JP6281479B2 - Single crystal puller - Google Patents

Single crystal puller Download PDF

Info

Publication number
JP6281479B2
JP6281479B2 JP2014249814A JP2014249814A JP6281479B2 JP 6281479 B2 JP6281479 B2 JP 6281479B2 JP 2014249814 A JP2014249814 A JP 2014249814A JP 2014249814 A JP2014249814 A JP 2014249814A JP 6281479 B2 JP6281479 B2 JP 6281479B2
Authority
JP
Japan
Prior art keywords
cooling cylinder
cooling
single crystal
flow path
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014249814A
Other languages
Japanese (ja)
Other versions
JP2016108204A (en
Inventor
雅紀 高沢
雅紀 高沢
清隆 高野
清隆 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2014249814A priority Critical patent/JP6281479B2/en
Publication of JP2016108204A publication Critical patent/JP2016108204A/en
Application granted granted Critical
Publication of JP6281479B2 publication Critical patent/JP6281479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶引上げ装置に関する。   The present invention relates to a single crystal pulling apparatus.

近年、半導体デバイス用シリコンウェーハの高品質化と低コスト化が進み、高い品質のウェーハを高効率で製造する技術が望まれている。   In recent years, silicon wafers for semiconductor devices have been improved in quality and cost, and a technique for manufacturing high-quality wafers with high efficiency is desired.

高効率結晶育成のひとつの解決策として,結晶の冷却度を高くすることが上げられる。すなわち、結晶の冷却度を高くすることで結晶成長界面において高い温度勾配にすると、無欠陥となる成長速度を高速化できるというものである。   One solution for high-efficiency crystal growth is to increase the degree of crystal cooling. That is, by increasing the cooling degree of the crystal to increase the temperature gradient at the crystal growth interface, the growth rate at which defects are eliminated can be increased.

結晶成長界面における高い温度勾配を実現するために、低温の冷却筒を結晶成長界面近傍に設置することが行われている。しかしながら、冷却筒先端が原料融液に曝され、冷却筒の先端が高温となるため、冷媒を冷却筒内に流すことで冷却筒の先端を十分に冷却する必要があった。
冷却筒の先端を効率よく冷却する技術としては、例えば、特許文献1に開示されているようなものがある。
In order to realize a high temperature gradient at the crystal growth interface, a low-temperature cooling cylinder is installed in the vicinity of the crystal growth interface. However, since the tip of the cooling cylinder is exposed to the raw material melt and the temperature of the tip of the cooling cylinder becomes high, it is necessary to sufficiently cool the tip of the cooling cylinder by flowing the refrigerant into the cooling cylinder.
As a technique for efficiently cooling the tip of the cooling cylinder, for example, there is one disclosed in Patent Document 1.

特開2002−255682号公報JP 2002-255682 A

上述したように、結晶成長界面における高い温度勾配を実現するために、冷媒を冷却筒内に流すことで冷却筒の先端を十分に冷却する必要があった。
そこで、本発明者は、連続的に結晶製造を行った場合の冷却筒先端部の温度の経時変化に着目し、図3に示すように冷却筒の冷媒の流路の先端部に熱電対を設置し、複数回の結晶製造を連続的に行い、各回の結晶製造時の最高温度の経時変化を調べた。なお、冷媒には冷却水(純水)を用いた。
その結果、結晶製造回数が増加する度に冷却筒先端部の最高温度が上昇し、冷却水の沸点である100℃を超えるまでに至った。
As described above, in order to realize a high temperature gradient at the crystal growth interface, it is necessary to sufficiently cool the tip of the cooling cylinder by flowing the refrigerant into the cooling cylinder.
In view of this, the present inventor paid attention to the change over time in the temperature at the tip of the cooling cylinder in the case of continuous crystal production, and attached a thermocouple to the tip of the coolant channel in the cooling cylinder as shown in FIG. It was installed and crystal production was performed several times continuously, and the change with time of the maximum temperature during each crystal production was examined. Note that cooling water (pure water) was used as the refrigerant.
As a result, every time the number of crystal productions increased, the maximum temperature at the tip of the cooling cylinder rose and reached the temperature exceeding 100 ° C., which is the boiling point of cooling water.

