JP6285649B2 - Method for producing cell concentrate - Google Patents

Method for producing cell concentrate Download PDF

Info

Publication number
JP6285649B2
JP6285649B2 JP2013136936A JP2013136936A JP6285649B2 JP 6285649 B2 JP6285649 B2 JP 6285649B2 JP 2013136936 A JP2013136936 A JP 2013136936A JP 2013136936 A JP2013136936 A JP 2013136936A JP 6285649 B2 JP6285649 B2 JP 6285649B2
Authority
JP
Japan
Prior art keywords
cell
hollow fiber
cell suspension
cells
cell concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013136936A
Other languages
Japanese (ja)
Other versions
JP2015008685A (en
Inventor
林 真司
真司 林
伸好 梅田
伸好 梅田
修平 谷口
修平 谷口
中谷 勝
勝 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013136936A priority Critical patent/JP6285649B2/en
Publication of JP2015008685A publication Critical patent/JP2015008685A/en
Application granted granted Critical
Publication of JP6285649B2 publication Critical patent/JP6285649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中空糸型分離膜を充填した中空糸モジュール、及びそれを用いた細胞濃縮液の製造方法に関する。  The present invention relates to a hollow fiber module filled with a hollow fiber separation membrane and a method for producing a cell concentrate using the hollow fiber module.

細胞医療の分野では、生体から採取した細胞を直接、又は生体外で培養した後、患者に接種する方法が用いられている。これら治療に用いる細胞は、治療に適した溶液に懸濁され、または適切な濃度に調整され移植される。しかしながら、生体から細胞を採取した場合、治療に十分な細胞濃度でないことがあり、また、体外で生体から採取した細胞をさらに培養した場合、組織由来の夾雑物や培地などを含んでいることが多い。したがって、生体から採取又は培養した細胞を治療に用いるためには、夾雑物や培地を取り除き、治療に適した溶液などに懸濁された状態とし(洗浄)、治療に適した細胞濃度に濃縮される必要がある。  In the field of cell medicine, a method of inoculating a patient with cells collected from a living body directly or after in vitro culture is used. The cells used for these treatments are suspended in a solution suitable for the treatment, or adjusted to an appropriate concentration and transplanted. However, when cells are collected from a living body, the cell concentration may not be sufficient for treatment, and when cells collected from a living body are further cultured outside the body, they may contain tissue-derived contaminants or culture media. Many. Therefore, in order to use cells collected or cultured from a living body for treatment, impurities and culture media are removed, suspended in a solution suitable for treatment (washing), and concentrated to a cell concentration suitable for treatment. It is necessary to

前記目的を達成するため、遠心分離を用いた濃縮、洗浄操作が知られていおり、たとえば、ヒト組織から再生細胞を分離して濃縮するために遠心分離を用いる方法が開示されている(特許文献1)。しかし、このように遠心分離を用いる方法は、装置が大型になること、及びコストが増大することにより利用できる施設が限定される。さらに細胞を洗浄する際には、遠心分離により沈殿させた細胞の上清を取り除くが、細胞が大気に開放され、汚染等が発生する危険があるという問題が挙げられる。   In order to achieve the above object, concentration and washing operations using centrifugation are known. For example, a method using centrifugation to separate and concentrate regenerative cells from human tissue is disclosed (Patent Document). 1). However, the method using centrifugation in this way limits the facilities that can be used due to the increase in size and cost of the apparatus. Further, when washing the cells, the supernatant of the cells precipitated by centrifugation is removed, but there is a problem that the cells are released to the atmosphere and there is a risk of contamination and the like.

そこで、特許文献1に挙げられる問題を解決するために、中空糸型分離膜を用いたコンパクトで簡便な装置が提案されている(特許文献2)。
上述のような中空糸型分離膜を用いて細胞医療用途の細胞懸濁液を濃縮するに際しては、高い回収率で細胞を回収するために細胞懸濁液の通液速度を速くし、細胞が膜に接着することを防止する必要がある。しかし、細胞懸濁液の通液速度を速くすると、細胞へ強い力(シェアストレス)が加わるため細胞が損傷し、細胞生存率が減少する。その結果として生存している細胞の回収率の低下を引き起こす可能性がある(特許文献3)。
Therefore, in order to solve the problems listed in Patent Document 1, a compact and simple apparatus using a hollow fiber type separation membrane has been proposed (Patent Document 2).
When concentrating a cell suspension for cell medical applications using the hollow fiber type separation membrane as described above, the cell suspension speed is increased in order to recover the cells at a high recovery rate. It is necessary to prevent adhesion to the film. However, when the flow rate of the cell suspension is increased, a strong force (share stress) is applied to the cells, so that the cells are damaged and the cell survival rate is reduced. As a result, there is a possibility of causing a reduction in the recovery rate of surviving cells (Patent Document 3).

特表2007−524396号公報Special Table 2007-524396 特許第2928913号公報Japanese Patent No. 2928913 特開平10−108673JP-A-10-108673

本発明の目的は、上記中空糸型分離膜を用いた細胞濃縮液の製造における問題点を解決することを課題とする。具体的には、細胞懸濁液を濃縮するに際して、細胞の通液速度を速くせずとも、優れた細胞回収率が維持可能な細胞濃縮液の製造方法を提供する。  An object of the present invention is to solve problems in the production of a cell concentrate using the hollow fiber separation membrane. Specifically, a method for producing a cell concentrate that can maintain an excellent cell recovery rate without increasing the cell flow rate when concentrating a cell suspension is provided.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、特定の範囲の中空糸本数、膜面積、膜の内径を持つ中空糸モジュールを細胞濃縮に用いることで、細胞の通液速度を速くすることなく、優れた細胞回収率を維持して細胞濃縮液を製造できることを見出し、本発明を完成するに至った。  As a result of intensive studies to solve the above problems, the present inventors have used a hollow fiber module having a specific number of hollow fibers, membrane area, and membrane inner diameter for cell concentration. The inventors have found that a cell concentrate can be produced while maintaining an excellent cell recovery rate without increasing the speed, and the present invention has been completed.

