JP6281831B2 - Regulators of neurodegenerative diseases - Google Patents
Regulators of neurodegenerative diseases Download PDFInfo
- Publication number
- JP6281831B2 JP6281831B2 JP2012289083A JP2012289083A JP6281831B2 JP 6281831 B2 JP6281831 B2 JP 6281831B2 JP 2012289083 A JP2012289083 A JP 2012289083A JP 2012289083 A JP2012289083 A JP 2012289083A JP 6281831 B2 JP6281831 B2 JP 6281831B2
- Authority
- JP
- Japan
- Prior art keywords
- ambra1
- als
- mirna
- polypeptide
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004770 neurodegeneration Effects 0.000 title description 12
- 208000015122 neurodegenerative disease Diseases 0.000 title description 11
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 41
- 108020004999 messenger RNA Proteins 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 13
- 230000001225 therapeutic effect Effects 0.000 claims description 7
- 101000836967 Homo sapiens Activating molecule in BECN1-regulated autophagy protein 1 Proteins 0.000 claims description 4
- 239000002679 microRNA Substances 0.000 description 58
- 108091070501 miRNA Proteins 0.000 description 57
- 102100027166 Activating molecule in BECN1-regulated autophagy protein 1 Human genes 0.000 description 48
- 238000011282 treatment Methods 0.000 description 34
- 108090000765 processed proteins & peptides Proteins 0.000 description 30
- 229920001184 polypeptide Polymers 0.000 description 28
- 102000004196 processed proteins & peptides Human genes 0.000 description 28
- 108090000623 proteins and genes Proteins 0.000 description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 25
- 201000010099 disease Diseases 0.000 description 23
- 230000004900 autophagic degradation Effects 0.000 description 20
- 239000000090 biomarker Substances 0.000 description 19
- 210000004027 cell Anatomy 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229940124597 therapeutic agent Drugs 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 101100269805 Homo sapiens AMBRA1 gene Proteins 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 206010051290 Central nervous system lesion Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 238000010172 mouse model Methods 0.000 description 5
- 102000003954 Autophagy-Related Proteins Human genes 0.000 description 4
- 108010082399 Autophagy-Related Proteins Proteins 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 101000891092 Homo sapiens TAR DNA-binding protein 43 Proteins 0.000 description 4
- 102100040347 TAR DNA-binding protein 43 Human genes 0.000 description 4
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 229940126585 therapeutic drug Drugs 0.000 description 4
- 208000014644 Brain disease Diseases 0.000 description 3
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 3
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000000626 neurodegenerative effect Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 102000004072 Beclin-1 Human genes 0.000 description 2
- 108090000524 Beclin-1 Proteins 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- 102000004547 Glucosylceramidase Human genes 0.000 description 2
- 108010017544 Glucosylceramidase Proteins 0.000 description 2
- 108700011259 MicroRNAs Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000003771 laboratory diagnosis Methods 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 210000002161 motor neuron Anatomy 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 210000001138 tear Anatomy 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 101710135992 Activating molecule in BECN1-regulated autophagy protein 1 Proteins 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 102100021251 Beclin-1 Human genes 0.000 description 1
- 108090000258 Cathepsin D Proteins 0.000 description 1
- 102000003908 Cathepsin D Human genes 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 208000002339 Frontotemporal Lobar Degeneration Diseases 0.000 description 1
- 101000894649 Homo sapiens Beclin-1 Proteins 0.000 description 1
- 101000693844 Homo sapiens Insulin-like growth factor-binding protein complex acid labile subunit Proteins 0.000 description 1
- 108091030146 MiRBase Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 208000035977 Rare disease Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108700013394 SOD1 G93A Proteins 0.000 description 1
- 238000011831 SOD1-G93A transgenic mouse Methods 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 1
- 102000008221 Superoxide Dismutase-1 Human genes 0.000 description 1
- 208000032859 Synucleinopathies Diseases 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 210000002226 anterior horn cell Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000007343 autophagic proteolysis Effects 0.000 description 1
- 230000005033 autophagosome formation Effects 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000005584 early death Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 102000044829 human AMBRA1 Human genes 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 229940124302 mTOR inhibitor Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003628 mammalian target of rapamycin inhibitor Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940028444 muse Drugs 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000009251 neurologic dysfunction Effects 0.000 description 1
- 208000015015 neurological dysfunction Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000003955 neuronal function Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000015629 regulation of autophagy Effects 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 238000009589 serological test Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
本発明は、筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis:ALS)の存在を検出するための検査診断および同疾患の治療標的として有用な因子の利用に関する。 The present invention relates to laboratory diagnosis for detecting the presence of Amyotrophic Lateral Sclerosis (ALS) and the use of factors useful as therapeutic targets for the disease.
認知症を含む神経変性疾患は、一般に進行性であり、脳神経細胞の不可逆的な変性を伴うことから、早期に診断し治療を開始することが重要である。しかし、現時点では有効なバイオマーカーが確立されておらず、血清学的検査方法を用いた診断法は確立されておらず、また確実な治療法も確立されていない。その結果、難治性で、日常生活が破壊される状況となり、患者本人の肉体的負担のみならず、家族にも多大の負担を来している。神経変性疾患は患者本人だけでなく、介護者にも多大な負担が及び、社会全体の活力の大きな損失につながるという実態がある。超高齢化社会が進む我が国では、神経変性疾患対策が国家的な重要課題となってきている。すなわち、(1)高齢化社会における医療福祉行政の基幹的課題であること、(2)認知症による膨大な経済的損失(年間5兆円相当)を軽減すること、(3)医療イノベーションで日本発の革新的治療法の開発を推進し、日本の医薬品輸入赤字(2兆円超)を解消すること、(4)国の5ヵ年計画(2012)で対策が必要な重点疾患(がん、難病・希少疾病、肝炎、感染症、糖尿病、脳心血管疾患、精神神経疾患、小児疾患)に指定されていること、などである。このように、新たなバイオマーカーの開発、検査診断薬の開発、治療薬・治療法の開発が緊急の課題となっている。 Since neurodegenerative diseases including dementia are generally progressive and involve irreversible degeneration of brain neurons, it is important to diagnose early and start treatment. However, an effective biomarker has not been established at present, a diagnostic method using a serological test method has not been established, and a reliable treatment method has not been established. As a result, it is refractory and the situation in which daily life is destroyed, not only the physical burden of the patient himself, but also a great burden on the family. Neurodegenerative diseases are not only for patients themselves but also for caregivers, and there is a real situation that leads to a great loss of vitality for the whole society. In Japan, where a super-aging society is advancing, countermeasures against neurodegenerative diseases have become an important national issue. That is, (1) It is a fundamental issue of medical welfare administration in an aging society, (2) To reduce huge economic loss due to dementia (equivalent to 5 trillion yen per year), (3) Japan through medical innovation Promote the development of innovative treatments from Japan, eliminate the import deficit in Japan (over 2 trillion yen), and (4) focus diseases (cancer, It is designated as intractable disease / rare disease, hepatitis, infection, diabetes, cerebrocardiovascular disease, neuropsychiatric disease, pediatric disease). Thus, the development of new biomarkers, the development of diagnostic reagents, and the development of therapeutic drugs and treatment methods are urgent issues.