冷却水が100℃以上になると、冷却水の沸騰により著しく冷却能力が低下し、冷却筒の温度が上昇する。その結果、冷却筒が焼け付き、場合によっては冷却筒が熱応力により変形して破損し、その後の継続使用が不可能になるという問題があった。また、冷却筒の変形に至らない場合でも、結晶成長界面における温度勾配が低下するために、育成した単結晶の結晶性に影響するという問題があった。   When the cooling water is 100 ° C. or higher, the cooling capacity is remarkably lowered due to the boiling of the cooling water, and the temperature of the cooling cylinder rises. As a result, there is a problem that the cooling cylinder is burned, and in some cases, the cooling cylinder is deformed and damaged by thermal stress, and the subsequent continuous use becomes impossible. Further, even when the cooling cylinder does not deform, the temperature gradient at the crystal growth interface is lowered, which affects the crystallinity of the grown single crystal.

本発明者は、さらに、結晶製造回数が増加する度に冷却筒先端部の最高温度が上昇する原因について、冷却筒の冷却水の流路先端部を工業用内視鏡を用いて調べた。その結果、図4に示すように、冷却水の流路の壁面にスライム状の堆積物が確認された。このスライム状の堆積物の成分を調査した所、銅、炭素、及び鉄が多く検出され、単結晶引上げ装置に冷却水を供給するように敷設された配管の成分と判明した。   The inventor further examined the cause of the rise in the maximum temperature of the tip of the cooling cylinder every time the number of crystal production increases, using the industrial endoscope for the cooling water flow path tip of the cooling cylinder. As a result, as shown in FIG. 4, slime deposits were confirmed on the wall surface of the cooling water flow path. As a result of investigating the components of this slime-like deposit, a large amount of copper, carbon, and iron were detected, and the components were found to be components of piping laid to supply cooling water to the single crystal pulling device.

冷却筒の冷却水として純水を使用している限り、冷却筒内の流路に堆積物が形成されることは想定していなかったが、上記の結果から冷却筒の冷却水として純水を使用した場合であっても、冷却筒の冷却水の流路内部の状態を継続的または断続的に観察する必要があることがわかった。   As long as pure water was used as cooling water for the cooling cylinder, it was not assumed that deposits would be formed in the flow path in the cooling cylinder, but from the above results, pure water was used as cooling water for the cooling cylinder. Even when used, it has been found that it is necessary to continuously or intermittently observe the state inside the cooling water flow path of the cooling cylinder.

そして、このスライム状堆積物を洗浄により除去した後、結晶製造を行ったところ、冷却筒の先端部の結晶製造中の最高温度は70℃となり、初回の結晶製造時と同じであった。
以上から、冷却筒の先端部の温度の上昇は堆積物によるものであることがわかり、堆積物が確認され次第、これを除去する必要があった。
And after removing this slime deposit by washing | cleaning, when crystal manufacture was performed, the maximum temperature during crystal manufacture of the front-end | tip part of a cooling cylinder became 70 degreeC, and was the same as the time of the first crystal manufacture.
From the above, it was found that the temperature rise at the tip of the cooling cylinder was due to deposits, and it was necessary to remove the deposits as soon as they were confirmed.

本発明は、上記問題点に鑑みてなされたものであって、冷却筒の経時的な温度上昇による冷却能力の低下を防止することができる単結晶引上げ装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a single crystal pulling apparatus capable of preventing a cooling capacity from being lowered due to a temperature rise of a cooling cylinder over time.

上記目的を達成するために、本発明は、加熱ヒータと、原料融液を収容する石英ルツボとが配置されたメインチャンバーと、該メインチャンバー上に設けられた引上げチャンバーと、前記メインチャンバーの天井部より延設され、前記原料融液の直上に設けられ、引上げられた単結晶棒を冷却する冷却筒とを有する単結晶引上げ装置であって、前記冷却筒は冷却水が通過する流路を有し、前記流路の前記原料融液側の先端部に、前記流路の内部を観察する観察装置が設けられたものであることを特徴とする単結晶引上げ装置を提供する。   In order to achieve the above object, the present invention provides a main chamber in which a heater, a quartz crucible for containing a raw material melt are disposed, a pulling chamber provided on the main chamber, and a ceiling of the main chamber. A single crystal pulling apparatus that has a cooling cylinder that extends from a portion and is provided immediately above the raw material melt and cools the pulled single crystal rod, wherein the cooling cylinder has a flow path through which cooling water passes. A single crystal pulling apparatus is provided, characterized in that an observation device for observing the inside of the flow path is provided at the tip of the flow path on the raw material melt side.

