものと同じであることを分析により確認した。ポリアクロダム(本明細書ではアクロダムオリゴマーを指す。)は、上述した既報の方法においてジエチルエーテルの代わりにTHFを用いることにより得られた。
(合成例1)
250mL丸底フラスコにDAMN(5.41g、50mmol)及びTHF(60mL)を入れ、マグネティックスターラーを用いて攪拌を開始した。混合物を冷浴中で15分間冷却した後、アクロレイン(4.0mL、55mmol)を加えた。混合物を再び冷浴中で15分間冷却した後、TFA(0.06g)を加えた。TFAを加えてから反応液が均一になるまで、30分間攪拌した。反応液を減圧留去し、固体を得た。得られた固体を乳鉢で粉砕した。粉砕された固体を減圧下60℃で乾燥させた結果、ポリアクロダムを定量的に得た。得られたポリアクロダムはTHF、DMF、DMSOに可溶であった。ゲルパーミエーションクロマトグラフィー(溶離液:DMSO、検量線法、標準物質:分子量既知のポリメチルメタクリレート(PMMA))による分子量測定の結果は、数平均分子量が2500,重量平均分子量が5000であった。
(参考例1)
ポリアクロダム(0.10g)、プルロニック(登録商標)P123(1mg)、DMF(0.45g)及びTHF(0.45g)をガラス瓶内で混合し、スピンコーティング用のコーティング液を得た。シリコン基板(3×3cm)をスピナーにセットした。シリコン基板を回転させながら、十分な量のTHFを注いで洗浄した。コーティング液が均一溶液であることを確認した後、その一部を洗浄されたシリコン基板上に注いだ。シリコン基板を1200rpmで15秒間回転させた後、200℃の加熱板上に1分間置いた。シリコン基板を室温まで冷却した後、セラミック製のコンテナ内に置いた。窒素気流下、温度が800℃に達するまで100℃/時間の速度で昇温した後、800℃で1時間か焼した。表面に平滑な膜を有するシリコン基板を得た。その表面を赤外吸収スペクトル(IR)で分析したところ、炭素−水素間、窒素−水素間結合に由来する3400cm−1付近のピークが減少し、炭素−窒素間sp結合に由来する1220cm−1のピークが増大していたことから、窒化炭素膜が形成されたことが確認された。制限視野電子回折(SAED)及びラマンスペクトル解析から、この窒化炭素膜は非晶質であることが示唆された。断面を走査型電子顕微鏡(SEM)で観察したところ、窒化炭素膜の厚みは約720nmであった。シート抵抗値は230ohms/sqであった。膜の質量は、か焼前の約60%であった。
(実施例1)
250mL丸底フラスコに3−エチニルアニリン(1.17g、10mmol)及びTHF(10mL)を入れ、マグネティックスターラーを用いて攪拌を開始した。混合物を冷浴中で15分間冷却した後、アクロレイン(0.8mL、11mmol)を加えた。混合物を再び冷浴中で15分間冷却した後、TFA(0.01g)を加えた。TFAを加えてから反応液が均一になるまで、30分間攪拌した。反応液を約25℃まで温めたのち、24時間加熱還流させた。反応液を減圧留去し、固体を得た。得られた固体を乳鉢で粉砕した。粉砕された固体を減圧下60℃で乾燥させた結果、オリゴマー1を定量的に得た。
(実施例2)
オリゴマー1(0.10g)、プルロニック(登録商標)P123(1mg)、DMF(0.45g)及びTHF(0.45g)をガラス瓶内で混合し、スピンコーティング用のコーティング液を得た。シリコン基板(3×3cm)をスピナーにセットした。シリコン基板を回転させながら、十分な量のTHFを注いで洗浄した。コーティング液が均一溶液であることを確認した後、その一部を洗浄されたシリコン基板上に注いだ。シリコン基板を1200rpmで15秒間回転させた後、200℃の加熱板上に1分間置いた。シリコン基板を室温まで冷却した後、セラミック製のコンテナ内に置いた。窒素気流下、温度が800℃に達するまで100℃/時間の速度で昇温した後、800℃で1時間か焼した。表面に窒化炭素膜を備えるシリコン基板を得た。膜の質量は、か焼前の約65%であった。
Diaminomaleonitrile (DAMN) (Alpha Aesar, purity 98%), 3-ethynylaniline (Alpha Aesar), acrolein (Aldrich, purity 95%), trifluoroacetic acid (TFA) (Aldrich) ), Pluronic (registered trademark) P123 ((C 2 H 4 O) 20 (C 3 H 6 O) 70 (C 2 H 4 O) 20 , manufactured by BASF), dimethylformamide (DMF) (manufactured by Aldrich), Dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) were used without purifying commercially available products, and a P-type silicon (100) substrate (available through Active Business Company GmbH) was used as the silicon substrate Acrodam (chemical name: (1Z ) -1-Amino-1,2-dicyano-3-aza-1,3,5-hexatriene)) Was synthesized by the method described in known literature (DM Johnson et al, Macromolecules 2005, 38, 3615). The structure of the obtained Acrodam was confirmed by analysis to be the same as previously reported. Polyacrodames (referred to herein as acrodamum oligomers) were obtained by substituting THF for diethyl ether in the previously reported method.
(Synthesis Example 1)
DAMN (5.41 g, 50 mmol) and THF (60 mL) were placed in a 250 mL round bottom flask, and stirring was started using a magnetic stirrer. After the mixture was cooled in a cold bath for 15 minutes, acrolein (4.0 mL, 55 mmol) was added. The mixture was again cooled in the cold bath for 15 minutes before TFA (0.06 g) was added. After adding TFA, the mixture was stirred for 30 minutes until the reaction mixture became homogeneous. The reaction solution was distilled off under reduced pressure to obtain a solid. The obtained solid was pulverized in a mortar. As a result of drying the pulverized solid at 60 ° C. under reduced pressure, polyacrodames were quantitatively obtained. The obtained polyacrodames were soluble in THF, DMF and DMSO. As a result of molecular weight measurement by gel permeation chromatography (eluent: DMSO, calibration curve method, standard substance: polymethyl methacrylate (PMMA) having a known molecular weight), the number average molecular weight was 2500 and the weight average molecular weight was 5000.