すなわち、本発明の要旨は以下の通りである。
(1)細胞懸濁液入口、ろ液出口、細胞懸濁液出口、及び前記細胞懸濁液入口と細胞懸濁液出口の間に配置された中空糸型分離膜を有し、該中空糸型分離膜の内径が540〜600μm、糸本数が200〜350本であり、且つ、膜面積が0.04m〜0.13mである中空糸モジュールを用いて、
(a)細胞懸濁液を細胞懸濁液入口より導入し、ろ液をろ液出口より排出しながら、細胞懸濁液を濃縮する工程、
(b)細胞懸濁液を細胞懸濁液入口より導入し、細胞懸濁液出口より導出された細胞濃縮液を回収容器に回収する工程、
を含むことを特徴とする細胞濃縮液の製造方法。
(2)中空糸モジュールの容積が57〜152mLであることを特徴とする(1)に記載の細胞濃縮液の製造方法。
(3)中空糸型分離膜の孔径が0.1μm〜1μmであることを特徴とする(1)または(2)に記載の細胞濃縮液の製造方法。
(4)中空糸型分離膜の材質がポリエーテルスルホン系であることを特徴とする(1)〜(3)のいずれかに記載の細胞濃縮液の製造方法。
(5)(b)の工程前に、希釈液を用いて希釈と濃縮を繰り返し、細胞懸濁液を洗浄する工程を含むことを特徴とする(1)〜(4)のいずれかに記載の細胞濃縮液の製造方法。
(6)回収容器が液体を流出入できるポートを1つ以上具備することを特徴とする(1)〜(5)のいずれかに記載の細胞濃縮液の製造方法。
(7)(b)の工程後に、ポートを通じて細胞濃縮液を取り出す工程を含む(6)に記載の細胞濃縮液の製造方法。
(8)(b)の工程後に、ポートを通じて薬剤を添加する工程を含む(6)または(7)に記載の細胞濃縮液の製造方法。
(9)(b)の工程後に、回収容器を密封し分断する工程を含む(1)〜(8)のいずれかに記載の細胞濃縮液の製造方法。
(10)(1)〜(9)のいずれかに記載の細胞濃縮液の製造方法により得られた細胞濃縮液を、再度培養することを特徴とする細胞培養方法。
(11)(1)〜(9)のいずれかに記載の細胞濃縮液の製造方法により得られた細胞濃縮液を、液体窒素を用いて凍結保存することを特徴とする凍結保存方法。
That is, the gist of the present invention is as follows.
(1) having a cell suspension inlet, a filtrate outlet, a cell suspension outlet, and a hollow fiber type separation membrane disposed between the cell suspension inlet and the cell suspension outlet, the hollow fiber type separation membrane inner diameter 540~600Myuemu, a thread number is present 200-350, and, using a hollow fiber module membrane area is 0.04m 2 ~0.13m 2,
(A) a step of concentrating the cell suspension while introducing the cell suspension from the cell suspension inlet and discharging the filtrate from the filtrate outlet;
(B) introducing the cell suspension from the cell suspension inlet and collecting the cell concentrate derived from the cell suspension outlet in a collection container;
A method for producing a cell concentrate, comprising:
(2) The method for producing a cell concentrate according to (1), wherein the volume of the hollow fiber module is 57 to 152 mL.
(3) The method for producing a cell concentrate according to (1) or (2), wherein the pore diameter of the hollow fiber type separation membrane is 0.1 μm to 1 μm.
(4) The method for producing a cell concentrate according to any one of (1) to (3), wherein the material of the hollow fiber type separation membrane is polyethersulfone.
(5) Before the step (b), the method includes the step of repeating dilution and concentration using a diluent and washing the cell suspension, according to any one of (1) to (4), A method for producing a cell concentrate.
(6) The method for producing a cell concentrate according to any one of (1) to (5), wherein the collection container has one or more ports through which liquid can flow in and out.
(7) The method for producing a cell concentrate according to (6), comprising a step of taking out the cell concentrate through a port after the step (b).
(8) The method for producing a cell concentrate according to (6) or (7), comprising a step of adding a drug through a port after the step (b).
(9) The method for producing a cell concentrate according to any one of (1) to (8), comprising a step of sealing and dividing the collection container after the step (b).
(10) A cell culture method comprising culturing again a cell concentrate obtained by the method for producing a cell concentrate according to any one of (1) to (9).
(11) A cryopreservation method comprising cryopreserving a cell concentrate obtained by the method for producing a cell concentrate according to any one of (1) to (9) using liquid nitrogen.

本発明によれば、細胞懸濁液の濃縮に際して、細胞の通液速度を速くせずとも、高い細胞回収率を維持して細胞濃縮液を製造できる。さらに本発明は、懸濁液中に存在する蛋白質等の夾雑物を効率良く取り除くことができ、無菌的な閉鎖系で処理することが可能であることから、濃縮された細胞は治療用として提供できる。  According to the present invention, when concentrating a cell suspension, it is possible to produce a cell concentrate while maintaining a high cell recovery rate without increasing the cell flow rate. Furthermore, since the present invention can efficiently remove contaminants such as proteins present in the suspension and can be processed in a sterile closed system, the concentrated cells are provided for therapeutic use. it can.

本発明の実施例に用いた中空糸モジュールHollow fiber module used in examples of the present invention

以下に、本発明について説明する。
本発明の中空糸モジュールは、図1に示すとおり例示されるが、これに限定されるものではない。筒状容器1はストレートな胴部2とその両側の頭部3、ヘッダー部9からなり、頭部3にはろ過液出口4が備えられている。このろ過液出口は一方に備えられていても、両端に備えられていてもよい。この例ではヘッダー部9に細胞懸濁液入口8a、細胞懸濁液出口8bが設けられている。該筒状容器1内部には、装填された中空糸型分離膜の束5と、ヘッダー部9の内部に設けられた中空糸型分離膜の束5を容器内部に固定するとともに中空糸型分離膜の開口端6を形成している樹脂層部7、更に頭部3の内部に設けられたこれと同等の構造を有している。この樹脂層部7および開口端6は、ヘッダー部9(或いは頭部3)に被冠された構造となっており、細胞懸濁液出入口8a、8bとろ過液出口4が中空糸型分離膜を構成する壁材により隔てられ、連続しない構造となっている。
The present invention will be described below.
Although the hollow fiber module of this invention is illustrated as shown in FIG. 1, it is not limited to this. The cylindrical container 1 is composed of a straight body portion 2, head portions 3 on both sides thereof, and header portions 9, and the head portion 3 is provided with a filtrate outlet 4. The filtrate outlet may be provided on one side or on both ends. In this example, the header portion 9 is provided with a cell suspension inlet 8a and a cell suspension outlet 8b. Inside the cylindrical container 1, a bundle 5 of hollow fiber type separation membranes loaded and a bundle 5 of hollow fiber type separation membranes provided inside the header portion 9 are fixed inside the container and hollow fiber type separation is performed. The resin layer portion 7 forming the opening end 6 of the film and the structure equivalent to this provided inside the head portion 3 are provided. The resin layer portion 7 and the open end 6 have a structure covered with a header portion 9 (or head portion 3), and the cell suspension inlet / outlet ports 8a and 8b and the filtrate outlet port 4 are hollow fiber type separation membranes. It is separated by the wall material which comprises, and has a non-continuous structure.

なお、図1に示した例では、各部分を筒状容器の胴部2、頭部3、ヘッダー部9というように区別しているが、これは便宜的なものである。設計上、ヘッダー部9が筒状容器の頭部3に一体化したものや、筒状容器の胴部2と頭部3が別々のパーツから形成されている場合でも、細胞懸濁液入口と細胞懸濁液出口が中空糸型分離膜を構成する壁材で隔てられることなく連続しており、更に細胞懸濁液出入口とろ過液出口が中空糸型分離膜を構成する壁材により隔てられている構造を備えていれば、各種構造を設計することが可能である。   In the example shown in FIG. 1, each part is distinguished as a barrel 2, a head 3, and a header 9 of a cylindrical container, but this is for convenience. Even when the header portion 9 is integrated with the head portion 3 of the cylindrical container, or when the trunk portion 2 and the head portion 3 of the cylindrical container are formed of separate parts, The cell suspension outlet is continuous without being separated by the wall material constituting the hollow fiber type separation membrane, and the cell suspension outlet and the filtrate outlet are further separated by the wall material constituting the hollow fiber type separation membrane. Various structures can be designed as long as the structure is provided.