このように、冷却筒の流路の原料融液側の先端部に、冷却筒の流路の内部を観察する観察装置を設けることで、冷却筒の流路の内部に形成される堆積物を早期に検知することができ、堆積物の形成により引き起こされる冷却筒の経時的な冷却能力の低下を防止することができるとともに、冷却筒の洗浄のタイミングを適切に判断することができる。   Thus, by providing an observation device for observing the inside of the flow path of the cooling cylinder at the front end of the flow path of the cooling cylinder on the raw material melt side, the deposits formed inside the flow path of the cooling cylinder are removed. It can be detected at an early stage, can prevent deterioration of the cooling capacity of the cooling cylinder over time caused by the formation of deposits, and can appropriately determine the timing of cleaning the cooling cylinder.

このとき、前記冷却水が純水であることが好ましい。
冷却水が純水であれば、冷却筒の流路の内部に堆積物が形成されにくくなり、冷却筒の洗浄頻度を低減させることができる。
At this time, it is preferable that the cooling water is pure water.
If the cooling water is pure water, deposits are less likely to be formed inside the flow path of the cooling cylinder, and the frequency of cleaning the cooling cylinder can be reduced.

このとき、前記観察装置が内視鏡であることが好ましい。
観察装置が内視鏡であれば、より確実に冷却筒の流路の内部に形成される堆積物を検知することができる。
At this time, it is preferable that the observation apparatus is an endoscope.
If the observation device is an endoscope, deposits formed inside the flow path of the cooling cylinder can be detected more reliably.

以上のように、本発明の単結晶引上げ装置によれば、冷却筒の流路の原料融液側の先端部に、冷却筒の流路の内部を観察する観察装置を設けることで、冷却筒の流路の内部に形成される堆積物を早期に検知することができ、冷却筒の経時的な冷却能力の低下を防止することができるとともに、冷却筒の洗浄のタイミングを適切に判断することができる。   As described above, according to the single crystal pulling apparatus of the present invention, the cooling cylinder is provided by observing the inside of the flow path of the cooling cylinder at the tip of the flow path of the cooling cylinder on the raw material melt side. It is possible to detect deposits formed in the interior of the flow path at an early stage, prevent deterioration of the cooling capacity of the cooling cylinder over time, and appropriately determine the timing of cleaning the cooling cylinder. Can do.

本発明の単結晶引上げ装置の実施態様の一例を示す断面図である。It is sectional drawing which shows an example of the embodiment of the single crystal pulling apparatus of this invention. 本発明の単結晶引上げ装置の冷却筒の詳細な構成を示す断面図である。It is sectional drawing which shows the detailed structure of the cooling cylinder of the single crystal pulling apparatus of this invention. 冷却筒における熱電対の設置位置を示す図である。It is a figure which shows the installation position of the thermocouple in a cooling cylinder. 冷却筒の流路の内部に形成される堆積物を示す図である。It is a figure which shows the deposit formed in the inside of the flow path of a cooling cylinder.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.

前述したように、結晶成長界面における高い温度勾配を実現するために、冷媒を冷却筒に流すことで冷却筒の先端を十分に冷却する必要があるが、冷却筒の経時的な冷却能力の低下が生じるという問題があった。   As described above, in order to realize a high temperature gradient at the crystal growth interface, it is necessary to sufficiently cool the tip of the cooling cylinder by flowing the coolant through the cooling cylinder. However, the cooling capacity of the cooling cylinder decreases with time. There was a problem that occurred.

