JP6283464B2 - Eyeglass frame material - Google Patents

Eyeglass frame material Download PDF

Info

Publication number
JP6283464B2
JP6283464B2 JP2012196030A JP2012196030A JP6283464B2 JP 6283464 B2 JP6283464 B2 JP 6283464B2 JP 2012196030 A JP2012196030 A JP 2012196030A JP 2012196030 A JP2012196030 A JP 2012196030A JP 6283464 B2 JP6283464 B2 JP 6283464B2
Authority
JP
Japan
Prior art keywords
group
component
weight
resin
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196030A
Other languages
Japanese (ja)
Other versions
JP2014051571A (en
Inventor
勇一 松野
勇一 松野
光永 正樹
正樹 光永
雅嗣 古木
雅嗣 古木
遠藤 浩平
浩平 遠藤
竜司 野々川
竜司 野々川
聖太郎 田中
聖太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA FORESIGHT INC.
Teijin Ltd
Original Assignee
TANAKA FORESIGHT INC.
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA FORESIGHT INC., Teijin Ltd filed Critical TANAKA FORESIGHT INC.
Priority to JP2012196030A priority Critical patent/JP6283464B2/en
Publication of JP2014051571A publication Critical patent/JP2014051571A/en
Application granted granted Critical
Publication of JP6283464B2 publication Critical patent/JP6283464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、重量平均分子量が100,000以上のポリ乳酸樹脂に特定のエラストマーを添加することで、耐熱性、柔軟性に優れ、室温で曲げたときに白化が少なく、ブリードアウトのない肌に優しい眼鏡用フレーム部材を提供する技術に関する。   By adding a specific elastomer to a polylactic acid resin having a weight average molecular weight of 100,000 or more, the present invention is excellent in heat resistance and flexibility, has less whitening when bent at room temperature, and has no bleed out skin. The present invention relates to a technique for providing a gentle frame member for eyeglasses.

近年、石油資源の枯渇の懸念や、地球温暖化を引き起こす空気中の二酸化炭素の増加の問題から、原料を石油に依存せず、また燃焼させても二酸化炭素を増加させないカーボンニュートラルが成り立つバイオマス資源が大きく注目を集めるようになり、ポリマーの分野においても、バイオマス資源から生産されるバイオマスプラスチックが盛んに開発されている。特にポリ乳酸樹脂は、バイオマスプラスチックの中でも比較的高い耐熱性、機械特性を有するため、食器、包装材料、雑貨などに用途展開が広がりつつあるが、更に、工業材料としての可能性も検討されるようになってきた。
ところで、ポリ−L乳酸樹脂とポリ−D乳酸樹脂を混合したときに得られるステレオコンプレックスポリ乳酸樹脂は、ポリ−L乳酸樹脂やポリ−D乳酸樹脂などのホモ型のポリ乳酸樹脂に比べ、耐熱性、耐加水分解性、結晶化速度に優れる特徴を持つ。
In recent years, due to concerns about the depletion of petroleum resources and the problem of increased carbon dioxide in the air that causes global warming, biomass resources that do not depend on petroleum as a raw material and that do not increase carbon dioxide even when burned are formed. In the polymer field, biomass plastics produced from biomass resources are actively developed. In particular, polylactic acid resin has relatively high heat resistance and mechanical properties among biomass plastics, so its application is expanding to tableware, packaging materials, general merchandise, etc. It has become like this.
By the way, the stereocomplex polylactic acid resin obtained by mixing the poly-L lactic acid resin and the poly-D lactic acid resin is more resistant to heat than the homo-type polylactic acid resin such as poly-L lactic acid resin and poly-D lactic acid resin. It has excellent characteristics, hydrolysis resistance and crystallization speed.

特許文献1には、ポリ乳酸樹脂を用いた眼鏡成形体が示されており、ガラス転移温度以上に成形体を温めて変形させた後、冷却することで各人に併せた形状に変形させることが可能であることが示されている。しかしながら、ポリ乳酸樹脂をガラス転移温度以上に温めると結晶化が促進され、脆く、硬くなるため、割れなどの原因になりやすい。また、図1のウデ(2a)、耳モダン(2b)などは、使用環境下の中で徐々に分子鎖の緩和が起こり、元の形状に復元しようとする。このため、徐々に顔にフィットしなくなってしまうため、使用者本人がヒーターなどで温めることなく眼鏡用フレーム部材を曲げて顔にフィットするように調整することがある。このため、柔軟性と室温で曲げても白化しにくい性質が求められる。
ポリ乳酸樹脂に柔軟性を付与する方法として、エラストマー成分、可塑剤を添加する方法が一般的であるが、可塑剤を添加すると使用環境下で徐々に可塑剤成分がブリードアウトするため、かぶれなどの原因となるため、眼鏡用フレーム部材としては適さない。
Patent Document 1 shows a spectacle molded body using a polylactic acid resin. After the molded body is heated and deformed to a temperature higher than the glass transition temperature, it is cooled and deformed into a shape suitable for each person. Has been shown to be possible. However, when the polylactic acid resin is heated to a temperature higher than the glass transition temperature, crystallization is promoted and becomes brittle and hard, which is likely to cause cracks. In addition, the Ude (2a), the ear modern (2b), etc. in FIG. 1 gradually relieve molecular chains in the usage environment and attempt to restore the original shape. For this reason, since it gradually stops fitting to the face, the user himself / herself may adjust the eyeglass frame member to bend and fit the face without heating with a heater or the like. For this reason, flexibility and the property of being difficult to whiten even when bent at room temperature are required.
As a method of imparting flexibility to a polylactic acid resin, a method of adding an elastomer component and a plasticizer is common, but when a plasticizer is added, the plasticizer component gradually bleeds out in the environment of use, causing rashes, etc. Therefore, it is not suitable as a frame member for eyeglasses.

特許文献2には、生分解性ポリマーであるポリ乳酸樹脂とエラストマーと無機充填材からなる樹脂組成物が示され、柔軟性が付与されることが示されている。特許文献3には、ポリエステル系熱可塑性エラストマーを含むポリ乳酸組成物が記載され、衝撃強度が付与されることが示されている。しかしながら、両者とも眼鏡用フレーム部材に求められる室温での曲げ白化などの効果が示されておらず、エラストマーのガラス転移温度と曲げ白化に関する知見も何ら示されていない。   Patent Document 2 shows a resin composition composed of a polylactic acid resin, which is a biodegradable polymer, an elastomer, and an inorganic filler, and shows that flexibility is imparted. Patent Document 3 describes a polylactic acid composition containing a polyester-based thermoplastic elastomer and shows that impact strength is imparted. However, neither of them shows the effect of bending whitening at room temperature required for the spectacle frame member, nor any knowledge about the glass transition temperature of the elastomer and bending whitening.

特開平11−43537号公報Japanese Patent Laid-Open No. 11-43537 特開2008−63577号公報JP 2008-63577 A 特開2010−126643号公報JP 2010-126643 A

本発明の目的は、耐熱性、柔軟性に優れ、室温で曲げたときに白化が少なく、ブリードアウトのない肌に優しい眼鏡用フレーム部材を提供することにある。   An object of the present invention is to provide a frame member for eyeglasses that is excellent in heat resistance and flexibility, has little whitening when bent at room temperature, and is gentle to the skin without bleeding out.

本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、重量平均分子量が100,000以上のポリ乳酸樹脂に特定のエラストマーを添加した樹脂組成物を使用することで、耐熱性を維持したまま柔軟性に優れ、室温で曲げたときに白化が少なく、ブリードアウトのない肌に優しい眼鏡用フレーム部材を作成できることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have achieved heat resistance by using a resin composition obtained by adding a specific elastomer to a polylactic acid resin having a weight average molecular weight of 100,000 or more. The present inventors have found that a frame member for eyeglasses that is excellent in flexibility while being maintained, has little whitening when bent at room temperature, and is gentle to the skin without bleeding out, has been completed.

すなわち本発明は、重量平均分子量が100,000以上のポリ乳酸樹脂(A成分)100重量部に対し、(B)ガラス転移温度が−30℃以下であるエラストマー(B成分)を20〜90重量部含む樹脂組成物よりなり、
該樹脂組成物は、ISO527−1およびISO527−2に準拠した引張試験において、上降伏点が存在し、かつ下記式(2)で表される上降伏点の応力と破断点の応力の比率が90%以上である、眼鏡用フレーム部材である。
応力の比率=(破断応力/降伏応力)×100 (2)
さらに眼鏡用フレーム部材は、A成分100重量部に対し、カルボジイミド化合物(C成分)0.01〜10重量部を含むことが好ましい。またA成分100重量部に対し、ヒンダートフェノール系化合物、ホスファイト系化合物、ホスホナイト系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)0.01〜2重量部を含むことが好ましい。
That is, the present invention provides (B) an elastomer (B component) having a glass transition temperature of −30 ° C. or less to 20 to 90 weights per 100 parts by weight of a polylactic acid resin (A component) having a weight average molecular weight of 100,000 or more. Ri Na from the resin composition containing part,
In the tensile test based on ISO527-1 and ISO527-2, the resin composition has an upper yield point, and the ratio of the stress at the upper yield point and the stress at the fracture point represented by the following formula (2) is It is a frame member for spectacles that is 90% or more .
Stress ratio = (breaking stress / yield stress) × 100 (2)
Furthermore, it is preferable that the frame member for spectacles contains 0.01-10 weight part of carbodiimide compounds (C component) with respect to 100 weight part of A component. In addition, 0.01 to 2 parts by weight of at least one antioxidant (D component) selected from the group consisting of hindered phenol compounds, phosphite compounds, phosphonite compounds and thioether compounds with respect to 100 parts by weight of component A It is preferable to contain.

本発明の眼鏡用フレーム部材は、耐熱性、柔軟性に優れ、室温で曲げたときに白化が少なく、ブリードアウトのない肌に優しい。本発明の眼鏡用フレーム部材は、図1に示すウデ(2a)、耳モダン(2b)部材として特に好適に用いることが出来る。特定のエラストマーを50〜90重量部添加すると、眼鏡フレーム部材として使用した場合に、室温での曲げ白化を起こさなくなり、良好な品質が得られるため、更に好適である。   The spectacle frame member of the present invention is excellent in heat resistance and flexibility, is less whitened when bent at room temperature, and is gentle to the skin without bleeding out. The frame member for eyeglasses of the present invention can be particularly suitably used as the Ude (2a) and ear modern (2b) member shown in FIG. Addition of 50 to 90 parts by weight of a specific elastomer is more preferable because when used as a spectacle frame member, bending whitening at room temperature does not occur and good quality is obtained.

実施例で製造した眼鏡用フレーム部材の概略図である。It is the schematic of the frame member for spectacles manufactured in the Example.

以下、本発明の樹脂組成物における各成分、それらの配合割合、調製方法等について、順次具体的に説明する。   Hereinafter, each component in the resin composition of the present invention, a blending ratio thereof, a preparation method, and the like will be specifically described sequentially.

<A成分について>
本発明においてA成分として用いるポリ乳酸樹脂は、主としてL−乳酸単位からなるポリ−L乳酸樹脂、主としてD−乳酸単位からなるポリ−D乳酸樹脂、またはその混合物の何れを用いてもよい。
本発明のポリ−L乳酸樹脂(A−1成分)、ポリ−D乳酸樹脂(A−2成分)は、式(1)で表されるL−乳酸単位またはD−乳酸単位から実質的になる。
<About component A>
As the polylactic acid resin used as the component A in the present invention, any of a poly-L lactic acid resin mainly composed of L-lactic acid units, a poly-D lactic acid resin mainly composed of D-lactic acid units, or a mixture thereof may be used.
The poly-L lactic acid resin (component A-1) and the poly-D lactic acid resin (component A-2) of the present invention substantially comprise an L-lactic acid unit or a D-lactic acid unit represented by the formula (1). .

Figure 0006283464
Figure 0006283464

本発明で用いるポリ−L乳酸樹脂もしくはポリ−D乳酸樹脂の光学純度は、90〜100モル%であることが好ましい。光学純度がこれより低いと、ポリ乳酸樹脂の結晶性や融点が低下し、高い耐熱性が得られにくい。このため、ポリ−L乳酸樹脂もしくはポリ−D乳酸樹脂の融点は160℃以上である事が好ましく、更に170℃以上である事が好ましく、175℃以上である事が最も好ましい。かかる観点において、ポリマー原料の乳酸、ラクチドの光学純度は、好ましくは96〜100モル%、より好ましくは97.5〜100モル%、さらに好ましくは98.5〜100モル%、とりわけ好ましくは99〜100モル%の範囲が選択される。
A成分は、L−乳酸単位を90モル%以上含有するポリ−L乳酸樹脂(A−1成分)およびD−乳酸単位を90モル%以上含有するポリ−D乳酸樹脂(A−2成分)を含有することが好ましい。
The optical purity of the poly-L lactic acid resin or poly-D lactic acid resin used in the present invention is preferably 90 to 100 mol%. If the optical purity is lower than this, the crystallinity and melting point of the polylactic acid resin are lowered, and it is difficult to obtain high heat resistance. For this reason, the melting point of the poly-L lactic acid resin or the poly-D lactic acid resin is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and most preferably 175 ° C. or higher. In this respect, the optical purity of lactic acid and lactide of the polymer raw material is preferably 96 to 100 mol%, more preferably 97.5 to 100 mol%, still more preferably 98.5 to 100 mol%, and particularly preferably 99 to 100 mol%. A range of 100 mol% is selected.
The A component includes a poly-L lactic acid resin (A-1 component) containing 90 mol% or more of L-lactic acid units and a poly-D lactic acid resin (A-2 component) containing 90 mol% or more of D-lactic acid units. It is preferable to contain.

共重合単位としては、ポリ−L乳酸樹脂であればD−乳酸単位、ポリ−D乳酸樹脂であればL−乳酸単位が挙げられ、また、乳酸単位以外の単位も挙げられる。乳酸単位以外の共重合単位の共重合割合は、好ましくは10モル%以下、より好ましくは5モル%以下、さらに好ましくは2モル%以下、最も好ましくは1モル%以下である。
共重合単位としては、2個以上のエステル結合形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等由来の単位およびこれら種々の構成成分からなる各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等由来の単位が例示される。
Examples of the copolymer unit include a D-lactic acid unit in the case of a poly-L lactic acid resin, an L-lactic acid unit in the case of a poly-D lactic acid resin, and units other than the lactic acid unit. The copolymerization ratio of copolymer units other than lactic acid units is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 2 mol% or less, and most preferably 1 mol% or less.
As copolymerized units, units derived from dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, lactones and the like having functional groups capable of forming two or more ester bonds, various polyesters composed of these various constituents, various polyethers, Examples are derived from various polycarbonates and the like.

ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールとしてはエチレングリコール、1,3−プロパンジオール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリトリメチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール類あるいはビスフェノールにエチレンオキシドを付加させたものなどの芳香族多価アルコール等が挙げられる。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸等が挙げられる。ラクトンとしては、グリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。   Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid. Polyhydric alcohols include ethylene glycol, 1,3-propanediol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polytrimethylene Examples thereof include aliphatic polyhydric alcohols such as glycol and polypropylene glycol, and aromatic polyhydric alcohols obtained by adding ethylene oxide to bisphenol. Examples of the hydroxycarboxylic acid include glycolic acid and hydroxybutyric acid. Examples of the lactone include glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, and δ-valerolactone.

ポリL−乳酸樹脂およびポリD−乳酸樹脂は、従来公知の方法で製造することができ、例えば、L−ラクチドまたはD−ラクチドの溶融開環重合法、低分子量のポリ乳酸樹脂の固相重合法、さらに、乳酸を脱水縮合させる直接重合法などを例示することができる。重合反応は、従来公知の反応装置で実施可能であり、例えばヘリカルリボン翼等高粘度用攪拌翼を備えた縦型反応器あるいは横型反応器を単独、または並列にて使用することができる。また、回分式あるいは連続式あるいは半回分式のいずれでも良いし、これらを組み合わせてもよい。固相重合法では、プレポリマーは予め結晶化させることが、ペレットの融着防止、生産効率の面から好ましく、固定された縦型或いは横型反応容器、またはタンブラーやキルンの様に容器自身が回転する反応容器(ロータリーキルン等)中、プレポリマーのガラス転移温度以上融点未満の温度範囲の一定温度で、あるいは重合の進行に伴い次第に昇温させ重合を行う。生成する水を効率的に除去する目的で前記反応容器類の内部を減圧することや、加熱された不活性ガス気流を流通する方法も好適に併用される。ラクチドの溶融開環重合には、製造効率、ポリマー品質の点より、金属含有触媒を適用することが好ましく、触媒活性、副反応より、好ましくはスズを含有する触媒、なかでも好ましくはII価のスズ化合物、具体的にはジエトキシスズ、ジノニルオキシスズ、ミリスチン酸スズ、オクチル酸スズ、ステアリン酸スズ等、なかでもオクチル酸スズがFDAにおいて安全性が確認されたとりわけ好ましい剤として例示される。触媒の使用量はラクチド類1kgあたり好ましくは0.1×10−4〜50×10−4モルであり、さらに反応性、得られるポリラクチド類の色調、安定性を考慮すると1×10−4〜30×10−4モルがより好ましく、特に好ましくは2×10−4〜15×10−4モルである。重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸樹脂の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノールなどを好適に用いることができる。重合時使用された金属含有触媒は、使用に先立ち従来公知の失活剤で不活性化しておくのが好ましい。かかる失活剤としては、ポリエステル樹脂の重合触媒の失活剤として一般的に使われる失活剤であれば特に制限は無いが、下記一般式(2)で表されるホスホノ脂肪酸エステルが好ましい。 The poly L-lactic acid resin and the poly D-lactic acid resin can be produced by a conventionally known method. For example, L-lactide or D-lactide melt ring-opening polymerization method, low molecular weight polylactic acid resin solid phase weight Examples thereof include a combination method and a direct polymerization method in which lactic acid is subjected to dehydration condensation. The polymerization reaction can be carried out in a conventionally known reaction apparatus. For example, a vertical reactor or a horizontal reactor equipped with a high-viscosity stirring blade such as a helical ribbon blade can be used alone or in parallel. Moreover, any of a batch type, a continuous type, a semibatch type may be sufficient, and these may be combined. In the solid-state polymerization method, it is preferable to crystallize the prepolymer in advance from the viewpoint of preventing fusion of pellets and production efficiency, and the container itself rotates like a fixed vertical or horizontal reaction vessel, or a tumbler or kiln. In a reaction vessel (such as a rotary kiln), the polymerization is carried out at a constant temperature in the temperature range from the glass transition temperature of the prepolymer to less than the melting point, or gradually with the progress of the polymerization. For the purpose of efficiently removing generated water, a method of reducing the pressure inside the reaction vessels or circulating a heated inert gas stream is also preferably used. For melt ring-opening polymerization of lactide, it is preferable to apply a metal-containing catalyst from the viewpoint of production efficiency and polymer quality. From the viewpoint of catalytic activity and side reaction, a catalyst containing tin, preferably a II-valent catalyst, is preferable. Tin compounds, specifically diethoxytin, dinonyloxytin, tin myristate, tin octylate, tin stearate and the like, among others, tin octylate is exemplified as a particularly preferable agent whose safety has been confirmed by FDA. The amount of the catalyst used is preferably 0.1 × 10 −4 to 50 × 10 −4 mol per kg of lactide, and further considering the reactivity, color tone and stability of the resulting polylactide, 1 × 10 −4 to 30 × 10 −4 mol is more preferable, and 2 × 10 −4 to 15 × 10 −4 mol is particularly preferable. Alcohol may be used as a polymerization initiator. Such alcohol is preferably non-volatile without inhibiting the polymerization of the polylactic acid resin. For example, decanol, dodecanol, tetradecanol, hexadecanol, octadecanol and the like can be suitably used. The metal-containing catalyst used at the time of polymerization is preferably deactivated with a conventionally known deactivator prior to use. The deactivator is not particularly limited as long as it is a deactivator generally used as a deactivator for a polymerization catalyst of a polyester resin, but a phosphono fatty acid ester represented by the following general formula (2) is preferable.

Figure 0006283464
Figure 0006283464

式中R11〜R13は、それぞれ独立に、炭素数1〜20のアルキル基または炭素数6〜12のアリール基である。アリキル基として、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられる。アリール基として、フェニル基、ナフタレン−イル基が挙げられる。R11〜R13は、これらが全て同一であっても、異なるものがあっても構わない。またn31は1〜3の整数である。 In the formula, R 11 to R 13 are each independently an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms. Examples of the alkenyl group include an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the aryl group include a phenyl group and a naphthalenyl group. R 11 to R 13 may be the same or different from each other. N 31 is an integer of 1 to 3.

式(2)で表される化合物として、ジエチルホスホノ酢酸エチル、ジ−n−プロピルホスホノ酢酸エチル、ジ−n−ブチルホスホノ酢酸エチル、ジ−n−ヘキシルホスホノ酢酸エチル、ジ−n−オクチルホスホノ酢酸エチル、ジ−n−デシルホスホノ酢酸エチル、ジ−n−ドデシルホスホノ酢酸エチル、ジ−n−オクタデシルホスホノ酢酸エチル、ジフェニルホスホノ酢酸エチル、ジエチルホスホノ酢酸デシル、ジエチルホスホノ酢酸ドデシル、ジエチルホスホノ酢酸オクタデシル、ジエチルホスホノプロピオン酸エチル、ジ−n−プロピルホスホノプロピオン酸エチル、ジ−n−ブチルホスホノプロピオン酸エチル、ジ−n−ヘキシルホスホノプロピオン酸エチル、ジ−n−オクチルホスホノプロピオン酸エチル、ジ−n−デシルホスホノプロピオン酸エチル、ジ−n−ドデシルホスホノプロピオン酸エチル、ジ−n−オクタデシルホスホノプロピオン酸エチル、ジフェニルホスホノプロピオン酸エチル、ジエチルホスホノプロピオン酸デシル、ジエチルホスホノプロピオン酸ドデシル、ジエチルホスホノプロピオン酸オクタデシル、ジエチルホスホノ酪酸エチル、ジ−n−プロピルホスホノ酪酸エチル、ジ−n−ブチルホスホノ酪酸エチル、ジ−n−ヘキシルホスホノ酪酸エチル、ジ−n−オクチルホスホノ酪酸エチル、ジ−n−デシルホスホノ酪酸エチル、ジ−n−ドデシルホスホノ酪酸エチル、ジ−n−オクタデシルホスホノ酪酸エチル、ジフェニルホスホノ酪酸エチル、ジエチルホスホノ酪酸デシル、ジエチルホスホノ酪酸ドデシル、ジエチルホスホノ酪酸オクタデシルが挙げられる。効能や取扱いの容易さを考慮すると、ジエチルホスホノ酢酸エチル、ジ−n−プロピルホスホノ酢酸エチル、ジ−n−ブチルホスホノ酢酸エチル、ジ−n−ヘキシルホスホノ酢酸エチル、ジエチルホスホノ酢酸デシル、ジエチルホスホノ酢酸オクタデシルが好ましい。   As the compound represented by the formula (2), ethyl diethylphosphonoacetate, ethyl di-n-propylphosphonoacetate, ethyl di-n-butylphosphonoacetate, ethyl di-n-hexylphosphonoacetate, di-n-octyl Ethyl phosphonoacetate, ethyl di-n-decylphosphonoacetate, ethyl di-n-dodecylphosphonoacetate, ethyl di-n-octadecylphosphonoacetate, ethyl diphenylphosphonoacetate, decyl diethylphosphonoacetate, dodecyl diethylphosphonoacetate , Octadecyl diethylphosphonoacetate, ethyl diethylphosphonopropionate, ethyl di-n-propylphosphonopropionate, ethyl di-n-butylphosphonopropionate, ethyl di-n-hexylphosphonopropionate, di-n -Ethyl octylphosphonopropionate, di-n-decylphosphono Ethyl lopionate, ethyl di-n-dodecylphosphonopropionate, ethyl di-n-octadecylphosphonopropionate, ethyl diphenylphosphonopropionate, decyl diethylphosphonopropionate, dodecyl diethylphosphonopropionate, diethylphosphono Octadecyl propionate, ethyl diethylphosphonobutyrate, ethyl di-n-propylphosphonobutyrate, ethyl di-n-butylphosphonobutyrate, ethyl di-n-hexylphosphonobutyrate, ethyl di-n-octylphosphonobutyrate, di- Ethyl n-decylphosphonobutyrate, ethyl di-n-dodecylphosphonobutyrate, ethyl di-n-octadecylphosphonobutyrate, ethyl diphenylphosphonobutyrate, decyl diethylphosphonobutyrate, dodecyl diethylphosphonobutyrate, octadecyl diethylphosphonobutyrate And the like. In view of efficacy and ease of handling, ethyl diethylphosphonoacetate, ethyl di-n-propylphosphonoacetate, ethyl di-n-butylphosphonoacetate, ethyl di-n-hexylphosphonoacetate, decyl diethylphosphonoacetate, Diethylphosphonoacetic acid octadecyl is preferred.