検査診断法については、疾患関連バイオマーカーが特定され、血清学的診断法により簡便に早期の診断及び病態のモニタリングが実施できるようになれば、早期治療が可能となり、多くの患者の不可逆的なダメージを最小限に抑えることが可能となる。早期診断が可能となれば、患者だけでなく介護者のQOLの向上、ひいては超高齢化を迎えた日本社会全体の活力の維持にも大きく貢献することは間違いない。治療法に関しては、病態改善薬のみならず、進行抑制薬も十分に医療上の意義が高く、そのためのバイオマーカーの神経機能への関与の解析も重要である。 With regard to laboratory diagnostic methods, if disease-related biomarkers are identified and serological diagnostic methods enable simple early diagnosis and monitoring of pathological conditions, early treatment becomes possible, and many patients are irreversible. Damage can be minimized. If early diagnosis becomes possible, there is no doubt that it will greatly contribute to improving the QOL of not only patients but also caregivers, and thus maintaining the vitality of the entire Japanese society that has become super-aged. Regarding the treatment method, not only the pathologic-improving drug but also the progression inhibitor is sufficiently medically significant, and it is important to analyze the involvement of the biomarker in the nerve function.
神経変性疾患の発症や病態に関わる生体内因子は、遺伝子から細胞まで広く研究されているが、未解明な部分が非常に多く、未だに診断や治療につながる有用なバイオマーカーは見出されていない。難治性神経変性疾患のうちでも、筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis:ALS)は重篤な神経機能障害と死に至る疾患であり、有用なバイオマーカーの開発は緊急の課題となっている。 In vivo factors related to the onset and pathogenesis of neurodegenerative diseases have been extensively studied from genes to cells, but there are so many unexplained parts, and no useful biomarkers have yet been found to lead to diagnosis or treatment . Among intractable neurodegenerative diseases, Amyotrophic Lateral Sclerosis (ALS) is a disease that leads to severe neurological dysfunction and death, and the development of useful biomarkers has become an urgent issue Yes.
近年、生命維持のためのタンパク質分解系の研究が大きく進んだ。細胞には、タンパク質を新たに作り出す機構だけでなく、作ったタンパク質が不要になった場合に分解する機構もあり、(1)ユビキチン−プロテアソーム系 、(2)オートファジーの二つの主要な機構が存在する。ユビキチン−プロテアソーム系では、分解するべきタンパク質の一つ一つに、ユビキチン分子が複数結合することでプロテアソームにより認識されて分解されるという選択的タンパク質分解系で、個々のタンパク質ごとの分解が行われるのに対し、オートファジーでは一度に多くのタンパク質が分解される。このためオートファジーによるタンパク質分解のことはバルク分解系とも呼ばれる。オートファジーの機構は酵母から高等動植物にまでよく保存されている。 In recent years, research on proteolytic systems for life support has advanced greatly. In addition to the mechanism for creating a new protein, the cell also has a mechanism that degrades the protein when it is no longer needed. There are two main mechanisms: (1) the ubiquitin-proteasome system and (2) autophagy. Exists. The ubiquitin-proteasome system is a selective proteolytic system in which each protein to be degraded is recognized and degraded by the proteasome by binding multiple ubiquitin molecules, and each protein is degraded. In contrast, autophagy degrades many proteins at once. For this reason, proteolysis by autophagy is also called a bulk degradation system. The mechanism of autophagy is well preserved from yeast to higher animals and plants.
オートファジーは、生体の恒常性維持と種々の疾患に関与すると考えられており、神経変性疾患ではパーキンソン病とアルツハイマー病への関与が示唆されている(非特許文献1)。神経変性疾患では、病理学的に細胞内封入体が観察され、その中に特定のタンパク質に凝集物が認められている。この細胞内封入体は、細胞内タンパク質分解系の不全による結果と考えられ、これが神経細胞機能の障害を引き起こす可能性が指摘される一方、これらの封入体と凝集体の生成抑制と分解除去が治療法につながる可能性が考えられる。実際に、神経変性疾患の診断や治療への利用に関しては、シヌクレイノパチーの治療に酸性β−グルコセレブロシダーゼ(GBA)ポリペプチド類やカテプシンD類の利用が提案されている(特許文献1)。 Autophagy is thought to be involved in the maintenance of homeostasis and various diseases. In neurodegenerative diseases, involvement in Parkinson's disease and Alzheimer's disease has been suggested (Non-patent Document 1). In neurodegenerative diseases, intracellular inclusions are observed pathologically, and aggregates are observed in specific proteins. This intracellular inclusion body is thought to be the result of a failure of the intracellular proteolytic system, which may cause a disorder of neuronal function. It may lead to treatment. Actually, regarding the use for diagnosis and treatment of neurodegenerative diseases, use of acidic β-glucocerebrosidase (GBA) polypeptides and cathepsin D has been proposed for the treatment of synucleinopathies (Patent Document 1). ).
ALSにおいては、SOD1、TARDBP(TDP−43)、FUS、Optineurinなどの凝集体が知られており、このうち、TARDBP凝集体の分解を狙ったオートファジーの活性化が、ALS病態モデルであるFTLD−Uマウスの病態を改善させたという報告がある(非特許文献2)。他方、細胞における組織再生や修復の制御因子であるmTOR(mammalian target of rapamycin)の阻害はオートファジーを促進させることから、代表的mTOR阻害薬であるラパマイシンを投与してオートファジーの活性化を図ったものの、ALSモデルマウス(SOD1−G93A)の運動神経変性は改善せず、逆に早期死亡が多かったことという報告もある(非特許文献3)。すなわち、ALSモデルマウスにおいては、オートファジーの活性化によって、病態が改善した報告と悪化した報告の両方が存在しているが、これらはいずれもALSの特徴的病変を増強したモデルマウスであり、実際のヒトのALSにおける効果を見たものではないことから、統一的な解釈には限界があると思われる。 In ALS, aggregates such as SOD1, TARDBP (TDP-43), FUS, and Optinurin are known. Among them, activation of autophagy aimed at degradation of TARDBP aggregates is FTLD, which is an ALS disease state model. -There is a report that the disease state of U mice has been improved (Non-patent Document 2). On the other hand, inhibition of mTOR (mammalian target of rapamycin), which is a regulator of tissue regeneration and repair in cells, promotes autophagy. Therefore, rapamycin, a typical mTOR inhibitor, is administered to activate autophagy. However, there is also a report that motor neurodegeneration of ALS model mice (SOD1-G93A) did not improve, and conversely there were many early deaths (Non-patent Document 3). That is, in the ALS model mouse, there are both reports that the disease state has been improved and reports that have been deteriorated by the activation of autophagy, and these are all model mice that have enhanced the characteristic lesions of ALS, Since there is no actual human ALS effect, there is a limit to the unified interpretation.