そこで、本発明者は、冷却筒の経時的な冷却能力の低下を防止することができる単結晶引上げ装置について鋭意検討を重ねた。
その結果、冷却筒の流路の原料融液側の先端部に、冷却筒の流路の内部を観察する観察装置を設けることで、冷却筒の流路の内部に形成される堆積物を早期に検知することができ、冷却筒の経時的な冷却能力の低下を防止することができることを見出し、本発明をなすに至った。
Therefore, the present inventor has intensively studied a single crystal pulling apparatus that can prevent the cooling capacity of the cooling cylinder from decreasing with time.
As a result, by providing an observation device for observing the inside of the flow path of the cooling cylinder at the tip of the raw material melt side of the flow path of the cooling cylinder, the deposits formed inside the flow path of the cooling cylinder can be quickly removed. It has been found that the cooling capacity of the cooling cylinder can be prevented from decreasing over time, and the present invention has been made.

以下、図1、2を参照しながら、本発明の単結晶引上げ装置の実施態様の一例を説明する。   Hereinafter, an example of an embodiment of the single crystal pulling apparatus of the present invention will be described with reference to FIGS.

図1の単結晶引上げ装置15は、加熱ヒータ7と原料融液4を収容する石英ルツボ5とが配置されたメインチャンバー1と、メインチャンバー1上に設けられた引上げチャンバー2と、メインチャンバー1の天井部より下方に延設され、原料融液4の直上に設けられ、引上げられた単結晶棒3を冷却する冷却筒11とを有している。   A single crystal pulling device 15 in FIG. 1 includes a main chamber 1 in which a heater 7 and a quartz crucible 5 for containing a raw material melt 4 are disposed, a pulling chamber 2 provided on the main chamber 1, and a main chamber 1. And a cooling cylinder 11 that is provided immediately above the raw material melt 4 and cools the pulled up single crystal rod 3.

メインチャンバー1の下部にはガス流出口9を設けることができ、引上げチャンバー2の上部にはガス導入口10を設けることができる。石英ルツボ5は、例えば、黒鉛ルツボ6によって支持され、黒鉛ルツボ6は、例えば、ルツボ回転軸19によって支持される。石英ルツボ5を加熱する加熱ヒータ7の外側には、例えば、断熱部材8が周囲を取り囲むように設けられている。
引上げチャンバー2の上部には、例えば、引上げ機構(不図示)が設けられており、引上げ機構からは、例えば、引上げワイヤ16が巻出されており、その先端には、例えば、種結晶17を取り付けるための種ホルダ18が接続されている。冷却筒11には、例えば、冷却水導入口12が設けられている。冷却筒11の下端部には、例えば、原料融液面近傍に延伸する黒鉛製冷却補助部材13が設けられており、黒鉛製冷却補助部材13の下方には、例えば、輻射シールド14が設けられている。
A gas outlet 9 can be provided in the lower part of the main chamber 1, and a gas inlet 10 can be provided in the upper part of the pulling chamber 2. The quartz crucible 5 is supported by, for example, a graphite crucible 6, and the graphite crucible 6 is supported by, for example, a crucible rotating shaft 19. On the outside of the heater 7 that heats the quartz crucible 5, for example, a heat insulating member 8 is provided so as to surround the periphery.
For example, a pulling mechanism (not shown) is provided in the upper part of the pulling chamber 2. For example, a pulling wire 16 is unwound from the pulling mechanism. A seed holder 18 for attachment is connected. For example, a cooling water inlet 12 is provided in the cooling cylinder 11. At the lower end of the cooling cylinder 11, for example, a graphite cooling auxiliary member 13 extending in the vicinity of the raw material melt surface is provided, and below the graphite cooling auxiliary member 13, for example, a radiation shield 14 is provided. ing.