式(2)において、R11〜R13の炭素数が20以下であると、その融点がポリ乳酸樹脂や組成物の製造温度よりも低くなるため十分に融解混合し、効率的に金属重合触媒を補足することができる。またホスホノ脂肪酸エステルはホスホン酸ジエステル部位とカルボン酸エステル部位の間に脂肪族炭化水素基を有する。n31が1〜3の整数であれば、ポリ乳酸樹脂中の金属重合触媒を効率的に補足することができる。
ホスホノ脂肪酸エステルの含有量は、ポリ乳酸樹脂100重量部に対して0.001〜0.5重量部が好ましく、より好ましくは0.02〜0.2重量部である。ホスホノ脂肪酸エステルの含有量が、少なすぎると残留する金属重合触媒の失活効率が極めて悪く、十分な効果が得られない。また、多すぎると成形加工時に使用する金型の汚染が著しくなる。前記重合失活剤は、重合終了時に添加するのが好ましいが、必要に応じて押出、成形の各プロセスにおいて任意に添加する事が出来る。
In the formula (2), when the carbon number of R 11 to R 13 is 20 or less, the melting point thereof is lower than the production temperature of the polylactic acid resin or the composition, so that the mixture is sufficiently melt-mixed and efficiently the metal polymerization catalyst. Can be supplemented. The phosphono fatty acid ester has an aliphatic hydrocarbon group between the phosphonic acid diester moiety and the carboxylic acid ester moiety. If n 31 is an integer of 1 to 3, it is possible to effectively supplement the metal polymerization catalyst in the polylactic acid resin.
The content of the phosphono fatty acid ester is preferably 0.001 to 0.5 parts by weight, more preferably 0.02 to 0.2 parts by weight with respect to 100 parts by weight of the polylactic acid resin. If the content of the phosphono fatty acid ester is too small, the deactivation efficiency of the remaining metal polymerization catalyst is extremely poor, and a sufficient effect cannot be obtained. On the other hand, when the amount is too large, contamination of the mold used at the time of molding processing becomes significant. The polymerization deactivator is preferably added at the end of the polymerization, but can be optionally added in each process of extrusion and molding as necessary.

ポリL−乳酸樹脂(A−1成分)とポリD−乳酸樹脂(A−2成分)の混合物を用いる場合、その重量比(A−1成分/A−2成分)は10:90〜90:10の範囲で含有されることが好ましい。A−1成分/A−2成分は、好ましくは40:60〜60:40、さらに好ましくは45:55〜55:45の範囲で含有されることが好ましい。
すなわちA成分は、L−乳酸単位を90モル%以上含有するポリ−L乳酸樹脂(A−1成分)およびD−乳酸単位を90モル%以上含有するポリ−D乳酸樹脂(A−2成分)を含有し、A−1成分とA−2成分との重量比が10:90〜90:10の範囲であることが好ましい。
When a mixture of poly L-lactic acid resin (component A-1) and poly D-lactic acid resin (component A-2) is used, the weight ratio (component A-1 / component A-2) is 10:90 to 90: It is preferable to contain in 10 range. The A-1 component / A-2 component is preferably contained in the range of 40:60 to 60:40, more preferably 45:55 to 55:45.
That is, the A component is a poly-L lactic acid resin (A-1 component) containing 90 mol% or more of L-lactic acid units and a poly-D lactic acid resin (A-2 component) containing 90 mol% or more of D-lactic acid units. It is preferable that the weight ratio of A-1 component and A-2 component is the range of 10: 90-90: 10.

更に、ポリL−乳酸樹脂(A−1成分)とポリD−乳酸樹脂(A−2成分)の混合物に対し、式(3)および/または(4)で表されるリン酸エステル金属塩をポリL−乳酸樹脂(A−1成分)とポリD−乳酸樹脂(A−2成分)との合計100重量部あたり好ましくは0.01〜2.0重量部の範囲で含むことにより、高度にステレオコンプレックス結晶が形成されたポリ乳酸樹脂を得る事が出来るため好ましい。リン酸エステル金属塩が0.01重量部より少ないと、ステレオコンプレックス結晶の形成、結晶性の向上に効果が認められないことがあり、また2.0重量部より過剰に適用すると、着色などポリ乳酸樹脂成分の分解、異物生成が引き起こされることがある。かかる観点より、リン酸エステル金属塩の適用量は、より好ましくは0.02〜1.0重量部、さらに好ましくは0.03〜1.0重量部に範囲が選択される。   Furthermore, a phosphate ester metal salt represented by the formula (3) and / or (4) is added to a mixture of the poly L-lactic acid resin (A-1 component) and the poly D-lactic acid resin (A-2 component). By containing in a range of preferably 0.01 to 2.0 parts by weight per 100 parts by weight in total of the poly L-lactic acid resin (component A-1) and the poly D-lactic acid resin (component A-2), This is preferable because a polylactic acid resin in which stereocomplex crystals are formed can be obtained. If the phosphate metal salt is less than 0.01 parts by weight, there may be no effect on the formation of stereocomplex crystals and improvement in crystallinity. Decomposition of lactic acid resin component and generation of foreign matter may be caused. From this viewpoint, the application amount of the phosphate ester metal salt is more preferably selected in the range of 0.02 to 1.0 part by weight, and more preferably 0.03 to 1.0 part by weight.

Figure 0006283464
Figure 0006283464

(式中R14は水素原子、または炭素原子数1〜4のアルキル基を、R15、R16、R17はそれぞれ独立に水素原子、または炭素原子数1〜12のアルキル基を、Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子を表し、p32は1または2を、q32はMがアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0を、アルミニウム原子のときは1または2を表す。) (Wherein R 14 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, the R 15, R 16, R 17 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms,,, M 1 Represents an alkali metal atom, alkaline earth metal atom, zinc atom or aluminum atom, p 32 is 1 or 2, q 32 is 0 when M 1 is an alkali metal atom, alkaline earth metal atom or zinc atom. In the case of an aluminum atom, 1 or 2 is represented.)

Figure 0006283464
Figure 0006283464

(式中R18、R19はそれぞれ独立に水素原子、または炭素原子数1〜12のアルキル基を、Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子を表し、p33は1または2を、q33はMがアルカリ金属原子、アルカリ土類金属原子または亜鉛原子のときは0を、アルミニウム原子のときは1または2を表す。)
こうして作られたポリ乳酸樹脂は、高度にステレオコンプレックス結晶が形成されたステレオコンプレックスポリ乳酸樹脂となり、示差走査熱量計(DSC)測定の昇温過程におけるポリ乳酸樹脂結晶由来の融解エンタルピーを用いて下記式(1)で表されるステレオコンプレックス結晶化度が80%以上であることが好ましい。
ステレオコンプレックス結晶化度=[△Hms/(△Hms+△Hmh)]×100 (1)
[但し、式(1)中、△Hmhと△Hmsは、それぞれ示差走査熱量計(DSC)の昇温過程において、190℃未満に現れる結晶融点の融解エンタルピー(△Hmh)、および190℃以上250℃未満に現れる結晶融点の融解エンタルピー(△Hms)である。]
なお、上記△Hmhと△Hmsは樹脂組成物を示差走査熱量計(DSC)を用いて、窒素雰囲気下、昇温速度20℃/分で測定することにより求めた。
(Wherein R 18, R 19 each independently represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms,, M 2 represents an alkali metal atom, an alkaline earth metal atom, zinc atom or aluminum atom, p 33 Represents 1 or 2, and q 33 represents 0 when M 2 is an alkali metal atom, alkaline earth metal atom or zinc atom, and 1 or 2 when M 2 is an aluminum atom.
The polylactic acid resin thus produced becomes a stereocomplex polylactic acid resin in which a stereocomplex crystal is highly formed. The polylactic acid resin is formed as follows using the melting enthalpy derived from the polylactic acid resin crystal in the temperature rising process of differential scanning calorimetry (DSC) measurement. The stereocomplex crystallinity represented by formula (1) is preferably 80% or more.
Stereo complex crystallinity = [ΔHms / (ΔHms + ΔHmh)] × 100 (1)
[In the formula (1), ΔHmh and ΔHms are the melting enthalpy (ΔHmh) of the melting point of the crystal, which appears below 190 ° C. in the temperature rising process of the differential scanning calorimeter (DSC), respectively, and 190 ° C. or more and 250 It is the melting enthalpy (ΔHms) of the crystalline melting point that appears below ° C. ]
The ΔHmh and ΔHms were determined by measuring the resin composition using a differential scanning calorimeter (DSC) in a nitrogen atmosphere at a heating rate of 20 ° C./min.

ステレオコンプレックス結晶化度が高いほど成形性、耐熱性が高くなり、ステレオコンプレックス結晶化度は、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。ステレオコンプレックス結晶化度が80%より低いと、ポリ−L乳酸樹脂やポリ−D乳酸樹脂に由来するホモポリ乳酸結晶の特徴が表れてしまい、耐熱性が不十分となる。
ステレオコンプレックスポリ乳酸樹脂の融点は、好ましくは200℃以上、より好ましくは205℃以上、更に好ましくは210℃以上である。ステレオコンプレックスポリ乳酸樹脂の融点が200℃より低いと、その結晶性や融点の低さから耐熱性は不十分である。融解エンタルピーは、20J/g以上が好ましく、より好ましくは30J/g以上である。融解エンタルピーが20J/gより低いと結晶性が低く、耐熱性は不十分である。
具体的には、ステレオコンプレックス結晶化度が80%以上であり、融点が200℃以上であり、融解エンタルピーが20J/g以上であることが好ましい。
The higher the stereocomplex crystallinity, the higher the moldability and heat resistance. The stereocomplex crystallinity is preferably 80% or higher, more preferably 85% or higher, and still more preferably 90% or higher. When the stereocomplex crystallinity is lower than 80%, the characteristics of the homopolylactic acid crystal derived from the poly-L lactic acid resin or the poly-D lactic acid resin appear, and the heat resistance becomes insufficient.
The melting point of the stereocomplex polylactic acid resin is preferably 200 ° C. or higher, more preferably 205 ° C. or higher, and still more preferably 210 ° C. or higher. When the melting point of the stereocomplex polylactic acid resin is lower than 200 ° C., the heat resistance is insufficient due to its crystallinity and low melting point. The melting enthalpy is preferably 20 J / g or more, more preferably 30 J / g or more. When the melting enthalpy is lower than 20 J / g, the crystallinity is low and the heat resistance is insufficient.
Specifically, it is preferable that the stereocomplex crystallinity is 80% or more, the melting point is 200 ° C. or more, and the melting enthalpy is 20 J / g or more.

本発明で用いるポリ乳酸樹脂の重量平均分子量は、室温での曲げ白化を少なくするために100,000以上であることが必要である。また、成形性、機械物性の観点から100,000〜250,000がより好ましく、110,000〜200,000がさらに好ましい。重量平均分子量が100,000未満では、ポリ乳酸樹脂が急激に脆化するため、内部に微細なクラックが発生してしまい、室温で成形品を曲げたときに白化しやすくなるだけでなく、成形品自体が割れてしまう原因になる。また、重量平均分子量が250,000を超えると、射出成形時の流動性低下、結晶化速度の低下が大きくなり、成形性が悪くなる場合がある。   The weight average molecular weight of the polylactic acid resin used in the present invention needs to be 100,000 or more in order to reduce bending whitening at room temperature. Moreover, from a viewpoint of a moldability and mechanical property, 100,000-250,000 are more preferable, and 110,000-200,000 are further more preferable. When the weight average molecular weight is less than 100,000, the polylactic acid resin rapidly becomes brittle, so that fine cracks are generated inside, and it is not only easy to whiten when the molded product is bent at room temperature, but also molded. This may cause the product itself to break. On the other hand, if the weight average molecular weight exceeds 250,000, the flowability during injection molding and the crystallization speed are greatly reduced, and the moldability may deteriorate.

<B成分について>
本発明のB成分として用いられるエラストマーはガラス転移温度が−30℃以下のエラストマーである。ガラス転移温度は−120℃〜−35℃が好ましく、−100℃〜−40℃がより好ましい。エラストマーなどのガラス転移温度の低い成分が含まれる場合、分子鎖の絡み合いが増えるため、成形品が引き伸ばされても分子鎖の絡み合いが解されることに力が働くため、成形品内部の破壊が起こされにくくなり、白化を起こしにくくなる。ガラス転移温度が−30℃より高い場合、エラストマーとして絡み合いが少なく、白化を抑えるのに不十分であり、眼鏡用フレーム部材として適さない。
ガラス転移温度が−30℃の以下のエラストマーとしては、ポリエステルエラストマー、ポリエチレンエラストマー、ポリアミドエラストマーなどが例示される。
<About B component>
The elastomer used as the component B of the present invention is an elastomer having a glass transition temperature of −30 ° C. or lower. The glass transition temperature is preferably -120 ° C to -35 ° C, more preferably -100 ° C to -40 ° C. When a component with a low glass transition temperature such as an elastomer is included, the entanglement of molecular chains increases. It is less likely to be awakened, and less likely to be whitened. When the glass transition temperature is higher than −30 ° C., there is little entanglement as an elastomer, it is insufficient to suppress whitening, and it is not suitable as a frame member for glasses.
Examples of the elastomer having a glass transition temperature of −30 ° C. or less include polyester elastomer, polyethylene elastomer, polyamide elastomer and the like.

ポリエステルエラストマーは、1,4−ブタンジオールとコハク酸の共重合体であるポリブチレンサクシネート(ガラス転移温度−32℃)、1,4−ブタンジオールとコハク酸とアジピン酸との共重合体であるポリブチレンサクシネートアジペート(ガラス転移温度−45℃)、ポリカプロラクトン(ガラス転移温度−60℃)などの脂肪族ポリエステルのエラストマー、ポリブチレンテレフタレートを主骨格とし、グリコール成分を共重合させた芳香族ポリエステルエラストマーなどが挙げられる。具体的には、東レ・デュポン(株)よりハイトレルの商品名で市販されているハイトレル4057(ガラス転移温度−30℃)、ハイトレルSC753(ガラス転移温度−40℃)などが例示される。ポリエステルエラストマーとしては、耐加水分解性の観点から芳香族ポリエステルエラストマーを使用するのが好ましい。
ポリエチレンエラストマーとしては、相溶性の観点から共重合されている方が好ましい。
Polyester elastomer is a copolymer of 1,4-butanediol and succinic acid polybutylene succinate (glass transition temperature -32 ° C.), 1,4-butanediol, succinic acid and adipic acid. A polybutylene succinate adipate (glass transition temperature -45 ° C), aliphatic polyester elastomers such as polycaprolactone (glass transition temperature -60 ° C), aromatics with polybutylene terephthalate as the main skeleton and copolymerized glycol components Examples include polyester elastomers. Specifically, Hytrel 4057 (glass transition temperature of −30 ° C.) and Hytrel SC753 (glass transition temperature of −40 ° C.) marketed by Toray DuPont Co., Ltd. under the trade name of Hytrel are exemplified. As the polyester elastomer, an aromatic polyester elastomer is preferably used from the viewpoint of hydrolysis resistance.
The polyethylene elastomer is preferably copolymerized from the viewpoint of compatibility.

例えば、スチレン成分を含むエラストマーとして、スチレン−エチレン−ブタジエン−スチレン共重合エラストマー、スチレン−エチレン−プロピレン−スチレン共重合エラストマー、スチレン−エチレン−プロピレン共重合エラストマーなどが挙げられ、アクリル成分を含むエラストマーとして、エチレン−グリシジルメタクリレート共重合エラストマー、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合エラストマーなどが挙げられる。スチレン成分を含むエラストマーとしては、クラレ(株)よりSEPTONの商品名で市販されているSEPTON8006(ガラス転移温度−55℃)などが例示され、アクリル成分を含むエラストマーとしては、住友化学(株)よりボンドファーストの商品名で市販されているボンドファースト7L(ガラス転移温度−33℃)、ボンドファースト7M(ガラス転移温度−33℃)などが例示される。   Examples of the elastomer containing a styrene component include a styrene-ethylene-butadiene-styrene copolymer elastomer, a styrene-ethylene-propylene-styrene copolymer elastomer, and a styrene-ethylene-propylene copolymer elastomer. Ethylene-glycidyl methacrylate copolymer elastomer, ethylene-glycidyl methacrylate-methyl acrylate copolymer elastomer, and the like. Examples of the elastomer containing a styrene component include SEPTON 8006 (glass transition temperature of −55 ° C.) marketed by Kuraray Co., Ltd. under the trade name SEPTON, and the elastomer containing an acrylic component is from Sumitomo Chemical Co., Ltd. Examples thereof include Bond First 7L (glass transition temperature-33 ° C.) and Bond First 7M (glass transition temperature-33 ° C.), which are commercially available under the trade name of Bond First.

ポリアミドエラストマーは、ポリアミドオリゴマーをハードセグメントとし、ポリエステルまたはポリエーテルエステルをソフトセグメントとするエラストマーであり、例えばT&K TOKA(株)より市販されているTPAE−32(ガラス転移温度−40℃)などが例示される。
上記エラストマーは単独でも、複数種組み合わせて使用することが出来る。特に、エポキシ成分を含有するエラストマーであるエチレン−グリシジルメタクリレート共重合エラストマー、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合エラストマーとエポキシ成分を含まないエラストマー成分を組み合わせて使用すると、より樹脂成分の絡み合いが増えて、室温での曲げ白化を少なくすることができ、さらに樹脂成分マトリックス中の非晶部分が絡み合いにより強化され、耐熱性の向上が見られるため好ましい。エポキシ成分を含有するエラストマーとエポキシ成分を含まないエラストマーの比率は、10:90〜50:50が好ましく、20:80〜50:50がより好ましい。
The polyamide elastomer is an elastomer having a polyamide oligomer as a hard segment and a polyester or polyether ester as a soft segment, such as TPAE-32 (glass transition temperature -40 ° C.) commercially available from T & K TOKA Co., Ltd. Is done.
The above elastomers can be used alone or in combination. In particular, when an ethylene-glycidyl methacrylate copolymer elastomer or an ethylene-glycidyl methacrylate-methyl acrylate copolymer elastomer, which is an elastomer containing an epoxy component, is used in combination with an elastomer component that does not contain an epoxy component, the entanglement of the resin component increases. Thus, bending whitening at room temperature can be reduced, and the amorphous part in the resin component matrix is strengthened by entanglement, and heat resistance is improved, which is preferable. The ratio of the elastomer containing the epoxy component and the elastomer not containing the epoxy component is preferably 10:90 to 50:50, more preferably 20:80 to 50:50.

B成分の含有量は、A成分100重量部に対し、20〜90重量部であり、30〜90重量部が好ましく、50〜80重量部がより好ましい。エラストマーの含有量が20重量部よりも少ないと柔軟性が足りずに、室温で曲げたときに白化を起こしやすくなり、90重量部よりも多いと顕著な耐熱性の低下が見られ、夏場での自動車内での使用を考慮すると眼鏡用フレーム部材としては適さない。
室温での曲げ白化の起こしやすさは、室温での引張試験あるいは曲げ試験のS−Sカーブの上降伏点の応力と破断点の応力の比率から判定することが出来る。即ち、S−Sカーブの上降伏点の山が不明瞭になりフラットな状態に近づくほど、エラストマーとしての性質が強まった証拠となり、室温での曲げ白化を起こしにくいことになる。すなわち、ISO527−1およびISO527−2に準拠した引張試験において、上降伏点が存在し、かつ下記式(2)で表される上降伏点の応力と破断点の応力の比率が90%以上であることが好ましい。
応力の比率=(破断応力/降伏応力)×100 (2)
応力の比率は、95%以上であることがより好ましく、100%以上が最も好ましい。応力の比率が90%未満の場合、成形品中の分子鎖の絡み合いが不十分であり、室温での曲げ白化を起こしやすくなる場合があるため好ましくない。
Content of B component is 20-90 weight part with respect to 100 weight part of A component, 30-90 weight part is preferable and 50-80 weight part is more preferable. If the elastomer content is less than 20 parts by weight, the flexibility is insufficient and whitening tends to occur when bent at room temperature. If the content is more than 90 parts by weight, a significant decrease in heat resistance is observed. Considering the use in a car, it is not suitable as a frame member for glasses.
The ease of bending whitening at room temperature can be determined from the ratio of the stress at the upper yield point and the stress at the breaking point of the SS curve of the tensile test or bending test at room temperature. That is, as the peak of the upper yield point of the SS curve becomes unclear and approaches a flat state, it becomes evidence that the property as an elastomer has been strengthened, and bending whitening at room temperature hardly occurs. That is, in the tensile test based on ISO527-1 and ISO527-2, there is an upper yield point, and the ratio of the stress at the upper yield point and the stress at the break point represented by the following formula (2) is 90% or more. Preferably there is.
Stress ratio = (breaking stress / yield stress) × 100 (2)
The stress ratio is more preferably 95% or more, and most preferably 100% or more. When the stress ratio is less than 90%, the molecular chains in the molded product are not sufficiently entangled, and bending whitening at room temperature may occur easily.

<C成分について>
樹脂組成物は、A成分100重量部に対し、カルボジイミド化合物(C成分)0.01〜10重量部を含むことが好ましい。本発明においてC成分はカルボジイミド化合物であり、環状構造を持った環状カルボジイミド化合物、環状構造を持たない線状カルボジイミドのいずれも用いることが出来る。
<About component C>
It is preferable that a resin composition contains 0.01-10 weight part of carbodiimide compounds (C component) with respect to 100 weight part of A components. In the present invention, the component C is a carbodiimide compound, and any of a cyclic carbodiimide compound having a cyclic structure and a linear carbodiimide having no cyclic structure can be used.

<環状カルボジイミド化合物>
本発明に用いる環状カルボジイミドの環状構造は、カルボジイミド基(−N=C=N−)を1個有しその第一窒素と第二窒素とが結合基により結合されている。一つの環状構造中には、1個のカルボジイミド基のみを有する。環状構造中の原子数は好ましくは8〜50であり、より好ましくは10〜30、さらに好ましくは10〜20、最も好ましいのは10〜15である。
ここで、環状構造中の原子数とは、環構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合があるためである。また反応性の観点よりは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇することがある。かかる観点より環状構造中の原子数は好ましくは10〜30、より好ましくは10〜20、最も好ましくは10〜15の範囲が選択される。
<Cyclic carbodiimide compound>
The cyclic structure of the cyclic carbodiimide used in the present invention has one carbodiimide group (—N═C═N—), and the first nitrogen and the second nitrogen are bonded by a bonding group. One cyclic structure has only one carbodiimide group. The number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and most preferably 10 to 15.
Here, the number of atoms in the ring structure means the number of atoms that directly constitute the ring structure, and is, for example, 8 for an 8-membered ring and 50 for a 50-membered ring. This is because if the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use. From the standpoint of reactivity, there is no particular limitation on the upper limit of the number of ring members, but cyclic carbodiimide compounds having more than 50 atoms are difficult to synthesize, and the cost may increase significantly. From this viewpoint, the number of atoms in the cyclic structure is preferably 10-30, more preferably 10-20, and most preferably 10-15.

