JP6286987B2 - Proximity effect correction method, proximity effect correction program, and proximity effect correction device - Google Patents

Proximity effect correction method, proximity effect correction program, and proximity effect correction device Download PDF

Info

Publication number
JP6286987B2
JP6286987B2 JP2013200099A JP2013200099A JP6286987B2 JP 6286987 B2 JP6286987 B2 JP 6286987B2 JP 2013200099 A JP2013200099 A JP 2013200099A JP 2013200099 A JP2013200099 A JP 2013200099A JP 6286987 B2 JP6286987 B2 JP 6286987B2
Authority
JP
Japan
Prior art keywords
proximity effect
effect correction
correction amount
amount
backscattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013200099A
Other languages
Japanese (ja)
Other versions
JP2015069983A (en
Inventor
歩美 合田
歩美 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013200099A priority Critical patent/JP6286987B2/en
Publication of JP2015069983A publication Critical patent/JP2015069983A/en
Application granted granted Critical
Publication of JP6286987B2 publication Critical patent/JP6286987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Description

本発明は、荷電粒子リソグラフィにおける荷電粒子線照射工程で発生する近接効果の影響を低減するための露光量補正に関するものであり、従来のガウス関数を基礎とした補正方法よりも精度の高い補正を可能にする、近接効果補正方法、近接効果補正プログラム及び近接効果補正装置に関する。   The present invention relates to exposure amount correction for reducing the influence of proximity effect generated in a charged particle beam irradiation process in charged particle lithography, and performs correction with higher accuracy than a correction method based on a conventional Gaussian function. The present invention relates to a proximity effect correction method, a proximity effect correction program, and a proximity effect correction apparatus that are enabled.

半導体用フォトマスクや、ナノインプリントのモールドでは、高解像度且つ高精度なパターン作製が求められるため、荷電粒子を使ったリソグラフィ方法が用いられる。近年は、更なる高解像度化が求められている。   Semiconductor photomasks and nanoimprint molds require high-resolution and high-accuracy pattern fabrication, and therefore lithography methods using charged particles are used. In recent years, higher resolution has been demanded.

荷電粒子リソグラフィでは、基板上に形成したレジストに荷電粒子を入射すると、基板からの反射粒子(後方散乱)がレジストに再入射することが知られている。この後方散乱により、例えば、複数の近接した図形を描画した場合、見かけ上の露光量が増加してしまう。また、後方散乱の影響は数10μmに及ぶため、同じ露光量でも、密集したパターンと孤立のパターンでは見かけ上の露光量が異なってしまう。その結果、実パターンと設計寸法にはずれが生じてしまう。上記の現象は近接効果と称されており、精度の高いパターンを作成するためには、この近接効果を補正した露光量で描画する必要がある。   In charged particle lithography, it is known that when charged particles are incident on a resist formed on a substrate, reflected particles (backscattering) from the substrate re-enter the resist. Due to this backscattering, for example, when a plurality of adjacent figures are drawn, the apparent exposure amount increases. Further, since the influence of backscattering extends to several tens of μm, even if the exposure amount is the same, the apparent exposure amount differs between a dense pattern and an isolated pattern. As a result, there is a difference between the actual pattern and the design dimension. The above phenomenon is called a proximity effect, and in order to create a highly accurate pattern, it is necessary to draw with an exposure amount that corrects this proximity effect.

一般的に、レジスト上の1点に入射した粒子線によって、レジスト中に蓄積されるエネルギー量E(x)は、式(数1)のように、ガウス関数で表される。

Figure 0006286987
ここで、σfは前方散乱、σbは後方散乱によるエネルギーの広がりを表す。ηは前方散乱によるエネルギー量と後方散乱によるそれとの比である。式(数1)の右辺第1項は前方散乱を表し、第二項目は後方散乱を表す。 In general, the amount of energy E (x) accumulated in a resist by a particle beam incident on one point on the resist is expressed by a Gaussian function as shown in Equation (Equation 1).
Figure 0006286987
Here, σf represents forward scattering, and σb represents the spread of energy due to backscattering. η is the ratio of the amount of energy due to forward scattering to that due to backscattering. The first term on the right side of the equation (Equation 1) represents forward scattering, and the second item represents backscattering.

前記近接効果補正は、式(数1)のの後方散乱の項を使い、描画する各図形の位置関係と面積から求められる、図形に及ぶ後方散乱の影響量を使って算出する。例えば、中心位置Xi、Yi、寸法W1、W2の図形から、位置Xj,Yjに及ぶエネルギー量ebiは、式(数2)で表される。

Figure 0006286987
周辺のn個の図形からのエネルギーUiは、式(数3)で表される。
Figure 0006286987
位置Xj、Yjにおける最適な露光量Djは、例えば式(数4)もしくは式(数5)で表すことができる。
Figure 0006286987
Kは定数である。
Figure 0006286987
ηは定数である。 The proximity effect correction is calculated by using the backscattering term of the equation (Equation 1) and using the influence of backscattering on the figure obtained from the positional relationship and area of each figure to be drawn. For example, the amount of energy ebi extending from the figure at the center position Xi, Yi, and the dimensions W1, W2 to the position Xj, Yj is expressed by Expression (Equation 2).
Figure 0006286987
The energy Ui from the n surrounding figures is expressed by the formula (Equation 3).
Figure 0006286987
The optimum exposure amount Dj at the positions Xj and Yj can be expressed by, for example, Expression (Expression 4) or Expression (Expression 5).
Figure 0006286987
K is a constant.
Figure 0006286987
η 0 is a constant.

上記の式(数4)のように、後方散乱の広さやエネルギー量をガウス関数で表し、これを基礎として露光量を補正する方法は数多く存在する。   As shown in the above equation (Equation 4), there are many methods for expressing the extent of backscattering and the amount of energy by a Gaussian function and correcting the exposure amount based on this.

式(数4)の補正を各図形で行い、サブルーチン化して各図形の補正量を求める方法がある。しかし、この方法では補正量が収束するまでに膨大な時間が掛かってしまう。   There is a method in which the correction of the equation (Equation 4) is performed on each figure, and a correction amount of each figure is obtained by making a subroutine. However, this method takes an enormous amount of time for the correction amount to converge.

また、例えば式(数2)に示したガウス関数の積分を用いて、予め代表図形による後方散乱量を求め、図形周辺をブロック化し、図形が各ブロックに及ぼす影響をテーブル化することで、計算時間を短縮する方法がある(特許文献1参照)。   Also, for example, using the integration of the Gaussian function shown in Equation (2), the amount of backscattering by the representative figure is obtained in advance, the figure periphery is blocked, and the influence of the figure on each block is tabulated. There is a method for shortening the time (see Patent Document 1).

また、1つのガウス関数では、後方散乱のエネルギーや広がりを表すには不十分であるとし、複数のガウス関数を使って近接効果補正量を算出する方法がある。この方法では、それぞれのガウス関数の散乱の幅、つまり式(数1)におけるσbが異なる。描画領域を多数の微小領域に分割し、各領域について近接効果補正量を算出するのだが、それぞれのガウス関数の散乱幅が異なるため、影響する範囲(計算に含むべき微小領域の数)も異なる。位置Xj,Yjを含む微少領域の近接効果補正量は、この複数のガウス関数の畳み込みを行い、算出する(特許文献2参照)。   Further, it is assumed that one Gaussian function is insufficient for representing the energy and spread of backscattering, and there is a method of calculating a proximity effect correction amount using a plurality of Gaussian functions. In this method, the scattering width of each Gaussian function, that is, σb in the equation (Equation 1) is different. The drawing area is divided into a large number of micro areas, and the proximity effect correction amount is calculated for each area. However, since the scattering width of each Gaussian function is different, the affected range (number of micro areas to be included in the calculation) is also different. . The proximity effect correction amount in the minute region including the positions Xj and Yj is calculated by performing convolution of the plurality of Gauss functions (see Patent Document 2).

特許第3011684号公報Japanese Patent No. 3011684 特許第3120051号公報Japanese Patent No. 3120051

上記の従来技術は、後方散乱のエネルギー量と影響する領域の関係を表す式としてガウス関数が適切であることを前提にした方法である。しかし、電子線散乱シミュレーションを使ってレジスト中に蓄積されるエネルギーの分布を作成し、ガウス関数を適合させると、必ずしも良い近似が得られるとは限らない。   The above prior art is a method based on the assumption that a Gaussian function is appropriate as an expression representing the relationship between the amount of energy of backscattering and the affected area. However, if the distribution of energy accumulated in the resist is created using electron beam scattering simulation and the Gaussian function is adapted, a good approximation is not always obtained.

図2は、レジスト膜厚と基板構造の一例を示す図である。図2では、金属膜のある基板2上にレジスト1が形成されている。図3は、図2におけるレジスト1内の蓄積エネルギー分布(EID関数)を表す図である。図3では、電子線をレジスト1の1点に入射させたときの後方散乱による蓄積エネルギー分布とガウス関数の適合結果が示されている。図3に示されるように、ガウス関数は、蓄積エネルギーの広がりと、電子線の入射点から遠いほど蓄積エネルギーが低くなる現象を表してはいるが、中心(電子線の入射点)からの距離が10μmを越えた辺りから傾きが、ガウス関数と蓄積エネルギー分布とで明らかに異なる。ガウス関数は、図3の蓄積エネルギー分布のような急激な傾きを表すことはできない。   FIG. 2 is a diagram illustrating an example of a resist film thickness and a substrate structure. In FIG. 2, a resist 1 is formed on a substrate 2 having a metal film. FIG. 3 is a diagram showing the accumulated energy distribution (EID function) in the resist 1 in FIG. FIG. 3 shows the result of matching the accumulated energy distribution and the Gaussian function due to backscattering when an electron beam is incident on one point of the resist 1. As shown in FIG. 3, the Gaussian function represents the phenomenon that the stored energy spreads and the stored energy decreases as the distance from the incident point of the electron beam decreases, but the distance from the center (the incident point of the electron beam). The slope is clearly different between the Gaussian function and the accumulated energy distribution from around 10 μm. The Gaussian function cannot represent a steep slope like the accumulated energy distribution of FIG.