冷却筒11の詳細な構成を図2に示す。冷却筒11は冷却水が通過する流路22を有しており、流路22の原料融液4側の先端部に、流路22の内部を観察する観察装置が設けられている。冷却筒11には、例えば、冷却水入り口21、冷却水出口20が設けられている。
図2においては、観察装置として内視鏡30が例示されている。内視鏡30は、例えば、内視鏡コントローラ31によって制御され、内視鏡コントローラ31に接続されるモニター(不図示)によって観察結果を見ることができる。なお、内視鏡コントローラ31は、必ずしも内視鏡30と常時接続されている必要はなく、例えば、冷却筒11の流路22の内部を観察する時に内視鏡30と接続するようにしてもよい。
観察装置が内視鏡30であれば、より確実に冷却筒11の流路22の内部に形成される堆積物を検知することができる。
A detailed configuration of the cooling cylinder 11 is shown in FIG. The cooling cylinder 11 has a flow path 22 through which cooling water passes, and an observation device for observing the inside of the flow path 22 is provided at the tip of the flow path 22 on the raw material melt 4 side. The cooling cylinder 11 is provided with, for example, a cooling water inlet 21 and a cooling water outlet 20.
In FIG. 2, an endoscope 30 is illustrated as an observation apparatus. For example, the endoscope 30 is controlled by an endoscope controller 31 and can observe an observation result by a monitor (not shown) connected to the endoscope controller 31. Note that the endoscope controller 31 is not necessarily connected to the endoscope 30 at all times. For example, the endoscope controller 31 may be connected to the endoscope 30 when observing the inside of the flow path 22 of the cooling cylinder 11. Good.
If the observation device is the endoscope 30, deposits formed inside the flow path 22 of the cooling cylinder 11 can be detected more reliably.

上記のように、冷却筒11の流路22の原料融液4側の先端部に、冷却筒11の流路22の内部を観察する観察装置を設けることで、冷却筒11の流路22の内部に形成される堆積物を早期に検知することができ、堆積物の形成により引き起こされる冷却筒の経時的な冷却能力の低下を防止することができるとともに、冷却筒11の洗浄のタイミングを適切に判断することができる。
なお、冷却筒11の原料融液4側の先端部の温度監視により、堆積物形成の検知を間接的に行うこともできるが、温度監視に用いる熱電対を長期間使用すると断線し、温度測定を正確にできないという問題がある。従って、観察装置によって堆積物形成の検知を行った方が、より確実に堆積物形成を検知できる。
As described above, the observation device for observing the inside of the flow path 22 of the cooling cylinder 11 is provided at the front end of the flow path 22 of the cooling cylinder 11 on the raw material melt 4 side. The deposit formed inside can be detected at an early stage, the deterioration of the cooling capacity of the cooling cylinder over time caused by the formation of the deposit can be prevented, and the cleaning timing of the cooling cylinder 11 can be appropriately set. Can be judged.
It is possible to indirectly detect the formation of deposits by monitoring the temperature of the tip of the cooling cylinder 11 on the raw material melt 4 side. However, if the thermocouple used for temperature monitoring is used for a long period of time, it will be disconnected and the temperature measured. There is a problem that can not be accurately. Therefore, the deposit formation can be detected more reliably when the deposit formation is detected by the observation apparatus.

この場合、冷却筒11の流路22を通過する冷却水が純水であることが好ましい。
冷却水が純水であれば、冷却筒11の流路22の内部に堆積物が形成されにくくなり、冷却筒11の洗浄頻度を低減させることができ、製造コストを低減させることができる。
In this case, it is preferable that the cooling water passing through the flow path 22 of the cooling cylinder 11 is pure water.
If the cooling water is pure water, deposits are less likely to be formed inside the flow path 22 of the cooling cylinder 11, the frequency of cleaning the cooling cylinder 11 can be reduced, and the manufacturing cost can be reduced.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.