本発明の中空糸モジュールにおいて、中空糸型分離膜の配置は直線状になっていても、撓んでいても、らせん状になっていてもよく、細胞懸濁液入口と細胞懸濁液出口の間に中空糸型分離膜の両端が保持されていれば特に形状は限定されない。   In the hollow fiber module of the present invention, the arrangement of the hollow fiber type separation membrane may be linear, bent, or spiral, and the cell suspension inlet and the cell suspension outlet may be arranged. The shape is not particularly limited as long as both ends of the hollow fiber type separation membrane are held therebetween.

本発明の中空糸モジュールの筒状容器の素材として、アクリロニトリルブタジエンスチレンターポリマー等のアクリロニトリルポリマー;ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレンとヘキサフルオロプロピレンのコポリマー、ポリ塩化ビニル等のハロゲン化ポリマー;ポリアミド、ポリイミド、ポリスルホン、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリビニルクロリドアクリルコポリマー、アクリロニトリル、ブタジエンスチレン、ポリスチレン、ポリメチルペンテン等を使用できる。特に耐滅菌性を有する素材、具体的にはポリプロピレン、ポリ塩化ビニル、ポリエチレン、ポリイミド、ポリカーボネート、ポリスルホン、ポリメチルペンテン、ポリスチレン等が好ましい。   As a material for the cylindrical container of the hollow fiber module of the present invention, acrylonitrile polymer such as acrylonitrile butadiene styrene terpolymer; polytetrafluoroethylene, polychlorotrifluoroethylene, copolymer of tetrafluoroethylene and hexafluoropropylene, polyvinyl chloride, etc. Halogenated polymer: Polyamide, polyimide, polysulfone, polycarbonate, polyethylene, polypropylene, polyvinyl chloride acrylic copolymer, acrylonitrile, butadiene styrene, polystyrene, polymethylpentene and the like can be used. In particular, a material having sterilization resistance, specifically, polypropylene, polyvinyl chloride, polyethylene, polyimide, polycarbonate, polysulfone, polymethylpentene, polystyrene and the like are preferable.

中空糸型分離膜を固定する樹脂層部の素材としては、ポリウレタン樹脂、エポキシ樹脂、およびシリコン樹脂など一般的な接着材料用いることができ、透析に使用されている実績の観点からポリウレタン樹脂が特に好ましい。   As a material of the resin layer portion for fixing the hollow fiber type separation membrane, a general adhesive material such as polyurethane resin, epoxy resin, and silicon resin can be used, and polyurethane resin is particularly preferable from the viewpoint of achievement in dialysis. preferable.

本発明における中空糸型分離膜の糸本数とは、中空糸分離膜束中に含まれる中空糸型分離膜の本数を表す。本発明における中空糸型分離膜の糸本数は200〜350本が好ましく、250〜300本がより好ましい。糸本数が200本未満であると細胞懸濁液を処理する際に中空糸型分離膜内部を通過する細胞濃度が高くなりすぎて細胞が中空糸型分離膜に詰まる懸念がある。また、糸本数が350本より多いと、中空糸型分離膜の総断面積が増加し、細胞が中空糸型分離膜内部を通過する際の通液速度が低下することで細胞が中空糸型分離膜に接着し、回収率が低下するという問題があり好ましくない。   The number of hollow fiber separation membranes in the present invention represents the number of hollow fiber separation membranes contained in the hollow fiber separation membrane bundle. The number of yarns of the hollow fiber type separation membrane in the present invention is preferably 200 to 350, more preferably 250 to 300. When the number of yarns is less than 200, the concentration of cells passing through the inside of the hollow fiber type separation membrane becomes too high when the cell suspension is processed, and there is a concern that the cells are clogged with the hollow fiber type separation membrane. Further, when the number of yarns is more than 350, the total cross-sectional area of the hollow fiber type separation membrane increases, and the flow rate when the cells pass through the inside of the hollow fiber type separation membrane decreases, so that the cells become hollow fiber type. There is a problem that the recovery rate decreases due to adhesion to the separation membrane, which is not preferable.

本発明における中空糸型分離膜の内径とは、中空糸内空部分の直径を表す。本発明の中空糸型分離膜の内径は540〜600μmであることが好ましく、560〜580μmであることがより好ましい。540μm未満であると、細胞懸濁液を処理する際に中空糸型分離膜内部を通過する細胞濃度が高くなりすぎて細胞が中空糸型分離膜に詰まる懸念がある。また、600μmを超えると、中空糸型分離膜の総断面積が増加するため、細胞が中空糸型分離膜内部を通過する際の速度が低下する。その結果、細胞が中空糸型分離膜に接着し、回収率が低下するため好ましくない。  The inner diameter of the hollow fiber type separation membrane in the present invention represents the diameter of the hollow portion in the hollow fiber. The inner diameter of the hollow fiber type separation membrane of the present invention is preferably 540 to 600 μm, and more preferably 560 to 580 μm. When the cell suspension is less than 540 μm, the concentration of cells passing through the inside of the hollow fiber type separation membrane becomes too high when the cell suspension is processed, and there is a concern that the cells are clogged with the hollow fiber type separation membrane. On the other hand, if it exceeds 600 μm, the total cross-sectional area of the hollow fiber type separation membrane increases, so that the speed when cells pass through the inside of the hollow fiber type separation membrane decreases. As a result, the cells adhere to the hollow fiber separation membrane and the recovery rate is lowered, which is not preferable.

本発明における中空糸型分離膜の膜面積(m)とは、(中空糸型分離膜の内径(μm))×π×(糸本数)×(中空糸の接着剤で挟まれているろ過側部分の長さ(cm))で表される面積を表す。膜面積は0.04〜0.13mが好ましく、0.09〜0.11mがより好ましい。膜面積が0.04m未満であると、細胞懸濁液を処理するのに十分な量の内側膜面積を確保できないため、処理中に膜に細胞が詰まる懸念がある。また、膜面積が0.13mを超えると中空糸型分離膜の断面積が増加するため、細胞が中空糸型分離膜内部を通過する際の速度が低下する。その結果、細胞が中空糸型分離膜に接着し、回収率が低下するため好ましくない。 The membrane area (m 2 ) of the hollow fiber type separation membrane in the present invention is (the inner diameter of the hollow fiber type separation membrane (μm)) × π × (number of yarns) × (filtering sandwiched between hollow fiber adhesives) The area represented by the length (cm) of the side portion is represented. Membrane area is preferably 0.04~0.13m 2, 0.09~0.11m 2 is more preferable. If the membrane area is less than 0.04 m 2 , a sufficient amount of the inner membrane area for treating the cell suspension cannot be secured, and there is a concern that the membrane may become clogged during the treatment. On the other hand, when the membrane area exceeds 0.13 m 2 , the cross-sectional area of the hollow fiber type separation membrane increases, so that the speed when cells pass through the inside of the hollow fiber type separation membrane decreases. As a result, the cells adhere to the hollow fiber separation membrane and the recovery rate is lowered, which is not preferable.