(Reference Example 1)
Polyacrodam (0.10 g), Pluronic (registered trademark) P123 (1 mg), DMF (0.45 g) and THF (0.45 g) were mixed in a glass bottle to obtain a coating solution for spin coating. A silicon substrate (3 × 3 cm) was set on the spinner. While rotating the silicon substrate, a sufficient amount of THF was poured and washed. After confirming that the coating solution was a uniform solution, a part thereof was poured onto a cleaned silicon substrate. The silicon substrate was rotated at 1200 rpm for 15 seconds and then placed on a heating plate at 200 ° C. for 1 minute. The silicon substrate was cooled to room temperature and then placed in a ceramic container. Under a nitrogen stream, the temperature was raised at a rate of 100 ° C./hour until the temperature reached 800 ° C. and then calcined at 800 ° C. for 1 hour. A silicon substrate having a smooth film on the surface was obtained. When the surface was analyzed by infrared absorption spectrum (IR), peaks near 3400 cm −1 derived from carbon-hydrogen and nitrogen-hydrogen bonds decreased, and 1220 cm derived from carbon-nitrogen sp 3 bonds. Since the peak of 1 increased, it was confirmed that a carbon nitride film was formed. Restricted field electron diffraction (SAED) and Raman spectral analysis suggested that the carbon nitride film was amorphous. When the cross section was observed with a scanning electron microscope (SEM), the thickness of the carbon nitride film was about 720 nm. The sheet resistance value was 230 ohms / sq. The mass of the film was about 60% before calcination.
Example 1
3-Ethynylaniline (1.17 g, 10 mmol) and THF (10 mL) were placed in a 250 mL round bottom flask, and stirring was started using a magnetic stirrer. After the mixture was cooled in a cold bath for 15 minutes, acrolein (0.8 mL, 11 mmol) was added. The mixture was again cooled in the cold bath for 15 minutes before TFA (0.01 g) was added. After adding TFA, the mixture was stirred for 30 minutes until the reaction mixture became homogeneous. The reaction was warmed to about 25 ° C. and then heated to reflux for 24 hours. The reaction solution was distilled off under reduced pressure to obtain a solid. The obtained solid was pulverized in a mortar. As a result of drying the pulverized solid at 60 ° C. under reduced pressure, oligomer 1 was quantitatively obtained.
(Example 2)
Oligomer 1 (0.10 g), Pluronic (registered trademark) P123 (1 mg), DMF (0.45 g), and THF (0.45 g) were mixed in a glass bottle to obtain a coating solution for spin coating. A silicon substrate (3 × 3 cm) was set on the spinner. While rotating the silicon substrate, a sufficient amount of THF was poured and washed. After confirming that the coating solution was a uniform solution, a part thereof was poured onto a cleaned silicon substrate. The silicon substrate was rotated at 1200 rpm for 15 seconds and then placed on a heating plate at 200 ° C. for 1 minute. The silicon substrate was cooled to room temperature and then placed in a ceramic container. Under a nitrogen stream, the temperature was raised at a rate of 100 ° C./hour until the temperature reached 800 ° C., and then calcined at 800 ° C. for 1 hour. A silicon substrate having a carbon nitride film on the surface was obtained. The mass of the film was about 65% before calcination.