ALSモデルマウスにおける結果の違いは、mTORはオートファジーのみならず免疫系に作用することや過度のオートファジーは細胞死につながる可能性があることも関連していると思われる。ゆれゆえ、適切にオートファジーを調節することが疾患治療には重要であることが示唆される。同時に、モデルマウスに依らずに、できるだけALS患者由来組織を用いた検証的解析が重要であることも示唆される。 The difference in results in ALS model mice seems to be related to that mTOR acts not only on autophagy but also on the immune system, and that excessive autophagy can lead to cell death. Therefore, it is suggested that proper regulation of autophagy is important for disease treatment. At the same time, it is suggested that verification analysis using ALS patient-derived tissue as much as possible is important regardless of model mice.
以上のように、ALSではタンパク質分解系に関する因子に注目した診断や治療法の開発が注目されており、検査診断あるいは創薬に有用な疾患バイオマーカーの利用が切望されているものの、ALSに対する診断や治療にオートファジー関連因子を直接利用する手法については、未だ確立されていない。できるだけヒト試料用いて、病因解明と疾患バイオマーカーを研究開発することが強く求められている。 As described above, in ALS, the development of diagnostics and treatment methods focusing on factors related to proteolytic systems has attracted attention, and the use of disease biomarkers useful for laboratory diagnosis or drug discovery is eagerly desired. A method for directly using autophagy-related factors for treatment has not yet been established. There is a strong need to elucidate the etiology and research and develop disease biomarkers using human samples as much as possible.
上記のとおり、難治性のALSに対する検査法や治療法は確立しておらず、医療上の大きな課題になっている。疾患に関与すると想定されるオートファジー関連因子からバイオマーカーとなり得る因子を見出し、その利用方法を確立すれば、新しい検査診断法、病態モニタリング法、さらには治療薬への応用が可能となる。
本発明の目的は、ALSのバイオマーカーとなる因子を見出し、臨床検査や病態モニタリング、さらには治療法へ応用することである。
As described above, testing methods and treatment methods for refractory ALS have not been established, which is a major medical problem. If a factor that can be a biomarker is found from autophagy-related factors that are assumed to be involved in a disease, and a method for using the factor is established, it can be applied to a new test diagnostic method, disease state monitoring method, and therapeutic drug.
An object of the present invention is to find a factor that becomes a biomarker of ALS and to apply it to clinical examinations, pathological monitoring, and treatment methods.
本発明は、以下の発明に関する:
[1]被験者から採取した試料中のmiRNA、又はその標的遺伝子AMBRA1のポリペプチド又はmRNAを測定する工程を含み、前記miRNAが表1に記載のmiRNAの少なくとも1つである、筋萎縮性側索硬化症の検出方法。
[2]表1に記載のmiRNAからなる群から選んだmiRNA、又はその標的遺伝子AMBRA1のポリペプチド又はmRNAである、筋萎縮性側索硬化症を検出するためのバイオマーカー。
[3]筋萎縮性側索硬化症に対する治療を行った対象から試料を採取する工程、および前記試料中のmiRNA、又はその標的遺伝子AMBRA1のポリペプチド又はmRNAを測定する工程を含み、前記miRNAが表1に記載のmiRNAの少なくとも1つである、前記治療効果の判定方法。
[4]AMBRA1のポリペプチド又はmRNAを有効成分とする医薬組成物。
[5]表1に記載のmiRNAの少なくとも1つを抑制するオリゴヌクレオチドを有効成分とする医薬組成物。
[6]筋萎縮性側索硬化症の治療用である、[4]又は[5]の医薬組成物。
[7]表1に記載したmiRNAの少なくとも1つの発現を指標とする、筋萎縮性側索硬化症の治療薬をスクリーニングする方法。
[8]AMBRA1のポリペプチド又はmRNAを指標とする、筋萎縮性側索硬化症の治療薬をスクリーニングする方法。
The present invention relates to the following inventions:
[1] A muscle atrophic lateral cord comprising a step of measuring miRNA in a sample collected from a subject, or a polypeptide or mRNA of a target gene AMBRA1 thereof, wherein the miRNA is at least one of the miRNAs described in Table 1. How to detect sclerosis.
[2] A biomarker for detecting amyotrophic lateral sclerosis, which is a miRNA selected from the group consisting of miRNAs described in Table 1, or a polypeptide or mRNA of its target gene AMBRA1.
[3] including a step of collecting a sample from a subject treated for amyotrophic lateral sclerosis, and a step of measuring a miRNA in the sample, or a polypeptide or mRNA of a target gene AMBRA1 thereof, The method for determining the therapeutic effect, which is at least one of the miRNAs listed in Table 1.
[4] A pharmaceutical composition comprising an AMBRA1 polypeptide or mRNA as an active ingredient.
[5] A pharmaceutical composition comprising as an active ingredient an oligonucleotide that suppresses at least one of the miRNAs described in Table 1.
[6] The pharmaceutical composition according to [4] or [5], which is used for treatment of amyotrophic lateral sclerosis.
[7] A method for screening a therapeutic agent for amyotrophic lateral sclerosis using at least one expression of the miRNA described in Table 1 as an index.
[8] A method for screening a therapeutic agent for amyotrophic lateral sclerosis using the AMBRA1 polypeptide or mRNA as an index.
本明細書中で、「AMBRA1」等の遺伝子名での記載は、特に断りが無い限り、該遺伝子あるいは該遺伝子から産生される分子(ポリペプチド等)を意味する。当業者であれば、いずれの状態を意味するか容易に理解することができる。 In the present specification, a description with a gene name such as “AMBRA1” means the gene or a molecule (polypeptide or the like) produced from the gene unless otherwise specified. A person skilled in the art can easily understand which state is meant.