<環状カルボジイミド(1)>
環状構造は、下記式(5)で表される構造である。
<Cyclic carbodiimide (1)>
The cyclic structure is a structure represented by the following formula (5).

Figure 0006283464
Figure 0006283464

式中、Qは、下記式(5−1)、(5−2)または(5−3)で表される2〜4価の結合基である。   In the formula, Q is a divalent to tetravalent linking group represented by the following formula (5-1), (5-2), or (5-3).

Figure 0006283464
Figure 0006283464

式中、ArおよびArは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数5〜15の芳香族基である。 In the formula, Ar 1 and Ar 2 are each independently a 2- to 4-valent aromatic group having 5 to 15 carbon atoms which may contain a hetero atom and a substituent.

芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基(2価)として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
およびRは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、およびこれらの組み合わせ、またはこれら脂肪族基、脂環族基と2〜4価の炭素数5〜15の芳香族基の組み合わせである。
As an aromatic group, each of which contains a hetero atom and may have a heterocyclic structure, an arylene group having 5 to 15 carbon atoms, an arenetriyl group having 5 to 15 carbon atoms, an arenetetra having 5 to 15 carbon atoms Yl group. Examples of the arylene group (divalent) include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
R 1 and R 2 each independently contain a heteroatom and a substituent, each having 2 to 4 valent aliphatic groups having 1 to 20 carbon atoms and 2 to 4 valent fatty acids having 3 to 20 carbon atoms A cyclic group, and a combination thereof, or a combination of the aliphatic group, the alicyclic group, and a divalent to tetravalent aromatic group having 5 to 15 carbon atoms.

脂肪族基として、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基などが挙げられる。アルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられる。アルカントリイル基として、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられる。これらの脂肪族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group. As the alkanetriyl group, methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group, Examples include a hexadecantriyl group. As alkanetetrayl group, methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group, pentanetetrayl group, hexanetetrayl group, heptanetetrayl group, octanetetrayl group, nonanetetrayl group Decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like. These aliphatic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.

脂環族基として、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。シクロアルカントリイル基として、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基などが挙げられる。シクロアルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これらの脂環族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group. As cycloalkanetriyl group, cyclopropanetriyl group, cyclobutanetriyl group, cyclopentanetriyl group, cyclohexanetriyl group, cycloheptanetriyl group, cyclooctanetriyl group, cyclononanetriyl group, cyclodecanetriyl group Group, cyclododecane triyl group, cyclohexadecane triyl group and the like. As cycloalkanetetrayl group, cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group Yl group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like. These alicyclic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.

芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これら芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
およびXは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。
As an aromatic group, each of which contains a hetero atom and may have a heterocyclic structure, an arylene group having 5 to 15 carbon atoms, an arenetriyl group having 5 to 15 carbon atoms, an arenetetra having 5 to 15 carbon atoms Yl group. Examples of the arylene group include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
X 1 and X 2 each independently contain a heteroatom and a substituent, each having a 2 to 4 valent aliphatic group having 1 to 20 carbon atoms and a 2 to 4 valent fatty acid having 3 to 20 carbon atoms It is a cyclic group, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.

脂肪族基として、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基などが挙げられる。アルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられる。アルカントリイル基として、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられる。これらの脂肪族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group. As the alkanetriyl group, methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group, Examples include a hexadecantriyl group. As alkanetetrayl group, methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group, pentanetetrayl group, hexanetetrayl group, heptanetetrayl group, octanetetrayl group, nonanetetrayl group Decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like. These aliphatic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.

脂環族基として、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。アルカントリイル基として、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これらの脂環族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group. As the alkanetriyl group, cyclopropanetriyl group, cyclobutanetriyl group, cyclopentanetriyl group, cyclohexanetriyl group, cycloheptanetriyl group, cyclooctanetriyl group, cyclononanetriyl group, cyclodecanetriyl group , Cyclododecanetriyl group, cyclohexadecanetriyl group and the like. As the alkanetetrayl group, cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group Group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like. These alicyclic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.

芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   As an aromatic group, each of which contains a hetero atom and may have a heterocyclic structure, an arylene group having 5 to 15 carbon atoms, an arenetriyl group having 5 to 15 carbon atoms, an arenetetra having 5 to 15 carbon atoms Yl group. Examples of the arylene group include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.

式(5−1)、(5−2)においてs、kは0〜10の整数、好ましくは0〜3の整数、より好ましくは0〜1の整数である。sおよびkが10を超えると、環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生するためである。かかる観点より整数は好ましくは0〜3の範囲が選択される。なお、sまたはkが2以上であるとき、繰り返し単位としてのX、あるいはXが、他のX、あるいはXと異なっていてもよい。
は、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。
In formulas (5-1) and (5-2), s and k are integers of 0 to 10, preferably 0 to 3, more preferably 0 to 1. This is because if s and k exceed 10, the cyclic carbodiimide compound is difficult to synthesize, and the cost may increase significantly. From this viewpoint, the integer is preferably selected in the range of 0 to 3. When s or k is 2 or more, X 1 or X 2 as a repeating unit may be different from other X 1 or X 2 .
X 3 is a divalent to tetravalent C 1-20 aliphatic group, a divalent to tetravalent C 3-20 alicyclic group, each of which may contain a heteroatom and a substituent, A tetravalent aromatic group having 5 to 15 carbon atoms, or a combination thereof.

脂肪族基として、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基などが挙げられる。アルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられる。アルカントリイル基として、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられる。これら脂肪族基は置換基を含んでいてもよく、置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group. As the alkanetriyl group, methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group, Examples include a hexadecantriyl group. As alkanetetrayl group, methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group, pentanetetrayl group, hexanetetrayl group, heptanetetrayl group, octanetetrayl group, nonanetetrayl group Decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like. These aliphatic groups may contain a substituent, such as an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, or an ester group. , Ether group, aldehyde group and the like.

脂環族基として、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。アルカントリイル基として、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これら脂環族基は置換基を含んでいてもよく、置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリーレン基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group. As the alkanetriyl group, cyclopropanetriyl group, cyclobutanetriyl group, cyclopentanetriyl group, cyclohexanetriyl group, cycloheptanetriyl group, cyclooctanetriyl group, cyclononanetriyl group, cyclodecanetriyl group , Cyclododecanetriyl group, cyclohexadecanetriyl group and the like. As the alkanetetrayl group, cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group Group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like. These alicyclic groups may contain a substituent, such as an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, and an ester. Group, ether group, aldehyde group and the like.

芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。   As an aromatic group, each of which contains a hetero atom and may have a heterocyclic structure, an arylene group having 5 to 15 carbon atoms, an arenetriyl group having 5 to 15 carbon atoms, an arenetetra having 5 to 15 carbon atoms Yl group. Examples of the arylene group include a phenylene group and a naphthalenediyl group. Examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group. Examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.

また、Ar、Ar、R、R、X、XおよびXはヘテロ原子を含有していてもよい、また、Qが2価の結合基であるときは、Ar、Ar、R、R、X、XおよびXは全て2価の基である。Qが3価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが3価の基である。Qが4価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが4価の基であるか、二つが3価の基である。 Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 may contain a hetero atom, and when Q is a divalent linking group, Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 are all divalent groups. When Q is a trivalent linking group, one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 is a trivalent group. When Q is a tetravalent linking group, one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 is a tetravalent group or two are trivalent It is a group.

本発明で用いる環状カルボジイミドとして、下記式(5)、(7)および(8)で表される化合物が挙げられる。   Examples of the cyclic carbodiimide used in the present invention include compounds represented by the following formulas (5), (7) and (8).

<環状カルボジイミド(2)> <Cyclic carbodiimide (2)>

Figure 0006283464
Figure 0006283464

式中、Qは、下記式(6−1)、(6−2)または(6−3)で表される2価の結合基である。   In the formula, Q is a divalent linking group represented by the following formula (6-1), (6-2) or (6-3).

Figure 0006283464
Figure 0006283464

式中、Ar (aは下付、以下も同様)およびAr は各々独立に、2価の炭素数5〜15の芳香族基である。R およびR は各々独立に、2価の炭素数1〜20の脂肪族基、2価の炭素数3〜20の脂環族基、およびこれらの組み合わせ、またはこれら脂肪族基、脂環族基と2価の炭素数5〜15の芳香族基の組み合わせである。saは0〜10の整数である。kaは0〜10の整数である。X およびX は各々独立に、2価の炭素数1〜20の脂肪族基、2価の炭素数3〜20の脂環族基、2価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。X は、2価の炭素数1〜20の脂肪族基、2価の炭素数3〜20の脂環族基、2価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。但し、Ar 、Ar 、R 、R 、X 、X およびX はヘテロ原子を含有していてもよい。かかる環状カルボジイミド化合物(2)としては、以下の化合物が挙げられる。 In the formula, Ar a 1 (a is a subscript, the same applies hereinafter) and Ar a 2 are each independently a divalent aromatic group having 5 to 15 carbon atoms. R a 1 and R a 2 are each independently a divalent aliphatic group having 1 to 20 carbon atoms, a divalent alicyclic group having 3 to 20 carbon atoms, and a combination thereof, or these aliphatic groups, It is a combination of an alicyclic group and a divalent aromatic group having 5 to 15 carbon atoms. s a is an integer of 0. k a is an integer of 0 to 10. X a 1 and X a 2 are each independently a divalent aliphatic group having 1 to 20 carbon atoms, a divalent carbon group having 3 to 20 alicyclic groups, or a divalent aromatic group having 5 to 15 carbon atoms. A group, or a combination thereof. X a 3 is preferably a divalent aliphatic group having 1 to 20 carbon atoms, a divalent alicyclic group having 3 to 20 carbon atoms, a divalent aromatic group having 5 to 15 carbon atoms, or a combination thereof, is there. However, Ar a 1 , Ar a 2 , R a 1 , R a 2 , X a 1 , X a 2 and X a 3 may contain a hetero atom. Examples of the cyclic carbodiimide compound (2) include the following compounds.

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

<環状カルボジイミド(3)> <Cyclic carbodiimide (3)>

Figure 0006283464
Figure 0006283464

式中、Q(bは下付、以下同様)は、下記式(7−1)、(7−2)または(7−3)で表される3価の結合基であり、Yは環状構造を担持する担体である。 In the formula, Q b (b is a subscript, the same applies hereinafter) is a trivalent linking group represented by the following formula (7-1), (7-2) or (7-3), and Y is cyclic. A carrier carrying the structure.

Figure 0006283464
Figure 0006283464

式中、Ar 、Ar 、R 、R 、X 、X 、X 、sbおよびkbは、各々式(5−1)〜(5−3)のAr、Ar、R、R、X、X、X、sおよびkと同じである。但しこれらの内の一つは3価の基である。 Wherein, Ar b 1, Ar b 2 , R b 1, R b 2, X b 1, X b 2, X b 3, s b and k b are each formula (5-1) to (5-3 ) Are the same as Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k. However, one of these is a trivalent group.

Yは、単結合、二重結合、原子、原子団またはポリマーである。Yは結合部であり、複数の環状構造がYを介して結合し、式(7)で表される構造を形成している。かかる環状カルボジイミド化合物(7)としては、下記化合物が挙げられる。   Y is a single bond, a double bond, an atom, an atomic group or a polymer. Y is a bonding portion, and a plurality of cyclic structures are bonded via Y to form a structure represented by the formula (7). Examples of the cyclic carbodiimide compound (7) include the following compounds.

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

<環状カルボジイミド(4)> <Cyclic carbodiimide (4)>

Figure 0006283464
Figure 0006283464

式中、Q(cは下付、以下同様)は、下記式(8−1)、(8−2)または(8−3)で表される4価の結合基であり、ZおよびZは環状構造を担持する担体である。ZおよびZは、互いに結合して環状構造を形成していてもよい。 In the formula, Q c (c is a subscript, the same applies hereinafter) is a tetravalent linking group represented by the following formula (8-1), (8-2) or (8-3), and Z 1 and Z 2 is a carrier supporting a cyclic structure. Z 1 and Z 2 may be bonded to each other to form a cyclic structure.

Figure 0006283464
Figure 0006283464

Ar 、Ar 、R 、R 、X 、X 、X 、scおよびkcは、各々式(5−1)〜(5−3)の、Ar、Ar、R、R、X、X、X、sおよびkと同じである。但し、Ar 、Ar 、R 、R 、X 、X およびX は、これらの内の一つが4価の基であるか、二つが3価の基である。 Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 , X c 3 , s c and k c are respectively represented by the formulas (5-1) to (5-3): The same as Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k. Provided that Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 and X c 3 are one of which is a tetravalent group or two of which are trivalent It is a group.

およびZは各々独立に、単結合、二重結合、原子、原子団またはポリマーである。ZおよびZは結合部であり、複数の環状構造がZおよびZを介して結合し、式(8)で表される構造を形成している。かかる環状カルボジイミド化合物(8)としては、下記化合物が挙げられる。 Z 1 and Z 2 are each independently a single bond, a double bond, an atom, an atomic group or a polymer. Z 1 and Z 2 are bonding parts, and a plurality of cyclic structures are bonded via Z 1 and Z 2 to form a structure represented by the formula (8). Examples of the cyclic carbodiimide compound (8) include the following compounds.

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

<環状カルボジイミド化合物の製造方法>
環状カルボジイミド化合物は従来公知の方法により製造することができる。例として、アミン体からイソシアネート体を経由して製造する方法、アミン体からイソチオシアネート体を経由して製造する方法、アミン体からトリフェニルホスフィン体を経由して製造する方法、アミン体から尿素体を経由して製造する方法、アミン体からチオ尿素体を経由して製造する方法、カルボン酸体からイソシアネート体を経由して製造する方法、ラクタム体を誘導して製造する方法などが挙げられる。
<Method for producing cyclic carbodiimide compound>
The cyclic carbodiimide compound can be produced by a conventionally known method. For example, a method for producing an amine body via an isocyanate body, a method for producing an amine body via an isothiocyanate body, a method for producing an amine body via a triphenylphosphine body, a urea body from an amine body The method of manufacturing via a thiourea body, the method of manufacturing via a thiourea body, the method of manufacturing from a carboxylic acid body via an isocyanate body, the method of manufacturing a lactam body, etc. are mentioned.

また、本発明の環状カルボジイミド化合物は、以下の文献に記載された方法を組み合わせおよび改変して製造することができ、製造する化合物によって適切な方法を採用する事が出来る。
Tetrahedron Letters,Vol.34,No.32,515−5158,1993.
Medium−and Large−Membered Rings from Bis(iminophosphoranes):An Efficient Preparation of Cyclic Carbodiimides, Pedro Molina et al.
Journal of Organic Chemistry,Vol.61,No.13,4289−4299,1996.
New Models for the Study of the Racemization Mechanism of Carbodiimides.Synthesis and Structure(X−ray Crystallography and 1H NMR) of Cyclic Carbodiimides, Pedro Molina et al.
Journal of Organic Chemistry,Vol.43,No8,1944−1946,1978.
Macrocyclic Ureas as Masked Isocyanates, Henri Ulrich et al.
Journal of Organic Chemistry,Vol.48,No.10,1694−1700,1983.
Synthesis and Reactions of Cyclic Carbodiimides,
R.Richter et al.
Journal of Organic Chemistry,Vol.59,No.24,7306−7315,1994.
A New and Efficient Preparation of Cyclic Carbodiimides from Bis(iminophosphoranea)and the System BocO/DMAP,Pedro Molina et al.
Moreover, the cyclic carbodiimide compound of the present invention can be produced by combining and modifying the methods described in the following documents, and an appropriate method can be adopted depending on the compound to be produced.
Tetrahedron Letters, Vol. 34, no. 32, 515-5158, 1993.
Medium- and Large-Membered Rings from Bis (iminophores): An Efficient Preparation of Cyclic Carbidimiides, Pedro Molina et al.
Journal of Organic Chemistry, Vol. 61, no. 13, 4289-4299, 1996.
New Models for the Study of the Racemization Mechanism of Carbodiimides. Synthesis and Structure (X-ray Crystallography and 1H NMR) of Cyclic Carbodiimides, Pedro Molina et al.
Journal of Organic Chemistry, Vol. 43, No8, 1944-1946, 1978.
Macrocyclic Ureas as Masked Isocynates, Henri Ulrich et al.
Journal of Organic Chemistry, Vol. 48, no. 10, 1694-1700, 1983.
Synthesis and Reactions of Cyclic Carbodiimides,
R. Richter et al.
Journal of Organic Chemistry, Vol. 59, no. 24, 7306-7315, 1994.
A New and Efficient Preparation of Cyclic Carboxidimids from Bis (iminophosphoranea) and the System Boc 2 O / DMAP, Pedro Molina et al.

製造する化合物に応じて、適切な製法を採用すればよいが、例えば、(1)下記式(a−1)で表されるニトロフェノール、下記式(a−2)で表されるニトロフェノールおよび下記式(b)で表される化合物を反応させ、下記式(c)で表されるニトロ体を得る工程、   Depending on the compound to be produced, an appropriate production method may be employed. For example, (1) nitrophenol represented by the following formula (a-1), nitrophenol represented by the following formula (a-2), and A step of reacting a compound represented by the following formula (b) to obtain a nitro compound represented by the following formula (c);

Figure 0006283464
Figure 0006283464

(2)得られたニトロ体を還元して下記式(d)で表わされるアミン体を得る工程、 (2) A step of reducing the obtained nitro body to obtain an amine body represented by the following formula (d);

Figure 0006283464
Figure 0006283464

(3)得られたアミン体とトリフェニルホスフィンジブロミドを反応させ下記式(e)で表されるトリフェニルホスフィン体を得る工程、および (3) a step of reacting the obtained amine body with triphenylphosphine dibromide to obtain a triphenylphosphine body represented by the following formula (e); and

Figure 0006283464
Figure 0006283464

(4)得られたトリフェニルホスフィン体を反応系中でイソシアネート化した後、直接脱炭酸させる工程により製造したものは、本願発明に用いる環状カルボジイミド化合物として好適に用いることができる。(上記式中、ArおよびArは各々独立に、炭素数1〜6のアルキル基またはフェニル基で置換されていてもよい芳香族基である。EおよびEは各々独立に、ハロゲン原子、トルエンスルホニルオキシ基およびメタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p−ブロモベンゼンスルホニルオキシ基からなる群から選ばれる基である。Ar は、フェニル基である。Xは、下記式(i−1)から(i−3)の結合基である。) (4) What was manufactured by the process of carrying out the direct decarboxylation after isocyanate-izing the obtained triphenylphosphine body in a reaction system can be used suitably as a cyclic carbodiimide compound used for this invention. (In the above formula, Ar 1 and Ar 2 are each independently an aromatic group optionally substituted with an alkyl group having 1 to 6 carbon atoms or a phenyl group. E 1 and E 2 are each independently a halogen atom. A group selected from the group consisting of an atom, a toluenesulfonyloxy group, a methanesulfonyloxy group, a benzenesulfonyloxy group, and a p-bromobenzenesulfonyloxy group, Ar a 3 is a phenyl group, and X is a group represented by the following formula ( i-1) to (i-3) are linking groups.)

Figure 0006283464
Figure 0006283464

(式中、ni−1は1〜6の整数である。) (Where n i-1 is an integer of 1 to 6)

Figure 0006283464
Figure 0006283464

(式中、mi−2およびni−2は各々独立に0〜3の整数である。) (In the formula, mi-2 and ni-2 are each independently an integer of 0-3.)

Figure 0006283464
Figure 0006283464

(式中、Ri−3およびR’i−3は各々独立に、炭素数1〜6のアルキル基、フェニル基を表す。) (In the formula, R i-3 and R ′ i-3 each independently represent an alkyl group having 1 to 6 carbon atoms or a phenyl group.)

本発明に用いる線状カルボジイミド(ポリカルボジイミド化合物を含む)としては、一般的に良く知られた方法で合成されたものを使用することができ、例えば、触媒として有機リン系化合物または有機金属化合物を用い、各種ポリイソシアネートを約70度以上の温度で、無溶媒または不活性溶媒中で、脱炭酸縮合反応に付することより合成することができるものを挙げることができる。   As the linear carbodiimide (including polycarbodiimide compound) used in the present invention, those synthesized by a generally well-known method can be used. For example, an organophosphorus compound or an organometallic compound is used as a catalyst. Examples thereof include those that can be synthesized by subjecting various polyisocyanates to a decarboxylation condensation reaction in a solvent-free or inert solvent at a temperature of about 70 ° C. or higher.

上記カルボジイミド化合物に含まれるモノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t−ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ−t−ブチルカルボジイミド、ジ−β−ナフチルカルボジイミド等を例示することができ、これらの中では、特に工業的に入手が容易であるという面から、ジシクロヘキシルカルボジイミド或いはジイソプロピルカルボジイミドが好適である。また、上記カルボジイミド化合物に含まれるポリカルボジイミド化合物としては、種々の方法で製造したものを使用することができるが、基本的には従来のポリカルボジイミドの製造方法(米国特許第2941956号明細書、特公昭47−33279号公報、J.0rg.Chem.28, 2069−2075(1963)、Chemical Review l981,Vol.81 No.4、p619−621)により製造したものを用いることができる。   Examples of the monocarbodiimide compound contained in the carbodiimide compound include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di-β-naphthylcarbodiimide and the like. Of these, dicyclohexylcarbodiimide or diisopropylcarbodiimide is preferred from the viewpoint of easy industrial availability. In addition, as the polycarbodiimide compound contained in the carbodiimide compound, those produced by various methods can be used. Basically, conventional polycarbodiimide production methods (US Pat. No. 2,941,956, No. 47-33279, J.0rg.Chem.28, 2069-2075 (1963), Chemical Review 981, Vol.81 No.4, p619-621) can be used.

上記ポリカルボジイミド化合物の製造における合成原料である有機ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートやこれらの混合物を挙げることができ、具体的には、1,5−ナフタレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルジメチルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、2,4−トリレンジイソシアネートと2,6−トリレンジイソシアネートの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6−ジイソプロピルフェニルイソシアネート、1,3,5−トリイソプロピルベンゼン−2,4−ジイソシアネート等を例示することができる。また、上記ポリカルボジイミド化合物の場合は、モノイソシアネート等の、ポリカルボジイミド化合物の末端イソシアネートと反応する化合物を用いて、適当な重合度に制御することもできる。このようなポリカルボジイミド化合物の末端を封止してその重合度を制御するためのモノイソシアネートとしては、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等を例示することができる。   Examples of the organic diisocyanate that is a synthetic raw material in the production of the polycarbodiimide compound include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof. Specifically, 1,5-naphthalene diisocyanate. 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2, , 4-tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophor Diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, 2,6-diisopropylphenyl isocyanate, 1,3,5-triisopropylbenzene-2,4-diisocyanate, etc. be able to. Moreover, in the case of the said polycarbodiimide compound, it can also control to a suitable polymerization degree using the compound which reacts with the terminal isocyanate of polycarbodiimide compound, such as monoisocyanate. Examples of the monoisocyanate for sealing the end of such a polycarbodiimide compound and controlling the degree of polymerization thereof include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, naphthyl isocyanate and the like. be able to.