上述した特許文献2の方法では、後方散乱量をガウス関数1つで表すことは不適切であるとし、複数のガウス関数を使っているが、1つ1つのガウス関数の影響範囲が異なるため、各微小領域同士の後方散乱量の影響を考慮すると、複雑な計算になってしまう。   In the method of Patent Document 2 described above, it is inappropriate to express the amount of backscattering by one Gaussian function, and a plurality of Gaussian functions are used. However, since the influence ranges of each Gaussian function are different, Considering the influence of the backscattering amount between the minute regions, the calculation is complicated.

上記のように、精度の悪い近似関数を使って露光量を補正しても、超微細な構造に関しては、十分な精度で補正することはできず、近似関数の数を増やしてより高い精度で後方散乱量を表しても、実際に近接効果補正に適用するには膨大な計算が必要になってしまうという問題があった。   As described above, even if the exposure amount is corrected using an approximate function with poor accuracy, it cannot be corrected with sufficient accuracy for an ultra-fine structure, and with a higher accuracy by increasing the number of approximate functions. Even if the amount of backscattering is expressed, there is a problem that enormous calculation is required to actually apply it to the proximity effect correction.

本発明は、上記課題を解決するものであり、従来技術で用いられてきたガウス関数よりも、精度良く後方散乱を表すことができる近似関数を用いることで、計算量を増加させることなく、パターン精度を向上させることのできる、近接効果補正方法、近接効果補正プログラム、近接効果補正装置、を提供することを目的とする。   The present invention solves the above-described problem. By using an approximate function that can represent backscattering more accurately than a Gaussian function that has been used in the prior art, a pattern can be obtained without increasing the amount of calculation. An object of the present invention is to provide a proximity effect correction method, a proximity effect correction program, and a proximity effect correction device that can improve accuracy.

本発明は、半導体や半導体用フォトマスク、ナノインプリント用モールド、光学関連素子、バイオチップなど、荷電粒子リソグラフィを使って高解像度、且つ高精度にパターンを形成するために、より精度の高い近接効果補正量を算出するためのものである。   The present invention is a proximity effect correction with higher accuracy in order to form a pattern with high resolution and high accuracy using charged particle lithography, such as semiconductors, semiconductor photomasks, nanoimprint molds, optical-related elements, biochips, etc. This is for calculating the quantity.

上記課題に鑑み、本発明に係る近接効果補正装置は、基板上に形成されたレジスト膜にパターンデザインを描画して、ベークし、現像する荷電粒子リソグラフィに関するものであり、描画位置や描画面積に依存する後方散乱量を求め、その後方散乱量を近似関数で表し、当該近似関数を使って近接効果補正量を取得する、近接効果補正装置であって、
描画パターンデザインの情報、シミュレーションで後方散乱量を求めるための基板やレジスト膜厚、荷電粒子の条件などの情報が入力される入力部と、
基板上に形成したレジスト上の1点に荷電粒子を入射したときに得られるレジスト内蓄積エネルギー分布(EID関数)を取得する、後方散乱量取得部と、
前記EID関数に適切な近似関数を適合することで後方散乱量と広がりを関数補間する近似関数取得部と、
位置Xj,Yjにおける描画図形の最適な近接効果補正量を、前記近似関数を使って算出する、位置Xj,Yjにおける近接効果補正量取得部と、
前記近接効果補正量と前記描画パターンデザインと前記近似関数を使って全ての図形の近接効果補正量を算出する、全ての図形における近接効果補正量取得部と、
取得した全ての図形の近接効果補正量を反映して位置Xj、Yjの近接効果補正量を再度算出する、近接効果補正量再取得部と、
前記近接効果補正量再取得部で算出された近接効果補正量と、前記位置Xj,Yjにおける近接効果補正量取得部で算出された近接効果補正量の差分をとり、その差分が許容の範囲内か否かを判断し、判断が否定の場合は前記近接効果補正量再取得部で算出された近接効果補正量を前記全ての図形における近接効果補正量取得部に入力し、判断が肯定の場合には前記近接効果補正量再取得部で算出された近接効果補正量を出力部に入力する判断部と、
前記判断部から入力された近接効果補正量を前記描画パターンデザインの情報と共に出力する出力部と、
を備えることを特徴とする。
In view of the above problems, the proximity effect correction apparatus according to the present invention relates to charged particle lithography in which a pattern design is drawn, baked, and developed on a resist film formed on a substrate. A proximity effect correction device that obtains a backscatter amount that depends, represents the backscatter amount by an approximate function, and acquires a proximity effect correction amount using the approximate function,
An input unit for inputting information such as drawing pattern design information, a substrate for obtaining a backscattering amount in simulation, a resist film thickness, and charged particle conditions;
A backscattering amount acquisition unit for acquiring an in-resist accumulated energy distribution (EID function) obtained when charged particles are incident on one point on a resist formed on a substrate;
An approximate function acquisition unit that interpolates backscattering amount and spread by fitting an appropriate approximate function to the EID function;
A proximity effect correction amount acquisition unit at positions Xj and Yj that calculates an optimal proximity effect correction amount of the drawing figure at the positions Xj and Yj using the approximation function;
A proximity effect correction amount acquisition unit for all graphics, calculating the proximity effect correction amount for all graphics using the proximity effect correction amount, the drawing pattern design and the approximation function;
A proximity effect correction amount reacquisition unit that recalculates the proximity effect correction amounts of the positions Xj and Yj reflecting the proximity effect correction amounts of all the acquired figures;
The difference between the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit and the proximity effect correction amount calculated by the proximity effect correction amount acquisition unit at the positions Xj and Yj is taken, and the difference is within an allowable range. If the determination is negative, the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit is input to the proximity effect correction amount acquisition unit for all the figures, and the determination is affirmative A determination unit that inputs the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit to the output unit;
An output unit that outputs the proximity effect correction amount input from the determination unit together with information of the drawing pattern design;
It is characterized by providing.

前記近接効果補正装置において、EID関数に含まれる後方散乱量とその広がりを補間するための前記近似関数として、蓄積エネルギー値をEとし、水平方向をXとしたとき、

Figure 0006286987
で表される式に従って、後方散乱量や近接効果補正量を算出してもよい。 In the proximity effect correction device, when the accumulated energy value is E and the horizontal direction is X as the approximation function for interpolating the backscattering amount and its spread included in the EID function,
Figure 0006286987
The backscattering amount and the proximity effect correction amount may be calculated according to the formula expressed by:

上記課題に鑑み、本発明に係る近接効果補正方法は、基板上に形成されたレジスト膜にパターンデザインを描画して、ベークし、現像する荷電粒子リソグラフィに関するものであり、前記描画位置や描画面積に依存する後方散乱量を求め、その後方散乱量を近似関数で表し、当該近似関数を使って近接効果補正量を取得する、近接効果補正方法であって、
描画パターンデザインの情報、シミュレーションで後方散乱量を求めるための基板やレジスト膜厚、荷電粒子の条件などの情報が入力される入力ステップと、
基板上に形成したレジスト上の1点に荷電粒子を入射したときに得られるレジスト内蓄積エネルギー分布(EID関数)を取得する、後方散乱量取得ステップと、
前記EID関数に適切な近似関数を適合することで後方散乱量と広がりを関数補間する近似関数取得ステップと、
位置Xj,Yjにおける描画図形の最適な近接効果補正量を算出する位置Xj,Yjにおける近接効果補正量取得ステップと、
前記近接効果補正量と前記描画パターンデザインと前記近似関数を使って全ての図形の近接効果補正量を算出する、全ての図形における近接効果補正量取得ステップと、
取得した全ての図形の近接効果補正量を反映して再度位置Xj、Yjの近接効果補正量を計算する、近接効果補正量再取得ステップと、
近接効果補正量再取得ステップで算出された補正量と、前記位置Xj,Yjにおける近接効果補正量取得ステップで算出された近接効果補正量の差分をとり、その差分が許容の範囲内か否かを判断し、判断が否定の場合は前記近接効果補正量再取得ステップで算出された近接効果補正量を前記全ての図形における近接効果補正量取得ステップに入力し、判断が肯定の場合には前記近接効果補正量再取得ステップで算出された近接効果補正量を出力手段に入力する判断ステップと、
前記判断ステップから入力した近接効果補正量を前記描画パターンデザインの情報と共に出力する出力ステップと、
を備えることを特徴とする。
In view of the above problems, the proximity effect correction method according to the present invention relates to charged particle lithography in which a pattern design is drawn, baked, and developed on a resist film formed on a substrate. Is a proximity effect correction method for obtaining a backscattering amount that depends on, expressing the backscattering amount by an approximate function, and obtaining a proximity effect correction amount using the approximate function,
An input step for inputting information such as drawing pattern design information, substrate and resist film thickness for obtaining backscattering amount in simulation, conditions of charged particles,
A backscattering amount acquisition step of acquiring an accumulated energy distribution (EID function) in the resist obtained when charged particles are incident on one point on the resist formed on the substrate;
An approximate function acquisition step of interpolating backscattering amount and spread by fitting an appropriate approximate function to the EID function;
A proximity effect correction amount acquisition step at positions Xj and Yj for calculating an optimal proximity effect correction amount of the drawing figure at the positions Xj and Yj;
Calculating a proximity effect correction amount for all graphics using the proximity effect correction amount, the drawing pattern design, and the approximation function;
A proximity effect correction amount reacquisition step of calculating again the proximity effect correction amounts of the positions Xj and Yj, reflecting the acquired proximity effect correction amounts of all the figures;
The difference between the correction amount calculated in the proximity effect correction amount reacquisition step and the proximity effect correction amount calculated in the proximity effect correction amount acquisition step at the positions Xj and Yj is calculated, and whether or not the difference is within an allowable range. If the determination is negative, the proximity effect correction amount calculated in the proximity effect correction amount reacquisition step is input to the proximity effect correction amount acquisition step in all the figures, and if the determination is affirmative, A determination step of inputting the proximity effect correction amount calculated in the proximity effect correction amount reacquisition step to the output means;
An output step of outputting the proximity effect correction amount input from the determination step together with information of the drawing pattern design;
It is characterized by providing.