本発明によれば、筋萎縮性側索硬化症(ALS)の治療薬を提供することができる。また、本発明におけるAMBRA1制御miRNA、又はAMBRA1遺伝子産物を同疾患の検査診断並び治療に利用することができる。さらに、同疾患の治療薬となる化合物のスクリーニングに利用することができる。 According to the present invention, a therapeutic agent for amyotrophic lateral sclerosis (ALS) can be provided. In addition, the AMBRA1 regulatory miRNA or AMBRA1 gene product in the present invention can be used for examination diagnosis and treatment of the same disease. Furthermore, it can utilize for the screening of the compound used as the therapeutic agent of the disease.
以下に特に記載すること以外は、本発明の検出方法・治療効果判定方法・治療方法・医薬組成物・治療薬のスクリーニング方法において、適宜、相互に参照することができる。
本発明では、オートファジーに関与する因子のうち、AMBRA1タンパク質がALS患者の病巣部位で減少していること見出し、オートファジーの不全が起きていることが示した。従って、AMBRA1遺伝子産物(ポリペプチド又はメッセンジャーRNA(以下、mRNAと称する))の発現を誘導あるいは増強することにより、オートファジー機能が改善され、ALSの治療に結びつくことが期待できる。
AMBRA1(activating molecule in BECN1-regulated autophagy protein 1; NM_017749, NM_001267782, NM_001267783)はオートファジーに関与する因子の1つであり、ミトコンドリアに存在して、オートファジーの主要因子であるBECN1(Beclin1)を活性化してオートファジーを促進させる(Fimia GM et al.,Oncogene, 2012 Oct15, doi:10.1038)。
Except as specifically described below, the detection method, therapeutic effect determination method, therapeutic method, pharmaceutical composition, and therapeutic drug screening method of the present invention can be referred to each other as appropriate.
In the present invention, among factors involved in autophagy, it was found that AMBRA1 protein was decreased at the lesion site of ALS patients, and it was shown that autophagy failure occurred. Therefore, by inducing or enhancing the expression of the AMBRA1 gene product (polypeptide or messenger RNA (hereinafter referred to as mRNA)), it can be expected that the autophagy function is improved and that it leads to treatment of ALS.
AMBRA1 (activating molecule in BECN1-regulated autophagy protein 1; NM_017749, NM_001267782, NM_001267783) is one of the factors involved in autophagy and is present in mitochondria and activates BECN1 (Beclin1), the main factor of autophagy To promote autophagy (Fimia GM et al., Oncogene, 2012 Oct15, doi: 10.1038).
該AMBRA1遺伝子産物の発現を誘導あるいは増強する手法としては、AMBRA1のmRNAに結合して、その発現を制御するAMBRA1を標的とするmiRNA(以下、AMBRA1制御miRNAと称する場合がある)を抑制することが挙げられる。AMBRA1制御miRNAとしては、miRNAと標的予測のデータベース(Target Scan Human, relase 6.2及びmicroRNA.org-Targets and Expression)によれば、表1に示すAMBRA1制御miRNAが挙げられる。特に、hsa−miR−7がAMBRA1遺伝子上で保存された(conserved)分子であり、好ましい。表1に示す該miRNAは、単独で使用することもできるし、複数を使用することもできる。精度を高めるため複数を組み合わせて使用する方が好ましい。例えば、1〜20のmiRNA、さらに好ましくは2〜10のmiRNAを組み合わせて利用することが望ましい。
本発明の医薬組成物(治療薬)としては、一種類でも良いが、複数のAMBRA1制御miRNAを対象とする方が望ましい。
As a technique for inducing or enhancing the expression of the AMBRA1 gene product, it is possible to bind to AMBRA1 mRNA and to suppress miRNA targeting AMBRA1 that regulates the expression (hereinafter sometimes referred to as AMBRA1 regulatory miRNA). Is mentioned. Examples of the AMBRA1 control miRNA include the AMBRA1 control miRNA shown in Table 1 according to miRNA and target prediction databases (Target Scan Human, relase 6.2 and microRNA.org-Targets and Expression). In particular, hsa-miR-7 is a molecule that is conserved on the AMBRA1 gene and is preferred. The miRNA shown in Table 1 can be used alone or in combination. In order to increase accuracy, it is preferable to use a combination of plural. For example, it is desirable to use 1-20 miRNA, more preferably 2-10 miRNA in combination.
The pharmaceutical composition (therapeutic agent) of the present invention may be of a single type, but it is desirable to target a plurality of AMBRA1 regulatory miRNAs.
後述の実施例において具体的実験データを示すとおり、ALS患者ではAMBRA1遺伝子産物を発現制御する表1のmiRNAが脳病巣部位において健常対照者に比べて増大していた。従って、これらに対するアンチセンスオリゴヌクレオチドを被験者に投与することにより、AMBRA1を調節し、治療につなげることができる。 As shown in the specific experimental data in the examples described later, in ALS patients, the miRNA in Table 1 that controls the expression of the AMBRA1 gene product was increased at the brain lesion site compared to healthy controls. Therefore, AMBRA1 can be regulated and treated by administering an antisense oligonucleotide against these to a subject.
ALSの診断(検出)については、表1のmiRNA、あるいは、その標的遺伝子であるAMBRA1のポリペプチド又はmRNAを被験者検体から検出することで行うことができる。特に、神経変性疾患が疑われる患者又は神経変性疾患患者から採取した臓器組織、細胞、血液、脳脊髄液、唾液、涙液等の試料中のこれらのmiRNA(以下、ALS検出用miRNAと称する場合がある)の少なくとも1つ、あるいは、AMBRA1のポリペプチド又はmRNA、あるいはそれらの組み合わせを、それ自体公知の方法に従って測定することにより、ALSであるか否かを判定することができる。特に、脳疾患部位(脳運動野病巣部位等)やその周辺部位(脳脊髄液等)を試料とすることが好ましい。
また、公知のmiRNA及び/又はその標的遺伝子のポリペプチド又はmRNAを組み合わせて利用することもできる。
Diagnosis (detection) of ALS can be performed by detecting the miRNA in Table 1 or the polypeptide or mRNA of AMBRA1 that is a target gene thereof from a subject sample. In particular, these miRNAs in samples of organ tissues, cells, blood, cerebrospinal fluid, saliva, tears, etc. collected from patients suspected of neurodegenerative diseases or patients with neurodegenerative diseases (hereinafter referred to as miRNA for ALS detection) It is possible to determine whether it is ALS by measuring at least one of AMBRA1 polypeptide or mRNA, or a combination thereof according to a method known per se. In particular, it is preferable to use a brain disease site (brain motor field lesion site or the like) or a peripheral site (cerebrospinal fluid or the like) as a sample.
Moreover, it can also utilize combining well-known miRNA and / or polypeptide or mRNA of the target gene.