本発明における中空糸モジュールの容積(mL)とは(中空糸の接着剤で挟まれているろ過側部分の長さ(cm))×(ケーシングの断面積(cm))であらわされる体積を表す。容積は57〜152mLが好ましく、100〜152mLがより好ましく、145〜152mLがさらに好ましい。中空糸モジュールの容積が57mLより小さいと十分な膜面積を確保することができず、細胞が詰まることが懸念される。中空糸モジュールの容積が152mLより大きいと、中空糸モジュール内部のろ液量が多くなり、洗浄効率が低下するため好ましくない。中空糸外部にあるろ液中に含まれるタンパク濃度が低下しづらくなるため好ましくない。 The volume (mL) of the hollow fiber module in the present invention is expressed by (the length of the filtration side portion (cm) sandwiched between the hollow fiber adhesives) × (the cross-sectional area (cm 2 ) of the casing). Represent. The volume is preferably 57 to 152 mL, more preferably 100 to 152 mL, and even more preferably 145 to 152 mL. When the volume of the hollow fiber module is smaller than 57 mL, a sufficient membrane area cannot be ensured, and there is a concern that the cells are clogged. If the volume of the hollow fiber module is larger than 152 mL, the amount of filtrate inside the hollow fiber module increases, and the cleaning efficiency is lowered, which is not preferable. This is not preferable because the protein concentration contained in the filtrate outside the hollow fiber is difficult to decrease.

本発明における中空糸型分離膜の孔径とは中空糸内部と外部を連通する部分の直径である。中空糸型分離膜の孔径の下限としては0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。また中空糸分離膜の孔径の上限としては、1μm以下が好ましく、0.8μm以下がより好ましく、0.6μm以下がさらに好ましい。0.1μm未満であると、大きなろ過流量を得ることができない、又は不要な蛋白質などの夾雑物を効率的に除去できないため好ましくない。また、1μmより大きいと、細胞が膜から漏れるという問題があり、好ましくない。ここで、中空糸型分離膜内側の孔径は、一般的な方法として知られるバブルポイント法によって測定することができる。  The pore diameter of the hollow fiber type separation membrane in the present invention is the diameter of the portion that communicates the inside and the outside of the hollow fiber. The lower limit of the pore diameter of the hollow fiber type separation membrane is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more. The upper limit of the pore diameter of the hollow fiber separation membrane is preferably 1 μm or less, more preferably 0.8 μm or less, and even more preferably 0.6 μm or less. If it is less than 0.1 μm, it is not preferable because a large filtration flow rate cannot be obtained or unnecessary impurities such as proteins cannot be efficiently removed. Moreover, when larger than 1 micrometer, there exists a problem that a cell leaks from a film | membrane, and is not preferable. Here, the pore diameter inside the hollow fiber type separation membrane can be measured by a bubble point method known as a general method.

本発明に用いられる中空糸型分離膜の材質は、材料の安全性、安定性などの点から合成高分子材料が好ましく用いることができる。この中でも、ポリスルホン系、ポリオレフィン系又はセルロース系の高分子材料が好ましく用いることができる。さらに、ポリエーテルスルホン、ポリエチレン、セルロースエステルが材料の安全性、安定性、入手のしやすさから最も好適に用いることができる。   As the material of the hollow fiber type separation membrane used in the present invention, a synthetic polymer material can be preferably used from the viewpoint of the safety and stability of the material. Among these, polysulfone-based, polyolefin-based, or cellulose-based polymer materials can be preferably used. Furthermore, polyethersulfone, polyethylene, and cellulose ester can be most suitably used because of the safety, stability, and availability of the material.

本発明で濃縮し得る細胞としては、例えば人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、間葉系幹細胞、脂肪由来間葉系細胞、脂肪由来間質幹細胞、多能性成体幹細胞、骨髄ストローマ細胞、造血幹細胞等の多分化能を有する生体幹細胞、T細胞、B細胞、キラーT細胞(細胞障害性T細胞)、NK細胞、NKT細胞、制御性T細胞などのリンパ球系の細胞、マクロファージ、単球、樹状細胞、顆粒球、赤血球、血小板など、神経細胞、筋細胞、線維芽細胞、肝細胞、心筋細胞などの体細胞または、遺伝子の導入や分化などの処理を行った細胞が例示される。中でも顆粒球、T細胞、B細胞、キラーT細胞(細胞障害性T細胞)、NK細胞、NKT細胞、制御性T細胞、マクロファージ、樹状細胞等の免疫細胞に対して好適に用いることができる。  Examples of cells that can be concentrated in the present invention include artificial pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), mesenchymal stem cells, adipose-derived mesenchymal cells, adipose-derived stromal stem cells, pluripotency Multipotent biological stem cells such as adult stem cells, bone marrow stromal cells, hematopoietic stem cells, lymphocytes such as T cells, B cells, killer T cells (cytotoxic T cells), NK cells, NKT cells, regulatory T cells Cells, macrophages, monocytes, dendritic cells, granulocytes, erythrocytes, platelets, neurons, somatic cells such as myocytes, fibroblasts, hepatocytes, cardiomyocytes, or treatments such as gene transfer or differentiation The cell which performed is illustrated. Among them, it can be suitably used for immune cells such as granulocytes, T cells, B cells, killer T cells (cytotoxic T cells), NK cells, NKT cells, regulatory T cells, macrophages and dendritic cells. .

また、本発明で用いる細胞懸濁液としては、細胞を含む懸濁液であれば特に限定されないが、例えば、脂肪、皮膚、血管、角膜、口腔、腎臓、肝臓、膵臓、心臓、神経、筋肉、前立腺、腸、羊膜、胎盤、臍帯などの生体組織を酵素処理や破砕処理や抽出処理や分解処理や超音波処理などをした後の懸濁液、血液や骨髄液を密度勾配遠心処理やろ過処理や酵素処理や分解処理や超音波処理などの前処理をして調製された細胞懸濁液等が例示される。または、上記に例示した細胞を生体外で培養液、例えば、DMEM,α−MEM、MEM、IMEM、RPMI−1640や、サイトカイン、抗体やペプチドなどの刺激因子などを用いて培養した後の細胞懸濁液が例示される。   The cell suspension used in the present invention is not particularly limited as long as it is a suspension containing cells. For example, fat, skin, blood vessel, cornea, oral cavity, kidney, liver, pancreas, heart, nerve, muscle , Suspensions, blood and bone marrow fluid after enzymatic treatment, crushing treatment, extraction treatment, degradation treatment, sonication, etc. of biological tissues such as prostate, intestine, amniotic membrane, placenta, umbilical cord and filtration Examples thereof include cell suspensions prepared by pretreatment such as treatment, enzyme treatment, decomposition treatment, and ultrasonic treatment. Alternatively, the cells suspended after culturing the cells exemplified above in vitro using a culture solution such as DMEM, α-MEM, MEM, IMEM, RPMI-1640, and stimulating factors such as cytokines, antibodies and peptides. A turbid liquid is illustrated.