上記課題に鑑み、本発明に係る近接効果補正プログラムは、基板上に形成されたレジスト膜にパターンデザインを描画して、ベークし、現像する荷電粒子リソグラフィに関するものであり、描画位置や描画面積に依存する後方散乱量を求め、その後方散乱量を近似関数で表し、当該近似関数を使って近接効果補正量を取得する近接効果補正装置のコンピュータに実行させる、近接効果補正プログラムであって、
前記コンピュータを、
描画パターンデザインの情報、シミュレーションで後方散乱量を求めるための基板やレジスト膜厚、荷電粒子の条件などの情報が入力される入力手段と、
基板上に形成したレジスト上の1点に荷電粒子を入射したときに得られるレジスト内蓄積エネルギー分布(EID関数)を取得する、後方散乱量取得手段と、
前記EID関数に適切な近似関数を適合することで後方散乱量と広がりを関数補間する近似関数取得手段と、
位置Xj,Yjにおける描画図形の最適な近接効果補正量を算出する位置Xj,Yjにおける近接効果補正量取得手段と、
前記近接効果補正量と前記描画パターンデザインと前記近似関数を使って全ての図形の近接効果補正量を算出する、全ての図形における近接効果補正量取得手段と、
取得した全ての図形の近接効果補正量を反映して位置Xj、Yjの近接効果補正量を再度算出する、近接効果補正量再取得手段と、
前記近接効果補正量再取得手段で算出された近接効果補正量と、前記位置Xj,Yjにおける近接効果補正量取得手段で算出された近接効果補正量の差分をとり、その差分が許容の範囲内か否かを判断し、判断が否定の場合は前記近接効果補正量再取得手段で算出された近接効果補正量を前記全ての図形における近接効果補正量取得手段に入力し、判断が肯定の場合には前記近接効果補正量再取得手段で算出された近接効果補正量を出力手段に入力する判断手段と、
前記判断手段から入力した近接効果補正量を、前記描画パターンデザインの情報と共に出力する出力手段、として機能させるプログラムであることを特徴とする。
In view of the above problems, the proximity effect correction program according to the present invention relates to charged particle lithography in which a pattern design is drawn, baked, and developed on a resist film formed on a substrate. A proximity effect correction program for obtaining a dependent backscattering amount, expressing the backscattering amount as an approximate function, and causing the computer of the proximity effect correction device to acquire the proximity effect correction amount using the approximate function,
The computer,
Input means for inputting information such as drawing pattern design information, substrate and resist film thickness for obtaining backscattering amount in simulation, conditions of charged particles,
Backscattering amount acquisition means for acquiring an accumulated energy distribution (EID function) in the resist obtained when charged particles are incident on one point on the resist formed on the substrate;
An approximation function acquisition means for interpolating backscattering amount and spread by fitting an appropriate approximation function to the EID function;
A proximity effect correction amount acquisition means at positions Xj and Yj for calculating an optimal proximity effect correction amount of the drawing figure at the positions Xj and Yj;
A proximity effect correction amount acquisition unit for all graphics, calculating the proximity effect correction amount for all graphics using the proximity effect correction amount, the drawing pattern design and the approximation function;
A proximity effect correction amount reacquisition unit that recalculates the proximity effect correction amounts of the positions Xj and Yj reflecting the proximity effect correction amounts of all the acquired figures;
The difference between the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit and the proximity effect correction amount calculated by the proximity effect correction amount acquisition unit at the positions Xj and Yj is taken, and the difference is within an allowable range. If the determination is negative, the proximity effect correction amount calculated by the proximity effect correction amount reacquisition means is input to the proximity effect correction amount acquisition means for all the figures, and the determination is affirmative The determination means for inputting the proximity effect correction amount calculated by the proximity effect correction amount reacquisition means to the output means,
It is a program that functions as an output unit that outputs the proximity effect correction amount input from the determination unit together with the drawing pattern design information.

本発明によれば、従来技術で用いられてきたガウス関数よりも、精度良く後方散乱を表すことができる近似関数を用いることで、計算量を増加させることなく、近接効果補正量を算出し、パターン精度を向上させることができる。   According to the present invention, the proximity effect correction amount is calculated without increasing the amount of calculation by using an approximate function that can represent backscattering more accurately than the Gaussian function that has been used in the prior art, Pattern accuracy can be improved.

本発明の実施形態を示すものであり、近接効果補正装置の構成の一例を示すブロック図The block diagram which shows embodiment of this invention and shows an example of a structure of a proximity effect correction apparatus レジスト膜厚と基板構造の一例を表す図A figure showing an example of resist film thickness and substrate structure 図2におけるレジスト内の蓄積エネルギー分布(EID関数)を表す図The figure showing the accumulated energy distribution (EID function) in the resist in FIG. 本発明の実施例における描画パターンの一例を示す図The figure which shows an example of the drawing pattern in the Example of this invention 本発明の実施例を示すものであり、ガウス関数とTanh関数のEID関数への適合度合を表す図The figure which shows the Example of this invention and represents the adaptability to the EID function of a Gaussian function and a Tanh function 本発明の実施例を示すものであり、Xj,Yjからの距離と後方散乱量の関係を表す図The figure which shows the Example of this invention and represents the relationship between the distance from Xj and Yj, and the amount of backscattering. 本発明の実施例を示すものであり、Xj,Yjとの距離に対する近接効果補正量を示す図The figure which shows the Example of this invention and shows the proximity effect correction amount with respect to the distance with Xj and Yj

以下に、本発明の一実施形態による近接効果補正システム100について、図1を参照しつつ説明する。図1は、本実施形態に係る近接効果補正システム100の構成を示す概略ブロック図である。
図1に示す通り、近接効果補正システム100は、入力部(入力手段)101と記憶部(記憶手段)102と、後方散乱量取得部(後方散乱量取得手段)103と、近似関数取得部(近似関数取得手段)104と、位置Xj、Yjの図形における近接効果補正量を取得する近接効果補正量取得部(近接効果補正量取得手段)105と、全ての図形の近接効果補正量を取得する近接効果補正量取得部(近接効果補正量取得手段)106と、補正後の露光量から位置Xj、Yjの図形の近接効果補正量を再計算する近接効果補正量再取得部(近接効果補正量再取得手段)107と、近接効果補正量取得部105が取得した近接効果補正量と近接効果補正量再取得部107が取得した近接効果補正量を比較し、その差が許容の範囲内か否かを判断する判断部(判断手段)108と、出力部(出力手段)109とを備える。
Hereinafter, a proximity effect correction system 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic block diagram showing a configuration of a proximity effect correction system 100 according to the present embodiment.
As shown in FIG. 1, the proximity effect correction system 100 includes an input unit (input unit) 101, a storage unit (storage unit) 102, a backscattering amount acquisition unit (backscattering amount acquisition unit) 103, and an approximate function acquisition unit ( (Approximation function acquisition means) 104, a proximity effect correction amount acquisition unit (proximity effect correction amount acquisition means) 105 for acquiring the proximity effect correction amounts in the graphics at positions Xj and Yj, and the proximity effect correction amounts of all the figures. A proximity effect correction amount acquisition unit (proximity effect correction amount acquisition unit) 106 and a proximity effect correction amount reacquisition unit (proximity effect correction amount) that recalculates the proximity effect correction amount of the figure at positions Xj and Yj from the corrected exposure amount (Re-acquisition means) 107 and the proximity effect correction amount acquired by the proximity effect correction amount acquisition unit 105 are compared with the proximity effect correction amount acquired by the proximity effect correction amount re-acquisition unit 107, and whether or not the difference is within an allowable range. To judge Comprising a determining unit (determining means) 108, and an output unit (output means) 109.

近接効果補正システム100は、コンピュータの構成を備えており、基板上に形成されたレジスト膜にパターンを描画して現像する荷電粒子リソグラフィに関するシステムである。近接効果補正システム100は、後方散乱量から正確に近接効果補正量を算出し、精度の高いパターン作製を可能にするための近接効果補正プログラムとの協調により、上記の各部が構成される。なお、近接効果補正システム100を専用のLSIなどのハードウェアのみからなる構成としてもよい。   The proximity effect correction system 100 has a computer configuration, and is a system related to charged particle lithography that draws and develops a pattern on a resist film formed on a substrate. The proximity effect correction system 100 includes the above-described units in cooperation with a proximity effect correction program for accurately calculating a proximity effect correction amount from a backscatter amount and enabling high-accuracy pattern production. The proximity effect correction system 100 may be configured only by hardware such as a dedicated LSI.