(参考例2)
原料として下記式に記載の化合物を2/1/1(モル比基準)で用いた他は実施例2と同様の手順で、表面に窒化炭素膜を備えるシリコン基板を得た。得られた窒化炭素膜の抵抗値は約2kohmsであった。

(Reference Example 2)
A silicon substrate provided with a carbon nitride film on the surface was obtained in the same procedure as in Example 2, except that the compound described in the following formula was used as a raw material at 2/1/1 (molar ratio basis). The obtained carbon nitride film had a resistance value of about 2 kohms.

(実施例3)
原料として下記式に記載の化合物を2/3/2(モル比基準)で用いた他は実施例2と同様の手順で、表面に窒化炭素膜を備えるシリコン基板を得た。得られた窒化炭素膜の抵抗値は約4kohmsであった。
(Example 3)
A silicon substrate having a carbon nitride film on the surface was obtained in the same procedure as in Example 2 except that the compound described in the following formula was used as a raw material at 2/3/2 (molar ratio basis). The obtained carbon nitride film had a resistance value of about 4 kohms.

Claims (3)

下記式(1)で表される化合物をラジカル発生剤の存在下又は非存在下で加熱して重合体を得る工程と、Heating the compound represented by the following formula (1) in the presence or absence of a radical generator to obtain a polymer;
前記重合体及び溶媒を含む組成物を支持体上に塗布する工程と、Applying a composition comprising the polymer and a solvent on a support;
前記組成物が塗布された支持体を不活性気体中で加熱する工程とHeating the support coated with the composition in an inert gas;
を備える窒化炭素膜の製造方法。A method for producing a carbon nitride film comprising:
(式(1)中、Arは炭素数6〜18の芳香族炭化水素基又はその芳香環上の炭素の一部が窒素原子で置換された基を表す。該芳香族炭化水素基上の水素原子はその一部又は全部がハロゲン原子、アミノ基、シアノ基、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基により置換されていてもよい。P(In the formula (1), Ar represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a group in which part of carbon on the aromatic ring is substituted with a nitrogen atom. Hydrogen on the aromatic hydrocarbon group. A part or all of the atoms may be substituted with a halogen atom, an amino group, a cyano group, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms. 1 は重合性基を表す。PRepresents a polymerizable group. P 2 は水素原子又は上記式(1)中の炭素−窒素二重結合と共に共役系を形成する炭素−炭素間不飽和結合を有する有機基を表す。RRepresents an organic group having a hydrogen atom or a carbon-carbon unsaturated bond forming a conjugated system together with the carbon-nitrogen double bond in the above formula (1). R 1 は水素原子、炭素数1〜8の脂肪族炭化水素基又は炭素数6〜10の芳香族炭化水素基を表す。mは0又は1以上の整数を表す。)Represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group having 6 to 10 carbon atoms. m represents 0 or an integer of 1 or more. )
P 1 はエテニル基又はエチニル基であり、mは1以上の整数である請求項1に記載の窒化炭素膜の製造方法。The method for producing a carbon nitride film according to claim 1, wherein is an ethenyl group or an ethynyl group, and m is an integer of 1 or more. 前記組成物はさらにポロジェンを含有し、得られる窒化炭素膜は多孔質窒化炭素膜である請求項1又は請求項2に記載の窒化炭素膜の製造方法。The method for producing a carbon nitride film according to claim 1, wherein the composition further contains a porogen, and the obtained carbon nitride film is a porous carbon nitride film.