具体的なカルボキシル基末端封鎖の程度としてはポリ乳酸樹脂のカルボキシル基末端の濃度が10当量/10kg以下であることが耐加水分解性向上の点から好ましく、6当量/10 kg以下であることがさらに好ましい。
C成分の含有量は、A成分100重量部に対し、0.01〜10重量部であることが好ましく、より好ましくは、0.01〜5重量部、さらに好ましくは0.1〜3重量部である。含有量が0.01重量部未満ではカルボキシル末端に対する末端封鎖剤の添加量が少なすぎ、十分な耐加水分解性が得られない場合があり、10重量部を超えるとゲル化などを起し、流動性が著しく低下する場合がある。
As a specific degree of carboxyl group terminal blocking, the concentration of the carboxyl group terminal of the polylactic acid resin is preferably 10 equivalents / 10 3 kg or less from the viewpoint of improving hydrolysis resistance, and 6 equivalents / 10 3 kg or less. More preferably it is.
The content of component C is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and still more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of component A. It is. If the content is less than 0.01 parts by weight, the amount of the end-capping agent added to the carboxyl terminal is too small, and sufficient hydrolysis resistance may not be obtained. Fluidity may be significantly reduced.

<D成分について>
本発明において樹脂組成物には、酸化防止剤(D成分)として、ヒンダードフェノール系化合物、ホスファイト系化合物、ホスホナイト系化合物、およびチオエーテル系化合物からなる群より選ばれる少なくとも1種の酸化防止剤を使用することができる。酸化防止剤(D成分)を配合する事により、成形加工時の色相や流動性が安定するだけでなく、耐加水分解性の向上にも効果がある。
<About D component>
In the present invention, the resin composition contains at least one antioxidant selected from the group consisting of hindered phenol compounds, phosphite compounds, phosphonite compounds, and thioether compounds as an antioxidant (component D). Can be used. By blending an antioxidant (component D), not only the hue and fluidity during molding are stabilized, but also effective in improving hydrolysis resistance.

ヒンダードフェノール系化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが例示される。上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特にオクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。これらはいずれも入手容易である。上記ヒンダードフェノール系化合物は、単独でまたは2種以上を組み合わせて使用することができる。   Examples of the hindered phenol compound include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-β- (4′-hydroxy-3 ′, 5′-di-tert-butylfel) propionate. 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethylaminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-methylenebi (2,6-di-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-cyclohexylphenol), 2,2′-dimethylene-bis (6-α-methyl-benzyl-p-cresol) ) 2,2′-ethylidene-bis (4,6-di-tert-butylphenol), 2,2′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3- Methyl-6-tert-butylphenol), triethylene glycol-N-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, 1,6-hexanediol bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], bis [2-tert-butyl-4-methyl 6- ( -Tert-butyl-5-methyl-2-hydroxybenzyl) phenyl] terephthalate, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1 , 1, -dimethylethyl} -2,4,8,10-tetraoxaspiro [5,5] undecane, 4,4′-thiobis (6-tert-butyl-m-cresol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6-tert-butylphenol), bis (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 4 , 4′-di-thiobis (2,6-di-tert-butylphenol), 4,4′-tri-thiobis (2,6-di-tert-butylphenol) ), 2,2-thiodiethylenebis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (n-octylthio) -6- (4-hydroxy -3 ′, 5′-di-tert-butylanilino) -1,3,5-triazine, N, N′-hexamethylenebis- (3,5-di-tert-butyl-4-hydroxyhydrocinnamide), N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butyl Phenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, tris (3,5-di-tert-butyl) 4-hydroxyphenyl) isocyanurate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6- Dimethylbenzyl) isocyanurate, 1,3,5-tris 2 [3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl isocyanurate, and tetrakis [methylene-3- (3 ′, 5′-di-tert-butyl-4-hydroxyphenyl) propionate] methane and the like. Among the above compounds, tetrakis [methylene-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl-) is used in the present invention. 4-hydroxyphenyl) propionate and 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4 , 8,10-Tetraoxaspiro [5,5] undecane is preferably used. Particularly preferred is octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. All of these are readily available. The said hindered phenol type compound can be used individually or in combination of 2 or more types.

ホスファイト系化合物としては、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。さらに他のホスファイト系化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。好適なホスファイト系化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。これらはいずれも入手容易である。上記ホスファイト系化合物は、単独でまたは2種以上を組み合わせて使用することができる。   Phosphite compounds include triphenyl phosphite, tris (nonylphenyl) phosphite, tridecyl phosphite, trioctyl phosphite, trioctadecyl phosphite, didecyl monophenyl phosphite, dioctyl monophenyl phosphite, diisopropyl mono Phenyl phosphite, monobutyl diphenyl phosphite, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butylphenyl) ) Phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, distearyl pentae Thritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis ( 2,6-di-tert-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite, phenylbisphenol A penta Examples include erythritol diphosphite, bis (nonylphenyl) pentaerythritol diphosphite, and dicyclohexylpentaerythritol diphosphite. Furthermore, as other phosphite compounds, those that react with dihydric phenols and have a cyclic structure can be used. For example, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert- Butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, and the like. Suitable phosphite compounds are distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methyl). Phenyl) pentaerythritol diphosphite, and bis {2,4-bis (1-methyl-1-phenylethyl) phenyl} pentaerythritol diphosphite. All of these are readily available. The above phosphite compounds can be used alone or in combination of two or more.

また、例えば2,4,8,10−テトラ−t−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−t−ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン〔「スミライザーGP」(住友化学株式会社製)として市販されている。〕、2,10−ジメチル−4,8−ジ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[3−(3、5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、2,4,8,10−テトラ−t−ペンチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12−メチル−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10−ジメチル−4,8−ジ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ペンチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−12−メチル−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]−ジベンゾ[d,f][1,3,2]ジオキサホスフェピン、2,10−ジメチル−4,8−ジ−t−ブチル−6−(3,5−ジ−t−ブチル−4−ヒドロキシベンゾイルオキシ)−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−(3,5−ジ−t−ブチル−4−ヒドロキシベンゾイルオキシ)−12−メチル−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10−ジメチル−4,8−ジ−t−ブチル−6−[3−(3−メチル−4−ヒドロキシ−5−t−ブチルフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,10−ジエチル−4,8−ジ−t−ブチル−6−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロポキシ]−12H−ジベンゾ[d,g][1,3,2]ジオキサホスホシン、2,4,8,10−テトラ−t−ブチル−6−[2,2−ジメチル−3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−ジベンゾ[d,f][1,3,2]ジオキサホスフェピンなどを挙げることができる。   Also, for example, 2,4,8,10-tetra-t-butyl-6- [3- (3-methyl-4-hydroxy-5-t-butylphenyl) propoxy] dibenzo [d, f] [1,3 , 2] dioxaphosphine [commercially available as “Sumilyzer GP” (manufactured by Sumitomo Chemical Co., Ltd.). 2,10-dimethyl-4,8-di-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8,10-tetra-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] dibenzo [D, f] [1,3,2] dioxaphosphine, 2,4,8,10-tetra-t-pentyl-6- [3- (3,5-di-t-butyl-4- Hydroxyphenyl) propoxy] -12-methyl-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,10-dimethyl-4,8-di-t-butyl-6- [3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -12H Dibenzo [d, g] [1,3,2] dioxaphosphocine, 2,4,8,10-tetra-t-pentyl-6- [3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionyloxy] -12-methyl-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8,10-tetra-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -dibenzo [d, f] [1,3,2] dioxaphosphine, 2,10-dimethyl-4,8-di -T-butyl-6- (3,5-di-t-butyl-4-hydroxybenzoyloxy) -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,4,8 , 10-Tetra-t-butyl-6- (3,5-di-t-butyl-4- Roxybenzoyloxy) -12-methyl-12H-dibenzo [d, g] [1,3,2] dioxaphosphocin, 2,10-dimethyl-4,8-di-t-butyl-6- [3- (3-Methyl-4-hydroxy-5-t-butylphenyl) propoxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocine, 2,4,8,10-tetra-t -Butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocine, 2,10 -Diethyl-4,8-di-t-butyl-6- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propoxy] -12H-dibenzo [d, g] [1,3 2] Dioxaphosphocin, 2,4,8,10-tetra-t-butyl Ru-6- [2,2-dimethyl-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -dibenzo [d, f] [1,3,2] dioxaphosphine And so on.

ホスホナイト系化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト系化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト系化合物との併用可能であり好ましい。ホスホナイト系化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。上記ホスホナイト系化合物は、単独でまたは2種以上を組み合わせて使用することができる。   Examples of the phosphonite compound include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenyl. Range phosphonite, tetrakis (2,4-di-tert-butylphenyl) -3,3'-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4'-biphenylene diphospho Knight, tetrakis (2,6-di-tert-butylphenyl) -4,3′-biphenylene diphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3′-biphenylene diphosphonite, Bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,4- -Tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) Examples include -4-phenyl-phenyl phosphonite, bis (2,6-di-tert-butylphenyl) -3-phenyl-phenyl phosphonite. Tetrakis (di-tert-butylphenyl) -biphenylenediphosphonite, bis (di-tert-butylphenyl) -phenyl-phenylphosphonite are preferred, and tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite Knight and bis (2,4-di-tert-butylphenyl) -phenyl-phenylphosphonite are more preferred. Such a phosphonite compound is preferable because it can be used in combination with a phosphite compound having an aryl group in which two or more alkyl groups are substituted. The phosphonite compound is preferably tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, and stabilizers based on the phosphonite are Sandostab P-EPQ (trademark, manufactured by Clariant) and Irgafos. P-EPQ (trademark, manufactured by CIBA SPECIALTY CHEMICALS) is commercially available and any of them can be used. The said phosphonite type compound can be used individually or in combination of 2 or more types.

チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。上記チオエーテル系化合物は、単独でまたは2種以上を組み合わせて使用することができる。   Specific examples of thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol-tetrakis (3-lauryl thiopropionate), Pentaerythritol-tetrakis (3-dodecylthiopropionate), pentaerythritol-tetrakis (3-octadecylthiopropionate), pentaerythritol tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthio) Propionate) and the like. The said thioether type compound can be used individually or in combination of 2 or more types.

D成分の含有量は、A成分100重量部に対し、0.01〜2重量部が好ましく、より好ましくは0.03〜1重量部、さらに好ましくは0.05〜0.5重量部である。かかる配合量が0.01重量部より少ない場合は酸化防止効果が不足し、成形加工時の色相や流動性が不安定になるだけでなく、耐加水分解性も悪化する場合がある。また、かかる配合量が2重量部よりも多い場合、酸化防止剤由来の反応成分などがかえって耐加水分解性を悪化させてしまう場合がある。   The content of component D is preferably 0.01 to 2 parts by weight, more preferably 0.03 to 1 part by weight, and still more preferably 0.05 to 0.5 parts by weight with respect to 100 parts by weight of component A. . When the blending amount is less than 0.01 parts by weight, the antioxidant effect is insufficient, and not only the hue and fluidity during molding are unstable, but also hydrolysis resistance may be deteriorated. Moreover, when there are more this compounding quantities than 2 weight part, the reaction component derived from antioxidant, etc. may be changed, and hydrolysis resistance may be deteriorated.

また、前記ヒンダードフェノール系化合物とホスファイト系化合物、ホスホナイト系化合物、チオエーテル系化合物のいずれか1種類以上を組み合わせて使用することが好ましい。ヒンダードフェノール系化合物とホスファイト系化合物、ホスホナイト系化合物、チオエーテル系化合物のいずれか1種類以上を組み合わせて使用することで、安定剤としての相乗効果が発揮され、より成形加工時の色相、流動性の安定化、耐加水分解性の向上に効果がある。   Further, it is preferable to use a combination of one or more of the hindered phenol compounds and phosphite compounds, phosphonite compounds, and thioether compounds. By using a combination of one or more of hindered phenol compounds and phosphite compounds, phosphonite compounds, and thioether compounds, a synergistic effect as a stabilizer is exhibited, and hue and flow during molding are further improved. It is effective in stabilizing the properties and improving the hydrolysis resistance.

<その他の成分について>
<ハイドロタルサイト>
本発明ではハイドロタルサイトを含むことができる。本発明で使用するハイドロタルサイトは、下記式(9)で表される合成ハイドロタルサイトが好ましい。
<About other ingredients>
<Hydrotalcite>
In the present invention, hydrotalcite can be included. The hydrotalcite used in the present invention is preferably a synthetic hydrotalcite represented by the following formula (9).

Figure 0006283464
Figure 0006283464

(式中のM2+はマグネシウムイオン、亜鉛イオン等の2価の金属イオン、N3+はアルミニウムイオン、クロムイオン等の3価の金属イオン、An−はn価の層間陰イオンを表し、xは0<x≦0.33、mは0≦m<2であり、nは1≦n≦5の整数である。)
式(9)中の[M2+ 1−X3+ (OH)]は水酸化物シートで、金属イオンを6つのOHが取り囲んで形成する八面体が互いに陵を共有することによって作られる。この水酸化物シートが重なって層状構造を形成している。式中(9)中の[An− x/n・mHO]は、水酸化物シートの間に入るn価の陰イオンと結晶水を表す。
2+は2価の金属イオンであれば特に限定されないが、一般的にマグネシウムイオンが好ましく使われている。また、N3+は3価の金属イオンであれば特に限定されないが、一般的にアルミニウムイオンが好ましく使われており、An−は炭酸イオンが好ましく使われている。
ハイドロタルサイトがポリ乳酸樹脂の耐加水分解性を向上させるメカニズムは定かでは無いが、熱分解および加水分解によって発生した乳酸など、ポリ乳酸樹脂の加水分解反応の触媒となる酸を吸着するためと考えられる。
(Expressed M 2+ is magnesium ions in the formula, the divalent metal ions such as zinc ion, N 3+ is aluminum ions, trivalent metal ions such as chromium ions, A n-is an n-valent interlayer anion, x Is 0 <x ≦ 0.33, m is 0 ≦ m <2, and n is an integer of 1 ≦ n ≦ 5.)
[M 2+ 1-X N 3+ x (OH) 2 ] in the formula (9) is a hydroxide sheet, which is formed by the fact that octahedrons formed by surrounding six OHs with metal ions share each other. . The hydroxide sheets overlap to form a layered structure. [A n− x / n · mH 2 O] in the formula (9) represents an n-valent anion and water of crystallization entering between the hydroxide sheets.
M 2+ is not particularly limited as long as it is a divalent metal ion, but generally magnesium ion is preferably used. Further, N 3+ is not particularly limited as long as it is a trivalent metal ion, typically aluminum ions are preferably used are in, A n-is are preferably used carbonate ions.
Although the mechanism by which hydrotalcite improves the hydrolysis resistance of polylactic acid resin is not clear, it is necessary to adsorb acid that acts as a catalyst for the hydrolysis reaction of polylactic acid resin, such as lactic acid generated by thermal decomposition and hydrolysis. Conceivable.

本発明で使用するハイドロタルサイトは、焼成による脱水処理がなされていることが好ましい。焼成処理する温度は、ハイドロタルサイトの化学構造に応じて任意に選ぶことができる。例えば、M2+がマグネシウムイオン、N3+がアルミニウムイオン、An−が炭酸イオンであり、マグネシウムイオン:アルミニウムイオン=2:1(x=0.33)であった場合、結晶水の脱水温度は210℃であることから、この温度以上で焼成処理することで脱水する事ができ、xが0.33より小さくなるにつれて、結晶水の脱水温度は低くなる。脱水処理されたハイドロタルサイトを使用することで、押出や成形などの工程での樹脂の分解を防ぐ事が出来るため、より耐加水分解性に優れた樹脂組成物を得ることが出来る。従って、式(9)におけるmの範囲は0≦m<0.5が好ましく0≦m<0.1が最も好ましい。 The hydrotalcite used in the present invention is preferably dehydrated by firing. The temperature for the baking treatment can be arbitrarily selected according to the chemical structure of the hydrotalcite. For example, M 2+ is magnesium ion, N 3+ is aluminum ion, A n-carbonate ions, magnesium ions: aluminum ion = 2: 1 (x = 0.33 ) if it was, dehydration temperature of crystal water is Since it is 210 ° C., it can be dehydrated by baking at or above this temperature. As x becomes smaller than 0.33, the dehydration temperature of crystal water becomes lower. By using hydrotalcite that has been subjected to dehydration treatment, it is possible to prevent the resin from being decomposed in a process such as extrusion or molding, and thus a resin composition having more excellent hydrolysis resistance can be obtained. Therefore, the range of m in Formula (9) is preferably 0 ≦ m <0.5, and most preferably 0 ≦ m <0.1.

また、本発明で使用するハイドロタルサイトは、表面処理されていることが好ましい。表面処理剤としては、シランカップリング剤、チタネートカップリング剤、シリコーン化合物、脂肪酸、脂肪酸塩、合成樹脂などが挙げられ、特にポリ乳酸樹脂と馴染みのよい脂肪酸、脂肪酸塩が好適に用いられる。ハイドロタルサイトを表面処理することにより、押出や成形などの工程でのポリ乳酸樹脂の分解を防ぐことが出来るだけでなく、ハイドロタルサイトのポリ乳酸樹脂中への分散が上がり、効果的に酸の吸着が行われ、より耐加水分解性にすぐれた樹脂組成物を得る事ができる。   Moreover, it is preferable that the hydrotalcite used by this invention is surface-treated. Examples of the surface treatment agent include silane coupling agents, titanate coupling agents, silicone compounds, fatty acids, fatty acid salts, synthetic resins, and particularly, fatty acids and fatty acid salts that are familiar with polylactic acid resins are preferably used. Surface treatment of hydrotalcite not only prevents the degradation of polylactic acid resin in processes such as extrusion and molding, but also increases dispersion of hydrotalcite in polylactic acid resin, effectively Thus, a resin composition with better hydrolysis resistance can be obtained.

表面処理に使用する脂肪酸は、脂肪酸であれば特に限定されないが、沸点の比較的高い炭素数12以上の高級脂肪酸が好ましい。具体例としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレイン酸などが挙げられる。また、表面処理に使用する脂肪酸塩は、脂肪酸塩であれば特に限定されないが、沸点の比較的高い炭素数12以上の高級脂肪酸塩が好ましい。具体例としては、ラウリン酸塩、ミリスチン酸塩、パルミチン酸塩、ステアリン酸塩、オレイン酸塩、リノール酸塩、リノレイン酸塩などが挙げられる。高級脂肪酸塩に使用される塩としては、ナトリウム、カリウム、亜鉛などの無機化合物が好ましい。   The fatty acid used for the surface treatment is not particularly limited as long as it is a fatty acid, but a higher fatty acid having a relatively high boiling point and having 12 or more carbon atoms is preferable. Specific examples include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and the like. The fatty acid salt used for the surface treatment is not particularly limited as long as it is a fatty acid salt, but a higher fatty acid salt having a relatively high boiling point and having 12 or more carbon atoms is preferable. Specific examples include laurate, myristate, palmitate, stearate, oleate, linoleate, and linolenate. As the salt used in the higher fatty acid salt, inorganic compounds such as sodium, potassium and zinc are preferable.

本発明では、脱水処理、表面処理のされていないハイドロタルサイト、脱水処理、表面処理のいずれかをしたハイドロタルサイト、脱水処理、表面処理の両方をしたハイドロタルサイトのいずれも使用することが出来るが、好ましくは、脱水処理、表面処理のいずれかをしたハイドロタルサイト、より好ましくは、脱水処理、表面処理の両方をしたハイドロタルサイトを使用することが出来る。
脱水処理、表面処理のされていないハイドロタルサイトとしては、DHT−6(協和化学工業(株)製)、脱水処理のみされているハイドロタルサイトとしては、DHT−4C(協和化学工業(株)製)、表面処理のみされているハイドロタルサイトとしては、DHT−4A(協和化学工業(株)製)、脱水処理、表面処理の両方がされているハイドロタルサイトとしては、DHT−4A−2(協和化学工業(株)製)がそれぞれ市販品として入手することが出来る。
ハイドロタルサイトの添加量は、A成分100重量部に対し、0.01〜0.3重量部が好ましく、0.03〜0.2重量部がより好ましく、0.05〜0.2重量部が最も好ましい。ハイドロタルサイトの添加量が0.01重量部未満では、耐加水分解性向上の効果が得られず、ハイドロタルサイトの添加量が0.3重量部超では、ポリ乳酸樹脂の熱分解などを引き起し、かえって耐加水分解性が悪化する場合がある。
In the present invention, any of hydrotalcite that has been either dehydrated or untreated, hydrotalcite that has been subjected to dehydration or surface treatment, or hydrotalcite that has been subjected to both dehydration or surface treatment may be used. Preferably, hydrotalcite subjected to either dehydration treatment or surface treatment, more preferably hydrotalcite subjected to both dehydration treatment or surface treatment, can be used.
DHT-6 (manufactured by Kyowa Chemical Industry Co., Ltd.) is a hydrotalcite that has not been subjected to dehydration or surface treatment, and DHT-4C (Kyowa Chemical Industry Co., Ltd.) is a hydrotalcite that has only been dehydrated. ), As hydrotalcite that is only surface-treated, DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.), as hydrotalcite that is both dehydrated and surface-treated, DHT-4A-2 (Manufactured by Kyowa Chemical Industry Co., Ltd.) can be obtained as commercial products.
The amount of hydrotalcite added is preferably 0.01 to 0.3 parts by weight, more preferably 0.03 to 0.2 parts by weight, and 0.05 to 0.2 parts by weight with respect to 100 parts by weight of component A. Is most preferred. If the amount of hydrotalcite added is less than 0.01 parts by weight, the effect of improving the hydrolysis resistance cannot be obtained. If the amount of hydrotalcite added exceeds 0.3 parts by weight, the polylactic acid resin may be thermally decomposed. This may cause the hydrolysis resistance to deteriorate.

<光安定剤>
本発明において樹脂組成物は光安定剤を含有していてもよい。光安定剤としては、具体的には例えば、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、芳香族ベンゾエート系化合物、蓚酸アニリド系化合物、シアノアクリレート系化合物およびヒンダードアミン系化合物等を挙げることができる。
<Light stabilizer>
In the present invention, the resin composition may contain a light stabilizer. Specific examples of the light stabilizer include benzophenone compounds, benzotriazole compounds, aromatic benzoate compounds, oxalic acid anilide compounds, cyanoacrylate compounds, hindered amine compounds, and the like.

ベンゾフェノン系化合物としては、ベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、5−クロロ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メチル−アクリロキシイソプロポキシ)ベンゾフェノン等が挙げられる。   Examples of the benzophenone compounds include benzophenone, 2,4-dihydroxybenzophenone, 2,2′-dihydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2 ′. -Dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sulfobenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 5-chloro-2-hydroxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxy -2 - carboxy benzophenone, 2-hydroxy-4- (2-hydroxy-3-methyl - acryloxy-isopropoxyphenyl) benzophenone.

ベンゾトリアゾール系化合物としては、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3’,5’−ジ−tert−ブチル−4’−メチル−2’−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−アミル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(5−tert−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−(4’−オクトキシ−2’−ヒドロキシフェニル)ベンゾトリアゾール等が挙げられる。   Examples of the benzotriazole compound include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- (3,5- Di-tert-amyl-2-hydroxyphenyl) benzotriazole, 2- (3 ′, 5′-di-tert-butyl-4′-methyl-2′-hydroxyphenyl) benzotriazole, 2- (3,5- Di-tert-amyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (5-tert-butyl-2-hydroxyphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (Α, α-Dimethylbenzyl) phenyl] benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α Dimethylbenzyl) phenyl] -2H- benzotriazole, 2- (4'-octoxy-2'-hydroxyphenyl) benzotriazole.