(実施例)
図1の単結晶引上げ装置15を用いて、複数回のシリコン単結晶の製造を行った。ただし、冷却筒11は、図2に示すように、流路22の原料融液4側の先端部に、内視鏡30を設けた構成とした。
シリコン単結晶製造終了のたびに、内視鏡30と内視鏡コントローラ31とを接続して、冷却筒11の原料融液4側の先端部分の流路22内部を観察し、流路22内の堆積物が顕著になった時点で冷却筒11の流路22の洗浄を実施し、洗浄後にシリコン単結晶製造を再開した。堆積物の確認、堆積物の確認結果に基づく流路洗浄を繰り返すことにより、冷却筒11の経時的な冷却能力の低下が起こることなく、継続して冷却筒11の使用が可能となった。さらに、冷却筒11の洗浄のタイミングを適切に判断できるようになったので、冷却筒11の洗浄の頻度が、後述する比較例に比べて25%低減した。
(Example)
Using the single crystal pulling apparatus 15 of FIG. 1, the silicon single crystal was manufactured a plurality of times. However, as shown in FIG. 2, the cooling cylinder 11 has a configuration in which an endoscope 30 is provided at the tip of the flow path 22 on the raw material melt 4 side.
Each time the silicon single crystal production is completed, the endoscope 30 and the endoscope controller 31 are connected to observe the inside of the flow path 22 at the front end portion of the cooling cylinder 11 on the raw material melt 4 side. When the deposit became noticeable, the flow path 22 of the cooling cylinder 11 was washed, and the production of the silicon single crystal was resumed after washing. By repeating the flow confirmation based on the confirmation of the deposit and the confirmation result of the deposit, the cooling cylinder 11 can be continuously used without causing the cooling capacity of the cooling cylinder 11 to deteriorate over time. Furthermore, since the timing of cleaning the cooling cylinder 11 can be appropriately determined, the frequency of cleaning the cooling cylinder 11 is reduced by 25% compared to a comparative example described later.

(比較例)
図1の単結晶引上げ装置15を用いて、複数回のシリコン単結晶の製造を行った。ただし、冷却筒11は、観察装置を設けない構成とした。
冷却筒11の流路22内を洗浄した後、どの程度の経過時間で冷却筒11の変形が生じるのかを考慮して、冷却筒11が変形しないように10000時間毎に冷却筒11の流路22内の洗浄を実施した。このため、堆積物が少量であり洗浄が必要ない場合であっても、10000時間が経過すれば冷却筒11の洗浄を実施することになった。
(Comparative example)
Using the single crystal pulling apparatus 15 of FIG. 1, the silicon single crystal was manufactured a plurality of times. However, the cooling cylinder 11 has a configuration in which no observation device is provided.
The flow path of the cooling cylinder 11 is taken every 10000 hours so that the cooling cylinder 11 is not deformed in consideration of how long the cooling cylinder 11 is deformed after the inside of the flow path 22 of the cooling cylinder 11 is washed. Washing in 22 was performed. For this reason, even if the amount of deposits is small and cleaning is not necessary, the cooling cylinder 11 is cleaned after 10,000 hours.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

1…メインチャンバー、 2…引上げチャンバー、 3…単結晶棒、 4…原料融液、
5…石英ルツボ、 6…黒鉛ルツボ、 7…加熱ヒータ、
8…断熱部材、 9…ガス流出口、 10…ガス導入口、 11…冷却筒、
12…冷却水導入口、 13…黒鉛製冷却補助部材、 14…輻射シールド、
15…単結晶引上げ装置、 16…引上げワイヤ、 17…種結晶、
18…種ホルダ、 19…ルツボ回転軸、 20…冷却水出口、
21…冷却水入り口、 22…流路、
30…内視鏡、 31…内視鏡コントローラ。
1 ... main chamber, 2 ... pulling chamber, 3 ... single crystal rod, 4 ... raw material melt,
5 ... quartz crucible, 6 ... graphite crucible, 7 ... heater,
8 ... heat insulating member, 9 ... gas outlet, 10 ... gas inlet, 11 ... cooling cylinder,
12 ... Cooling water inlet, 13 ... Graphite cooling auxiliary member, 14 ... Radiation shield,
15 ... Single crystal pulling device, 16 ... Pulling wire, 17 ... Seed crystal,
18 ... Seed holder, 19 ... Crucible rotating shaft, 20 ... Cooling water outlet,
21 ... Cooling water inlet, 22 ... Flow path,
30 ... Endoscope, 31 ... Endoscope controller.