なお、本実施の形態において、近接効果補正装置100は、シミュレーションを使って後方散乱量を求めて使用する例について説明するが、当該装置100はこの形態に限られるものではない。例えば、実際に荷電粒子リソグラフィによりレジストパターンを形成し、その結果から後方散乱量を求め、近接効果補正量を決定しても良い。また、本実施形態において、数値計算に利用する数値やパラメータは最低限必要な要素の一例であり、これ以外の要素を用いて後方散乱量や近接効果補正量を取得するものであってもよい。   In the present embodiment, the proximity effect correction apparatus 100 will be described with reference to an example in which the backscattering amount is obtained using simulation, but the apparatus 100 is not limited to this form. For example, the resist pattern may be actually formed by charged particle lithography, the backscattering amount may be obtained from the result, and the proximity effect correction amount may be determined. In the present embodiment, numerical values and parameters used for numerical calculation are examples of the minimum necessary elements, and the backscattering amount and the proximity effect correction amount may be acquired using other elements. .

入力部101は、近接効果補正装置100によって利用される情報の入力を受付け、記憶部102に記憶させる。この入力部101には、描画するパターンデザインなどの情報が入力される。当該入力部101は、近接効果補正装置100の外部からの送信データを受信する送受信インタフェース、外部記憶装置からデータが入力される入力インタフェース、ディスプレイ、キーボード、マウス、タブレットなどを用いたマンマシンインタフェースなどの、入力装置を用いて構成することができる。   The input unit 101 receives input of information used by the proximity effect correction apparatus 100 and stores it in the storage unit 102. Information such as a pattern design to be drawn is input to the input unit 101. The input unit 101 includes a transmission / reception interface for receiving transmission data from the outside of the proximity effect correction apparatus 100, an input interface for inputting data from an external storage device, a man-machine interface using a display, a keyboard, a mouse, a tablet, and the like The input device can be used.

入力部101には、描画パターンデザインの情報の他に、後方散乱量の計算に必要な基板材料、レジスト膜厚、荷電粒子の条件(露光量)の情報が入力される。なお、これらの詳細については後述する。   In addition to the drawing pattern design information, the input unit 101 receives information on the substrate material, resist film thickness, and charged particle conditions (exposure amount) necessary for calculating the backscattering amount. Details of these will be described later.

記憶部102は、入力部101から入力された情報を記憶する。この記憶部102は、入力部101から入力される描画パターンデザイン、基板材料、レジスト膜厚、荷電粒子の条件の情報を記憶する。当該記憶部102は、RAM、フラッシュメモリ記憶装置、磁気ディスク記憶装置、光ディスク記憶装置などの記憶装置を用いて構成することができる。   The storage unit 102 stores information input from the input unit 101. The storage unit 102 stores drawing pattern design, substrate material, resist film thickness, and charged particle condition information input from the input unit 101. The storage unit 102 can be configured using a storage device such as a RAM, a flash memory storage device, a magnetic disk storage device, and an optical disk storage device.

後方散乱量取得部103は、記憶部102に記憶された基板材料とレジスト膜厚、荷電粒子の条件に基づき、レジスト上の1点に荷電粒子を入射することを仮定し、レジスト内に蓄積されるエネルギー分布(EID:Exposure Intensiy Distribution)を作成する。EIDには、後方散乱量の情報が含まれる。このとき、計算範囲は荷電粒子の弾性散乱による広がりを考慮し、十分広い範囲を計算する。EID関数は、荷電粒子の前方散乱と後方散乱による蓄積エネルギーの合成で表される。本実施形態では、後方散乱量をシミュレーションによって取得するが、実際に荷電粒子リソグラフィを行い、作成したパターン寸法と、描画密度やパターンの位置関係から、前方散乱に対する相対的な後方散乱量を求めても良い。取得した後方散乱量は、近似関数取得部104に出力される。   Based on the substrate material, resist film thickness, and charged particle conditions stored in the storage unit 102, the backscattering amount acquisition unit 103 assumes that charged particles are incident on one point on the resist and is accumulated in the resist. Energy distribution (EID: Exposure Intensity Distribution). EID includes information on the amount of backscattering. At this time, the calculation range is calculated with a sufficiently wide range in consideration of the spread of charged particles due to elastic scattering. The EID function is expressed by a combination of stored energy by forward scattering and back scattering of charged particles. In the present embodiment, the backscattering amount is obtained by simulation. Actually, charged particle lithography is performed, and the relative backscattering amount with respect to the forward scattering is obtained from the created pattern dimensions and the drawing density and pattern positional relationship. Also good. The acquired backscattering amount is output to the approximate function acquisition unit 104.

近似関数取得部104は、後方散乱量取得部103から後方散乱量の情報を取得し、該後方散乱量に対して近似関数を適合させる。近似関数としては、式(数7)のようなTanh関数(Tanh:hyperbolic tangent)で表す。

Figure 0006286987
ここで、η´はエネルギーの高さ、α、X´はエネルギーの広がりを表す係数である。取得した近似関数の情報は、位置Xj、Yjの図形における近接効果補正量取得部105に出力される。 The approximate function acquisition unit 104 acquires information on the backscattering amount from the backscattering amount acquisition unit 103, and adapts the approximate function to the backscattering amount. As an approximate function, it is represented by a Tanh function (Tanh: hyperbolic tangent) as shown in Equation (7).
Figure 0006286987
Here, η ′ is the energy height, and α and X ′ are coefficients representing the energy spread. Information about the acquired approximate function is output to the proximity effect correction amount acquisition unit 105 for the figures at the positions Xj and Yj.

位置Xj、Yjの図形における近接効果補正量取得部105は、近似関数取得部104から近似関数の情報と、記憶部102に記憶されている描画パターンデザインの情報を取得し、位置Xj、Yjの図形における近接効果補正量を算出する。
近接効果補正量取得部105は、例えば、式(数7)に位置Xj、Yj周辺の描画図形の位置や面積を代入し、位置Xj,Yjに対する後方散乱量Ujを算出する。なお、後方散乱量Ujの算出方法はこれに限定されるものではなく、例えば、予め任意の領域内の描画密度に対する後方散乱量を、式(数7)を使って求めておき、位置Xj、Yj周辺の描画面積密度から、位置Xj、Yjに影響する後方散乱量Ujを求めても良い。
上記の方法により、位置Xj、Yj周辺の図形から位置Xj、Yjに与えられる後方散乱量を全て求め、後方散乱量がパターン寸法精度に影響しないよう、式(数8)もしくは式(数9)を使って近接効果補正量を求める。求めた位置Xj、Yjの図形における近接効果補正量(補正後の露光量Dj)は、全ての図形の近接効果補正量取得部106に出力される。なお、ここで言う「全ての図形」とは、位置Xj、Yjの図形を除く、全ての図形である。

Figure 0006286987
Kは定数である。
Figure 0006286987
ηは定数である。 The proximity effect correction amount acquisition unit 105 for the figures at the positions Xj and Yj acquires the information on the approximation function and the information on the drawing pattern design stored in the storage unit 102 from the approximation function acquisition unit 104. The proximity effect correction amount in the figure is calculated.
The proximity effect correction amount acquisition unit 105 calculates the backscattering amount Uj for the positions Xj and Yj, for example, by substituting the positions and areas of the drawing figures around the positions Xj and Yj into the equation (Equation 7). Note that the method of calculating the backscattering amount Uj is not limited to this. For example, the backscattering amount with respect to the drawing density in an arbitrary region is obtained in advance using Expression (Equation 7), and the position Xj, The backscattering amount Uj that affects the positions Xj and Yj may be obtained from the drawing area density around Yj.
By the above method, all the backscattering amounts given to the positions Xj and Yj are obtained from the graphics around the positions Xj and Yj, and the expression (Equation 8) or the expression (Equation 9) so that the backscattering amount does not affect the pattern size accuracy. Use to find the proximity effect correction amount. The obtained proximity effect correction amount (corrected exposure amount Dj) in the figure at the positions Xj and Yj is output to the proximity effect correction amount acquisition unit 106 of all figures. Note that “all figures” here refers to all figures except for figures at positions Xj and Yj.
Figure 0006286987
K is a constant.
Figure 0006286987
η 0 is a constant.

全ての図形の近接効果補正量取得部106は、近似関数の取得部104から近似関数の情報を取得し、位置Xj、Yjの図形における近接効果補正量取得部105から位置Xj,Yjにおける近接効果補正量と、記憶部102に記憶されている描画パターンデザインの情報を取得する。
全ての図形の近接効果補正量取得部106は、取得した近似関数の情報と、位置Xj,Yjの図形における近接効果補正量と、描画パターンデザインの情報とから、位置Xj、Yjの図形における近接効果補正量取得部105と同様の方法で、全ての描画図形(位置Xj、Yjの図形を除く)における近接効果補正量を算出する。取得した全ての図形の近接効果補正量は、位置Xj,Yjの図形の近接効果補正量再取得部107に出力される。
The proximity effect correction amount acquisition unit 106 for all figures acquires information on the approximation function from the approximation function acquisition unit 104, and the proximity effect at the positions Xj and Yj from the proximity effect correction amount acquisition unit 105 for the graphics at the positions Xj and Yj. The correction amount and the drawing pattern design information stored in the storage unit 102 are acquired.
The proximity effect correction amount acquisition unit 106 for all the figures uses the proximity function information obtained, the proximity effect correction amounts for the positions Xj and Yj, and the drawing pattern design information for the proximity of the figures at the positions Xj and Yj. In the same manner as the effect correction amount acquisition unit 105, the proximity effect correction amount is calculated for all the drawing figures (except for the figures at the positions Xj and Yj). The acquired proximity effect correction amounts of all the figures are output to the proximity effect correction amount reacquisition unit 107 of the figures at the positions Xj and Yj.