芳香族ベンゾエート系化合物としては、p−tert−ブチルフェニルサリシレート、p−オクチルフェニルサリシレート等のアルキルフェニルサリシレート類が挙げられる。
蓚酸アニリド系化合物としては、2−エトキシ−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−5−tert−ブチル−2’−エチルオキザリックアシッドビスアニリド、2−エトキシ−3’−ドデシルオキザリックアシッドビスアニリド等が挙げられる。
シアノアクリレート系化合物としては、エチル−2−シアノ−3,3’−ジフェニルアクリレート、2−エチルヘキシル−シアノ−3,3’−ジフェニルアクリレート等が挙げられる。
Examples of the aromatic benzoate compounds include alkylphenyl salicylates such as p-tert-butylphenyl salicylate and p-octylphenyl salicylate.
Examples of oxalic acid anilide compounds include 2-ethoxy-2′-ethyloxalic acid bisanilide, 2-ethoxy-5-tert-butyl-2′-ethyloxalic acid bisanilide, and 2-ethoxy-3′-. Examples include dodecyl oxalic acid bisanilide.
Examples of the cyanoacrylate compound include ethyl-2-cyano-3,3′-diphenyl acrylate and 2-ethylhexyl-cyano-3,3′-diphenyl acrylate.

ヒンダードアミン系化合物としては、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−オクタデシルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オギザレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−エタン、α,α’−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−トリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−「2−{3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカン]ジメタノールとの縮合物等を挙げることができる。
光安定剤の含有量は、A成分100重量部に対し、好ましくは0.01〜3重量部、より好ましくは0.03〜2重量部である。
Examples of hindered amine compounds include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2,6, 6-tetramethylpiperidine, 4- (phenylacetoxy) -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2, 6,6-tetramethylpiperidine, 4-octadecyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2 , 6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4- (ethylcarba Yloxy) -2,2,6,6-tetramethylpiperidine, 4- (cyclohexylcarbamoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2,2,6,6 -Tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) carbonate, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2,6 , 6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, Bis (2,2,6,6-tetramethyl-4-piperidyl) terephthalate, 1,2-bis (2,2,6,6-tetramethyl-4-piperidylo Cis) -ethane, α, α′-bis (2,2,6,6-tetramethyl-4-piperidyloxy) -p-xylene, bis (2,2,6,6-tetramethyl-4-piperidyl) -Tolylene-2,4-dicarbamate, bis (2,2,6,6-tetramethyl-4-piperidyl) -hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl -4-piperidyl) -benzene-1,3,5-tricarboxylate, tris (2,2,6,6-tetramethyl-4-piperidyl) -benzene-1,3,4-tricarboxylate, 1- “2- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} -2,2,6,6-tetramethylpiperidine, 1,2,3,4-butanetetracarboxylic acid And 1, 2, 2, 6 Condensation product of 6-pentamethyl-4-piperidinol and β, β, β ′, β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] dimethanol Etc.
The content of the light stabilizer is preferably 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight with respect to 100 parts by weight of the component A.

<結晶化促進剤>
本発明において樹脂組成物は、結晶化促進剤を含有していてもよい。結晶化促進剤を含有することで、機械的特性、耐熱性、および成形性に優れた成形品を得ることができる。
即ち結晶化促進剤の適用により、ポリ乳酸樹脂(A成分)の成形性、結晶性が向上し、通常の射出成形においても十分に結晶化し耐熱性、耐湿熱安定性に優れた成形品を得ることができる。加えて、成形品を製造する製造時間を大幅に短縮でき、その経済的効果は大きい。
結晶化促進剤として、無機系の結晶化核剤および有機系の結晶化核剤のいずれをも使用することができる。
<Crystallization accelerator>
In the present invention, the resin composition may contain a crystallization accelerator. By containing the crystallization accelerator, a molded product having excellent mechanical properties, heat resistance, and moldability can be obtained.
In other words, the application of the crystallization accelerator improves the moldability and crystallinity of the polylactic acid resin (component A), and crystallizes sufficiently even in normal injection molding to obtain a molded product excellent in heat resistance and moist heat resistance. be able to. In addition, the manufacturing time for manufacturing the molded product can be greatly shortened, and the economic effect is great.
As the crystallization accelerator, either an inorganic crystallization nucleating agent or an organic crystallization nucleating agent can be used.

無機系の結晶化核剤として、タルク、カオリン、シリカ、合成マイカ、クレイ、ゼオライト、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化チタン、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、硫化カルシウム、窒化ホウ素、モンモリロナイト、酸化ネオジム、酸化アルミニウム、フェニルフォスフォネート金属塩等が挙げられる。これらの無機系の結晶化核剤は組成物中での分散性およびその効果を高めるために、各種分散助剤で処理され、一次粒子径が0.01〜0.5μm程度の高度に分散状態にあるものが好ましい。   As inorganic crystallization nucleating agents, talc, kaolin, silica, synthetic mica, clay, zeolite, graphite, carbon black, zinc oxide, magnesium oxide, titanium oxide, calcium carbonate, calcium sulfate, barium sulfate, calcium sulfide, boron nitride , Montmorillonite, neodymium oxide, aluminum oxide, phenylphosphonate metal salt and the like. These inorganic crystallization nucleating agents are treated with various dispersing aids in order to enhance the dispersibility in the composition and the effect thereof, and are in a highly dispersed state with a primary particle size of about 0.01 to 0.5 μm. Are preferred.

有機系の結晶化核剤としては、安息香酸カルシウム、安息香酸ナトリウム、安息香酸リチウム、安息香酸カリウム、安息香酸マグネシウム、安息香酸バリウム、蓚酸カルシウム、テレフタル酸ジナトリウム、テレフタル酸ジリチウム、テレフタル酸ジカリウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、ミリスチン酸バリウム、オクタコ酸ナトリウム、オクタコ酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、β−ナフトエ酸ナトリウム、β−ナフトエ酸カリウム、シクロヘキサンカルボン酸ナトリウム等の有機カルボン酸金属塩、p−トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウム等の有機スルホン酸金属塩が挙げられる。   Organic crystallization nucleating agents include calcium benzoate, sodium benzoate, lithium benzoate, potassium benzoate, magnesium benzoate, barium benzoate, calcium oxalate, disodium terephthalate, dilithium terephthalate, dipotassium terephthalate, Sodium laurate, potassium laurate, sodium myristate, potassium myristate, calcium myristate, barium myristate, sodium octacolate, calcium octacolate, sodium stearate, potassium stearate, lithium stearate, calcium stearate, magnesium stearate , Barium stearate, sodium montanate, calcium montanate, sodium toluate, sodium salicylate, potassium salicylate, salicy Organic carboxylic acid metal salts such as zinc acid, aluminum dibenzoate, β-naphthoic acid sodium, β-naphthoic acid potassium, sodium cyclohexanecarboxylic acid and the like, and organic sulfonic acid metal salts such as sodium p-toluenesulfonate and sodium sulfoisophthalate. Can be mentioned.

また、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルミチン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(tert−ブチルアミド)等の有機カルボン酸アミド、低密度ポリエチレン、高密度ポリエチレン、ポリイソプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリ−3−メチルブテン−1、ポリビニルシクロアルカン、ポリビニルトリアルキルシラン、高融点ポリ乳酸樹脂、エチレン−アクリル酸コポマーのナトリウム塩、スチレン−無水マレイン酸コポリマーのナトリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、例えばジベンジリデンソルビトール等が挙げられる。
これらのなかでタルク、および有機カルボン酸金属塩から選択された少なくとも1種が好ましく使用される。本発明で使用する結晶化核剤は1種のみでもよく、2種以上を併用しても良い。
結晶化促進剤の含有量は、A成分100重量部に対し、好ましくは0.01〜30重量部、より好ましくは0.05〜20重量部である。
Also, organic carboxylic acid amides such as stearic acid amide, ethylenebislauric acid amide, palmitic acid amide, hydroxystearic acid amide, erucic acid amide, trimesic acid tris (tert-butylamide), low density polyethylene, high density polyethylene, polyiso Of propylene, polybutene, poly-4-methylpentene, poly-3-methylbutene-1, polyvinylcycloalkane, polyvinyltrialkylsilane, high melting point polylactic acid resin, sodium salt of ethylene-acrylic acid copolymer, styrene-maleic anhydride copolymer Examples thereof include sodium salts (so-called ionomers), benzylidene sorbitol and derivatives thereof such as dibenzylidene sorbitol.
Among these, at least one selected from talc and organic carboxylic acid metal salts is preferably used. Only one type of crystallization nucleating agent may be used in the present invention, or two or more types may be used in combination.
The content of the crystallization accelerator is preferably 0.01 to 30 parts by weight, more preferably 0.05 to 20 parts by weight with respect to 100 parts by weight of the component A.

<有機充填剤>
本発明において樹脂組成物は、有機充填剤を含有することができる。有機充填剤を含有することで、機械的特性、耐熱性および成形性に優れた樹脂組成物を得ることができる。
有機充填剤として、籾殻、木材チップ、おから、古紙粉砕材、衣料粉砕材等のチップ状のもの、綿繊維、麻繊維、竹繊維、木材繊維、ケナフ繊維、ジュート繊維、バナナ繊維、ココナツ繊維等の植物繊維もしくはこれらの植物繊維から加工されたパルプやセルロース繊維および絹、羊毛、アンゴラ、カシミヤ、ラクダ等の動物繊維等の繊維状のもの、ポリエステル繊維、ナイロン繊維、アクリル繊維等の合成繊維、紙粉、木粉、セルロース粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質、澱粉等の粉末状のものが挙げられる。成形性の観点から紙粉、木粉、竹粉、セルロース粉末、ケナフ粉末、籾殻粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質粉末、澱粉等の粉末状のものが好ましく、紙粉、木粉、竹粉、セルロース粉末、ケナフ粉末が好ましい。紙粉、木粉がより好ましい。特に紙粉が好ましい。
<Organic filler>
In the present invention, the resin composition can contain an organic filler. By containing an organic filler, a resin composition excellent in mechanical properties, heat resistance and moldability can be obtained.
Organic fillers such as rice husks, wood chips, okara, waste paper ground materials, clothing ground materials, cotton fibers, hemp fibers, bamboo fibers, wood fibers, kenaf fibers, jute fibers, banana fibers, coconut fibers Plant fibers such as pulp or cellulose fibers processed from these plant fibers and fibrous fibers such as animal fibers such as silk, wool, angora, cashmere and camel, synthetic fibers such as polyester fibers, nylon fibers and acrylic fibers , Paper powder, wood powder, cellulose powder, rice husk powder, fruit husk powder, chitin powder, chitosan powder, protein, starch and the like. From the viewpoint of moldability, powdery materials such as paper powder, wood powder, bamboo powder, cellulose powder, kenaf powder, rice husk powder, fruit husk powder, chitin powder, chitosan powder, protein powder, and starch are preferred. Powder, bamboo powder, cellulose powder and kenaf powder are preferred. Paper powder and wood powder are more preferable. Paper dust is particularly preferable.

これら有機充填剤は天然物から直接採取したものを使用してもよいが、古紙、廃材木および古衣等の廃材をリサイクルしたものを使用してもよい。また木材として、松、杉、檜、もみ等の針葉樹材、ブナ、シイ、ユーカリ等の広葉樹材等が好ましい。
紙粉は成形性の観点から接着剤、取り分け紙を加工する際に通常使用される酢酸ビニル樹脂系エマルジョンやアクリル樹脂系エマルジョン等のエマルジョン系接着剤、ポリビニルアルコール系接着剤、ポリアミド系接着剤等のホットメルト接着剤等を含むものが好ましく例示される。
本発明において有機充填剤の含有量は、成形性および耐熱性の観点から、A成分100重量部に対し、好ましくは1〜300重量部、より好ましくは5〜200重量部、さらに好ましくは10〜150重量部、特に好ましくは15〜100重量部である。
These organic fillers may be those directly collected from natural products, but may also be those obtained by recycling waste materials such as waste paper, waste wood and old clothes. The wood is preferably a softwood material such as pine, cedar, oak or fir, or a hardwood material such as beech, shii or eucalyptus.
Paper powder is an adhesive from the viewpoint of moldability, especially emulsion-based adhesives such as vinyl acetate resin-based emulsions and acrylic resin-based emulsions when processing paper, polyvinyl alcohol-based adhesives, polyamide-based adhesives, etc. Preferred examples include those containing a hot melt adhesive.
In the present invention, the content of the organic filler is preferably 1 to 300 parts by weight, more preferably 5 to 200 parts by weight, and further preferably 10 to 10 parts by weight with respect to 100 parts by weight of the component A from the viewpoint of moldability and heat resistance. 150 parts by weight, particularly preferably 15 to 100 parts by weight.

<離型剤>
本発明において樹脂組成物は、離型剤を含有していてもよい。離型剤として具体的には、脂肪酸、脂肪酸金属塩、オキシ脂肪酸、パラフィン、低分子量のポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸部分鹸化エステル、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変性シリコーン等を挙げることができる。これらを配合することで機械特性、成形性、耐熱性に優れたポリ乳酸樹脂成形品を得ることができる。
<Release agent>
In the present invention, the resin composition may contain a release agent. Specific examples of release agents include fatty acids, fatty acid metal salts, oxy fatty acids, paraffins, low molecular weight polyolefins, fatty acid amides, alkylene bis fatty acid amides, aliphatic ketones, fatty acid partial saponified esters, fatty acid lower alcohol esters, fatty acid polyvalents. Examples include alcohol esters, fatty acid polyglycol esters, and modified silicones. By blending these, a polylactic acid resin molded product having excellent mechanical properties, moldability, and heat resistance can be obtained.

脂肪酸としては炭素数6〜40のものが好ましく、具体的には、オレイン酸、ステアリン酸、ラウリン酸、ヒドロキシステアリン酸、ベヘン酸、アラキドン酸、リノール酸、リノレン酸、リシノール酸、パルミチン酸、モンタン酸およびこれらの混合物等が挙げられる。脂肪酸金属塩としては炭素数6〜40の脂肪酸のアルカリ(土類)金属塩が好ましく、具体的にはステアリン酸カルシウム、モンタン酸ナトリウム、モンタン酸カルシウム、等が挙げられる。
オキシ脂肪酸としては1,2−オキシステリン酸、等が挙げられる。パラフィンとしては炭素数18以上のものが好ましく、流動パラフィン、天然パラフィン、マイクロクリスタリンワックス、ペトロラクタム等が挙げられる。
Fatty acids having 6 to 40 carbon atoms are preferred. Specifically, oleic acid, stearic acid, lauric acid, hydroxystearic acid, behenic acid, arachidonic acid, linoleic acid, linolenic acid, ricinoleic acid, palmitic acid, montan Examples thereof include acids and mixtures thereof. The fatty acid metal salt is preferably an alkali (earth) metal salt of a fatty acid having 6 to 40 carbon atoms, and specific examples include calcium stearate, sodium montanate, calcium montanate, and the like.
Examples of the oxy fatty acid include 1,2-oxysteric acid. Paraffin having 18 or more carbon atoms is preferable, and examples thereof include liquid paraffin, natural paraffin, microcrystalline wax, petrolactam and the like.

低分子量のポリオレフィンとしては例えば分子量5000以下のものが好ましく、具体的にはポリエチレンワックス、マレイン酸変性ポリエチレンワックス、酸化タイプポリエチレンワックス、塩素化ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはオレイン酸アミド、エルカ酸アミド、ベヘン酸アミド等が挙げられる。
アルキレンビス脂肪酸アミドとしては炭素数6以上のものが好ましく、具体的にはメチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、N,N−ビス(2−ヒドロキシエチル)ステアリン酸アミド等が挙げられる。脂肪族ケトンとしては炭素数6以上のものが好ましく、高級脂肪族ケトン等が挙げられる。
脂肪酸部分鹸化エステルとしてはモンタン酸部分鹸化エステル等が挙げられる。脂肪酸低級アルコールエステルとしてはステアリン酸エステル、オレイン酸エステル、リノール酸エステル、リノレン酸エステル、アジピン酸エステル、ベヘン酸エステル、アラキドン酸エステル、モンタン酸エステル、イソステアリン酸エステル等が挙げられる。
As the low molecular weight polyolefin, for example, those having a molecular weight of 5000 or less are preferable, and specific examples include polyethylene wax, maleic acid-modified polyethylene wax, oxidized type polyethylene wax, chlorinated polyethylene wax, and polypropylene wax. Fatty acid amides having 6 or more carbon atoms are preferred, and specific examples include oleic acid amide, erucic acid amide, and behenic acid amide.
The alkylene bis fatty acid amide is preferably one having 6 or more carbon atoms, and specifically includes methylene bis stearic acid amide, ethylene bis stearic acid amide, N, N-bis (2-hydroxyethyl) stearic acid amide and the like. As the aliphatic ketone, those having 6 or more carbon atoms are preferable, and examples thereof include higher aliphatic ketones.
Examples of the fatty acid partial saponified ester include a montanic acid partial saponified ester. Examples of the fatty acid lower alcohol ester include stearic acid ester, oleic acid ester, linoleic acid ester, linolenic acid ester, adipic acid ester, behenic acid ester, arachidonic acid ester, montanic acid ester, isostearic acid ester and the like.

脂肪酸多価アルコールエステルとしては、グリセロールトリステアレート、グリセロールジステアレート、グリセロールモノステアレート、ペンタエリスルトールテトラステアレート、ペンタエリスルトールトリステアレート、ペンタエリスルトールジミリステート、ペンタエリスルトールモノステアレート、ペンタエリスルトールアジペートステアレート、ソルビタンモノベヘネート等が挙げられる。脂肪酸ポリグリコールエステルとしてはポリエチレングリコール脂肪酸エステル、ポリトリメチレングリコール脂肪酸エステル、ポリプロピレングリコール脂肪酸エステル等が挙げられる。   Examples of fatty acid polyhydric alcohol esters include glycerol tristearate, glycerol distearate, glycerol monostearate, pentaerythritol tetrastearate, pentaerythritol tristearate, pentaerythritol dimyristate, pentaerythritol Examples include tall monostearate, pentaerythritol adipate stearate, sorbitan monobehenate and the like. Examples of fatty acid polyglycol esters include polyethylene glycol fatty acid esters, polytrimethylene glycol fatty acid esters, and polypropylene glycol fatty acid esters.

変性シリコーンとしてはポリエーテル変性シリコーン、高級脂肪酸アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、高級脂肪酸エステル変性シリコーン、メタクリル変性シリコーン、フッ素変性シリコーン等が挙げられる。
そのうち脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪酸部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、が好ましく、脂肪酸部分鹸化エステル、アルキレンビス脂肪酸アミドがより好ましい。なかでもモンタン酸エステル、モンタン酸部分鹸化エステル、ポリエチレンワックス、酸価ポリエチレンワックス、ソルビタン脂肪酸エステル、エルカ酸アミド、エチレンビスステアリン酸アミドが好ましく、特にモンタン酸部分鹸化エステル、エチレンビスステアリン酸アミドが好ましい。
離型剤は、1種類で用いても良いし2種以上を組み合わせて用いても良い。離型剤の含有量は、A成分100重量部に対し、好ましくは0.01〜3重量部、より好ましくは0.03〜2重量部である。
Examples of the modified silicone include polyether-modified silicone, higher fatty acid alkoxy-modified silicone, higher fatty acid-containing silicone, higher fatty acid ester-modified silicone, methacryl-modified silicone, and fluorine-modified silicone.
Of these, fatty acid, fatty acid metal salt, oxy fatty acid, fatty acid ester, fatty acid partial saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, and alkylene bis fatty acid amide are preferred, and fatty acid partial saponified ester and alkylene bis fatty acid amide are more preferred. Of these, montanic acid ester, montanic acid partial saponified ester, polyethylene wax, acid value polyethylene wax, sorbitan fatty acid ester, erucic acid amide, and ethylene bisstearic acid amide are preferable, and montanic acid partial saponified ester and ethylene bisstearic acid amide are particularly preferable. .
A mold release agent may be used by 1 type and may be used in combination of 2 or more type. The content of the release agent is preferably 0.01 to 3 parts by weight, more preferably 0.03 to 2 parts by weight, with respect to 100 parts by weight of component A.

<帯電防止剤>
本発明において樹脂組成物は帯電防止剤を含有していてもよい。帯電防止剤として、(β−ラウラミドプロピオニル)トリメチルアンモニウムスルフェート、ドデシルベンゼンスルホン酸ナトリウムなどの第4級アンモニウム塩系、スルホン酸塩系化合物、アルキルホスフェート系化合物等が挙げられる。
帯電防止剤は1種類で用いても良いし2種以上を組み合わせて用いても良い。帯電防止剤の含有量は、A成分100重量部に対し、好ましくは0.05〜5重量部、より好ましくは0.1〜5重量部である。
<Antistatic agent>
In the present invention, the resin composition may contain an antistatic agent. Examples of the antistatic agent include quaternary ammonium salt compounds such as (β-lauramidopropionyl) trimethylammonium sulfate and sodium dodecylbenzenesulfonate, sulfonate compounds, and alkyl phosphate compounds.
One type of antistatic agent may be used, or two or more types may be used in combination. The content of the antistatic agent is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the component A.

<その他>
また本発明においては、本発明の趣旨に反しない範囲において、フェノール樹脂、メラミン樹脂、熱硬化性ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂等の熱硬化性樹脂、ポリカーボネート樹脂、ガラス転移温度が−30℃より高いポリエステル樹脂、ポリアリレート樹脂、液晶性ポリエステル樹脂、ガラス転移温度が−30℃より高いポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、ポリスチレン樹脂、高衝撃ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂などの熱可塑性樹脂を含んでいてもよい。また有機、無機系の染料、顔料を含む着色剤、例えば、二酸化チタン等の酸化物、アルミナホワイト等の水酸化物、硫化亜鉛等の硫化物、紺青等のフェロシアン化物、ジンククロメート等のクロム酸塩、硫酸バリウム等の硫酸塩、炭酸カルシウム等の炭酸塩、群青等の珪酸塩、マンガンバイオレット等のリン酸塩、カーボンブラック等の炭素、ブロンズ粉やアルミニウム粉等の金属着色剤等を含有させても良い。また、ナフトールグリーンB等のニトロソ系、ナフトールイエローS等のニトロ系、ナフトールレッド、クロモフタルイエローどのアゾ系、フタロシアニンブルーやファストスカイブルー等のフタロシアニン系、インダントロンブルー等の縮合多環系着色剤等、グラファイト、フッソ樹脂等の摺動性改良剤等の添加剤を含有させても良い。これらの添加剤は単独であるいは2種以上を併用することもできる。
<Others>
Moreover, in this invention, in the range which is not contrary to the meaning of this invention, thermosetting resins, such as a phenol resin, a melamine resin, a thermosetting polyester resin, a silicone resin, and an epoxy resin, polycarbonate resin, glass transition temperature is -30 degreeC. Higher polyester resin, polyarylate resin, liquid crystalline polyester resin, polyamide resin having a glass transition temperature higher than −30 ° C., polyimide resin, polyetherimide resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polystyrene resin, acrylonitrile / A thermoplastic resin such as a styrene copolymer (AS resin), a polystyrene resin, a high-impact polystyrene resin, or a syndiotactic polystyrene resin may be included. Colorants containing organic and inorganic dyes and pigments, for example, oxides such as titanium dioxide, hydroxides such as alumina white, sulfides such as zinc sulfide, ferrocyanides such as bitumen, and chromium such as zinc chromate Contains acid salts, sulfates such as barium sulfate, carbonates such as calcium carbonate, silicates such as ultramarine, phosphates such as manganese violet, carbon such as carbon black, metal colorants such as bronze powder and aluminum powder, etc. You may let them. Also, nitroso type such as naphthol green B, nitro type such as naphthol yellow S, azo type such as naphthol red, chromophthal yellow, phthalocyanine type such as phthalocyanine blue and fast sky blue, and condensed polycyclic colorants such as indanthrone blue In addition, additives such as slidability improvers such as graphite and fluorine resin may be added. These additives can be used alone or in combination of two or more.