本発明により製造した細胞濃縮液をさらに洗浄してもよい。洗浄とは、細胞が懸濁されている体液や培地などを、希釈液に置換することである。これにより、濃縮液中の不要な夾雑物を取り除いたりすることができ、ヒトや動物への移植に好適に使用することができる。希釈液としては、生理食塩水、輸液、培地、蒸留水、無機塩、糖類、血清、蛋白質を含む液体、緩衝液、培地、血漿等が挙げられ、特に安全性の観点から生理食塩水や輸液を好適に用いることができる。  The cell concentrate produced according to the present invention may be further washed. Washing means replacing a body fluid or a medium in which cells are suspended with a diluted solution. Thereby, unnecessary impurities in the concentrate can be removed, and it can be suitably used for transplantation to humans and animals. Examples of the diluent include physiological saline, infusion, medium, distilled water, inorganic salt, saccharide, serum, protein-containing liquid, buffer, medium, plasma, and the like. Can be suitably used.

また、本発明により分離される細胞は、白血病治療、心筋再生や血管再生、幹細胞疲弊疾患、骨疾患、軟骨疾患、虚血性疾患、血管系疾患、神経病、やけど、慢性炎症、心疾患、免疫不全、クーロン病等の疾患、豊胸、しわとり、美容成形、組織陥没症等の組織増大などの再生医療、T細胞療法、NKT細胞療法、樹状細胞移入療法などの免疫療法、遺伝子導入した細胞を用いる遺伝子療法などに用いることも可能であるが、これらに限定されるものではない。また、分離された細胞をスキャフォールド等の構造材料に播種して治療に用いることも可能である。   In addition, the cells isolated according to the present invention can be used for leukemia treatment, myocardial regeneration and vascular regeneration, stem cell exhaustion disease, bone disease, cartilage disease, ischemic disease, vascular disease, neurological disease, burn, chronic inflammation, heart disease, immunity Regenerative medicine such as failure, coulomb disease, breast augmentation, wrinkle removal, cosmetic molding, tissue enlargement such as tissue depression, immunotherapy such as T cell therapy, NKT cell therapy, dendritic cell transfer therapy, gene transfer It can be used for gene therapy using cells, but is not limited thereto. In addition, the separated cells can be seeded on a structural material such as a scaffold and used for treatment.

本発明により製造、洗浄した細胞濃縮液をさらに培養してもよい。洗浄により懸濁されている液を置換しさらに培養することで、細胞数の増加、細胞の分化、形質転換、遺伝子導入などを行うことができる。細胞の増殖に用いられる培地としては、DMEM,α−MEM、MEM、IMEM、RPMI−1640が挙げられ、サイトカイン、抗体やペプチドなどの刺激因子などを用いて培養してもよい。  The cell concentrate produced and washed according to the present invention may be further cultured. By replacing the liquid suspended by washing and further culturing, cell number increase, cell differentiation, transformation, gene introduction, and the like can be performed. Examples of the medium used for cell growth include DMEM, α-MEM, MEM, IMEM, and RPMI-1640, and culture may be performed using stimulating factors such as cytokines, antibodies, and peptides.

本発明により医薬組成物を製造できる。上記の細胞濃縮液の製造方法に従って細胞を濃縮し、該濃縮細胞を製薬的に許容される添加剤と混合することで医薬組成物を製造できる。製薬的に許容される添加剤としては、例えば、抗凝固剤、ビタミン等の栄養源、抗生物質等が挙げられる。  A pharmaceutical composition can be produced according to the present invention. A pharmaceutical composition can be produced by concentrating cells according to the method for producing a cell concentrate and mixing the concentrated cells with a pharmaceutically acceptable additive. Examples of pharmaceutically acceptable additives include anticoagulants, nutrient sources such as vitamins, antibiotics, and the like.

本発明により製造、洗浄した細胞濃縮液をさらに凍結保存してもよい。細胞へのダメージを少なくできる点から、液体窒素を用いて凍結保存した方がよい。また、凍結保存した細胞を融解し、ヒトや動物への移植、研究に使用、または再度培養することができる。本発明により製造、洗浄した細胞は濃縮操作によるダメージが少ないことから、凍結保存や融解後の使用などにも好適に用いることができる。  The cell concentrate prepared and washed according to the present invention may be further cryopreserved. From the point that damage to cells can be reduced, it is better to cryopreserve using liquid nitrogen. In addition, cryopreserved cells can be thawed and used for transplantation into humans and animals, research, or re-culture. Since the cells produced and washed according to the present invention are less damaged by the concentration operation, they can be suitably used for cryopreservation and use after thawing.

本発明の中空糸モジュールは滅菌して用いてもよい。滅菌方法は、特に限定されず、γ線滅菌や電子線滅菌やEOG滅菌、高圧蒸気滅菌などの医療用具の滅菌に汎用されている滅菌方法を好適に用いることができる。   The hollow fiber module of the present invention may be used after sterilization. The sterilization method is not particularly limited, and sterilization methods widely used for sterilization of medical devices such as γ-ray sterilization, electron beam sterilization, EOG sterilization, and high-pressure steam sterilization can be suitably used.

以下、本発明の中空糸モジュールを用いて細胞を分離する方法を例示するが、本発明はこれに限定されるものではなく、本発明の主旨に反しない範囲で各種変更をすることができる。   Hereinafter, although the method of isolate | separating a cell using the hollow fiber module of this invention is illustrated, this invention is not limited to this, A various change can be made in the range which is not contrary to the main point of this invention.

本発明における中空糸モジュールを用いて細胞懸濁液を細胞懸濁液入口より導入し、ろ液をろ液出口より排出しながら、細胞懸濁液を濃縮する工程とは、モジュール内に備えられた中空糸型分離膜に流入した細胞懸濁液が内圧ろ過により、細胞を実質上含まないろ液が中空糸型分離膜の外側にろ別され、細胞成分が濃縮された細胞懸濁液が細胞懸濁液出口より流出する。なお、ここで細胞を実質上含まないろ液とは、その細胞の数が、流入前の細胞懸濁液中の細胞の数の0.1%を上回らない範囲であることを意味する。   The step of introducing the cell suspension from the cell suspension inlet using the hollow fiber module of the present invention and concentrating the cell suspension while discharging the filtrate from the filtrate outlet is provided in the module. The cell suspension that has flowed into the hollow fiber type separation membrane is subjected to internal pressure filtration, and the filtrate that is substantially free of cells is filtered out of the hollow fiber type separation membrane. It flows out from the cell suspension outlet. Here, the filtrate substantially free of cells means that the number of cells does not exceed 0.1% of the number of cells in the cell suspension before inflow.