Claims (3)

加熱ヒータと、原料融液を収容する石英ルツボとが配置されたメインチャンバーと、
該メインチャンバー上に設けられた引上げチャンバーと、
前記メインチャンバーの天井部より延設され、前記原料融液の直上に設けられ、引上げられた単結晶棒を冷却する冷却筒と
を有する単結晶引上げ装置であって、
前記冷却筒は冷却水が通過する流路を有し、
前記流路の前記原料融液側の先端部に、前記流路の内部を継続的または断続的に観察する観察装置が設けられたものであることを特徴とする単結晶引上げ装置。
A main chamber in which a heater and a quartz crucible containing a raw material melt are disposed;
A pulling chamber provided on the main chamber;
A single crystal pulling apparatus that has a cooling cylinder that extends from the ceiling of the main chamber, is provided immediately above the raw material melt, and cools the pulled single crystal rod;
The cooling cylinder has a flow path through which cooling water passes,
A single crystal pulling apparatus, wherein an observation device for continuously or intermittently observing the inside of the flow path is provided at a tip of the flow path on the raw material melt side.
前記冷却水が純水であることを特徴とする請求項1に記載の単結晶引上げ装置。   The single crystal pulling apparatus according to claim 1, wherein the cooling water is pure water. 前記観察装置が内視鏡であることを特徴とする請求項1又は請求項2に記載の単結晶引上げ装置。   The single crystal pulling apparatus according to claim 1, wherein the observation apparatus is an endoscope.
JP2014249814A 2014-12-10 2014-12-10 Single crystal puller Active JP6281479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249814A JP6281479B2 (en) 2014-12-10 2014-12-10 Single crystal puller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249814A JP6281479B2 (en) 2014-12-10 2014-12-10 Single crystal puller

Publications (2)

Publication Number Publication Date
JP2016108204A JP2016108204A (en) 2016-06-20
JP6281479B2 true JP6281479B2 (en) 2018-02-21

Family

ID=56122971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249814A Active JP6281479B2 (en) 2014-12-10 2014-12-10 Single crystal puller

Country Status (1)

Country Link
JP (1) JP6281479B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217296B (en) * 2017-04-28 2019-05-07 常州大学 A kind of silicon wafer horizontal growth apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298141A (en) * 2005-04-20 2006-11-02 Toyota Motor Corp Abnormal condition detecting device for cooling device
JP5181171B2 (en) * 2006-11-16 2013-04-10 Sumco Techxiv株式会社 Semiconductor single crystal manufacturing method
JP2008311310A (en) * 2007-06-12 2008-12-25 Toshiba Corp Semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP2016108204A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
KR101618474B1 (en) Sic epitaxial wafer and method for producing same, and device for producing sic epitaxial wafer
TWI558863B (en) Polycrystalline silicon rods
WO2009087724A1 (en) Single crystal producing device
JP2014001108A (en) Sic epitaxial wafer and method for manufacturing the same
JP6202119B2 (en) Method for producing silicon single crystal
KR101997569B1 (en) Method for growing silicon single crystal
KR101540225B1 (en) Single Crystal Manufacturing Apparatus and Single Crystal Manufacturing Method
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
JP6281479B2 (en) Single crystal puller
TW201300590A (en) Automated vision system for a crystal growth apparatus
JP5839343B2 (en) Contamination detection method for vapor phase growth apparatus and epitaxial wafer manufacturing method
JP5880974B2 (en) Method for detecting contamination of epitaxial growth apparatus and method for manufacturing epitaxial wafer
JP4650520B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
KR101279390B1 (en) Apparatus for growing single crystal ingot and method for spraying gas in ingot growing apparatus
JP2018188338A (en) Production method of silicon single crystal, and silicon single crystal
JP4862836B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP5358590B2 (en) Method for manufacturing a semiconductor wafer made of silicon having a diameter of at least 450 mm
JP6190070B2 (en) Crystal production method
JP7047803B2 (en) Single crystal pulling device
JP2016193807A (en) Manufacturing method of sapphire single crystal
TW201300584A (en) Feed tool for shielding a portion of a crystal puller
JP2019026485A (en) Method for manufacturing silicon single crystal
JP4499178B2 (en) Silicon melt contamination prevention device
KR101546679B1 (en) The method of cleaning exhaust pipe for ingot grower
JP4569090B2 (en) Single crystal manufacturing method, single crystal, and single crystal manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R150 Certificate of patent or registration of utility model

Ref document number: 6281479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250