<樹脂組成物の製造方法について>
i)共存組成物の調製
本発明において、ポリ乳酸樹脂(A成分)としてポリ−L乳酸樹脂(A−1成分)、ポリ−D乳酸樹脂(A−2成分)との混合物を用いる場合、他の添加剤成分と溶融混合する前に、式(3)および/または式(4)で表される燐酸エステル金属塩、ポリ−L乳酸樹脂(A−1成分)並びにポリ−D乳酸樹脂(A−2成分)を予め共存させておくのが好ましい。共存させる方法としては、ポリ−L乳酸樹脂(A−1成分)と、ポリ−D乳酸樹脂(A−2成分)とをできるだけ均一に混合させる方法が、それらを熱処理したときにステレオコンプレックス結晶を効率的に生成させることが可能となるため好ましい。かかる共存組成物の調製は、それらが熱処理されたときに均一に混合される方法であれば、いかなる方法をもとることができ、溶媒の存在下で行う方法、溶媒の非存在下で行う方法などが例示される。
上記共存組成物の調製を溶媒の存在下で行う方法としては、溶液に溶解した状態からの再沈殿により共存組成物を得る方法、加熱によって溶媒を除去することにより共存組成物を得る方法などが好適に挙げられる。
<About the manufacturing method of a resin composition>
i) Preparation of Coexisting Composition In the present invention, when a mixture of poly-L lactic acid resin (A-1 component) and poly-D lactic acid resin (A-2 component) is used as the polylactic acid resin (A component), other Before melt-mixing with the additive component of the phosphoric acid ester metal salt represented by formula (3) and / or formula (4), poly-L lactic acid resin (component A-1) and poly-D lactic acid resin (A -2 component) is preferably allowed to coexist in advance. As a method of coexistence, a method of mixing the poly-L lactic acid resin (A-1 component) and the poly-D lactic acid resin (A-2 component) as uniformly as possible, This is preferable because it can be generated efficiently. The coexisting composition can be prepared by any method as long as they are uniformly mixed when heat-treated. The method is carried out in the presence of a solvent, or the method is carried out in the absence of a solvent. Etc. are exemplified.
Methods for preparing the coexisting composition in the presence of a solvent include a method of obtaining the coexisting composition by reprecipitation from a state dissolved in a solution, and a method of obtaining the coexisting composition by removing the solvent by heating. Preferably mentioned.

溶媒の存在下で再沈殿してかかる共存組成物を得る場合には、まず最初に、ポリ−L乳酸樹脂(A−1成分)と、ポリ−D乳酸樹脂(A−2成分)との共存組成物を再沈殿にて調製する。ここでA−1成分とA−2成分とは、別々に溶媒に溶解した溶液を調整して混合するか、または両者を一緒に溶媒に溶解させ混合することにより行うことが好ましい。ここで、ポリ−L乳酸樹脂(A−1成分)と、ポリ−D乳酸樹脂(A−2成分)との重量比(A−1成分/A−2成分)は、10/90〜90/10の範囲になるように調製することが、樹脂組成物中でポリ乳酸樹脂(A−1成分、A−2成分)のステレオコンプレックス結晶を効率的に生成させる上で好ましい。A−1成分とA−2成分との重量比は、25/75〜75/25がさらに好ましく、40/60〜60/40が特に好ましい。溶媒は、ポリ乳酸樹脂(A−1成分、A−2成分)が溶解するものであれば特に限定されるものではないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン、テトラクロロエタン、フェノール、テトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミド、ブチロラクトン、トリオキサン、ヘキサフルオロイソプロパノール等の単独あるいは2種以上混合したものが好ましい。   In the case of obtaining such a coexisting composition by reprecipitation in the presence of a solvent, first, coexistence of a poly-L lactic acid resin (A-1 component) and a poly-D lactic acid resin (A-2 component) The composition is prepared by reprecipitation. Here, the A-1 component and the A-2 component are preferably carried out by adjusting and mixing separately dissolved solutions in a solvent, or by dissolving and mixing both in a solvent together. Here, the weight ratio (A-1 component / A-2 component) between the poly-L lactic acid resin (A-1 component) and the poly-D lactic acid resin (A-2 component) is 10/90 to 90 / It is preferable to prepare so that it may become the range of 10 in order to produce | generate the stereocomplex crystal | crystallization of polylactic acid resin (A-1 component, A-2 component) efficiently in a resin composition. The weight ratio of the A-1 component to the A-2 component is more preferably 25/75 to 75/25, particularly preferably 40/60 to 60/40. Although a solvent will not be specifically limited if polylactic acid resin (A-1 component, A-2 component) melt | dissolves, For example, chloroform, a methylene chloride, a dichloroethane, tetrachloroethane, a phenol, tetrahydrofuran, N -Methylpyrrolidone, N, N-dimethylformamide, butyrolactone, trioxane, hexafluoroisopropanol or the like, or a mixture of two or more of them is preferred.

式(3)または式(4)で表される燐酸エステル金属塩は、上記溶媒に不溶であるか、または溶媒に溶解しても再沈殿後に溶媒中に残存する場合があるために、再沈殿によって得られたポリ乳酸樹脂(A−1成分、A−2成分)混合物と、式(3)または式(4)で表される燐酸エステル金属塩は、別途混合して共存組成物を調製する必要がある。ポリ乳酸樹脂(A−1成分、A−2成分)混合物と、式(3)または式(4)で表される燐酸エステル金属塩の共存組成物を得る方法は、それらが均一に混合されれば特に限定されるものではなく、粉体での混合、溶融混合などのいかなる方法をもとることができる。   The phosphate ester metal salt represented by the formula (3) or the formula (4) is insoluble in the above solvent or may remain in the solvent after reprecipitation even when dissolved in the solvent. The polylactic acid resin (A-1 component, A-2 component) mixture obtained by the above and the phosphate ester metal salt represented by formula (3) or formula (4) are separately mixed to prepare a coexisting composition. There is a need. In the method of obtaining a coexisting composition of a polylactic acid resin (A-1 component, A-2 component) mixture and a phosphoric acid ester metal salt represented by formula (3) or formula (4), they are uniformly mixed. The method is not particularly limited, and any method such as powder mixing or melt mixing can be used.

次に、溶媒の存在下から溶媒を除去する方法によって、ポリ乳酸樹脂(A−1成分、A−2成分)並びに、式(3)または式(4)で表される燐酸エステル金属塩の共存組成物を一度に調製する場合には、A−1成分およびA−2成分、並びに式(3)または式(4)で表される燐酸エステル金属塩を、各々別個に溶媒に溶解または分散させた分散液を調製して混合するか、または全成分を一緒に溶媒に溶解または分散させた分散液を調製して混合し、然る後に加熱により溶媒を蒸発させることによって行うことができる。溶媒は、ポリ乳酸樹脂(A−1成分、A−2成分)並びに、式(3)または式(4)で表される燐酸エステル金属塩が溶解するものであれば、特に限定されるものではないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン、テトラクロロエタン、フェノール、テトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミド、ブチロラクトン、トリオキサン、ヘキサフルオロイソプロパノール等の単独あるいは2種以上混合したものが好ましい。溶媒の蒸発後(熱処理)の昇温速度は、長時間、熱処理をすると分解する可能性があるので短時間で行うのが好ましいが特に限定されるものではない。   Next, coexistence of the polylactic acid resin (component A-1 and component A-2) and the phosphate ester metal salt represented by formula (3) or formula (4) by removing the solvent from the presence of the solvent When preparing the composition at once, the A-1 component and the A-2 component, and the phosphoric acid ester metal salt represented by the formula (3) or the formula (4) are separately dissolved or dispersed in a solvent. The dispersion can be prepared and mixed, or the dispersion can be prepared by mixing or dissolving all components together in a solvent and mixed, and then the solvent is evaporated by heating. The solvent is not particularly limited as long as it dissolves the polylactic acid resin (component A-1, component A-2) and the phosphate metal salt represented by formula (3) or formula (4). However, for example, chloroform, methylene chloride, dichloroethane, tetrachloroethane, phenol, tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, butyrolactone, trioxane, hexafluoroisopropanol, or a mixture of two or more of them is preferable. . The rate of temperature increase after evaporation of the solvent (heat treatment) is preferably, but not limited to, a short time since there is a possibility of decomposition when heat treatment is performed for a long time.

ポリ乳酸樹脂(A−1成分、A−2成分)並びに、式(3)または式(4)で表される燐酸エステル金属塩の共存組成物の調製は、溶媒の非存在下でも行うことができる。即ち、あらかじめ粉体化またはチップ化されたA−1成分とA−2成分、および式(3)または式(4)で表される燐酸エステル金属塩を、所定量混合した後に溶融して混合する方法、または、A−1成分とA−2成分のいずれか一方を溶融させた後に、残る成分を加えて混合する方法などを採用することができる。ここで上記の粉体あるいはチップの大きさは、各ポリ乳酸単位(A−1成分、A−2成分)の粉体あるいはチップが均一に混合されれば特に限定されるものではないが、3mm以下が好ましく、さらには1から0.25mmのサイズであることが好ましい。溶融混合する場合、大きさに関係なく、ステレオコンプレックス結晶を形成するが、粉体あるいはチップを均一に混合した後に単に溶融する場合、粉体あるいはチップの直径が3mm超の大きさになると、混合が不均一となり、ホモポリ乳酸結晶が析出しやすくなるので好ましくない。また上記粉体あるいはチップを均一に混合するために用いる混合装置としては、溶融によって混合する場合にはバッチ式の攪拌翼がついた反応器、連続式の反応器のほか、二軸あるいは一軸のエクストルーダー、粉体で混合する場合にはタンブラー式の粉体混合器、連続式の粉体混合器、各種のミリング装置などを好適に用いることができる。   The preparation of the coexisting composition of the polylactic acid resin (A-1 component, A-2 component) and the phosphoric acid ester metal salt represented by formula (3) or formula (4) can be performed even in the absence of a solvent. it can. That is, the A-1 component and the A-2 component, which have been powdered or chipped in advance, and the phosphoric acid ester metal salt represented by the formula (3) or the formula (4) are mixed in a predetermined amount and then melted and mixed. Or a method in which any one of the A-1 component and the A-2 component is melted and then the remaining components are added and mixed. Here, the size of the powder or chip is not particularly limited as long as the powder or chip of each polylactic acid unit (A-1 component, A-2 component) is uniformly mixed. The following is preferable, and the size is preferably 1 to 0.25 mm. When melting and mixing, a stereocomplex crystal is formed regardless of the size. However, when the powder or chip is simply melted after being uniformly mixed, if the diameter of the powder or chip becomes more than 3 mm, the mixture is mixed. Is not preferable, and homopolylactic acid crystals are likely to precipitate. In addition, as a mixing device used to uniformly mix the above powder or chips, in the case of mixing by melting, in addition to a reactor with a batch type stirring blade, a continuous reactor, a biaxial or uniaxial In the case of mixing with an extruder or powder, a tumbler type powder mixer, a continuous powder mixer, various milling devices, or the like can be suitably used.

さらにかかる共存組成物を調製する際には、エラストマー(B成分)、カルボジイミド化合物(C成分)、酸化防止剤(D成分)、およびそれ以外の添加剤として、ハイドロタルサイト、無機充填材折れ抑制剤、滑剤、紫外線吸収剤、光安定剤、離型剤、流動改質剤、着色剤、光拡散剤、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、抗菌剤、結晶核剤等、各種添加剤を共存させておくこともできる。   Furthermore, when preparing such a co-existing composition, elastomer (B component), carbodiimide compound (C component), antioxidant (D component), and other additives, hydrotalcite, inorganic filler breakage suppression Agent, lubricant, ultraviolet absorber, light stabilizer, mold release agent, flow modifier, colorant, light diffusing agent, fluorescent whitening agent, phosphorescent pigment, fluorescent dye, antistatic agent, antibacterial agent, crystal nucleating agent, etc. Various additives can be allowed to coexist.

特にカルボジイミド化合物(C成分)を共存組成物の調製の段階で添加しておくことは、末端封鎖剤とポリ乳酸樹脂(A成分)との混合がより均一となることで、ポリ乳酸樹脂の酸性末端がより効率的に封鎖されるために、得られた最終樹脂組成物の耐加水分解性を向上させる上で好ましい。また、ヒンダードフェノール系化合物、ホスファイト系化合物、ホスホナイト系化合物、チオエーテル系化合物などの酸化防止剤を共存組成物の調製の段階で添加しておくことも、後に続く共存組成物の熱処理段階における熱安定性を向上させる上で特に好ましい。   In particular, the addition of a carbodiimide compound (component C) at the stage of preparation of the coexisting composition means that the end blocker and the polylactic acid resin (component A) are mixed more uniformly, and the acidity of the polylactic acid resin is increased. Since the terminal is blocked more efficiently, it is preferable for improving the hydrolysis resistance of the obtained final resin composition. In addition, it is possible to add an antioxidant such as a hindered phenol compound, a phosphite compound, a phosphonite compound, or a thioether compound at the stage of preparing the coexisting composition, It is particularly preferable for improving the thermal stability.

ii)共存組成物の熱処理
本発明において、ポリ乳酸樹脂(A成分)としてポリ−L乳酸樹脂(A−1成分)、ポリ−D乳酸樹脂(A−2成分)との混合物を用いる場合、他の添加剤成分と溶融混合する前に、ポリ乳酸樹脂(A−1成分、A−2成分)と式(3)または式(4)で表される燐酸エステル金属塩の共存組成物を熱処理するのが好ましい。かかる熱処理とは、その組成物を240〜300℃の温度領域で一定時間保持することをいう。熱処理の温度は好ましくは250〜300℃、より好ましくは260〜290℃である。300℃を超えると、分解反応を抑制するのが難しくなるので好ましくなく、240℃未満の温度では熱処理による均一混合が進まず、ステレオコンプレックス結晶が効率的に生成しにくくなるので好ましくない。熱処理の時間は特に限定されるものではないが、0.2〜60分、好ましくは1〜20分である。熱処理時の雰囲気は、常圧の不活性雰囲気下、または減圧のいずれも適用可能である。熱処理に用いる装置、方法としては、雰囲気調整を行いながら加熱できる装置、方法であればいかなる方法をも用いることができるが、たとえば、バッチ式の反応器、連続式の反応器、二軸あるいは一軸のエクストルーダーなど、またはプレス機、流管式の押出機を用いて、成形しながら処理する方法をとることも出来る。ここで、ポリ乳酸樹脂(A−1成分、A−2成分)並びに、式(3)または式(4)で表される燐酸エステル金属塩の共存組成物の調製を、溶媒の非存在下にて溶融混合する方法により行う場合には、かかる共存組成物の調製と同時に、該共存組成物の熱処理をも達成できる。
ii) Heat treatment of coexisting composition In the present invention, when a mixture of poly-L lactic acid resin (A-1 component) and poly-D lactic acid resin (A-2 component) is used as polylactic acid resin (A component), other Before melt-mixing with the additive component, the coexisting composition of the polylactic acid resin (A-1 component, A-2 component) and the phosphate ester metal salt represented by formula (3) or formula (4) is heat-treated. Is preferred. Such heat treatment refers to holding the composition in a temperature range of 240 to 300 ° C. for a certain period of time. The temperature of the heat treatment is preferably 250 to 300 ° C, more preferably 260 to 290 ° C. If it exceeds 300 ° C., it is difficult to suppress the decomposition reaction, which is not preferable, and if it is less than 240 ° C., uniform mixing by heat treatment does not proceed, and stereocomplex crystals are not easily generated efficiently. The heat treatment time is not particularly limited, but is 0.2 to 60 minutes, preferably 1 to 20 minutes. As an atmosphere during the heat treatment, either an inert atmosphere at normal pressure or a reduced pressure can be applied. As the apparatus and method used for the heat treatment, any apparatus and method that can be heated while adjusting the atmosphere can be used. For example, a batch type reactor, a continuous type reactor, a biaxial or uniaxial type can be used. It is also possible to adopt a method of processing while forming using an extruder or the like, or a press machine or a flow tube type extruder. Here, the preparation of the coexisting composition of the polylactic acid resin (component A-1, component A-2) and the phosphoric acid ester metal salt represented by formula (3) or formula (4) is carried out in the absence of a solvent. In the case of carrying out by the melt mixing method, heat treatment of the coexisting composition can be achieved simultaneously with the preparation of the coexisting composition.

iii)樹脂組成物の調製
本発明において樹脂組成物は、ポリ乳酸樹脂(A成分)(前記熱処理された共存組成物を含む)、エラストマー(B成分)、カルボジイミド化合物(C成分)、酸化防止剤(D成分)、並びにその他添加剤成分を混合することによって製造される(ただし、共存組成物中に含有されている成分は除く。)。
その他添加剤成分としては、ハイドロタルサイト、無機充填材折れ抑制剤、滑剤、紫外線吸収剤、光安定剤、離型剤、流動改質剤、着色剤、光拡散剤、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、抗菌剤、結晶核剤等、任意の添加剤成分が挙げられる。
iii) Preparation of resin composition In the present invention, the resin composition comprises a polylactic acid resin (component A) (including the heat-treated coexisting composition), an elastomer (component B), a carbodiimide compound (component C), and an antioxidant. (D component), and other additive components are produced by mixing (however, the components contained in the coexisting composition are excluded).
Other additive components include hydrotalcite, inorganic filler breakage inhibitor, lubricant, UV absorber, light stabilizer, mold release agent, flow modifier, colorant, light diffusing agent, fluorescent whitening agent, phosphorescent Arbitrary additive components such as pigments, fluorescent dyes, antistatic agents, antibacterial agents, crystal nucleating agents and the like can be mentioned.

かかる樹脂組成物を製造するには、任意の方法が採用される。例えばポリ乳酸樹脂(A成分)並びに他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては場合により押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式二軸押出機が好ましい。他に、各成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法を取ることもできる。   In order to produce such a resin composition, any method is adopted. For example, a method of premixing polylactic acid resin (component A) and other components, then melt-kneading and pelletizing can be mentioned. Examples of the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical apparatus, and an extrusion mixer. In the preliminary mixing, granulation can be performed by an extrusion granulator or a briquetting machine depending on the case. After the preliminary mixing, the mixture is melt-kneaded by a melt-kneader represented by a vent type twin-screw extruder and pelletized by a device such as a pelletizer. Other examples of the melt kneader include a Banbury mixer, a kneading roll, and a constant temperature stirring vessel, but a vent type twin screw extruder is preferred. In addition, each component can be independently supplied to a melt-kneader represented by a twin-screw extruder without being premixed.

<眼鏡用フレーム部材の製造について>
前記方法で製造されたペレットを原料として射出成形、押出成形など、各種成形方法を使用することにより眼鏡用フレーム部材を製造することができる。すなわち本発明は、射出成形、押出成形、熱成形、ブロー成形または発泡成形により成形した成形品を曲げ加工することにより作成される眼鏡用フレーム部材を包含する。眼鏡用フレーム部材は、ウデ、耳モダンであることが好ましい。
<Manufacture of eyeglass frame members>
The spectacle frame member can be manufactured by using various molding methods such as injection molding and extrusion molding using the pellets manufactured by the above method as a raw material. That is, the present invention includes a frame member for eyeglasses produced by bending a molded product formed by injection molding, extrusion molding, thermoforming, blow molding or foam molding. The frame member for spectacles is preferably Ude or ear modern.

射出成形においては、通常のコールドランナー方式の成形法だけでなく、ホットランナー方式の成形法も可能である。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。
押出成形においては、各種異形押出成形品、シート、フィルムなどの成形体から眼鏡用フレーム部材の形状に切り出して、目的とする形状を得ることができる。また、回転成形やブロー成形などに供することにより、中空成形品を得ることも可能である。
上記で得られた成形品を熱曲げ加工する際、樹脂組成物のガラス転移温度以上、融点未満に加工部位を加熱して加工する。加熱方法は特に限定されず、例えば、電子ヒーターやライト、熱風送風機等による加熱が挙げられる。そして、直接的に樹脂のみに局部的に加熱してもよいし、構造体全体を加熱してもよく、少なくとも加工部位が前記温度範囲であれば、その加熱方法等は特に制限されない。前記温度範囲における加熱によって、軟化状態での曲げ加工できるため、割れ等を防ぎながらの加工が可能になる。
In the injection molding, not only a normal cold runner molding method but also a hot runner molding method is possible. In such injection molding, not only a normal molding method but also an injection compression molding, an injection press molding, a gas assist injection molding, a foam molding (including those by injection of a supercritical fluid), an insert molding, depending on the purpose as appropriate. A molded product can be obtained using an injection molding method such as in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultrahigh-speed injection molding. The advantages of these various molding methods are already widely known.
In extrusion molding, a desired shape can be obtained by cutting out from various shaped extruded products, sheets, films and the like into the shape of a frame member for spectacles. Moreover, it is also possible to obtain a hollow molded product by subjecting it to rotational molding or blow molding.
When the molded product obtained above is subjected to a hot bending process, the processed part is heated to a temperature higher than the glass transition temperature and lower than the melting point of the resin composition. The heating method is not particularly limited, and examples thereof include heating with an electronic heater, a light, a hot air blower, or the like. Then, it may be heated locally only to the resin or the entire structure may be heated, and the heating method and the like are not particularly limited as long as at least the processing site is in the temperature range. Since the bending in the softened state can be performed by heating in the temperature range, it is possible to perform processing while preventing cracks and the like.

さらに本発明の眼鏡用フレーム部材は、表面改質を施すことによりさらに他の機能を付与することが可能である。ここでいう表面改質とは、蒸着(物理蒸着、化学蒸着等)、メッキ(電気メッキ、無電解メッキ、溶融メッキ等)、塗装、コーティング、印刷等の樹脂成形品の表層上に新たな層を形成させるものであり、通常の樹脂成形品に用いられる方法が適用できる。   Furthermore, the frame member for spectacles of the present invention can be provided with other functions by surface modification. Surface modification here means a new layer on the surface of resin molded products such as vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, etc. The method used for normal resin molded products can be applied.

以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these.