先ず、中空糸モジュールの細胞懸濁液入口および出口にチューブ等を取り付け(処理器内の中空糸に細胞懸濁液が流入および流出する回路の一部となる)、更に取り付けたチューブを細胞懸濁液が入った細胞バッグなどの容器に連結し、バッグなどの容器と中空糸モジュールとの間で細胞懸濁液が循環できるようにする。なお、液を循環させるために、ポンプなどの機械をこの回路に介在させることが考えられる。また、ろ過液出口には廃液タンクなどに連絡されたチューブを連結しておくことが好ましい。このとき、回路の全体の取り付けは、無菌的な環境下で行われることが好ましい。また、この際に、細胞懸濁液出口側の流路を狭くするなどして、分離膜に圧力をかけることもできるし、ろ過側のチューブにポンプ等を用いて圧力をかけながらろ過を行ってもよく、一般的に中空糸型分離膜で用いられる各種ろ過方法を併用することができる。   First, a tube or the like is attached to the cell suspension inlet and outlet of the hollow fiber module (becomes a part of the circuit in which the cell suspension flows into and out of the hollow fiber in the processor), and the attached tube is attached to the cell suspension. The cell suspension is connected to a container such as a cell bag containing the suspension so that the cell suspension can be circulated between the container such as the bag and the hollow fiber module. It is conceivable that a machine such as a pump is interposed in this circuit in order to circulate the liquid. Moreover, it is preferable to connect the tube connected to the waste liquid tank etc. to the filtrate outlet. At this time, it is preferable that the entire circuit is attached in an aseptic environment. At this time, it is possible to apply pressure to the separation membrane by narrowing the flow path on the outlet side of the cell suspension, or to perform filtration while applying pressure to the tube on the filtration side using a pump or the like. Various filtration methods generally used in hollow fiber separation membranes may be used in combination.

一方、濃縮が進んだ後、バッファーなどの洗浄液を追加し、濃縮を繰り返すことで、細胞の洗浄や培地の交換を行うことができる。この際、洗浄液の投入は、循環回路のチューブに設けた流入口から行う。この際、無菌的に液を注入できる流入口を用いることが好ましい。   On the other hand, after the concentration has progressed, a washing solution such as a buffer is added, and the concentration can be repeated to wash the cells and exchange the medium. At this time, the cleaning liquid is supplied from an inlet provided in the tube of the circulation circuit. At this time, it is preferable to use an inlet capable of aseptically injecting the liquid.

本発明における中空糸モジュールを用いて、細胞懸濁液を細胞懸濁液入口より導入し、細胞懸濁液出口より導出された細胞濃縮液を回収容器に回収する工程とは、濃縮工程並びに洗浄工程後に実施する工程であり、細胞懸濁液を細胞懸濁液出口より流出させ、濃縮された細胞懸濁液を回収容器に回収する。なお、回収容器への回収は、循環回路のチューブに別途三方活栓などの流出口を設けて無菌的に行うことが好ましく、細胞懸濁液回収後は回収容器を回路から密封し分断することが可能であることが好ましい。また、細胞懸濁液を循環回路から回収容器に送液させるために、ポンプ等の機械をこの回路に介在させることが考えられる。回収容器の分断方法としては、クランプを使用してチューブを閉じ、その上流を切断する方法やチューブシーラーを使用した回路の熱溶着後の切断などが挙げられる。また、回収容器には、液体を流出入できるポートを1つ以上具備していることが好ましい。この際、ポートを通じて細胞濃縮液を取り出したり、薬剤を添加することを実施することができる。ポートとしては混注口などが挙げられる。   The step of introducing the cell suspension from the cell suspension inlet using the hollow fiber module in the present invention and collecting the cell concentrate derived from the cell suspension outlet in the collection container includes the concentration step and washing In this step, the cell suspension is discharged from the cell suspension outlet, and the concentrated cell suspension is collected in a collection container. The collection into the collection container is preferably performed aseptically by separately providing an outlet such as a three-way stopcock on the tube of the circulation circuit. After collecting the cell suspension, the collection container can be sealed from the circuit and divided. Preferably it is possible. It is also conceivable that a machine such as a pump is interposed in this circuit in order to send the cell suspension from the circulation circuit to the collection container. Examples of the method for dividing the collection container include a method in which a tube is closed using a clamp and the upstream is cut, and a circuit is cut after heat welding using a tube sealer. Further, it is preferable that the recovery container has one or more ports through which liquid can flow in and out. At this time, the cell concentrate can be taken out through the port or a drug can be added. Ports include mixed injection ports.

以下、実験結果を用いて本発明を説明する。なお、ここで細胞回収率とは、回収バックに回収した細胞懸濁液中の細胞数を、処理をする前の細胞懸濁液中の細胞数で除した値で、値が高いほど回収効率に優れていることを示す。細胞数は、細胞懸濁液を血球カウンター(シスメックス、K−4500)により測定し、白血球分画の細胞濃度を本実施例での細胞濃度として算出し、細胞懸濁液量と細胞濃度より算出した。   Hereinafter, the present invention will be described using experimental results. Here, the cell recovery rate is the value obtained by dividing the number of cells in the cell suspension collected in the collection bag by the number of cells in the cell suspension before processing. The higher the value, the higher the recovery efficiency. It is excellent in. The number of cells is determined by measuring the cell suspension with a blood cell counter (Sysmex, K-4500), calculating the cell concentration of the leukocyte fraction as the cell concentration in this example, and calculating from the cell suspension amount and the cell concentration. did.

各実験例における細胞濃縮の方法は、各実施例に記載した中空糸モジュールの入り口と出口に塩ビチューブをつなげた。プラスチック容器に細胞懸濁液を貯留させて、懸濁液がモジュールおよびチューブを循環できるように中空糸モジュールの両端から延びる塩ビチューブの両端を懸濁液中に垂らした。塩ビチューブにはポンプを設置し、懸濁液の流れが適当な流速に設定できるようにした。中空糸モジュールのろ液出口にもチューブを取り付け、こちらは廃液入れに注ぐように設置した。ポンプにより流速を調整し、回路に細胞懸濁液を循環させながらろ過を行った。一定量(80〜120mL)まで濃縮した後、チューブや中空糸型分離膜内の細胞懸濁液をエアーで押し出した後、ポンプを停止し、プラスチック容器中の細胞懸濁液の細胞数を測定し、回収率を算出した。以下に実施例を示す。   In the method of cell concentration in each experimental example, a PVC tube was connected to the inlet and outlet of the hollow fiber module described in each example. The cell suspension was stored in a plastic container and both ends of a PVC tube extending from both ends of the hollow fiber module were suspended in the suspension so that the suspension could circulate through the module and the tube. A pump was installed in the PVC tube so that the suspension flow could be set to an appropriate flow rate. A tube was also attached to the filtrate outlet of the hollow fiber module, which was set up to be poured into a waste container. The flow rate was adjusted by a pump, and filtration was performed while circulating the cell suspension in the circuit. After concentrating to a certain amount (80-120 mL), the cell suspension in the tube or hollow fiber type separation membrane is pushed out with air, then the pump is stopped and the number of cells in the cell suspension in the plastic container is measured. The recovery rate was calculated. Examples are shown below.