本発明では、AMBRA1制御miRNA(特に好ましくはhsa−miR−7)、あるいは、その標的遺伝子であるAMBRA1のポリペプチド又はmRNA(好ましくはポリペプチド)をバイオマーカーとして利用することにより、ALSの診断もしくは治療、又は同疾患の治療薬のスクリーニングを行うことができる。更に、オートファジー関連因子として知られている表2に記載の各種遺伝子の遺伝子産物(ポリペプチド又はmRNA)、あるいは、それらの発現を制御するmiRNAを、前記バイオマーカーと一緒に、あるいは、単独で利用することにより、ALSの診断もしくは治療、又は同疾患の治療薬のスクリーニングを行うこともできる。 In the present invention, ALSRA1 regulatory miRNA (particularly preferably hsa-miR-7), or its target gene, AMBRA1 polypeptide or mRNA (preferably polypeptide), is used as a biomarker to diagnose or diagnose ALS. Treatment or screening for therapeutic agents for the disease can be performed. Furthermore, gene products (polypeptides or mRNA) of various genes shown in Table 2 known as autophagy-related factors, or miRNAs that control the expression thereof, together with the biomarkers or alone By using it, ALS can be diagnosed or treated, or a therapeutic drug for the disease can be screened.
本発明の検出方法においてバイオマーカーとしてmiRNA又はAMBRA1のmRNAを使用する場合、それ自体公知の遺伝子検査方法、例えば、核酸プローブを用いるハイブリダイゼーション法や、PCRプライマーを用いるPCR法により、測定することができる。
また、本発明の検出方法においてバイオマーカーとしてAMBRA1のポリペプチドを使用する場合、それ自体公知のタンパク質分析方法、例えば、抗体を用いる免疫学的分析方法、電気泳動等の生化学的分析方法や質量分析方法により実施することができ、臨床検査用の自動分析機を使用することもできる。なお、使用する分析方法(例えば、質量分析方法)によっては、AMBRA1由来のペプチドを分析することにより、AMBRA1ポリペプチドを分析することができる。
When miRNA or AMBRA1 mRNA is used as a biomarker in the detection method of the present invention, it can be measured by a known genetic test method such as a hybridization method using a nucleic acid probe or a PCR method using a PCR primer. it can.
In addition, when an AMBRA1 polypeptide is used as a biomarker in the detection method of the present invention, a protein analysis method known per se, for example, an immunological analysis method using an antibody, a biochemical analysis method such as electrophoresis, or a mass It can be carried out by an analysis method, and an automatic analyzer for clinical examination can also be used. Depending on the analysis method used (for example, mass spectrometry method), the AMBRA1 polypeptide can be analyzed by analyzing the peptide derived from AMBRA1.
本発明方法で用いる試料としては、例えば、脳疾患部位、脳脊髄液、血液試料(例えば、末梢血、血漿、血清)、唾液、涙液、尿、リンパ液、その他の体液、好ましくは、脳疾患部位やその周辺部位(脳脊髄液等)を用いることができる。さらには生検で採取された臓器組織、病理組織、細胞、又はそれらからの抽出成分も利用できる。 Samples used in the method of the present invention include, for example, brain disease sites, cerebrospinal fluid, blood samples (eg, peripheral blood, plasma, serum), saliva, tears, urine, lymph, and other body fluids, preferably brain diseases A part or its peripheral part (cerebrospinal fluid etc.) can be used. Furthermore, organ tissues, pathological tissues, cells collected by biopsy, or components extracted therefrom can also be used.
本発明の検出方法においてバイオマーカーとして用いる表1に記載のmiRNA(ALS検出用miRNA)、あるいは、その標的遺伝子であるAMBRA1のポリペプチド又はmRNAを、ALSの患者に対して行う各種治療の効果を判定するために使用することもできる。
本発明の治療効果判定方法は、ALSに対する治療を行った対象から試料を採取する工程、および前記試料中のmiRNA又はAMBRA1のポリペプチド又はmRNAを測定する工程を含む。
In the detection method of the present invention, the effects of various treatments in which the miRNAs shown in Table 1 (ALS detection miRNA) or the target gene AMBRA1 polypeptide or mRNA are used for ALS patients are used as biomarkers in the detection method of the present invention. It can also be used to determine.
The therapeutic effect determination method of the present invention includes a step of collecting a sample from a subject treated for ALS, and a step of measuring miRNA or AMBRA1 polypeptide or mRNA in the sample.
本発明の治療効果判定方法において、表1に記載のALS検出用miRNA(AMBRA1遺伝子の発現を制御するmiRNA)をバイオマーカーとして用いる場合、当該治療を行う前のALS患者では、そのmiRNA値が健常者よりも高い数値を示す傾向がある。当該miRNA値が、治療を行うことにより低下した場合、その治療は効果があったと判定することができる。一方、治療を行っても低下しなかった場合には、その治療は効果がなかったと判定することができる。
AMBRA1ポリペプチド又は同mRNAをバイオマーカーとして用いる場合、当該治療を行う前のALS患者では、その発現量が健常者よりも低い数値を示す傾向がある。当該発現量が、治療を行うことにより増加した場合、その治療は効果があったと判定することができる。一方、治療を行っても増加しなかった場合には、その治療は効果がなかったと判定することができる。
過度のオートファジーは細胞死につながり、神経変性病変を悪化させる可能も否定できないことから、オートファジーは促進させるだけでなく、適切に調節することが最も好ましい。従って、該ALS検出用miRNA並びにAMBRA1のポリペプチド又はmRNAを治療指標として用いる場合には、健常対照値に対する増減よりは、治療前後の変動で評価することが最も好ましい。
When the ALS detection miRNA shown in Table 1 (miRNA that controls the expression of the AMBRA1 gene) is used as a biomarker in the therapeutic effect determination method of the present invention, the miRNA value is normal in the ALS patient before the treatment. There is a tendency to show a higher value than the average person. When the miRNA value decreases by treatment, it can be determined that the treatment was effective. On the other hand, if the treatment did not decrease, it can be determined that the treatment was ineffective.
When an AMBRA1 polypeptide or the same mRNA is used as a biomarker, the expression level of ALS patients before the treatment tends to be lower than that of healthy subjects. When the expression level increases by performing treatment, it can be determined that the treatment was effective. On the other hand, when the treatment does not increase, it can be determined that the treatment has no effect.
Since excessive autophagy leads to cell death and the possibility of exacerbating neurodegenerative lesions cannot be denied, autophagy is not only promoted but is most preferably adjusted appropriately. Therefore, when the ALS detection miRNA and AMBRA1 polypeptide or mRNA are used as a therapeutic index, it is most preferable to evaluate the change before and after treatment rather than the increase or decrease relative to the healthy control value.