近接効果補正量再取得部107は、全ての図形の近接効果補正量取得部106から、位置Xj,Yjの図形を除く全ての図形の近接効果補正量の情報と、記憶部102に記憶されている描画パターンデザインの情報を取得し、位置Xj,Yjの図形における近接効果補正量を再取得(再計算)する。取得方法は、位置Xj、Yjの図形における近接効果補正量取得部105と同じ方法である。再取得した近接効果補正量は、位置Xj,Yjの図形における近接効果補正量取得部105で算出された近接効果補正量と、近接効果補正量再取得部107で算出された近接効果補正量の差が、許容の範囲内か否かを判断する判断部108に出力される。   The proximity effect correction amount reacquisition unit 107 stores, in the storage unit 102, information on the proximity effect correction amounts of all the graphics excluding the graphics at the positions Xj and Yj from the proximity effect correction amount acquisition unit 106 of all the graphics. The information of the drawing pattern design being acquired is acquired, and the proximity effect correction amount in the figure at the positions Xj and Yj is acquired again (recalculated). The acquisition method is the same method as the proximity effect correction amount acquisition unit 105 in the figures at the positions Xj and Yj. The re-acquired proximity effect correction amount includes the proximity effect correction amount calculated by the proximity effect correction amount acquisition unit 105 in the figure at the positions Xj and Yj and the proximity effect correction amount calculated by the proximity effect correction amount re-acquisition unit 107. The difference is output to the determination unit 108 that determines whether or not the difference is within an allowable range.

判断部108は、位置Xj,Yjの図形の近接効果補正量取得部105が算出した近接効果補正量と、位置Xj,Yjの図形の近接効果補正量再取得部107が算出した近接効果補正量とを取得し、それらの差分を算出する。得られた差分が許容範囲内であれば、近接効果補正量再取得部107が算出した近接効果補正量の情報を、記憶部102から取得した描画パターンデザインの情報と共に出力部109に出力する。差分が許容範囲外であれば、近接効果補正量再取得部107が算出した近接効果補正量を、全ての図形の近接効果補正量取得部106に出力する。そして、全ての図形の近接効果補正量取得部106は、全ての図形において近接効果補正量の再計算を行い、その再計算の結果を近接効果補正量再取得部107に出力する。そして、近接効果補正量再取得部107および判断部108は、上記した処理と同様の処理を行う。全ての図形の近接効果補正量取得部106、近接効果補正量再取得部107、および判断部108の処理は、判断部108で算出される差分が許容範囲内に入るまで繰り返される。   The determination unit 108 calculates the proximity effect correction amount calculated by the proximity effect correction amount acquisition unit 105 for the graphics at positions Xj and Yj and the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit 107 for the graphics at positions Xj and Yj. And calculate the difference between them. If the obtained difference is within the allowable range, the proximity effect correction amount information calculated by the proximity effect correction amount reacquisition unit 107 is output to the output unit 109 together with the drawing pattern design information acquired from the storage unit 102. If the difference is outside the allowable range, the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit 107 is output to the proximity effect correction amount acquisition unit 106 of all figures. Then, the proximity effect correction amount acquisition unit 106 for all the figures performs recalculation of the proximity effect correction amount for all the graphics, and outputs the result of the recalculation to the proximity effect correction amount reacquisition unit 107. Then, the proximity effect correction amount reacquisition unit 107 and the determination unit 108 perform processing similar to the processing described above. The processes of the proximity effect correction amount acquisition unit 106, the proximity effect correction amount reacquisition unit 107, and the determination unit 108 for all figures are repeated until the difference calculated by the determination unit 108 falls within the allowable range.

なお、近接効果補正量取得部106、近接効果補正量再取得部107、および判断部108での処理はサブルーチン化して計算しても良い。また、計算量を減らすために、位置や描画面積に依存した近接効果補正量を予め式(数7)を基に計算し、テーブル化して適用する、などの工夫を行っても良い。   The processing in the proximity effect correction amount acquisition unit 106, the proximity effect correction amount reacquisition unit 107, and the determination unit 108 may be calculated as a subroutine. In order to reduce the calculation amount, a proximity effect correction amount depending on the position and the drawing area may be calculated in advance based on the formula (Equation 7) and applied in a table form.

出力部109は、判断部108から入力された近接効果補正量と、描画パターンデザインの情報(描画パターンの位置と面積の情報)とを取得し、出力する。出力部109は、外部のコンピュータやメモリ等と接続された出力インタフェースなどの出力装置を用いて構成することができる。   The output unit 109 acquires and outputs the proximity effect correction amount and drawing pattern design information (drawing pattern position and area information) input from the determination unit 108. The output unit 109 can be configured using an output device such as an output interface connected to an external computer, a memory, or the like.

出力部109から出力された近接効果補正量を用いて荷電粒子リソグラフィを行うことで、所望のレジストパターン形状を作成することができる。   By performing charged particle lithography using the proximity effect correction amount output from the output unit 109, a desired resist pattern shape can be created.

なお、上述の近接効果補正装置100の動作の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータシステムが読み出して実行することによって、上記処理が行われる。ここでいう「コンピュータシステム」とは、CPU及び各種メモリやOS、周辺機器等のハードウェアを含むものである。また、「コンピュータシステム」は、WWW(インターネット)環境システムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。   The process of operation of the proximity effect correction apparatus 100 described above is stored in a computer-readable recording medium in the form of a program, and the above processing is performed by the computer system reading and executing this program. The “computer system” herein includes a CPU, various memories, an OS, and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW (Internet) environment system is used.

以下に、実施例を示す。
本実施例では、ポジレジストを用いるが、本発明はネガ型レジストにも適応できる。
図1に示されるように、最初に、入力部101に描画パターンデザインを入力する。入力されたパターンデザインは、記憶部102に記憶される。本実施例では、図4に示すような400nmのLine&Spaceパターンを用いる。また、入力部101に、基板条件とレジスト膜厚、荷電粒子の条件(露光量)を入力する。基板構造とレジスト膜厚は、図2に示されるものを用いる。
Examples are shown below.
In this embodiment, a positive resist is used, but the present invention can also be applied to a negative resist.
As shown in FIG. 1, first, a drawing pattern design is input to the input unit 101. The input pattern design is stored in the storage unit 102. In the present embodiment, a 400 nm Line & Space pattern as shown in FIG. 4 is used. In addition, the substrate condition, resist film thickness, and charged particle condition (exposure amount) are input to the input unit 101. The substrate structure and resist film thickness shown in FIG. 2 are used.

次に、後方散乱量取得部103は、記憶部102から取得した基板条件、レジスト膜厚、荷電粒子の条件(露光量)に基づき、レジスト1上の1点に荷電粒子を入射したときの蓄積エネルギー分布を取得する。本実施例では、非弾性散乱によってレジスト1中に蓄積されるエネルギーを、内殻電子励起、価電子励起、自由電子励起、プラズモン励起などから計算するが、Betheの阻止能を用いてもよい。計算範囲は、荷電粒子の弾性散乱による散乱を考慮し十分広い領域を計算する。本実施例では半径25μm、深さ50μmの範囲を計算する。また荷電粒子線として50keVの電子線を仮定する。
図2の構造に対し、レジスト1上の1点に電子線を1C(クーロン)入射したときのレジスト蓄積エネルギー分布(EID関数)を図5に示す。入射点から近ければ蓄積エネルギー値が高く、遠くなるほど蓄積エネルギーが低くなるのが解る。
Next, the backscattering amount acquisition unit 103 accumulates when charged particles are incident on one point on the resist 1 based on the substrate conditions, resist film thickness, and charged particle conditions (exposure amount) acquired from the storage unit 102. Get energy distribution. In this embodiment, the energy accumulated in the resist 1 by inelastic scattering is calculated from inner-shell electron excitation, valence electron excitation, free electron excitation, plasmon excitation, etc., but Bethe's stopping power may be used. As a calculation range, a sufficiently wide region is calculated in consideration of scattering due to elastic scattering of charged particles. In this embodiment, the range of radius 25 μm and depth 50 μm is calculated. Further, an electron beam of 50 keV is assumed as the charged particle beam.
FIG. 5 shows a resist accumulation energy distribution (EID function) when an electron beam is incident at 1 C (Coulomb) on one point on the resist 1 with respect to the structure of FIG. It can be seen that the closer to the incident point, the higher the stored energy value, and the farther away, the lower the stored energy.

次に、近似関数取得部104は、後方散乱量取得部103で得られたEID関数に、近似関数(Tanh関数)を適合する。図5に、EID関数に対して従来技術のガウス関数を適合した場合と、式(数7)に示したTanh関数を適合した結果とを示す。本発明の近接効果補正方法は、基板から反射する後方散乱の影響を低減するためのものなので、前方散乱など、他の要因によるエネルギーとの適合性は除外する。中心からの距離1μmから10μm付近までの領域は、EID関数に対してどちらの近似関数もよく適合しているが、中心点から10μm程度離れた遠い領域では、従来技術のガウス関数よりも、Tanh関数の方が、急激な傾きに対して良く適合していることが分かる。適合によって得られた近似関数(Tanh関数)の情報は、位置Xj,Yjの図形における近接効果補正量取得部105に出力される。   Next, the approximate function acquisition unit 104 adapts the approximate function (Tanh function) to the EID function obtained by the backscattering amount acquisition unit 103. FIG. 5 shows a case where a conventional Gaussian function is adapted to an EID function and a result obtained by fitting a Tanh function shown in Expression (Equation 7). Since the proximity effect correction method of the present invention is for reducing the influence of backscattering reflected from the substrate, compatibility with energy due to other factors such as forward scattering is excluded. In the region from the distance of 1 μm to the vicinity of 10 μm from the center, both approximate functions are well adapted to the EID function, but in the region far from the center point by about 10 μm, than the conventional Gaussian function, Tanh It can be seen that the function fits better against a steep slope. Information on the approximate function (Tanh function) obtained by the fitting is output to the proximity effect correction amount acquisition unit 105 in the graphic at the positions Xj and Yj.

位置Xj,Yjの図形における近接効果補正量取得部105は、記憶部102に記憶されている描画パターンデザインと、近似関数取得部104から取得した近似関数の情報から、位置Xj,Yjの図形の近接効果補正量を算出する。
後方散乱量は、位置Xj,Yjに対する周辺図形の位置や、周辺図形の描画面積、周辺図形を含む描画面積密度など、後方散乱に関わる様々な要因と組み合わせて表すことが出来るが、ここでは図4に示すように、位置Xj、Yj、幅400nmのパターンを中心として、他のLine&Spaceパターンから位置Xj、Yjに影響する後方散乱量を、位置Xj,Yjからの距離に対してプロットする。
The proximity effect correction amount acquisition unit 105 for the figures at the positions Xj and Yj uses the drawing pattern design stored in the storage unit 102 and the information on the approximation function acquired from the approximation function acquisition unit 104 to obtain the figure of the figure at the positions Xj and Yj. The proximity effect correction amount is calculated.
The amount of backscattering can be expressed in combination with various factors related to backscattering, such as the position of the peripheral graphic with respect to the positions Xj and Yj, the drawing area of the peripheral graphic, and the drawing area density including the peripheral graphic. As shown in FIG. 4, the backscattering amount that affects the positions Xj and Yj from other Line & Space patterns is plotted against the distance from the positions Xj and Yj, with the pattern of the positions Xj and Yj and the width of 400 nm as the center.

後方散乱量は、式(数7)の積分を使い、位置Xj,Yjからの距離と、周辺図形の面積、ここでは幅0.4nmのSpaceパターンについて計算する。Tanh関数の積分から求めた後方散乱量の結果を図6に示す。比較のため、EID関数の重ね合わせによって求めた後方散乱量と、従来技術のガウス関数の積分から求めた後方散乱量とを図6に示した。
図6から、位置Xj,Yjから遠い位置にあるパターンほど、影響する後方散乱量は小さいことがわかる。図5に示したEID関数と近似関数の適合度合に見られたように、図6でも、ガウス関数とTanh関数は、位置Xj、Yjからの距離が近い領域では余り差がなく、EID関数の重ね合わせと良く合っている。しかし、位置Xj、Yjとのからの距離が遠くなると、従来技術のガウス関数はEID関数の重ね合わせとのずれが生じ始め、Tanh関数の方がよく合っていることがわかる。
The amount of backscattering is calculated for the distance pattern from the positions Xj and Yj and the area of the peripheral figure, here a Space pattern with a width of 0.4 nm, using the integration of equation (Equation 7). The result of the backscattering amount obtained from the integration of the Tanh function is shown in FIG. For comparison, FIG. 6 shows the backscattering amount obtained by superimposing the EID function and the backscattering amount obtained from the integration of the Gaussian function of the prior art.
From FIG. 6, it can be seen that the pattern farther from the positions Xj and Yj has a smaller influence of the backscattering effect. As can be seen from the degree of matching between the EID function and the approximate function shown in FIG. 5, in FIG. 6, the Gaussian function and the Tanh function do not have much difference in the region where the distance from the positions Xj and Yj is short, and the EID function It matches well with the overlay. However, as the distance from the positions Xj and Yj increases, it can be seen that the Gaussian function of the prior art starts to deviate from the superposition of the EID functions, and the Tanh function is better suited.

図6に示したTanh関数による後方散乱量と、式(数8)もしくは式(数9)を使って、近接効果補正量を算出する。近接効果補正量は、後方散乱量が大きければ、露光量を小さくして、レジスト1の解像する閾値エネルギーになるよう調節する役割をする。本実施例では、幅0.4μmのLine&Spaceパターンが48μmの領域にある場合(図4参照)を基準とし、このときの近接効果補正量は0、露光量は1とする。
図6を基に、位置Xj,Yjとの距離に対して近接効果補正量を算出した結果を図7に示す。図7から、EID関数の重ね合わせから求めた近接効果補正量に対し、ガウス関数よりもTanh関数から求めた近接効果補正量の方が合っていることがわかる。
近接効果補正量としては、EID関数の重ね合わせとよく合っている近似関数(Tanh関数)を使って算出した方が、より高い精度でパターニングできることは明らかである。
本実施例では、シミュレーションを使って後方散乱量を算出したが、実際に荷電粒子リソグラフィを行うことで後方散乱量や影響する範囲を求めてもよい。この場合、実験で求めた後方散乱量に対し、式(数7)の積分を適合することで、Tanh関数の係数を求める。
位置Xj,Yjの図形における近接効果補正量取得部105は、算出した近接効果補正量を、全ての図形の近接効果補正量取得部106に出力する。
The proximity effect correction amount is calculated using the backscattering amount by the Tanh function shown in FIG. 6 and the equation (Equation 8) or the equation (Equation 9). When the backscattering amount is large, the proximity effect correction amount serves to adjust the exposure amount to be a threshold energy for resolving the resist 1 when the backscattering amount is large. In this embodiment, the case where the line & space pattern having a width of 0.4 μm is in the region of 48 μm (see FIG. 4) is used as a reference, and the proximity effect correction amount at this time is 0 and the exposure amount is 1.
FIG. 7 shows the result of calculating the proximity effect correction amount with respect to the distance between the positions Xj and Yj based on FIG. From FIG. 7, it can be seen that the proximity effect correction amount obtained from the Tanh function is more suitable than the proximity effect correction amount obtained from the superposition of the EID functions.
As the proximity effect correction amount, it is clear that patterning can be performed with higher accuracy if it is calculated using an approximate function (Tanh function) that matches well with the superposition of EID functions.
In the present embodiment, the backscattering amount is calculated using simulation, but the backscattering amount and the affected range may be obtained by actually performing charged particle lithography. In this case, the coefficient of the Tanh function is obtained by adapting the integration of Expression (7) to the backscattering amount obtained in the experiment.
The proximity effect correction amount acquisition unit 105 for the graphics at the positions Xj and Yj outputs the calculated proximity effect correction amount to the proximity effect correction amount acquisition unit 106 for all the graphics.

全ての図形の近接効果補正量取得部106は、記憶部102に記憶されている描画パターンデザインと、位置Xj,Yjの図形における近接効果補正量取得部105から取得した近似関数の情報を用いて、位置Xj,Yj以外の全ての図形に対して近接効果補正量を算出する。
全ての図形の近接効果補正量取得部106は、算出した近接効果補正量を、描画パターンデザインの情報と共に、位置Xj,Yjの図形における近接効果補正量再取得部107に出力する。
The proximity effect correction amount acquisition unit 106 for all figures uses the drawing pattern design stored in the storage unit 102 and the information on the approximate function acquired from the proximity effect correction amount acquisition unit 105 for the graphics at positions Xj and Yj. The proximity effect correction amount is calculated for all figures other than the positions Xj and Yj.
The proximity effect correction amount acquisition unit 106 for all the figures outputs the calculated proximity effect correction amount together with the drawing pattern design information to the proximity effect correction amount reacquisition unit 107 for the graphics at positions Xj and Yj.

位置Xj,Yjの図形における近接効果補正量再取得部107では、全ての図形の近接効果補正量取得部106から得られた全ての図形の近接効果補正量を用いて、位置Xj,Yjの図形における近接効果補正量を再計算する。このときも、式(数7)の積分を用いる。また、位置Xj,Yj周辺の図形からの後方散乱量には、全ての図形の近接効果補正量取得部106から取得した近接効果補正量を反映させる。
近接効果補正量再取得部107は、再計算で得られた位置Xj,Yjの図形における近接効果補正量を、判断部108に出力する。
The proximity effect correction amount reacquisition unit 107 for the graphics at positions Xj and Yj uses the proximity effect correction amounts for all the graphics obtained from the proximity effect correction amount acquisition unit 106 for all graphics, to obtain the graphics at positions Xj and Yj. Recalculate the proximity correction amount at. Also at this time, the integral of equation (Equation 7) is used. Further, the backscatter amount from the graphics around the positions Xj and Yj reflects the proximity effect correction amount acquired from the proximity effect correction amount acquisition unit 106 of all the graphics.
The proximity effect correction amount reacquisition unit 107 outputs the proximity effect correction amount in the figure at the positions Xj and Yj obtained by recalculation to the determination unit 108.

判断部108は、位置Xj,Yjの図形における近接効果補正量取得部105の算出結果と、近接効果補正量再取得部107の算出結果の差分を計算する。その差分が許容の範囲外であれば判断部108は否定(No)を選択する。判断が否定(No)である場合、近接効果補正量再取得部107で算出された近接効果補正量を、全ての図形の近接効果補正量取得部106に出力する。上記差分が許容の範囲内であれば判断部108は肯定(Yes)を選択する。判断が肯定(Yes)である場合、判断部108は、近接効果補正量再取得部107で算出された近接効果補正量を、描画パターンデザインと共に出力部109に入力する。   The determination unit 108 calculates the difference between the calculation result of the proximity effect correction amount acquisition unit 105 and the calculation result of the proximity effect correction amount reacquisition unit 107 in the graphics at the positions Xj and Yj. If the difference is outside the allowable range, the determination unit 108 selects negative (No). When the determination is negative (No), the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit 107 is output to the proximity effect correction amount acquisition unit 106 of all figures. If the difference is within the allowable range, the determination unit 108 selects affirmative (Yes). If the determination is affirmative (Yes), the determination unit 108 inputs the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit 107 to the output unit 109 together with the drawing pattern design.