(実施例1)
内径540〜600μmの中空糸200本を、膜面積が0.07m、容積152mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は87%であった。
Example 1
200 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.07 m 2 and a volume of 152 mL to form a module. The culture activated lymphocytes were concentrated at a filtration rate of 200 mL / min while flowing in the module at a rate of 450 mL / min. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 87%.

(実施例2)
内径540〜600μmの中空糸250本を、膜面積が0.09m、容積152mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は87%であった。
(Example 2)
250 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.09 m 2 and a volume of 152 mL to form a module. The culture activated lymphocytes were concentrated at a filtration rate of 200 mL / min while flowing in the module at a rate of 450 mL / min. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 87%.

(実施例3)
内径540〜600μmの中空糸300本を、膜面積が0.11m、容積152mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は92%であった。
(Example 3)
300 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.11 m 2 and a volume of 152 mL to form a module. The culture activated lymphocytes were concentrated at a filtration rate of 200 mL / min while flowing in the module at a rate of 450 mL / min. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 92%.

(実施例4)
内径540〜600μmの中空糸350本を膜面積が0.13m、容積152mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は92%であった。
Example 4
350 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.13 m 2 and a volume of 152 mL to form a module. The culture activated lymphocytes were concentrated at a filtration rate of 200 mL / min while flowing in the module at a rate of 450 mL / min. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 92%.

(実施例5)
内径540〜600μmの中空糸300本を、膜面積が0.08m、容積106mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は96%であった。
(Example 5)
300 hollow fibers having an inner diameter of 540 to 600 μm were put in a case having a membrane area of 0.08 m 2 and a volume of 106 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluted solution, and a cell suspension was recovered by carrying out a recovery operation. The cell recovery rate was 96%.

(実施例6)
内径540〜600μmの中空糸300本を、膜面積が0.04m、容積57mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は88%であった。
(Example 6)
300 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.04 m 2 and a volume of 57 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluent, and the collection operation was performed to collect the cell suspension. The cell recovery rate was 88%.

(比較例1)
内径540〜600μmの中空糸400本を、膜面積が0.14m、容積152mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は59%であった。
(Comparative Example 1)
400 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.14 m 2 and a volume of 152 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 59%.

(比較例2)
内径800μmの中空糸60本を、膜面積が0.013m、容積32mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は78%であった。
(Comparative Example 2)
Sixty hollow fibers having an inner diameter of 800 μm were put in a case having a membrane area of 0.013 m 2 and a volume of 32 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluent, and the collection operation was carried out to collect the cell suspension. The cell recovery rate was 78%.

(比較例3)
内径630μmの中空糸590本を、膜面積が0.15m、容積150mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は59%であった。
(Comparative Example 3)
590 hollow fibers having an inner diameter of 630 μm were put in a case having a membrane area of 0.15 m 2 and a volume of 150 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 59%.

(比較例4)
内径540〜600μmの中空糸300本を、膜面積が0.02m、容積28mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は78%であった。
(Comparative Example 4)
300 hollow fibers having an inner diameter of 540 to 600 μm were put into a case having a membrane area of 0.02 m 2 and a volume of 28 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluent, and the collection operation was carried out to collect the cell suspension. The cell recovery rate was 78%.

(比較例5)
内径1000μmの中空糸230本を、膜面積が0.15m、容積128mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は67%であった。
(Comparative Example 5)
230 hollow fibers having an inner diameter of 1000 μm were put in a case having a membrane area of 0.15 m 2 and a volume of 128 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using the diluted solution, and the collection operation was performed to collect the cell suspension. As a result, the cell recovery rate was 67%.

(比較例6)
内径350μmの中空糸3000本を、膜面積が0.8m、容積185mLのケースに入れ、モジュールとした。モジュール内部に培養活性化リンパ球を速度450mL/minで流しながら、ろ過速度200mL/minで培養活性化リンパ球を濃縮した。次に、希釈液を使用して細胞を洗浄し、回収操作を実施して細胞懸濁液を回収したところ、細胞回収率は75%であった。
(Comparative Example 6)
3000 hollow fibers having an inner diameter of 350 μm were put into a case having a membrane area of 0.8 m 2 and a volume of 185 mL to form a module. The culture-activated lymphocytes were concentrated at a filtration rate of 200 mL / min while the culture-activated lymphocytes flowed at a rate of 450 mL / min inside the module. Next, the cells were washed using a diluent, and the cell suspension was recovered by carrying out a recovery operation. The cell recovery rate was 75%.

Figure 0006285649
Figure 0006285649

表1より、中空糸型分離膜の内径が540〜600μm、糸本数が200〜350本であり、且つ、膜面積が0.04m〜0.13m、中空糸モジュールの容積が57〜152mL、中空糸型分離膜孔径が0.1μm〜1μmである中空糸型分離膜を使用して細胞懸濁液を処理することで、高い細胞回収率で細胞濃縮液を製造できることは明らかである。 From Table 1, a hollow fiber inner diameter of the separation membrane 540~600Myuemu, yarn number is present 200-350, and the membrane area of 0.04m 2 ~0.13m 2, the volume of the hollow fiber module 57~152mL It is apparent that a cell concentrate can be produced with a high cell recovery rate by treating a cell suspension using a hollow fiber type separation membrane having a pore diameter of 0.1 μm to 1 μm.

上記より、本発明における製造方法を用いることにより、縣濁液中の細胞以外の蛋白質などの夾雑物を取り除きつつ、高効率に細胞を回収でき、中空糸における細胞の目詰まりが少なく細胞濃縮液を製造できる。更に細胞の負荷となるような洗浄方法等を使用しないので、細胞へのダメージが少なくなる。   From the above, by using the production method of the present invention, cells can be recovered with high efficiency while removing impurities such as proteins other than cells in the suspension, and the cell concentrate is less clogged with cells in the hollow fiber. Can be manufactured. Furthermore, since no washing method or the like that causes a load on the cells is used, damage to the cells is reduced.

したがって、本発明の方法により製造された細胞濃縮液を用いれば、無菌的な操作処理で目的細胞だけを効率的に濃縮でき、複数の中空糸を使用しないので材料の漏洩も防ぐことができ安全性が高いので、細胞治療用途の細胞も提供できるのである。   Therefore, if the cell concentrate produced by the method of the present invention is used, it is possible to efficiently concentrate only the target cells by aseptic operation, and it is possible to prevent leakage of materials because a plurality of hollow fibers are not used. Because of its high nature, cells for cell therapy can also be provided.