本発明の治療方法では、ALSで存在率が増加している表1に記載のAMBRA1制御miRNAに対する抑制性オリゴヌクレオチド、例えば、前記miRNAの全長または一部とハイブリダイズ可能な相補的配列を含むオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)を用いて、あるいは、ALSで減少しているAMBRA1のポリペプチド又はmRNAを補充することにより、ALSを治療することができる。なお、本明細書において、用語「治療」には、疾患発症後の患者を処置する狭義の「治療」と、疾患発症前の患者を処置する「予防」が含まれる。 In the therapeutic method of the present invention, an inhibitory oligonucleotide against the AMBRA1-regulated miRNA described in Table 1 whose abundance is increased in ALS, for example, an oligo comprising a complementary sequence capable of hybridizing with the full length or a part of the miRNA ALS can be treated with nucleotides (antisense oligonucleotides) or by supplementing AMBRA1 polypeptide or mRNA that is reduced with ALS. In this specification, the term “treatment” includes “treatment” in a narrow sense for treating a patient after the onset of a disease and “prevention” for treating a patient before the onset of the disease.
表1に記載のmiRNAに対する抑制性オリゴヌクレオチドを患者に投与する方法としては、それ自体公知の方法に従って実施することができ、前記オリゴヌクレオチドを、エキソソームを模倣したリポソームに封入する方法、コラーゲンとの複合体として徐放化させる方法、RNAの糖部分のO(酸素)をS(硫黄)で置き換えた4’−チオRNA化による化学修飾体の利用、オリゴヌクレオチドの糖の部分を2’−F、2’−O−メチル、2’−O−メトキシエチルに修飾した化学修飾体の利用、などで生体内において安定的に補充することができる。同時に、miRNAは複数分子で標的遺伝子を制御する可能性が高いため、上記の核酸補充法に関しても、複数の核酸カクテルによる補充が好んで用いることができる。 The method of administering to the patient the inhibitory oligonucleotide for miRNA shown in Table 1 can be performed according to a method known per se, a method of encapsulating the oligonucleotide in a liposome imitating an exosome, Method of slow release as a complex, utilization of chemically modified substance by 4'-thioRNA conversion in which O (oxygen) of RNA sugar moiety is replaced with S (sulfur), 2'-F of sugar moiety of oligonucleotide It can be replenished stably in vivo by using a chemically modified product modified with 2′-O-methyl or 2′-O-methoxyethyl. At the same time, since miRNA has a high possibility of controlling a target gene with a plurality of molecules, replenishment with a plurality of nucleic acid cocktails can be preferably used for the above-described nucleic acid supplementation method.
本発明の医薬組成物は、ALSの治療に用いることができ、有効成分として、表1に記載のmiRNAの少なくとも1つ(その全長又は一部)に対する抑制性のオリゴヌクレオチド、あるいは、AMBRA1のポリペプチドを含むことができ、所望により、製薬学的に許容される担体を更に含むことができる。 The pharmaceutical composition of the present invention can be used for the treatment of ALS, and as an active ingredient, an inhibitory oligonucleotide against at least one of miRNAs listed in Table 1 (full length or a part thereof), or polymorphic AMBRA1 The peptide can be included, and can optionally further include a pharmaceutically acceptable carrier.
また、本発明の検出方法においてバイオマーカーとして用いる表1に記載のmiRNA、あるいは、その標的遺伝子AMBRA1のポリペプチド又はmRNAは、AMBRA1を指標としたALSの治療薬をスクリーニングするために使用することができる。この場合、AMBRA1タンパク質を標的とする候補物質(例えば化合物)をスクリーニングする方法は、in vitroでは、直接標的に結合する候補物質を分光学的な変化で調べる方法や培養細胞に候補物質を暴露させて培養細胞中の標的(miRNAまたはその標的遺伝子の遺伝子産物)の発現を調べる方法などが適用され、さらにin vivoでは、モデル動物にて神経変性症状または神経変性病理像の改善を指標とした方法などが、適用される。
本態様では、例えば、当該ポリペプチド又はそれを発現する細胞、組織、若しくは動物個体(特には非ヒト動物)と、候補物質とを接触させる工程、および前記候補物質とポリペプチドとの結合、前記ポリペプチドの発現量変化若しくは活性変化、又は動物固体における症状変化を分析する工程を含む方法により、実施することができる。
In addition, the miRNA listed in Table 1 used as a biomarker in the detection method of the present invention, or the polypeptide or mRNA of its target gene AMBRA1 can be used for screening ALS therapeutics using AMBRA1 as an index. it can. In this case, methods for screening candidate substances (for example, compounds) that target the AMBRA1 protein include in vitro methods for examining candidate substances that directly bind to the target by spectroscopic changes and exposing the candidate substances to cultured cells. And a method for examining the expression of a target (miRNA or gene product of the target gene) in cultured cells is applied, and in vivo, a method using an improvement in neurodegenerative symptoms or a neurodegenerative pathological image as an index in a model animal Etc. apply.
In this aspect, for example, the step of bringing the polypeptide or a cell, tissue, or animal individual (particularly a non-human animal) expressing the polypeptide into contact with the candidate substance, and the binding of the candidate substance to the polypeptide, It can be carried out by a method comprising a step of analyzing a change in the expression level or activity of a polypeptide, or a symptom change in an animal individual.
あるいは、AMBRA1のmRNA、又は表1に記載のmiRNAの発現を調べることによっても、同様に治療薬のスクリーニングをすることができる。
本態様では、例えば、候補物質を培養細胞又は動物個体(特には、非ヒト動物)に投与する工程、前記個体から試料を採取する工程、および前記試料中のmiRNA、あるいは、AMBRA1のmRNAを測定する工程を含む方法により、実施することができる。
Alternatively, screening of therapeutic agents can be performed in the same manner by examining the expression of mRNA of AMBRA1 or the miRNA described in Table 1.
In this embodiment, for example, a step of administering a candidate substance to a cultured cell or an animal individual (particularly a non-human animal), a step of collecting a sample from the individual, and measurement of miRNA or AMBRA1 mRNA in the sample It can implement by the method including the process to do.
本発明のスクリーニング方法で評価する候補物質は、特に限定されるものではないが、各種化合物に加え、各種抽出物、例えば、微生物の培養上清、各種生物若しくはその組織由来の天然成分若しくは抽出物を挙げることができる。また、使用する細胞は、組織から分離された培養細胞、樹立された培養細胞株、ES細胞、iPS細胞、Muse細胞などが、非ヒト動物においては、特定遺伝子のノックアウトあるいはノックインの処理を施したモデルマウス、同ラットなどを挙げることができる。 Candidate substances to be evaluated by the screening method of the present invention are not particularly limited, but in addition to various compounds, various extracts such as culture supernatants of microorganisms, natural organisms or extracts derived from various organisms or tissues thereof Can be mentioned. Furthermore, the cells used are cultured cells isolated from tissues, established cell lines, ES cells, iPS cells, Muse cells, etc. In non-human animals, specific genes were knocked out or knocked in. Model mice, rats, etc. can be mentioned.