出力部109から出力された近接効果補正量を元に、図形の露光量が決定され、荷電粒子リソグラフィが行われる。本実施例では、図形に対して近接効果補正量を算出する例を示したが、図形ではなく、任意の領域で区切って適用させても良い。
式(数7)の近似関数を用いることで、従来技術を代表する式(数1)を使った方法よりも、後方散乱の及ぶ広い範囲で高い精度の近接効果補正量を算出することができた。
Based on the proximity effect correction amount output from the output unit 109, the exposure amount of the figure is determined, and charged particle lithography is performed. In the present embodiment, an example in which the proximity effect correction amount is calculated for a graphic is shown, but it may be applied by dividing it in an arbitrary area instead of a graphic.
By using the approximate function of Expression (7), it is possible to calculate the proximity effect correction amount with higher accuracy in a wider range where backscattering is performed than in the method using Expression (Expression 1) representing the conventional technique. It was.

本発明は、例えば半導体や半導体用フォトマスクの一部、ナノインプリント用モールド、光学関連素子、バイオチップなど、荷電粒子リソグラフィを使って微細なパターンを作成するための近接効果補正に好適に適用することができる。   The present invention is preferably applied to proximity effect correction for creating a fine pattern using charged particle lithography, such as a part of a semiconductor or a photomask for a semiconductor, a mold for nanoimprint, an optical-related element, a biochip, etc. Can do.

1 レジスト
2 基板
3 描画パターン
100 近接効果補正装置
101 入力部(入力手段)
102 記憶部(記憶装置)
103 後方散乱量取得部(後方散乱量取得手段)
104 近似関数取得部(近似関数取得手段)
105 位置Xj,Yjの図形における近接効果補正量取得部(位置Xj,Yjの図形における近接効果補正量取得手段)
106 全ての図形の近接効果補正量取得部(全ての図形の近接効果補正量取得手段)
107 位置Xj,Yjの図形における近接効果補正量再取得部(位置Xj,Yjの図形における近接効果補正量再取得手段)
108 判断部(判断手段)
109 出力部(出力手段)
E(x) 蓄積エネルギー値
ebi 後方散乱による蓄積エネルギー量
W1 図形の寸法(x方向)
W2 図形の寸法(y方向)
Uj 後方散乱量の積算
Dj 露光量
K 定数
η 定数
σf ガウス関数係数(前方散乱の広がり)
σb ガウス関数係数(後方散乱の広がり)
η ガウス関数係数
η´ Tanh関数の係数
α Tanh関数の係数
X´ Tanh関数の係数
DESCRIPTION OF SYMBOLS 1 Resist 2 Board | substrate 3 Drawing pattern 100 Proximity effect correction apparatus 101 Input part (input means)
102 Storage unit (storage device)
103 Backscattering amount acquisition unit (backscattering amount acquisition means)
104 Approximate function acquisition unit (approximate function acquisition means)
105 Proximity Effect Correction Amount Acquisition Unit for Figures at Positions Xj and Yj (Proximity Effect Correction Amount Acquisition Unit for Figures at Positions Xj and Yj)
106 Proximity effect correction amount acquisition unit for all figures (proximity effect correction amount acquisition means for all figures)
107 Proximity Effect Correction Amount Reacquisition Unit for Figures at Positions Xj and Yj (Proximity Effect Correction Amount Reacquisition Unit for Figures at Positions Xj and Yj)
108 Judgment part (judgment means)
109 Output unit (output means)
E (x) Accumulated energy value ebi Accumulated energy amount due to backscattering W1 Figure size (x direction)
W2 Figure dimensions (y direction)
Uj Integration of backscatter amount Dj Exposure amount K constant η 0 constant σf Gaussian function coefficient (spread forward spread)
σb Gaussian function coefficient (spreadback spread)
η Gaussian function coefficient η ′ Tanh function coefficient α Tanh function coefficient X ′ Tanh function coefficient

Claims (4)

基板上に形成されたレジスト膜にパターンデザインを描画して、ベークし、現像する荷電粒子リソグラフィに関し、描画位置や描画面積に依存する後方散乱量を求め、その後方散乱量を近似関数で表し、当該近似関数を使って近接効果補正量を取得する、近接効果補正装置であって、
描画パターンデザインの情報、シミュレーションで後方散乱量を求めるための基板やレジスト膜厚、荷電粒子の条件などの情報が入力される入力部と、
基板上に形成したレジスト上の1点に荷電粒子を入射したときに得られるレジスト内蓄積エネルギー分布(EID関数)を取得する、後方散乱量取得部と、
前記EID関数に適切な近似関数を適合することで後方散乱量と広がりを関数補間する近似関数取得部と、
位置Xj,Yjにおける描画図形の最適な近接効果補正量を、前記近似関数を使って算出する、位置Xj,Yjにおける近接効果補正量取得部と、
前記近接効果補正量と前記描画パターンデザインと前記近似関数を使って全ての図形の近接効果補正量を算出する、全ての図形における近接効果補正量取得部と、
取得した全ての図形の近接効果補正量を反映して位置Xj、Yjの近接効果補正量を再度算出する、近接効果補正量再取得部と、
前記近接効果補正量再取得部で算出された近接効果補正量と、前記位置Xj,Yjにおける近接効果補正量取得部で算出された近接効果補正量の差分をとり、その差分が許容の範囲内か否かを判断し、判断が否定の場合は前記近接効果補正量再取得部で算出された近接効果補正量を前記全ての図形における近接効果補正量取得部に入力し、判断が肯定の場合には前記近接効果補正量再取得部で算出された近接効果補正量を出力部に入力する判断部と、
前記判断部から入力した近接効果補正量を前記描画パターンデザインの情報と共に出力する出力部と、
を備えることを特徴とする、近接効果補正装置。
With respect to charged particle lithography that draws a pattern design on a resist film formed on a substrate, and bakes and develops it, a backscattering amount that depends on a drawing position and a drawing area is obtained, and the backscattering amount is expressed by an approximate function, A proximity effect correction device that acquires a proximity effect correction amount using the approximate function,
An input unit for inputting information such as drawing pattern design information, a substrate for obtaining a backscattering amount in simulation, a resist film thickness, and charged particle conditions;
A backscattering amount acquisition unit for acquiring an in-resist accumulated energy distribution (EID function) obtained when charged particles are incident on one point on a resist formed on a substrate;
An approximate function acquisition unit that interpolates backscattering amount and spread by fitting an appropriate approximate function to the EID function;
A proximity effect correction amount acquisition unit at positions Xj and Yj that calculates an optimal proximity effect correction amount of the drawing figure at the positions Xj and Yj using the approximation function;
A proximity effect correction amount acquisition unit for all graphics, calculating the proximity effect correction amount for all graphics using the proximity effect correction amount, the drawing pattern design and the approximation function;
A proximity effect correction amount reacquisition unit that recalculates the proximity effect correction amounts of the positions Xj and Yj reflecting the proximity effect correction amounts of all the acquired figures;
The difference between the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit and the proximity effect correction amount calculated by the proximity effect correction amount acquisition unit at the positions Xj and Yj is taken, and the difference is within an allowable range. If the determination is negative, the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit is input to the proximity effect correction amount acquisition unit for all the figures, and the determination is affirmative A determination unit that inputs the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit to the output unit;
An output unit that outputs the proximity effect correction amount input from the determination unit together with information of the drawing pattern design;
A proximity effect correction apparatus comprising:
後方散乱量とその広がりを補間するための前記近似関数として、蓄積エネルギー値をEとし、水平方向をXとしたとき、
Figure 0006286987
で表される式に従って、後方散乱量や近接効果補正量を算出することを特徴とする、請求項1に記載の近接効果補正装置。
As an approximation function for interpolating the amount of backscattering and its spread, when the stored energy value is E and the horizontal direction is X,
Figure 0006286987
The proximity effect correction apparatus according to claim 1, wherein a backscattering amount and a proximity effect correction amount are calculated according to an expression represented by:
基板上に形成されたレジスト膜にパターンデザインを描画して、ベークし、現像する荷電粒子リソグラフィに関し、描画位置や描画面積に依存する後方散乱量を求め、その後方散乱量を近似関数で表し、当該近似関数を使って近接効果補正量を取得する、近接効果補正方法において、
描画パターンデザインの情報、シミュレーションで後方散乱量を求めるための基板やレジスト膜厚、荷電粒子の条件などの情報を入力する入力ステップと、
基板上に形成したレジスト上の1点に荷電粒子を入射したときに得られるレジスト内蓄積エネルギー分布(EID関数)を取得する後方散乱量取得ステップと、
前記EID関数に適切な近似関数を適合することで後方散乱量と広がりを関数補間する近似関数を取得する近似関数取得ステップと、
前記近似関数に基づき、位置Xj,Yjにおける描画図形の最適な近接効果補正量を算出する、位置Xj,Yjにおける近接効果補正量取得ステップと、
前記近接効果補正量と前記描画パターンデザインと前記近似関数を使って全ての図形の近接効果補正量を算出する、全ての図形における近接効果補正量取得ステップと、
前記全ての図形の近接効果補正量を反映して位置Xj、Yjの近接効果補正量を再度算出する、近接効果補正量再取得ステップと
前記近接効果補正量再取得ステップで算出された近接効果補正量と、前記位置Xj,Yjにおける近接効果補正量取得ステップで算出された近接効果補正量の差分をとり、その差分が許容の範囲内か否かを判断し、判断が否定の場合は前記近接効果補正量再取得ステップで算出された近接効果補正量を前記全ての図形における近接効果補正量取得ステップに入力し、判断が肯定の場合には前記近接効果補正量再取得ステップで算出された近接効果補正量を出力ステップに入力する判断ステップと、
前記判断ステップから入力した近接効果補正量を前記描画パターンデザインの情報と共に出力する出力ステップと、
を備えることを特徴とする近接効果補正方法。
With respect to charged particle lithography that draws a pattern design on a resist film formed on a substrate, and bakes and develops it, a backscattering amount that depends on a drawing position and a drawing area is obtained, and the backscattering amount is expressed by an approximate function, In the proximity effect correction method for obtaining the proximity effect correction amount using the approximate function,
An input step for inputting information such as drawing pattern design information, substrate and resist film thickness for obtaining backscattering amount by simulation, and charged particle conditions,
A backscattering amount acquisition step of acquiring an in-resist accumulated energy distribution (EID function) obtained when charged particles are incident on one point on a resist formed on a substrate;
An approximation function obtaining step for obtaining an approximation function for interpolating the backscattering amount and the spread by fitting an appropriate approximation function to the EID function;
A proximity effect correction amount acquisition step at positions Xj and Yj that calculates an optimal proximity effect correction amount of the drawing figure at positions Xj and Yj based on the approximate function;
Calculating a proximity effect correction amount for all graphics using the proximity effect correction amount, the drawing pattern design, and the approximation function;
Proximity effect correction amount calculated in the proximity effect correction amount reacquisition step and the proximity effect correction amount reacquisition step of recalculating the proximity effect correction amounts of the positions Xj and Yj reflecting the proximity effect correction amounts of all the figures The difference between the amount and the proximity effect correction amount calculated in the proximity effect correction amount acquisition step at the position Xj, Yj is determined, and it is determined whether or not the difference is within an allowable range. The proximity effect correction amount calculated in the effect correction amount reacquisition step is input to the proximity effect correction amount acquisition step in all the figures, and if the determination is affirmative, the proximity effect calculated in the proximity effect correction amount reacquisition step A determination step of inputting an effect correction amount to the output step;
An output step of outputting the proximity effect correction amount input from the determination step together with information of the drawing pattern design;
A proximity effect correction method comprising:
基板上に形成されたレジスト膜にパターンデザインを描画して、ベークし、現像する荷電粒子リソグラフィに関し、描画位置や描画面積に依存する後方散乱量を求め、その後方散乱量を近似関数で表し、当該近似関数を使って近接効果補正量を取得する近接効果補正装置のコンピュータに実行させる、近接効果補正プログラムにおいて、
前記コンピュータを、
描画パターンデザインの情報、シミュレーションで後方散乱量を求めるための基板やレジスト膜厚、荷電粒子の条件などの情報の入力を、入力装置を用いて受け付けて記憶装置に記憶する入力手段と、
前記入力手段から入力された荷電粒子の条件や、基板などの情報に基づいて、当該基板上に形成したレジスト上の1点に荷電粒子を入射したときに得られるレジスト内蓄積エネルギー分布(EID関数)を取得する、後方散乱量取得手段と、
前記EID関数に適切な近似関数を適合することで後方散乱量と広がりを関数補間する近似関数取得手段と、
前記近似関数に基づき、位置Xj,Yjにおける描画図形の最適な近接効果補正量を算出する、位置Xj,Yjにおける近接効果補正量取得手段と、
前記近接効果補正量と前記描画パターンデザインと前記近似関数を使って全ての図形の近接効果補正量を算出する、全ての図形の近接効果補正量取得手段と、
前記全ての図形の近接効果補正量を反映して位置Xj、Yjの近接効果補正量を再度算出する、近接効果補正量再取得手段と、
前記近接効果補正量再取得手段で算出された近接効果補正量と、前記位置Xj,Yjにおける近接効果補正量取得手段で算出された近接効果補正量の差分をとり、その差分が許容の範囲内か否かを判断し、判断が否定の場合は前記近接効果補正量再取得手段で算出された近接効果補正量を前記全ての図形の近接効果補正量取得手段に入力し、判断が肯定の場合には前記近接効果補正量再取得手段で算出された近接効果補正量を出力手段に入力する判断手段と、
前記判断手段から入力した近接効果補正量を前記描画パターンデザインの情報と共に出力する出力手段として機能させることを特徴とする、近接効果補正プログラム。
With respect to charged particle lithography that draws a pattern design on a resist film formed on a substrate, and bakes and develops it, a backscattering amount that depends on a drawing position and a drawing area is obtained, and the backscattering amount is expressed by an approximate function, In the proximity effect correction program that is executed by the computer of the proximity effect correction device that acquires the proximity effect correction amount using the approximate function,
The computer,
Input means for receiving information such as drawing pattern design information, substrate and resist film thickness for obtaining backscattering amount in simulation, conditions of charged particles, etc. using an input device and storing them in a storage device;
Based on charged particle conditions input from the input means and information on the substrate, etc., the accumulated energy distribution (EID function) in the resist obtained when charged particles are incident on one point on the resist formed on the substrate. ) For acquiring the backscattering amount;
An approximation function acquisition means for interpolating backscattering amount and spread by fitting an appropriate approximation function to the EID function;
A proximity effect correction amount acquisition means at positions Xj and Yj for calculating an optimal proximity effect correction amount of the drawing figure at the positions Xj and Yj based on the approximation function;
A proximity effect correction amount acquisition unit for all figures, which calculates a proximity effect correction amount for all figures using the proximity effect correction amount, the drawing pattern design, and the approximation function;
Proximity effect correction amount reacquisition means for recalculating the proximity effect correction amounts at positions Xj and Yj reflecting the proximity effect correction amounts of all the figures,
The difference between the proximity effect correction amount calculated by the proximity effect correction amount reacquisition unit and the proximity effect correction amount calculated by the proximity effect correction amount acquisition unit at the positions Xj and Yj is taken, and the difference is within an allowable range. If the determination is negative, the proximity effect correction amount calculated by the proximity effect correction amount reacquisition means is input to the proximity effect correction amount acquisition means for all the figures, and the determination is affirmative The determination means for inputting the proximity effect correction amount calculated by the proximity effect correction amount reacquisition means to the output means,
A proximity effect correction program for causing a proximity effect correction amount input from the determination means to function as output means for outputting together with the drawing pattern design information.
JP2013200099A 2013-09-26 2013-09-26 Proximity effect correction method, proximity effect correction program, and proximity effect correction device Active JP6286987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013200099A JP6286987B2 (en) 2013-09-26 2013-09-26 Proximity effect correction method, proximity effect correction program, and proximity effect correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013200099A JP6286987B2 (en) 2013-09-26 2013-09-26 Proximity effect correction method, proximity effect correction program, and proximity effect correction device

Publications (2)

Publication Number Publication Date
JP2015069983A JP2015069983A (en) 2015-04-13
JP6286987B2 true JP6286987B2 (en) 2018-03-07

Family

ID=52836420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013200099A Active JP6286987B2 (en) 2013-09-26 2013-09-26 Proximity effect correction method, proximity effect correction program, and proximity effect correction device

Country Status (1)

Country Link
JP (1) JP6286987B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120102A (en) * 1992-09-30 1994-04-28 Sony Corp Exposure method and aligner
JP5623755B2 (en) * 2010-02-05 2014-11-12 日本電子株式会社 Drawing method for electron beam drawing apparatus and electron beam drawing apparatus
JP2012019066A (en) * 2010-07-08 2012-01-26 Jeol Ltd Charged particle beam lithography method and apparatus
US8710468B2 (en) * 2010-09-17 2014-04-29 Nippon Control System Corporation Method of and apparatus for evaluating an optimal irradiation amount of an electron beam for drawing a pattern onto a sample
JP2012209519A (en) * 2011-03-30 2012-10-25 Toppan Printing Co Ltd Device, method and program for correction of front scattering and back scattering

Also Published As

Publication number Publication date
JP2015069983A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP5063071B2 (en) Pattern creating method and charged particle beam drawing apparatus
US10381194B2 (en) Charged particle beam writing apparatus and charged particle beam writing method
JP5020849B2 (en) Charged particle beam drawing apparatus, pattern dimensional error correction apparatus, and pattern dimensional error correction method
JP5871558B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP5217442B2 (en) Exposure data creation method and exposure method
KR102033862B1 (en) How to Perform Dose Modulation for Electron Beam Lithography
JP6076708B2 (en) Charged particle beam drawing apparatus and charged particle beam irradiation amount checking method
JP2016512930A (en) Proximity effect correction in charged particle lithography systems
JP6449336B2 (en) Method for determining IC manufacturing process parameters by differential procedure
JP6057635B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP5731257B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP5443548B2 (en) Pattern creating method and charged particle beam drawing apparatus
JP5110294B2 (en) Method of creating pattern data for electron beam drawing, proximity effect correction method used therefor, and pattern formation method using the data
TWI617899B (en) Method for determining the dose corrections to be applied to an ic manufacturing process by a matching procedure
JP5888006B2 (en) Determination method of electron beam dose
JP6286987B2 (en) Proximity effect correction method, proximity effect correction program, and proximity effect correction device
JP5423286B2 (en) Pattern data conversion method
JP5924043B2 (en) Backscatter correction device, backscatter correction method, and backscatter correction program
JP6102160B2 (en) Forward scattering and beam blur correction apparatus, forward scattering and beam blur correction method, and forward scattering and beam blur correction program
JP6160209B2 (en) Resist pattern formation process optimization apparatus, resist pattern formation process optimization method, and resist pattern formation process optimization program
JP2014229662A (en) Development loading correction program, computer, drawing system, development loading correction method
JP2016058564A (en) Proximity effect correction method, and proximity effect correction program and proximity effect correction device using the same
US20240105420A1 (en) Data generation apparatus, data generation method, and computer-readable storage medium
JP5773637B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP6035792B2 (en) Backscatter, forward scatter and beam blur correction device, back scatter, forward scatter and beam blur correction method and back scatter, forward scatter and beam blur correction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6286987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250