1.筒状容器
2.胴部
3.頭部
4.ろ過液出口
5.中空糸型分離膜の束
6.開口端(点線部)
7.樹脂層部(斜線部)
8a.細胞懸濁液入口
8b.細胞懸濁液出口
9.ヘッダー部
1. Tubular container Torso part 3. Head 4. 4. Filtrate outlet 5. bundle of hollow fiber type separation membranes Open end (dotted line)
7). Resin layer (shaded area)
8a. Cell suspension inlet 8b. Cell suspension outlet 9. Header part

Claims (11)

細胞懸濁液入口、ろ液出口、細胞懸濁液出口、及び前記細胞懸濁液入口と細胞懸濁液出口の間に配置された中空糸型分離膜を有し、該中空糸型分離膜の内径が540〜600μm、糸本数が200〜350本であり、且つ、膜面積が0.04m〜0.13mである中空糸モジュールを用いて、
(a)細胞懸濁液を細胞懸濁液入口より導入し、ろ液をろ液出口より排出しながら、細胞懸濁液を濃縮する工程、
(b)細胞懸濁液を細胞懸濁液入口より導入し、細胞懸濁液出口より導出された細胞濃縮液を回収容器に回収する工程、
を含むことを特徴とする細胞濃縮液の製造方法。
A cell suspension inlet, a filtrate outlet, a cell suspension outlet, and a hollow fiber type separation membrane disposed between the cell suspension inlet and the cell suspension outlet, the hollow fiber type separation membrane the inner diameter 540~600Myuemu, a thread number is present 200-350, and, using a hollow fiber module membrane area is 0.04m 2 ~0.13m 2,
(A) introducing the cell suspension from the cell suspension inlet and concentrating the cell suspension while discharging the filtrate from the filtrate outlet;
(B) introducing the cell suspension from the cell suspension inlet and collecting the cell concentrate derived from the cell suspension outlet in a collection container;
A method for producing a cell concentrate, comprising:
中空糸モジュールの容積が57〜152mLであることを特徴とする請求項1に記載の細胞濃縮液の製造方法。   The method for producing a cell concentrate according to claim 1, wherein the volume of the hollow fiber module is 57 to 152 mL. 中空糸型分離膜の孔径が0.1μm〜1μmであることを特徴とする請求項1または2に記載の細胞濃縮液の製造方法。   The method for producing a cell concentrate according to claim 1 or 2, wherein the hollow fiber separation membrane has a pore size of 0.1 µm to 1 µm. 中空糸型分離膜の材質がポリエーテルスルホン系であることを特徴とする請求項1〜3のいずれかに記載の細胞濃縮液の製造方法。   The method for producing a cell concentrate according to any one of claims 1 to 3, wherein the material of the hollow fiber type separation membrane is polyethersulfone. (b)の工程前に、希釈液を用いて希釈と濃縮を繰り返し、細胞懸濁液を洗浄する工程を含むことを特徴とする請求項1〜4のいずれかに記載の細胞濃縮液の製造方法。   The process for producing a cell concentrate according to any one of claims 1 to 4, further comprising a step of washing the cell suspension by repeating dilution and concentration using a diluent before the step (b). Method. 回収容器が液体を流出入できるポートを1つ以上具備することを特徴とする請求項1〜5のいずれかに記載の細胞濃縮液の製造方法。   The method for producing a cell concentrate according to any one of claims 1 to 5, wherein the collection container has one or more ports through which liquid can flow in and out. (b)の工程後に、ポートを通じて細胞濃縮液を取り出す工程を含む請求項6に記載の細胞濃縮液の製造方法。   The manufacturing method of the cell concentrate of Claim 6 including the process of taking out a cell concentrate through a port after the process of (b). (b)の工程後に、ポートを通じて薬剤を添加する工程を含む請求項6または7に記載の細胞濃縮液の製造方法。   The method for producing a cell concentrate according to claim 6 or 7, further comprising a step of adding a drug through a port after the step (b). (b)の工程後に、回収容器を密封し分断する工程を含む請求項1〜8のいずれかに記載の細胞濃縮液の製造方法。   The manufacturing method of the cell concentrate in any one of Claims 1-8 including the process of sealing and dividing a collection container after the process of (b). 請求項1〜9のいずれかに記載の方法により細胞濃縮液を製造し、前記細胞濃縮液を、再度培養することを特徴とする細胞培養方法。 To produce a cell concentrate by way of any of claims 1 to 9, the cell concentrate, the cell culture method characterized by culturing again. 請求項1〜9のいずれかに記載の方法により細胞濃縮液を製造し、前記細胞濃縮液を、液体窒素を用いて凍結保存することを特徴とする凍結保存方法。 Cryopreservation method to produce a cell concentrate by way of any of claims 1 to 9, the cell concentrate, characterized by cryopreservation with liquid nitrogen.
JP2013136936A 2013-06-28 2013-06-28 Method for producing cell concentrate Active JP6285649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136936A JP6285649B2 (en) 2013-06-28 2013-06-28 Method for producing cell concentrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136936A JP6285649B2 (en) 2013-06-28 2013-06-28 Method for producing cell concentrate

Publications (2)

Publication Number Publication Date
JP2015008685A JP2015008685A (en) 2015-01-19
JP6285649B2 true JP6285649B2 (en) 2018-02-28

Family

ID=52302480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136936A Active JP6285649B2 (en) 2013-06-28 2013-06-28 Method for producing cell concentrate

Country Status (1)

Country Link
JP (1) JP6285649B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059279A1 (en) * 2017-09-20 2019-03-28 株式会社カネカ Device, system and method for preparing cell suspension

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319774A (en) * 2002-05-07 2003-11-11 Asahi Kasei Corp Method for concentrating cell
JP2012210187A (en) * 2011-03-31 2012-11-01 Kaneka Corp Method for condensing cell suspension
US9603356B2 (en) * 2011-10-24 2017-03-28 Kaneka Corporation Method for producing cell concentrate

Also Published As

Publication number Publication date
JP2015008685A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP6196222B2 (en) Method for producing cell concentrate
JP6204193B2 (en) Method for producing cell concentrate
JP6384166B2 (en) Cell concentrate production method and cell suspension treatment system
JP6528399B2 (en) Method of producing cell concentrate
JP6685231B2 (en) Hollow fiber membrane module priming method
KR20070055416A (en) Tangential flow filtration devices and methods for stem cell enrichment
TW201334818A (en) Leukocyte purification
WO2002101029A1 (en) Method of separating and concentrating cells for kidney regfneration
TWI741033B (en) Apparatus for aseptic processing of suspension, cell preparation kit and cell preparation method
JP2012210187A (en) Method for condensing cell suspension
JP6409371B2 (en) A filter with an optimized ratio of ridges in the filter
JP2015012837A (en) Method for producing cell concentrate
JPWO2016002505A1 (en) A filter that optimizes the external shape of the raised part in the filter
JP6285649B2 (en) Method for producing cell concentrate
JP7212509B2 (en) Cell enrichment method
JP2013034436A (en) Method for concentrating cell suspension
EP3271454A1 (en) System and method for providing isolated concentrated multipotent stromal cells for administration
JP6615577B2 (en) Method for producing cell concentrate using cell separation filter
JP5923292B2 (en) Bone marrow treatment method
JP2019092393A (en) Container for cell suspension preparation and preparation method of cell suspension

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6285649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250