本発明のスクリーニング方法において、表1に記載のmiRNAの少なくとも1つを測定する場合、そのmiRNA量を減少させることができる物質をALSの治療薬の候補として選択することができる。
また、AMBRA1のポリペプチド又はmRNAを測定する場合、その遺伝子産物の発現量又は活性を増加させることができる物質をALSの治療薬の候補として選択することができる。
In the screening method of the present invention, when at least one of the miRNAs listed in Table 1 is measured, a substance capable of reducing the amount of the miRNA can be selected as a candidate for a therapeutic agent for ALS.
Further, when measuring AMBRA1 polypeptide or mRNA, a substance capable of increasing the expression level or activity of the gene product can be selected as a candidate for an ALS therapeutic.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
《実施例1:脳病変組織中のAMBRA1の分析》
確定診断された筋萎縮性側索硬化症(ALS)の患者の脳運動野病巣部位、及び正常対照群として健常者脳の正常部位を、剖検後に採取し、10%ホルマリンにて固定し、パラフィンにて包埋し、FFPE(ホルマリン固定パラフィン包埋)標本とした。
数多くあるオートファジー関連因子の中で、まだ十分に解明されていないAMBRA1を選定し、FFPE試料の免疫染色法による解析を行った。これには、孤発性ALS5例、正常対照5例から脊髄のFFPEを作成し、抗AMBRA1抗体(SDIX, Newark, DE, USA; 1:500)を用いた。同FFPEを免疫抗体染色し、光学顕微鏡で観察した。
Example 1: Analysis of AMBRA1 in brain lesion tissue
A brain motor area lesion site of a patient with definite diagnosis of amyotrophic lateral sclerosis (ALS) and a normal site of a healthy human brain as a normal control group were collected after autopsy, fixed with 10% formalin, and paraffin. Embedded in FFPE (formalin fixed paraffin embedded) specimen.
Among many autophagy-related factors, AMBRA1 that has not been fully elucidated was selected and analyzed by immunostaining of FFPE samples. For this purpose, spinal FFPE was prepared from 5 sporadic ALS and 5 normal controls, and anti-AMBRA1 antibody (SDIX, Newark, DE, USA; 1: 500) was used. The FFPE was stained with an immune antibody and observed with an optical microscope.
ALS3例(図1の右側)、正常対照3例(図1の左側)の顕微鏡写真を図1に示す。
正常対照では脊髄前角の運動ニューロンの細胞体がびまん性、微細顆粒状に染色(茶色部分)された。ALSでは脊髄前角ニューロンの染色性は高度に減弱していた。ヒトAMBRA1は、オートファゴソーム形成に関与しているBeclin1と結合する。また、ヒト線維肉腫細胞株(fibrosarcoma cell line)においてAMBRA1の発現を抑制するとオートファジーが抑制される。今回の結果を併せ考えると、ALSの運動ニューロンではオートファジーの機能が抑制されており、そのために異常タンパク質(TDP−43など)の分解系に障害が生じ細胞死をきたすと考えられる。
今回の結果により、AMBRA1のポリペプチド又はmRNAがALSの検出マーカーになり得ること、及び、AMBRA1やAMBRA1を標的とした制御分子がALSの治療薬となり得ることが示された。このようにALS患者脳病理組織で、AMBRA1の減少を見出したのは世界で初めてである。
FIG. 1 shows micrographs of 3 ALS cases (right side of FIG. 1) and 3 normal controls (left side of FIG. 1).
In the normal control, the cell body of the motor neuron in the anterior horn of the spinal cord was diffusely stained in fine granules (brown part). In ALS, the staining of the anterior horn neurons was highly attenuated. Human AMBRA1 binds to Beclin1, which is involved in autophagosome formation. Moreover, when the expression of AMBRA1 is suppressed in a human fibrosarcoma cell line, autophagy is suppressed. Considering these results together, it is considered that the autophagy function is suppressed in ALS motoneurons, which causes a failure in the degradation system of abnormal proteins (such as TDP-43) and causes cell death.
The present results indicate that AMBRA1 polypeptide or mRNA can serve as a detection marker for ALS, and that control molecules targeting AMBRA1 and AMBRA1 can serve as therapeutic agents for ALS. Thus, it is the first in the world to find a decrease in AMBRA1 in ALS patient brain pathological tissue.
《実施例2:脳病変組織中のmiRNAの分析》
AMBRA1制御miRNAの予測は、広く使われているmiRNA標的予測データベースであるTarget Scan Human, release 6.2(http://www.targetscan.org/vert_61/)及びmicroRNA.org-Targets and Expression(http://www.microrna.org/microrna/home.do)にて行った。その結果として、表1に示すAMBRA1制御miRNAが抽出された。このうち、hsa−miR−7がAMBRA1遺伝子上で保存された(conserved)分子であり、最も好適であった(表1に◎で表記)。
以下に、具体的な手法と結果を示す。参考として、脳病巣部位における表1記載のmiRNAの挙動を調べた。具体的には、FFPE標本(5x5mm、5μm、2〜4枚)を材料とし、ALS患者3例、ALS正常対照3例の標本から、それぞれRNA抽出後、マイクロアレイによるmiRNA分析を行った。
<< Example 2: Analysis of miRNA in brain lesion tissue >>
Prediction of AMBRA1-regulated miRNA is performed using Target Scan Human, release 6.2 (http://www.targetscan.org/vert_61/) and microRNA.org-Targets and Expression (http: / /www.microrna.org/microrna/home.do). As a result, AMBRA1 control miRNA shown in Table 1 was extracted. Among these, hsa-miR-7 was the most conserved molecule on the AMBRA1 gene (indicated by “◎” in Table 1).
Specific methods and results are shown below. As a reference, the behavior of miRNA described in Table 1 at the brain lesion site was examined. Specifically, FFPE specimens (5 × 5 mm, 5 μm, 2 to 4 pieces) were used as materials, and RNA was extracted from specimens of 3 ALS patients and 3 ALS normal controls, respectively, and miRNA analysis was performed using a microarray.