JP2014040781A 2013-03-04 2014-03-03 Method for producing carbon nitride film Active JP6287344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040781A JP6287344B2 (en) 2013-03-04 2014-03-03 Method for producing carbon nitride film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013042279 2013-03-04
JP2013042279 2013-03-04
JP2014040781A JP6287344B2 (en) 2013-03-04 2014-03-03 Method for producing carbon nitride film

Publications (2)

Publication Number Publication Date
JP2014196232A JP2014196232A (en) 2014-10-16
JP6287344B2 true JP6287344B2 (en) 2018-03-07

Family

ID=52357363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040781A Active JP6287344B2 (en) 2013-03-04 2014-03-03 Method for producing carbon nitride film

Country Status (1)

Country Link
JP (1) JP6287344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124733A (en) * 2019-04-30 2019-08-16 江苏大学 A kind of conjugated polymer photochemical catalyst and preparation method and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096899A (en) * 1998-04-14 2000-08-01 The Regents Of The University Of Michigan Cylic imidazole compounds having relatively low hydrogen content and relatively high nitrogen content and polymers formed therefrom
JP4587027B2 (en) * 2004-06-07 2010-11-24 株式会社豊田中央研究所 Nitrogen-containing carbon-based composite material
US20100047434A1 (en) * 2008-08-21 2010-02-25 Biomet Manufacturing Corp. Fabrication of monolithic zones on porous scaffold
JP5608595B2 (en) * 2010-03-30 2014-10-15 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
JP2012054157A (en) * 2010-09-02 2012-03-15 Kyushu Univ Carbon catalyst
JP5804251B2 (en) * 2011-06-03 2015-11-04 国立研究開発法人物質・材料研究機構 Porous carbon nitride film, method for producing the same, and use thereof

Also Published As

Publication number Publication date
JP2014196232A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
TWI435888B (en) Fullerene derivatives based on fullerene derivatives and fullerene polymers and their manufacturing methods
TWI415879B (en) Thermal curing polyimide silicon resin composition
TWI564667B (en) Phenolic self-crosslinking polymer and composition of resist-underlayer-film including the same
TWI307700B (en) Method of producing novel polycarbosilane
EP2695906B1 (en) Polybenzoxazole resin and precursor thereof
JPWO2008133300A1 (en) Polyimide precursor, polyimide, and image-forming underlayer coating solution
FR2892325A1 (en) PROCESS FOR MODIFYING INSULATING, SEMI-CONDUCTIVE OR METAL SURFACES, AND PRODUCTS AS OBTAINED
CN102227814B (en) Composition for forming gate dielectric film of thin film transistor
TW200920768A (en) Thermal curing polyimide silicon resin composition and membrane containing the same
Hsu et al. Synthesis of new star-shaped polymers with styrene− fluorene conjugated moieties and their multicolor luminescent ordered microporous films
JP6287344B2 (en) Method for producing carbon nitride film
TW200911872A (en) Synthesis of acylarylenes and hyperbranched poly(acylarylene)s by metal-free cyclotrimerization of alkynes
JP6410808B2 (en) Formulation containing hydridosilane and hydridosilane oligomer, process for its production and use thereof
JP2006225428A (en) 1,3,5-triazine ring-containing copolymer, method for producing the same and use thereof
TWI230478B (en) Film formation method
TW201234579A (en) Perylene-based semiconductors and methods of preparation and use thereof
WO2011108512A1 (en) Novel azomethine oligomer
TW201546083A (en) Silane coupling agent and method for preparing the same, primer composition, and coating composition
KR101484850B1 (en) Two dimensionally-structured carbon materials and method for their production
TW201422623A (en) Organic semiconductor solution and organic semiconductor film
JP2011068830A (en) Method of manufacturing aromatic azomethine resin
JP2011068829A (en) Method of manufacturing heat resistant film
CN112442169B (en) Asymmetric isoindigo receptor and polymer, and preparation method and application thereof
JP2023508214A (en) Novel polymer and organic light-emitting device using the same
Borukaev et al. Oxidative Polymerization of 3-Amino, 2'-,(3')–Nitrodiphenylazomethin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250