1.ポリ乳酸樹脂の製造
下記の製造例に示す方法により、ポリ乳酸樹脂の製造を行った。また製造例中における各値は下記の方法で求めた。
(1)ポリマーの重量平均分子量(Mw)
ゲルパーミエーションクロマトグラフィー(GPC)により測定、標準ポリスチレンに換算した。GPC測定機器は、検出器として、示差屈折計島津RID−6Aを用い、カラムとして東ソ−TSKgelG3000HXLを使用した。測定は、クロロホルムを溶離液とし温度40℃、流速1.0ml/minにて、濃度1mg/ml(1%ヘキサフルオロイソプロパノールを含むクロロホルム)の試料を10μl注入することにより行った。
(2)カルボキシル基濃度
試料を精製o−クレゾールに窒素気流下で溶解した後、ブロモクレゾールブルーを指示薬とし、0.05規定水酸化カリウムのエタノール溶液で滴定した。
(3)ステレオコンプレックス結晶化度
DSC(TAインスルメント社製 TA−2920)測定の昇温過程におけるポリ乳酸樹脂(A成分)結晶由来の融解エンタルピーを用いて、下記式(1)より、ステレオコンプレックス結晶化度のパラメーターを評価した。
ステレオコンプレックス結晶化度=[△Hms/(△Hms+△Hmh)]×100 (1)
[但し、式(1)中、△Hmhと△Hmsは、それぞれ示差走査熱量計(DSC)の昇温過程において、190℃未満に現れる結晶融点の融解エンタルピー(△Hmh)、および190℃以上250℃未満に現れる結晶融点の融解エンタルピー(△Hms)である。]
なお、上記△Hmhと△Hmsは樹脂組成物を示差走査熱量計(DSC)を用いて、窒素雰囲気下、昇温速度20℃/分で測定することにより求めた。
本発明の実施例、比較例においては、以下の材料を使用した。
1. Manufacture of polylactic acid resin Polylactic acid resin was manufactured by the method shown in the following manufacture example. Moreover, each value in a manufacture example was calculated | required with the following method.
(1) Polymer weight average molecular weight (Mw)
It was measured by gel permeation chromatography (GPC) and converted to standard polystyrene. The GPC measurement instrument used a differential refractometer Shimadzu RID-6A as a detector and Toso-TSKgel G3000HXL as a column. The measurement was performed by injecting 10 μl of a sample having a concentration of 1 mg / ml (chloroform containing 1% hexafluoroisopropanol) at a temperature of 40 ° C. and a flow rate of 1.0 ml / min using chloroform as an eluent.
(2) Carboxyl group concentration The sample was dissolved in purified o-cresol under a nitrogen stream, and then titrated with 0.05 N potassium hydroxide in ethanol using bromocresol blue as an indicator.
(3) Stereocomplex crystallinity The stereocomplex from the following formula (1) using the melting enthalpy derived from the polylactic acid resin (component A) crystal in the heating process of DSC (TA-2920 manufactured by TA Instruments). The crystallinity parameter was evaluated.
Stereo complex crystallinity = [ΔHms / (ΔHms + ΔHmh)] × 100 (1)
[In the formula (1), ΔHmh and ΔHms are the melting enthalpy (ΔHmh) of the melting point of the crystal, which appears below 190 ° C. in the temperature rising process of the differential scanning calorimeter (DSC), respectively, and 190 ° C. or more and 250 It is the melting enthalpy (ΔHms) of the crystalline melting point that appears below ° C. ]
The ΔHmh and ΔHms were determined by measuring the resin composition using a differential scanning calorimeter (DSC) in a nitrogen atmosphere at a heating rate of 20 ° C./min.
In the examples and comparative examples of the present invention, the following materials were used.

[A−1成分:ポリL−乳酸樹脂(PLLA)]
[製造例1−1]
L−ラクチド(株式会社武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応し、オクチル酸スズに対し1.2倍当量の燐酸を添加しその後、13.3Paで残存するラクチドを除去し、ペレット化し、ポリL−乳酸樹脂(A−1)を得た。得られたポリL−乳酸樹脂の重量平均分子量は15.2万、融解エンタルピー(ΔHmh)は49J/g、融点(Tmh)は175℃、ガラス転移点(Tg)55℃、カルボキシル基含有量は14eq/tonであった。
[A-1 component: poly L-lactic acid resin (PLLA)]
[Production Example 1-1]
To 100 parts by weight of L-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%), 0.005 part by weight of tin octylate was added, and the reactor was stirred at 180 ° C. in a nitrogen atmosphere with a stirring blade. For 2 hours, 1.2 times equivalent of phosphoric acid to tin octylate was added, and then the remaining lactide at 13.3 Pa was removed and pelletized to obtain poly L-lactic acid resin (A-1). . The resulting poly L-lactic acid resin has a weight average molecular weight of 152,000, a melting enthalpy (ΔHmh) of 49 J / g, a melting point (Tmh) of 175 ° C., a glass transition point (Tg) of 55 ° C., and a carboxyl group content of 14 eq / ton.

[A−2成分:ポリD−乳酸樹脂の製造(PDLA)]
[製造例1−2]
製造例1−1のL−ラクチドのかわりにD−ラクチド(株式会社武蔵野化学研究所製、光学純度100%)を使用する以外は製造例1−1と同様の操作を行い、ポリD−乳酸樹脂(A−2)を得た。得られたポリD−乳酸樹脂の重量平均分子量は15.1万、融解エンタルピー(ΔHmh)は48J/g、融点(Tmh)は175℃、ガラス転移点(Tg)55℃、カルボキシル基含有量は15eq/tonであった。
[Component A-2: Production of poly-D-lactic acid resin (PDLA)]
[Production Example 1-2]
Poly D-lactic acid was prepared in the same manner as in Production Example 1-1 except that D-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%) was used instead of L-lactide in Production Example 1-1. Resin (A-2) was obtained. The resulting poly-D-lactic acid resin has a weight average molecular weight of 151,000, a melting enthalpy (ΔHmh) of 48 J / g, a melting point (Tmh) of 175 ° C., a glass transition point (Tg) of 55 ° C., and a carboxyl group content of It was 15 eq / ton.

[A−3成分:ステレオコンプレックスポリ乳酸樹脂の製造(scPLA)]
[製造例1−3]
製造例1−1および1−2で得られたPLLA,PDLAの各50重量部よりなるポリ乳酸樹脂計100重量部並びに燐酸−2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム(アデカスタブNA−11:(株)ADEKA製)0.1重量部をブレンダーで混合後、110℃で5時間乾燥し、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度250℃、スクリュー回転数250rpm、吐出量9kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ステレオコンプレックスポリ乳酸樹脂(A−3)を得た。得られたステレオコンプレックスポリ乳酸樹脂の重量平均分子量は13万、融解エンタルピー(ΔHms)は56J/g、融点(Tms)は220℃、ガラス転移点(Tg)58℃、カルボキシル基含有量は17eq/ton、式(1)を用いて算出したステレオコンプレックス結晶化度は、100%であった。
[Component A-3: Production of stereocomplex polylactic acid resin (scPLA)]
[Production Example 1-3]
100 parts by weight of polylactic acid resin composed of 50 parts by weight of PLLA and PDLA obtained in Production Examples 1-1 and 1-2 and phosphoric acid-2,2′-methylenebis (4,6-di-tert-butylphenyl) ) Sodium (ADK STAB NA-11: manufactured by ADEKA Co., Ltd.) 0.1 parts by weight was mixed with a blender, dried at 110 ° C. for 5 hours, and vented twin screw extruder with a diameter of 30 mmφ [manufactured by Nippon Steel Works, Ltd. TEX30XSST] was melt-extruded and pelletized at a cylinder temperature of 250 ° C., a screw rotation speed of 250 rpm, a discharge rate of 9 kg / h, and a vent vacuum of 3 kPa to obtain a stereocomplex polylactic acid resin (A-3). The resulting stereocomplex polylactic acid resin had a weight average molecular weight of 130,000, a melting enthalpy (ΔHms) of 56 J / g, a melting point (Tms) of 220 ° C., a glass transition point (Tg) of 58 ° C., and a carboxyl group content of 17 eq / The stereocomplex crystallinity calculated using ton and formula (1) was 100%.

[A−4成分:ステレオコンプレックスポリ乳酸樹脂の製造(scPLA)]
[製造例1−4]
製造例1−1および1−2で得られたPLLA,PDLAの各50重量部よりなるポリ乳酸樹脂計100重量部並びに燐酸−2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム(アデカスタブNA−11:(株)ADEKA製)0.1重量部をブレンダーで混合後、110℃で5時間乾燥し、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度280℃、スクリュー回転数250rpm、吐出量8kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ステレオコンプレックスポリ乳酸樹脂(A−4)を得た。得られたステレオコンプレックスポリ乳酸樹脂の重量平均分子量は10.5万、融解エンタルピー(ΔHms)は59J/g、融点(Tms)は217℃、ガラス転移点(Tg)57℃、カルボキシル基含有量は23eq/ton、式(1)を用いて算出したステレオコンプレックス結晶化度は、100%であった。
[Component A-4: Production of stereocomplex polylactic acid resin (scPLA)]
[Production Example 1-4]
100 parts by weight of polylactic acid resin composed of 50 parts by weight of PLLA and PDLA obtained in Production Examples 1-1 and 1-2 and phosphoric acid-2,2′-methylenebis (4,6-di-tert-butylphenyl) ) Sodium (ADK STAB NA-11: manufactured by ADEKA Co., Ltd.) 0.1 parts by weight was mixed with a blender, dried at 110 ° C. for 5 hours, and vented twin screw extruder with a diameter of 30 mmφ [manufactured by Nippon Steel Works, Ltd. TEX30XSST] was melt-extruded and pelletized at a cylinder temperature of 280 ° C., a screw rotational speed of 250 rpm, a discharge rate of 8 kg / h, and a vent vacuum of 3 kPa to obtain a stereocomplex polylactic acid resin (A-4). The resulting stereocomplex polylactic acid resin has a weight average molecular weight of 105,000, a melting enthalpy (ΔHms) of 59 J / g, a melting point (Tms) of 217 ° C., a glass transition point (Tg) of 57 ° C., and a carboxyl group content of The stereocomplex crystallinity calculated using 23 eq / ton and formula (1) was 100%.

[A’−1成分:ステレオコンプレックスポリ乳酸樹脂の製造(scPLA)]
[製造例1−5]
製造例1−1および1−2で得られたPLLA,PDLAの各50重量部よりなるポリ乳酸樹脂計100重量部並びに燐酸−2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)ナトリウム(アデカスタブNA−11:(株)ADEKA製)0.1重量部をブレンダーで混合後、110℃で5時間乾燥し、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]に供給し、シリンダー温度290℃、スクリュー回転数250rpm、吐出量5kg/h、およびベント減圧度3kPaで溶融押出してペレット化し、ステレオコンプレックスポリ乳酸樹脂(A’−1)を得た。得られたステレオコンプレックスポリ乳酸樹脂の重量平均分子量は9.2万、融解エンタルピー(ΔHms)は59J/g、融点(Tms)は214℃、ガラス転移点(Tg)56℃、カルボキシル基含有量は29eq/ton、式(1)を用いて算出したステレオコンプレックス結晶化度は、100%であった。
結果をまとめて表1中に記載する。なお、表1中のΔHmsは、190℃以上250℃未満に現れる結晶融点の融解エンタルピーであり、ΔHmhは、190℃未満に現れる結晶融点の融解エンタルピーである。Tmsは、190℃以上250℃未満に現れる結晶融点であり、Tmhは、190℃未満に現れる結晶融点である。
[A′-1 Component: Production of Stereo Complex Polylactic Acid Resin (scPLA)]
[Production Example 1-5]
100 parts by weight of polylactic acid resin composed of 50 parts by weight of PLLA and PDLA obtained in Production Examples 1-1 and 1-2 and phosphoric acid-2,2′-methylenebis (4,6-di-tert-butylphenyl) ) Sodium (ADK STAB NA-11: manufactured by ADEKA Co., Ltd.) 0.1 parts by weight was mixed with a blender, dried at 110 ° C. for 5 hours, and vented twin screw extruder with a diameter of 30 mmφ [manufactured by Nippon Steel Works, Ltd. TEX30XSST] was melt-extruded and pelletized at a cylinder temperature of 290 ° C., a screw rotation speed of 250 rpm, a discharge rate of 5 kg / h, and a vent vacuum of 3 kPa to obtain a stereocomplex polylactic acid resin (A′-1). The resulting stereocomplex polylactic acid resin had a weight average molecular weight of 92,000, a melting enthalpy (ΔHms) of 59 J / g, a melting point (Tms) of 214 ° C., a glass transition point (Tg) of 56 ° C., and a carboxyl group content of The stereocomplex crystallinity calculated using 29 eq / ton and formula (1) was 100%.
The results are summarized in Table 1. In Table 1, ΔHms is the melting enthalpy of the crystalline melting point appearing at 190 ° C. or higher and lower than 250 ° C., and ΔHmh is the melting enthalpy of the crystalline melting point appearing below 190 ° C. Tms is a crystalline melting point appearing at 190 ° C. or more and less than 250 ° C., and Tmh is a crystalline melting point appearing at less than 190 ° C.

Figure 0006283464
Figure 0006283464

2.環状カルボジイミドの製造
下記の製造例に示す方法により、環状カルボジイミドの製造を行った。また製造例中における各値は下記の方法で求めた。
(1)環状カルボジイミド構造のNMRによる同定
合成した環状カルボジイミド化合物のNMRによる同定は、日本電子(株)製JNR−EX270を使用し、H−NMR、13C−NMRによって確認した。尚、溶媒は重クロロホルムを用いた。
(2)環状カルボジイミドのカルボジイミド骨格のIRによる同定
合成した環状カルボジイミド化合物のカルボジイミド骨格の同定は、ニコレー(株)製Magna−750を使用し、FT−IRよってカルボジイミドに特徴的な2100〜2200cm−1の吸収ピークを確認することで行った。
本発明の実施例において、以下の材料を使用した。
2. Production of cyclic carbodiimide Cyclic carbodiimide was produced by the method shown in the following production examples. Moreover, each value in a manufacture example was calculated | required with the following method.
(1) Identification of cyclic carbodiimide structure by NMR Identification of the synthesized cyclic carbodiimide compound by NMR was confirmed by 1 H-NMR and 13 C-NMR using JNR-EX270 manufactured by JEOL Ltd. In addition, deuterated chloroform was used as a solvent.
(2) Identification of carbodiimide skeleton of the cyclic carbodiimide compound identified synthesis by IR carbodiimide skeleton of the cyclic carbodiimide uses Nicolet Co. Magna-750, characteristic 2100~2200Cm -1 in FT-IR Accordingly carbodiimide This was done by confirming the absorption peak of.
In the examples of the present invention, the following materials were used.

[C−1成分:環状カルボジイミドの製造(CC1)]
[製造例2]
o−ニトロフェノール(0.11mol)と1,2−ジブロモエタン(0.05mol)、炭酸カリウム(0.33mol)、N,N−ジメチルホルムアミド(DMF)200mlを攪拌装置および加熱装置を設置した反応装置にN雰囲気下仕込み、130℃で12時間反応後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回分液を行った。有機層を硫酸ナトリウム5gで脱水し、ジクロロメタンを減圧により除去し、中間生成物A(ニトロ体)を得た。
[C-1 component: production of cyclic carbodiimide (CC1)]
[Production Example 2]
Reaction in which 200 ml of o-nitrophenol (0.11 mol), 1,2-dibromoethane (0.05 mol), potassium carbonate (0.33 mol), and N, N-dimethylformamide (DMF) were installed with a stirrer and a heating device The apparatus was charged in an N 2 atmosphere and reacted at 130 ° C. for 12 hours. After that, DMF was removed under reduced pressure, and the resulting solid was dissolved in 200 ml of dichloromethane and separated three times with 100 ml of water. The organic layer was dehydrated with 5 g of sodium sulfate, and dichloromethane was removed under reduced pressure to obtain an intermediate product A (nitro form).

次に中間生成物A(0.1mol)と5%パラジウムカーボン(Pd/C)(1g)、エタノール/ジクロロメタン(70/30)200mlを、攪拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなったら反応を終了する。Pd/Cを回収し、混合溶媒を除去すると中間生成物B(アミン体)が得られた。   Next, intermediate product A (0.1 mol), 5% palladium carbon (Pd / C) (1 g), and 200 ml of ethanol / dichloromethane (70/30) were charged into a reactor equipped with a stirrer, and 5 hydrogen substitution was performed. The reaction is performed in a state where hydrogen is constantly supplied at 25 ° C., and the reaction is terminated when there is no decrease in hydrogen. When Pd / C was recovered and the mixed solvent was removed, an intermediate product B (amine body) was obtained.

次に攪拌装置および加熱装置、滴下ロートを設置した反応装置に、N雰囲気下、トリフェニルホスフィンジブロミド(0.11mol)と1,2−ジクロロエタン150mlを仕込み攪拌させる。そこに中間生成物B(0.05mol)とトリエチルアミン(0.25mol)を1,2−ジクロロエタン50mlに溶かした溶液を25℃で徐々に滴下する。滴下終了後、70℃で5時間反応させる。その後、反応溶液をろ過し、ろ液を水100mlで5回分液を行った。有機層を硫酸ナトリウム5gで脱水し、1,2−ジクロロエタンを減圧により除去し、中間生成物C(トリフェニルホスフィン体)が得られた。 Next, in a reactor equipped with a stirrer, a heating device, and a dropping funnel, triphenylphosphine dibromide (0.11 mol) and 150 ml of 1,2-dichloroethane are charged and stirred in an N 2 atmosphere. A solution prepared by dissolving intermediate product B (0.05 mol) and triethylamine (0.25 mol) in 50 ml of 1,2-dichloroethane is gradually added dropwise thereto at 25 ° C. After completion of dropping, the reaction is carried out at 70 ° C. for 5 hours. Thereafter, the reaction solution was filtered, and the filtrate was separated 5 times with 100 ml of water. The organic layer was dehydrated with 5 g of sodium sulfate, and 1,2-dichloroethane was removed under reduced pressure to obtain an intermediate product C (triphenylphosphine compound).

次に、攪拌装置および滴下ロートを設置した反応装置に、N雰囲気下、ジ−tert−ブチルジカーボネート(0.11mol)とN,N−ジメチル−4−アミノピリジン(0.055mol)、ジクロロメタン150mlを仕込み攪拌させた。そこに、25℃で中間生成物C(0.05mol)を溶かしたジクロロメタン100mlをゆっくりと滴下させた。滴下後、12時間反応させる。その後、ジクロロメタンを除去し得られた固形物を精製することで、CC1を得た。CC1の構造をNMR,IRにより確認した結果、下記式に示される構造であった。 Next, in a reactor equipped with a stirrer and a dropping funnel, di-tert-butyl dicarbonate (0.11 mol), N, N-dimethyl-4-aminopyridine (0.055 mol), dichloromethane under N 2 atmosphere. 150 ml was charged and stirred. Thereto, 100 ml of dichloromethane in which the intermediate product C (0.05 mol) was dissolved was slowly added dropwise at 25 ° C. After dropping, react for 12 hours. Then, CC1 was obtained by refine | purifying the solid substance obtained by removing dichloromethane. As a result of confirming the structure of CC1 by NMR and IR, it was a structure represented by the following formula.

Figure 0006283464
Figure 0006283464

その他原料としては、以下のものを使用した。   As other raw materials, the following were used.

<B成分>
B−1:クラレ(株)製 SEPTON8006 [ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン/ガラス転移温度−55℃]
B−2:東レ・デュポン(株)製 ハイトレル4057 [ポリブチレンテレフタレート−ポリテトラメチレングリコール ブロック共重合体/ガラス転移温度−30℃]
B−3:T&K TOKA(株)製 TPAE−32 [ポリエーテルエステルアミド系エラストマー/ガラス転移温度−40℃]
B−4:住友化学(株)製 ボンドファースト7M [エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体/ガラス転移温度−33℃]
<B component>
B-1: Kuraray Co., Ltd. SEPTON 8006 [Polystyrene-poly (ethylene / butylene) block-polystyrene / glass transition temperature-55 ° C.]
B-2: Hytrel 4057 manufactured by Toray DuPont Co., Ltd. [Polybutylene terephthalate-polytetramethylene glycol block copolymer / glass transition temperature-30 ° C.]
B-3: TPAE-32 manufactured by T & K TOKA Co., Ltd. [Polyetheresteramide elastomer / glass transition temperature-40 ° C.]
B-4: Bondfast 7M [ethylene-glycidyl methacrylate-methyl acrylate copolymer / glass transition temperature-33 ° C.] manufactured by Sumitomo Chemical Co., Ltd.

<B’成分>
B’−1:東レ・デュポン(株)製 ハイトレル5557 [ポリブチレンテレフタレート−ポリテトラメチレングリコール ブロック共重合体/ガラス転移温度−20℃]
B’−2:クレイトンポリマージャパン(株)製 G1641HU [ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン/ガラス転移温度−25℃]
<B 'component>
B′-1: Hytrel 5557 manufactured by Toray DuPont Co., Ltd. [Polybutylene terephthalate-polytetramethylene glycol block copolymer / glass transition temperature-20 ° C.]
B′-2: G1641HU manufactured by Kraton Polymer Japan Co., Ltd. [polystyrene-poly (ethylene / butylene) block-polystyrene / glass transition temperature−25 ° C.]

<D成分>
D−1:チバ・スペシャリティ・ケミカルズ(株)製 Irganox1076 [n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]
D−2:(株)アデカ製 PEP−24G [ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト]
D−3:クラリアントジャパン(株)製 サンドスタブP−EPQ[テトラキス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4’−ジイルビスホスホナイト]
D−4:(株)アデカ製 アデカスタブAO―412S[3−ラウリルチオプロピオネート]
<D component>
D-1: Irganox 1076 [n-octadecyl-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] manufactured by Ciba Specialty Chemicals Co., Ltd.
D-2: Pade-24G manufactured by ADEKA Corporation [Bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite]
D-3: Sandstub P-EPQ [tetrakis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphosphonite] manufactured by Clariant Japan Co., Ltd.
D-4: Adeka Corporation Adeka Stub AO-412S [3-laurylthiopropionate]

3.ポリ乳酸樹脂ペレットの製造および評価
下記の実施例、比較例に示す方法により、ポリ乳酸樹脂(A成分)と添加剤との樹脂組成物ペレットの製造を行った。また実施例中における各値は下記の方法で求めた。
(1)荷重たわみ温度
樹脂組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル70秒にて、80mm×10mm×4mmのISO規格に準拠した試験片を成形し、温度23℃、相対湿度50%の環境下で24時間放置した後、ISO75−1および2に準拠して、荷重0.45MPaにて測定した。
(2)引張試験の応力の比率
樹脂組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル70秒にて、ISO527−2記載の1A形の成形片を成形し、温度23℃、相対湿度50%の環境下で24時間放置した後、ISO527−1およびISO527−2に準拠して引張試験を実施し、上降伏点の応力(降伏応力)と破断点の応力(破断応力)を測定し、応力の比率[応力の比率=(破断応力/降伏応力)×100]を算出した。
(3)ブリードアウト試験
樹脂組成物を射出成形機(東芝機械(株)製:IS−150EN)、150mm×150mm、厚さ2mm、金型表面磨き#8000の金型を使用し、シリンダー温度230℃、金型温度120℃、成形サイクル70秒にて成形片を作成した。次に、この成形片にゼブラ株式会社製 油性フェルトペン「マッキー(登録商標)」を用いて文字を書いた後、60℃×85%RH条件にて24時間処理をかけたあと、布を用いた拭き取りテストを実施した。文字が拭き取れなかった場合を○、文字を拭き取れた場合を×と判定した。
(4)耐加水分解性
樹脂組成物を射出成形機(東芝機械(株)製:IS−150EN)を使用して、シリンダー温度230℃、金型温度120℃、成形サイクル70秒にて、ISO527−2記載の1A形の成形片を作成した。次に、この成形片を80℃×95%RH条件にて200h、湿熱処理を行った。ISO527−1、ISO527−2に準拠して、引張試験を実施し、湿熱処理前の引張最大応力と湿熱処理後の引張最大応力から保持率[(湿熱処理後の引張最大応力/湿熱処理前の引張最大応力)×100]を算出した。
3. Production and Evaluation of Polylactic Acid Resin Pellets Resin composition pellets of polylactic acid resin (component A) and additives were produced by the methods shown in the following examples and comparative examples. Moreover, each value in an Example was calculated | required with the following method.
(1) Deflection temperature under load Using an injection molding machine (manufactured by Toshiba Machine Co., Ltd .: IS-150EN), the cylinder temperature is 230 ° C., the mold temperature is 120 ° C., and the molding cycle is 70 seconds. A test piece conforming to the ISO standard of 10 mm × 4 mm was molded and allowed to stand for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 50%, and then measured at a load of 0.45 MPa according to ISO 75-1 and 2. did.
(2) Stress ratio of tensile test The resin composition was injected at a cylinder temperature of 230 ° C, a mold temperature of 120 ° C, and a molding cycle of 70 seconds using an injection molding machine (Toshiba Machine Co., Ltd .: IS-150EN). 1A-shaped molded piece described in ISO527-2 was molded and allowed to stand for 24 hours in an environment at a temperature of 23 ° C. and a relative humidity of 50%, and then a tensile test was performed in accordance with ISO527-1 and ISO527-2. The stress at the upper yield point (yield stress) and the stress at the break point (breaking stress) were measured, and the stress ratio [stress ratio = (breaking stress / yield stress) × 100] was calculated.
(3) Bleed-out test The resin composition was molded using an injection molding machine (Toshiba Machine Co., Ltd .: IS-150EN), 150 mm x 150 mm, 2 mm thick, mold surface polishing # 8000 mold, cylinder temperature 230 Molded pieces were prepared at ℃, mold temperature of 120 ℃, and molding cycle of 70 seconds. Next, letters were written on this molded piece using an oil-based felt pen “Mackey (registered trademark)” manufactured by Zebra Co., Ltd., and then treated for 24 hours under conditions of 60 ° C. × 85% RH. A wipe test was performed. The case where the character could not be wiped off was judged as ○, and the case where the character was wiped off was judged as ×.
(4) Hydrolysis resistance Using an injection molding machine (Toshiba Machine Co., Ltd .: IS-150EN), the resin composition was subjected to ISO 527 at a cylinder temperature of 230 ° C, a mold temperature of 120 ° C, and a molding cycle of 70 seconds. A molded piece of 1A type described in -2. Next, this molded piece was subjected to a wet heat treatment at 80 ° C. × 95% RH for 200 hours. In accordance with ISO527-1 and ISO527-2, a tensile test was performed, and the retention rate [(maximum tensile stress after wet heat treatment / before wet heat treatment) was determined from the maximum tensile stress before wet heat treatment and the maximum tensile stress after wet heat treatment. Maximum tensile stress) × 100] was calculated.

<実施例1>
ポリ乳酸樹脂として製造例1−1で製造したポリ乳酸樹脂A−1成分を用いて、表2の組成をドライブレンドにて均一に予備混合した後、かかる予備混合物を第1供給口より供給し、溶融押出してペレット化した。ここで、第一供給口とは根元の供給口のことである。溶融押出は、径30mmφのベント式二軸押出機[(株)日本製鋼所製TEX30XSST]を用い実施した。また、押出温度は、C1/C2〜C11/D=10℃/230℃/240℃とし、スクリュー回転数は150rpm、吐出量は20kg/h、ベント減圧度は3kPaとした。
得られたペレットを100℃で5時間、熱風循環式乾燥機により乾燥し、射出成形機(東芝機械(株)製:IS−150EN)にて成形を実施し、評価を行った。結果を表2に示す。
<Example 1>
Using the polylactic acid resin A-1 component produced in Production Example 1-1 as the polylactic acid resin, the composition shown in Table 2 was uniformly premixed by dry blending, and then this premixed mixture was supplied from the first supply port. , Melt extruded and pelletized. Here, the first supply port is a base supply port. The melt extrusion was carried out using a vent type twin screw extruder (TEX30XSST manufactured by Nippon Steel Works) with a diameter of 30 mmφ. The extrusion temperature was C1 / C2 to C11 / D = 10 ° C./230° C./240° C., the screw rotation speed was 150 rpm, the discharge rate was 20 kg / h, and the vent pressure reduction was 3 kPa.
The obtained pellets were dried with a hot air circulation dryer at 100 ° C. for 5 hours, molded with an injection molding machine (Toshiba Machine Co., Ltd .: IS-150EN), and evaluated. The results are shown in Table 2.

<実施例2>
ポリ乳酸樹脂として製造例1−2で製造したポリ乳酸樹脂A−2成分を用いた以外は実施例1と同様の方法でペレット化し、その評価を実施した。結果を表2に示す。
<Example 2>
Except having used the polylactic acid resin A-2 component manufactured by manufacture example 1-2 as a polylactic acid resin, it pelletized by the method similar to Example 1, and implemented the evaluation. The results are shown in Table 2.

<実施例3、5〜20、比較例1、3〜6>
ポリ乳酸樹脂として製造例1−3で製造したポリ乳酸樹脂A−3成分を用いた以外は実施例1と同様の方法でペレット化し、その評価を実施した。結果を表2〜表4に示す。
<Examples 3 and 5-20, Comparative Examples 1 and 3-6>
Except having used the polylactic acid resin A-3 component manufactured by manufacture example 1-3 as a polylactic acid resin, it pelletized by the method similar to Example 1, and implemented the evaluation. The results are shown in Tables 2-4.

<実施例4>
ポリ乳酸樹脂として製造例1−4で製造したポリ乳酸樹脂A−4成分を用いた以外は実施例1と同様の方法でペレット化し、その評価を実施した。結果を表2に示す。
<Example 4>
Except having used the polylactic acid resin A-4 component manufactured by manufacture example 1-4 as a polylactic acid resin, it pelletized by the method similar to Example 1, and implemented the evaluation. The results are shown in Table 2.

<比較例2>
ポリ乳酸樹脂として製造例1−5で製造したポリ乳酸樹脂A’−1成分を用いた以外は実施例1と同様の方法でペレット化し、その評価を実施した。結果を表3に示す。
<Comparative example 2>
Except having used the polylactic acid resin A'-1 component manufactured by manufacture example 1-5 as a polylactic acid resin, it pelletized by the method similar to Example 1, and the evaluation was implemented. The results are shown in Table 3.

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

Figure 0006283464
Figure 0006283464

<実施例1〜13>
重量平均分子量100,000以上のポリ乳酸樹脂とガラス転移温度が−30℃以下のエラストマーを用いた実施例1〜13は、応力の比率が90%以上であり、ブリードアウトも無く、眼鏡用フレーム部材として好適であった。
<Examples 1 to 13>
Examples 1 to 13 using a polylactic acid resin having a weight average molecular weight of 100,000 or more and an elastomer having a glass transition temperature of −30 ° C. or less have a stress ratio of 90% or more, no bleed-out, and a frame for glasses. It was suitable as a member.

<比較例1>
ポリ乳酸樹脂のみを用いた場合は、引張試験時に降伏点に達する前に試験片が破断してしまった。
<Comparative Example 1>
When only the polylactic acid resin was used, the test piece broke before reaching the yield point during the tensile test.

<比較例2>
重量平均分子量が100,000未満のポリ乳酸樹脂を用いた場合は、引張試験時に降伏点に達する前に試験片が破断してしまった。
<Comparative example 2>
When a polylactic acid resin having a weight average molecular weight of less than 100,000 was used, the test piece broke before reaching the yield point during the tensile test.

<比較例3>
ガラス転移温度が−30℃以下のエラストマーの添加量が少なすぎたために、応力の比率が90%未満であった。
<Comparative Example 3>
Since the amount of elastomer having a glass transition temperature of −30 ° C. or lower was too small, the stress ratio was less than 90%.

<比較例4>
ガラス転移温度が−30℃以下のエラストマーの添加量が多すぎたために、荷重たわみ温度の大きな低下が見られ、眼鏡用フレーム部材として用いるには耐熱性が不足していた。
<Comparative Example 4>
Since the amount of the elastomer having a glass transition temperature of −30 ° C. or lower was too large, the deflection temperature under load was greatly reduced, and the heat resistance was insufficient for use as a frame member for glasses.

<比較例5、6>
ガラス転移温度が−30℃より高いエラストマーを用いた場合、応力の比率が90%未満であった。
<Comparative Examples 5 and 6>
When an elastomer having a glass transition temperature higher than −30 ° C. was used, the stress ratio was less than 90%.

<実施例14〜20>
更にカルボジイミド化合物を組み合わせることで、眼鏡用フレーム部材として適した特性を維持したまま高い耐加水分解性を付与することが出来た。また、カルボジイミド化合物と酸化防止剤を組み合わせると、更に高い耐加水分解性を付与することが可能であった。
<Examples 14 to 20>
Furthermore, by combining a carbodiimide compound, it was possible to impart high hydrolysis resistance while maintaining the characteristics suitable as a frame member for spectacles. Moreover, when a carbodiimide compound and an antioxidant were combined, it was possible to impart even higher hydrolysis resistance.

4.眼鏡用フレーム部材としての評価
実施例3、5、12、比較例1、2、3、5の材料を用いて図1に示す鼻パッド(1a)、前わく(1b)の一体成形品(1)とウデ(2a)と耳モダン(2b)の一体成形品(2)の2種類の部材を作成し、評価を行った。なお、該部材は下記の方法で作成した。
すなわち、竪型射出成形機(日精樹脂工業(株)製:NC−9000)を使用し、シリンダー温度230℃、金型温度120℃、成形サイクル60秒で成形を行い、一体成形品(1)および(2)を得た。なお、得られた一体成形品(2)は70℃の温水槽に浸し、温水槽中で使用者の耳の形を考慮して手で変形させ、この形状を保ったまま15秒間室温下で自然冷却することによって、変形形状を固定した。得られた一体成形品(1)と温水槽中で変形させた一体成形品(2)を使用して眼鏡用フレーム部材を作成した。
作成した眼鏡用フレーム部材を使用し、使用者の顔にフィットするように室温下で一体成形品(2)の耳モダン(2b)部分を手で曲げて形状の調整を行った。このときの判定を以下基準で行った。評価結果を表5に示す。
×:成形品が堅すぎて手で曲げられなかった。
△:手で曲げて調整することは出来たが、目視で白化が見られた。
○:手で曲げて調整することが可能で、目視で白化が僅かに見られた。
◎:手で曲げて調整することが可能で、目視で白化が全く見られなかった。
4). Evaluation as a frame member for eyeglasses Using the materials of Examples 3, 5, and 12 and Comparative Examples 1, 2, 3, and 5, an integrally molded product (1) of the nose pad (1a) and the front frame (1b) shown in FIG. ), Ude (2a), and Ear Modern (2b) integrally molded product (2) were prepared and evaluated. The member was prepared by the following method.
That is, using a vertical injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd .: NC-9000), molding was performed at a cylinder temperature of 230 ° C., a mold temperature of 120 ° C., and a molding cycle of 60 seconds, and an integrally molded product (1) And (2) were obtained. The obtained integrally molded product (2) is immersed in a 70 ° C. hot water tank and deformed by hand in consideration of the shape of the user's ear in the hot water tank, and this shape is maintained for 15 seconds at room temperature. The deformed shape was fixed by natural cooling. A frame member for eyeglasses was prepared using the obtained integrally molded product (1) and the integrally molded product (2) deformed in the hot water tank.
The prepared frame member for glasses was used to adjust the shape by bending the ear modern (2b) portion of the integrally molded product (2) by hand at room temperature so as to fit the face of the user. The determination at this time was performed based on the following criteria. The evaluation results are shown in Table 5.
X: The molded product was too hard to be bent by hand.
Δ: Although it could be adjusted by bending by hand, whitening was observed visually.
○: It was possible to adjust by bending by hand, and slight whitening was visually observed.
(Double-circle): It was possible to bend and adjust by hand and there was no whitening visually.

Figure 0006283464
Figure 0006283464

<実施例21>
実施例3で使用した重量平均分子量100,000以上のポリ乳酸樹脂およびガラス転移温度が−30℃以下のエラストマーよりなる樹脂組成物を用いて作成した眼鏡用フレーム部材は、手で曲げて調整することが可能で、白化も全く見られず、眼鏡フレーム部材として非常に好適であった。
<Example 21>
The frame member for eyeglasses prepared by using the polylactic acid resin having a weight average molecular weight of 100,000 or more and the resin composition having a glass transition temperature of −30 ° C. or less used in Example 3 is bent and adjusted by hand. And no whitening was observed, and it was very suitable as a spectacle frame member.

<実施例22>
実施例5で使用した重量平均分子量100,000以上のポリ乳酸樹脂およびガラス転移温度が−30℃以下のエラストマーよりなる樹脂組成物を用いて作成した眼鏡用フレーム部材は、手で曲げて調整することが可能で、白化も僅かに確認できたのみで、眼鏡フレーム部材として好適であった。
<Example 22>
The frame member for eyeglasses prepared using the polylactic acid resin having a weight average molecular weight of 100,000 or more and the resin composition having a glass transition temperature of −30 ° C. or less used in Example 5 is bent and adjusted by hand. It was possible to check the whitening and it was suitable as a spectacle frame member.

<実施例23>
実施例12で使用した重量平均分子量100,000以上のポリ乳酸樹脂、並びにガラス転移温度が−30℃以下のエポキシ基を含有するエラストマーおよびエポキシ基を含有しないエラストマーよりなる樹脂組成物を用いて作成した眼鏡用フレーム部材は、手で曲げて調整することが可能で、白化も全く見られず、眼鏡用フレーム部材として非常に好適であった。
<Example 23>
Created by using a polylactic acid resin having a weight average molecular weight of 100,000 or more used in Example 12, and a resin composition comprising an elastomer containing an epoxy group having a glass transition temperature of −30 ° C. or less and an elastomer containing no epoxy group. The spectacle frame member can be bent and adjusted by hand, and whitening is not observed at all, which is very suitable as a spectacle frame member.

<比較例7>
比較例1で使用したポリ乳酸樹脂のみよりなる樹脂組成物を用いて作成した眼鏡用フレーム部材は、成形品が堅すぎて手で曲げることができなかった。
<Comparative Example 7>
The frame member for eyeglasses produced using the resin composition consisting only of the polylactic acid resin used in Comparative Example 1 was too hard to bend by hand because the molded product was too hard.

<比較例8>
比較例2で使用した重量平均分子量が100,000未満のポリ乳酸樹脂およびガラス転移温度が−30℃以下のエラストマーよりなる樹脂組成物を用いて作成した眼鏡用フレーム部材は、手で曲げて調整することは可能であったが、成形品にクラック状の激しい白化が見られた。
<Comparative Example 8>
The frame member for eyeglasses prepared by using a polylactic acid resin having a weight average molecular weight of less than 100,000 and a resin composition having a glass transition temperature of −30 ° C. or less used in Comparative Example 2 is bent and adjusted by hand. Although it was possible, the cracked severe whitening was observed in the molded product.

<比較例9>
比較例3で使用した重量平均分子量100,000以上のポリ乳酸樹脂およびガラス転移温度が−30℃以下のエラストマーよりなり、該エラストマーの添加量が規定範囲より小さい樹脂組成物を用いて作成した眼鏡用フレーム部材は、手で曲げて調整することは可能であったが、成形品に白化が見られた。
<Comparative Example 9>
Glasses made of a polylactic acid resin having a weight average molecular weight of 100,000 or more used in Comparative Example 3 and an elastomer having a glass transition temperature of −30 ° C. or less, and the addition amount of the elastomer being smaller than a specified range. Although it was possible to bend and adjust the frame member by hand, whitening was observed in the molded product.

<比較例10>
比較例5で使用した重量平均分子量100,000以上のポリ乳酸樹脂およびガラス転移温度が−30℃より高いエラストマーよりなる樹脂組成物を用いて作成した眼鏡用フレーム部材は、手で曲げて調整することは可能であったが、成形品に白化が見られた。
<Comparative Example 10>
The frame member for eyeglasses prepared by using a polylactic acid resin having a weight average molecular weight of 100,000 or more and a resin composition made of an elastomer having a glass transition temperature higher than −30 ° C. used in Comparative Example 5 is bent and adjusted by hand. Although it was possible, whitening was seen in the molded product.

1 鼻パッドと前わくの一体成形品
1a 鼻パッド
1b 前わく
2 ウデと耳モダンの一体成形品
2a ウデ
2b 耳モダン
1 Nose pad and forehead integrated molding 1a Nose pad 1b Forehead 2 Ude and ear modern integrated molding 2a Ude 2b Ear modern

Claims (7)

重量平均分子量が100,000以上のポリ乳酸樹脂(A成分)100重量部に対し、(B)ガラス転移温度が−30℃以下であるエラストマー(B成分)を20〜90重量部含む樹脂組成物よりなり、
該樹脂組成物は、ISO527−1およびISO527−2に準拠した引張試験において、上降伏点が存在し、かつ下記式(2)で表される上降伏点の応力と破断点の応力の比率が90%以上である、眼鏡用フレーム部材。
応力の比率=(破断応力/降伏応力)×100 (2)
A resin composition comprising 20 to 90 parts by weight of (B) an elastomer (B component) having a glass transition temperature of −30 ° C. or less with respect to 100 parts by weight of a polylactic acid resin (A component) having a weight average molecular weight of 100,000 or more. Ri more vegetables,
In the tensile test based on ISO527-1 and ISO527-2, the resin composition has an upper yield point, and the ratio of the stress at the upper yield point and the stress at the fracture point represented by the following formula (2) is A frame member for spectacles that is 90% or more .
Stress ratio = (breaking stress / yield stress) × 100 (2)
A成分が、L−乳酸単位を90モル%以上含有するポリ−L乳酸樹脂(A−1成分)およびD−乳酸単位を90モル%以上含有するポリ−D乳酸樹脂(A−2成分)を含有し、A−1成分とA−2成分との重量比が10:90〜90:10の範囲である請求項1に記載の眼鏡用フレーム部材。   A poly-L lactic acid resin (A-1 component) containing 90 mol% or more of L-lactic acid units and an A-component containing 90 mol% or more of D-lactic acid units (A-2 component) The spectacle frame member according to claim 1, wherein the spectacle frame member is contained and the weight ratio of the A-1 component and the A-2 component is in the range of 10:90 to 90:10. A成分は、示差走査熱量計(DSC)測定の昇温過程における融解エンタルピーを用いて下記式(1)で表されるステレオコンプレックス結晶化度が80%以上である請求項1または2に記載の眼鏡用フレーム部材。
ステレオコンプレックス結晶化度=[△Hms/(△Hms+△Hmh)]×100 (1)
[但し、式(1)中、△Hmhと△Hmsは、それぞれ示差走査熱量計(DSC)の昇温過程において、190℃未満に現れる結晶融点の融解エンタルピー(△Hmh)、および190℃以上250℃未満に現れる結晶融点の融解エンタルピー(△Hms)である。]
The component A has a stereocomplex crystallinity represented by the following formula (1) using a melting enthalpy in a temperature rising process of differential scanning calorimetry (DSC) measurement, and the degree of stereocomplexity is 80% or more. Eyeglass frame member.
Stereo complex crystallinity = [ΔHms / (ΔHms + ΔHmh)] × 100 (1)
[In the formula (1), ΔHmh and ΔHms are the melting enthalpy (ΔHmh) of the melting point of the crystal, which appears below 190 ° C. in the temperature rising process of the differential scanning calorimeter (DSC), respectively, and 190 ° C. or more and 250 It is the melting enthalpy (ΔHms) of the crystalline melting point that appears below ° C. ]
A成分100重量部に対し、カルボジイミド化合物(C成分)0.01〜10重量部を含む請求項1〜3のいずれか1項に記載の眼鏡用フレーム部材。   The frame member for spectacles according to any one of claims 1 to 3, comprising 0.01 to 10 parts by weight of a carbodiimide compound (C component) with respect to 100 parts by weight of the A component. A成分100重量部に対し、ヒンダートフェノール系化合物、ホスファイト系化合物、ホスホナイト系化合物、およびチオエーテル系化合物からなる群より選ばれる少なくとも一種の酸化防止剤(D成分)0.01〜2重量部を含む請求項1〜4のいずれか1項に記載の眼鏡用フレーム部材。   0.01 to 2 parts by weight of at least one antioxidant (D component) selected from the group consisting of hindered phenol compounds, phosphite compounds, phosphonite compounds, and thioether compounds with respect to 100 parts by weight of component A The frame member for spectacles of any one of Claims 1-4 containing these. 射出成形、押出成形、熱成形、ブロー成形または発泡成形により成形した成形品を曲げ加工することにより作成される請求項1〜のいずれか1項に記載の眼鏡用フレーム部材。 The frame member for spectacles according to any one of claims 1 to 5 , which is created by bending a molded product formed by injection molding, extrusion molding, thermoforming, blow molding or foam molding. 眼鏡用フレーム部材が、ウデ、耳モダンである請求項に記載の眼鏡用フレーム部材。
The frame member for glasses according to claim 6 , wherein the frame member for glasses is Ude or ear modern.
JP2012196030A 2012-09-06 2012-09-06 Eyeglass frame material Active JP6283464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196030A JP6283464B2 (en) 2012-09-06 2012-09-06 Eyeglass frame material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196030A JP6283464B2 (en) 2012-09-06 2012-09-06 Eyeglass frame material

Publications (2)

Publication Number Publication Date
JP2014051571A JP2014051571A (en) 2014-03-20
JP6283464B2 true JP6283464B2 (en) 2018-02-21

Family

ID=50610356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196030A Active JP6283464B2 (en) 2012-09-06 2012-09-06 Eyeglass frame material

Country Status (1)

Country Link
JP (1) JP6283464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468728B2 (en) * 2013-05-21 2019-02-13 学校法人立教学院 Polylactic acid stereoblock copolymer composition and method for producing the same
JP6850541B2 (en) * 2016-03-03 2021-03-31 エルジー ディスプレイ カンパニー リミテッド Flexible display and how to use it
KR101806204B1 (en) * 2016-11-10 2017-12-07 한남대학교 산학협력단 A method manufacturing glasses frame

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201739B2 (en) * 1997-05-28 2001-08-27 株式会社島津製作所 Glasses molding
JP2006232929A (en) * 2005-02-23 2006-09-07 Mitsubishi Plastics Ind Ltd Stretched film
WO2010053167A1 (en) * 2008-11-05 2010-05-14 帝人化成株式会社 Polylactic acid compositions and molded articles thereof
JP5364525B2 (en) * 2008-11-05 2013-12-11 帝人株式会社 Method for producing polylactic acid composition
JP2011080015A (en) * 2009-10-09 2011-04-21 Tanaka Foresight Inc Molded spectacles article, method for producing the same, and spectacles
JP5612361B2 (en) * 2010-06-03 2014-10-22 帝人株式会社 Polylactic acid resin composition
CN102712802B (en) * 2010-01-18 2014-09-24 帝人株式会社 Polylactic acid composition
JP2014051570A (en) * 2012-09-06 2014-03-20 Teijin Ltd Resin composition for hot bending

Also Published As

Publication number Publication date
JP2014051571A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
EP2527400B1 (en) Polylactic acid composition
JP5560198B2 (en) Method for producing polylactic acid composition
US8816018B2 (en) Resin composition comprising a cyclic carbodiimide
KR20150036149A (en) Resin composition
JP5173747B2 (en) Method for producing polylactic acid composition
JP5612329B2 (en) Polylactic acid resin composition
JP2014231552A (en) Antibacterial polylactic acid resin composition
JP5612369B2 (en) Polylactic acid composition
JP6283464B2 (en) Eyeglass frame material
JP2014051570A (en) Resin composition for hot bending
JP5364525B2 (en) Method for producing polylactic acid composition
JP5536332B2 (en) Polylactic acid composition and molded article thereof
JP5243231B2 (en) Polylactic acid composition and molded article thereof
JP6193724B2 (en) Polylactic acid resin composition and molded article
JP5612365B2 (en) Polylactic acid resin composition
JP6077262B2 (en) Polylactic acid resin composition and injection molded article
JP5612317B2 (en) Polylactic acid resin composition
JP5173746B2 (en) Method for producing polylactic acid composition
JP5612366B2 (en) Polylactic acid composition
JP5662245B2 (en) Polylactic acid resin composition
JP2011252103A (en) Polylactic acid resin composition
JP5173748B2 (en) Method for producing polylactic acid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R150 Certificate of patent or registration of utility model

Ref document number: 6283464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250