マイクロアレイは3D−geneチップ(東レ(株)製)を用い、メーカー指定のmiRNA抽出液並びにハイブリダイゼーション試薬セットとHuman miRNA Oligo chip(データベースmiRBase Release17.0から選定したヒト約1,800種のmiRNAプローブを搭載)で行い、対象群に対する患者群のシグナル強度の変化を求めた。そこから、miRNA増減の変化率を求め、健常対照群に対して増大したmiRNAを調べた。その結果、上記のTarget Scan Humanデータベースから選定された最もAMBRA1制御能が高いと想定されたhsa−miRNA−7は、ALS脳病巣部で健常対象相対値0.16(Log2表示)と増大しており、AMBRA1は抑制される傾向にあることが検証できた。更に、この結果は、実施例1の図1に示された病理標本結果と整合している。 The microarray uses a 3D-gene chip (manufactured by Toray Industries, Inc.), a miRNA extract designated by the manufacturer, a hybridization reagent set, and a human miRNA Oligo chip (about 1,800 human miRNA probes selected from the database miRBase Release 17.0). The change in the signal intensity of the patient group relative to the target group was determined. From this, the rate of change in miRNA increase / decrease was determined, and the increased miRNA relative to the healthy control group was examined. As a result, hsa-miRNA-7 selected from the above Target Scan Human database and assumed to have the highest AMBRA1 control ability increased to a healthy subject relative value of 0.16 (Log2 display) at the ALS brain lesion. It was verified that AMBRA1 tends to be suppressed. Furthermore, this result is consistent with the pathological specimen result shown in FIG.
本発明は、ALSの検査診断並びに治療に利用することができる。さらに、同疾患の治療薬となる化合物のスクリーニングに利用することができる。 The present invention can be used for examination diagnosis and treatment of ALS. Furthermore, it can utilize for the screening of the compound used as the therapeutic agent of the disease.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012289083A JP6281831B2 (en) | 2012-12-28 | 2012-12-28 | Regulators of neurodegenerative diseases |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012289083A JP6281831B2 (en) | 2012-12-28 | 2012-12-28 | Regulators of neurodegenerative diseases |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014128250A JP2014128250A (en) | 2014-07-10 |
JP6281831B2 true JP6281831B2 (en) | 2018-02-21 |
Family
ID=51407324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012289083A Active JP6281831B2 (en) | 2012-12-28 | 2012-12-28 | Regulators of neurodegenerative diseases |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6281831B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014128249A (en) * | 2012-12-28 | 2014-07-10 | Hokkaido Univ | USE OF miRNA OR TARGET GENE THEREOF IN INSPECTION AND THERAPY OF NEURODEGENERATIVE DISEASE |
GB201419976D0 (en) | 2014-11-10 | 2014-12-24 | Univ Newcastle | Biomarkers for disease progression in melanoma |
WO2019116412A1 (en) * | 2017-12-15 | 2019-06-20 | Istituto Superiore Di Sanita' | Method for in vitro diagnosis of amyotrophic lateral sclerosis |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1768139A (en) * | 2003-02-10 | 2006-05-03 | 独立行政法人产业技术总合研究所 | Regulation of gene expression by DNA interference |
US20100167948A1 (en) * | 2007-05-22 | 2010-07-01 | The Brigham And Women's Hospital, Inc. | MicroRNA Expression Profiling of Cerebrospinal Fluid |
ITRM20070351A1 (en) * | 2007-06-22 | 2008-12-23 | Istituto Naz Per Le Malattie I | GENE CODIFYING AMBER PROTEIN 1 HAVING REGULATORY ACTIVITY OF THE SELF-FAILURE AND DEVELOPMENT OF THE CENTRAL NERVOUS SYSTEM |
US20110281804A1 (en) * | 2008-08-12 | 2011-11-17 | Fondazione Santa Lucia | Peptidic and peptidomimetic compounds for regulating autophagy |
KR20130056855A (en) * | 2010-03-01 | 2013-05-30 | 카리스 라이프 사이언스 룩셈부르크 홀딩스 | Biomarkers for theranostics |
-
2012
- 2012-12-28 JP JP2012289083A patent/JP6281831B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014128250A (en) | 2014-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Butti et al. | Reduced C9orf72 function leads to defective synaptic vesicle release and neuromuscular dysfunction in zebrafish | |
Amato et al. | Neuroadaptations to antipsychotic drugs: insights from pre-clinical and human post-mortem studies | |
EP3190413B1 (en) | Method for predicting depression treatment drug alternatives | |
WO2014192907A1 (en) | Microrna detection method used to differentiate disease exhibiting motor nerve disability | |
EP2910948A1 (en) | Novel cancer marker and utilization thereof | |
JP6281831B2 (en) | Regulators of neurodegenerative diseases | |
WO2020124013A1 (en) | Combinatorial temporal biomarkers and precision medicines with detection and treatment methods for use in neuro injury, neuro disease, and neuro repair | |
KR20140042331A (en) | Multiplex markers for diagnosing cognitive disorder and its use | |
JP2014132863A (en) | Neurodegenerative disease biomarker | |
van der Ende et al. | Fluid biomarkers of frontotemporal lobar degeneration | |
Podlacha et al. | Behavioral-and blood-based biomarkers for huntington's disease: Studies on the R6/1 mouse model with prospects for early diagnosis and monitoring of the disease | |
CN116096913A (en) | Method for testing mild cognitive impairment, reagent for testing mild cognitive impairment, and method for screening therapeutic drug candidate for mild cognitive impairment | |
KR101998457B1 (en) | A biomarker for diagnizing alzheimers disease | |
Giuliano et al. | Relevance of biochemical deep phenotyping for a personalised approach to Parkinson’s disease | |
JP2014128249A (en) | USE OF miRNA OR TARGET GENE THEREOF IN INSPECTION AND THERAPY OF NEURODEGENERATIVE DISEASE | |
Han et al. | MicroRNA-193a-5p rescues ischemic cerebral injury by restoring N2-like neutrophil subsets | |
Colligris et al. | Recent patents and developments in glaucoma biomarkers | |
JP6541049B2 (en) | Biomarkers for amyotrophic lateral sclerosis | |
CN104984363B (en) | Applications of the ZMYM1 in Parkinson's diagnosis and treatment reagent is prepared | |
CN105018484B (en) | CRTAP genes and its expression product as Alzheimer disease diagnosis and treatment target | |
JP2016198021A (en) | Method of assisting detection of amyotrophic lateral sclerosis and therapeutic agent | |
JP7394441B2 (en) | How to test for brain tumors | |
CN113151450A (en) | Biomarker for early diagnosis of sporadic amyotrophic lateral sclerosis and Parkinson's disease and application of biomarker | |
Ueno et al. | Current progress in microRNA profiling of circulating extracellular vesicles in amyotrophic lateral sclerosis: A systematic review | |
Sahajpal et al. | Deranged metabolic profile and identification of biomarkers in the vitreous humour of patients with proliferative diabetic retinopathy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161108 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170801 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6281831 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |