JP6280994B6 - Continuously variable transmission - Google Patents
Continuously variable transmission Download PDFInfo
- Publication number
- JP6280994B6 JP6280994B6 JP2016564820A JP2016564820A JP6280994B6 JP 6280994 B6 JP6280994 B6 JP 6280994B6 JP 2016564820 A JP2016564820 A JP 2016564820A JP 2016564820 A JP2016564820 A JP 2016564820A JP 6280994 B6 JP6280994 B6 JP 6280994B6
- Authority
- JP
- Japan
- Prior art keywords
- gear
- planetary gear
- variator
- pulley
- gear mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 174
- 230000007246 mechanism Effects 0.000 claims description 180
- 238000010586 diagram Methods 0.000 claims description 91
- 238000004804 winding Methods 0.000 claims description 14
- 230000014509 gene expression Effects 0.000 description 36
- 230000004048 modification Effects 0.000 description 30
- 238000012986 modification Methods 0.000 description 30
- 230000008859 change Effects 0.000 description 25
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/46—Gearings having only two central gears, connected by orbital gears
- F16H3/58—Gearings having only two central gears, connected by orbital gears with sets of orbital gears, each consisting of two or more intermeshing orbital gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/62—Gearings having three or more central gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/62—Gearings having three or more central gears
- F16H3/66—Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transmission Devices (AREA)
Description
本発明は無段変速機に関し、より詳細には摩擦伝動を用いるバリエータの伝達動力を減ずることによりバリエータ重量と伝達損失を減じ、かつバリエータ変速レシオ幅を超える変速レシオ幅を有する無段変速機に関するものである。 The present invention relates to a continuously variable transmission, and more particularly to a continuously variable transmission having a transmission ratio width that reduces the variator weight and transmission loss by reducing the transmission power of a variator using frictional transmission and exceeds the variator transmission ratio width. Is.
従来の摩擦伝動を用いる無段変速機は、入力軸をバリエータ軸1に、出力軸をバリエータ軸2に連結しておき、バリエータ軸1とバリエータ軸2の間の回転数比を無段階に変えることにより、入力軸と出力軸の回転数比を無段階に可変するものがある。 In a conventional continuously variable transmission using friction transmission, an input shaft is connected to a
ところで、2つのバリエータ軸と入力軸との間に独立した2つの係合機構を備え、また2つのバリエータ軸と出力軸との間に独立した2つの係合機構を備えてあり、入力軸と2つのバリエータ軸を選択的に係合して駆動側とするとともに入力軸と係合しない方のバリエータ軸を出力軸と係合して従動側とする無段変速機が知られている(たとえば、特許文献1を参照)。 By the way, two independent engagement mechanisms are provided between the two variator shafts and the input shaft, and two independent engagement mechanisms are provided between the two variator shafts and the output shaft. 2. Description of the Related Art A continuously variable transmission is known in which two variator shafts are selectively engaged to drive and a variator shaft not engaged with an input shaft is engaged with an output shaft to be driven (for example, , See Patent Document 1).
また、3つの要素(たとえばサンギヤ、リングギヤ、キャリア)の回転自由度を2(たとえば遊星歯車の自転と公転)に制限する遊星歯車機構を1つ備え、3つの要素のうち中間回転数となる要素を入力軸に結合し、残りの2つの要素はそれぞれ2つのバリエータ軸に結合してあり、2つのバリエータ軸と出力軸との間に係合機構を備えて、出力軸と2つのバリエータ軸を選択的に係合する無段変速機が知られている(たとえば、特許文献2を参照)。 In addition, one planetary gear mechanism that restricts the degree of freedom of rotation of three elements (for example, sun gear, ring gear, and carrier) to 2 (for example, rotation and revolution of the planetary gear) is provided, and an element that has an intermediate rotational speed among the three elements Are connected to the input shaft, and the remaining two elements are respectively connected to the two variator shafts, and an engagement mechanism is provided between the two variator shafts and the output shaft, so that the output shaft and the two variator shafts are connected. A continuously variable transmission that selectively engages is known (see, for example, Patent Document 2).
また、3つの要素(たとえばサンギヤ、リングギヤ、キャリア)の回転自由度を2(たとえば遊星歯車の自転と公転)に制限する遊星歯車機構を1つ備え、3つの要素のうち中間回転数となる要素を入力軸に結合し、もう1つの要素は出力軸に、残り1つの要素と2つのバリエータ軸との間に独立した2つの係合機構を備え、また2つのバリエータ軸と出力軸との間に独立した2つの係合機構を備えてあり、遊星歯車要素と2つのバリエータ軸を選択的に係合して駆動側とするとともに、遊星歯車要素と係合しない方のバリエータ軸を出力軸と係合して従動側とする無段変速機が知られている(たとえば、特許文献3を参照)。 In addition, one planetary gear mechanism that restricts the degree of freedom of rotation of three elements (for example, sun gear, ring gear, and carrier) to 2 (for example, rotation and revolution of the planetary gear) is provided, and an element that has an intermediate rotational speed among the three elements Is connected to the input shaft, and the other element has two independent engagement mechanisms between the remaining one element and the two variator shafts on the output shaft, and between the two variator shafts and the output shaft. Two independent engaging mechanisms, selectively engaging the planetary gear element and the two variator shafts as a drive side, and the variator shaft not engaged with the planetary gear element as the output shaft. A continuously variable transmission that is engaged to be driven is known (see, for example, Patent Document 3).
従来の無段変速機では、変速機の伝達動力の全てがバリエータに入力され、摩擦伝動により出力軸に伝達されるため、伝達損失が増すという問題があった。
また、伝達動力がすべてバリエータを通過するため伝達動力に応じた強度のバリエータが必要となり、伝達動力を大きくするとバリエータの寸法・重量が増大してしまうという問題があった。
また、変速機の変速レシオ幅はバリエータの変速レシオ幅に等しいため、変速機の変速レシオ幅はバリエータの変速レシオ幅の制約を受ける。ベルト式又はチェーン式バリエータでは、変速レシオ幅を広げるためにプーリーの巻き掛け径の最大値を大きくするとプーリーの寸法と重量が増大する。またプーリーの巻き掛け径の最小値を小さくするとベルト又はチェーンにかかる荷重が増大する。他の方式においても同様であり、変速機の変速レシオ幅拡大には構造上の限界があるという問題があった。In the conventional continuously variable transmission, since all of the transmission power of the transmission is input to the variator and transmitted to the output shaft by friction transmission, there is a problem that transmission loss increases.
Further, since all of the transmission power passes through the variator, a variator having a strength corresponding to the transmission power is required. When the transmission power is increased, the size and weight of the variator increase.
Further, since the transmission ratio width of the transmission is equal to the transmission ratio width of the variator, the transmission ratio width of the transmission is restricted by the transmission ratio width of the variator. In the belt-type or chain-type variator, the size and weight of the pulley increase if the maximum value of the pulley winding diameter is increased in order to widen the transmission ratio width. Further, if the minimum value of the pulley winding diameter is reduced, the load applied to the belt or chain increases. The same applies to other systems, and there is a problem in that there is a structural limit in increasing the transmission ratio width of the transmission.
また、上記特許文献3に記載されている無段変速機では、上記3つの問題点は解決するものの、バリエータに加えて4つの係合機構と1つの遊星歯車機構を備える必要があることから、変速機全体の寸法・重量が大きくなってしまうという問題があった。 Further, in the continuously variable transmission described in
そこで、本発明は、上記従来技術の問題点に鑑み成されたものであり、その目的は、バリエータの寸法・重量を軽減して、摩擦伝動に伴う伝達損失を削減しながら、バリエータの制約を超える変速レシオ幅を有する無段変速機を提供することにある。 Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to reduce the size and weight of the variator and reduce the transmission loss associated with frictional transmission, while limiting the variator. It is an object of the present invention to provide a continuously variable transmission having a speed ratio width exceeding the above.
上記目的を達成するための本発明の無段変速機は、4つの要素の回転数を2つの自由度に規制する遊星歯車機構の,速度線図上に並ぶ4つの要素のうち,端から1番目の要素及び3番目の要素をバリエータの2つの軸と直接または固定された回転数比で結合しておき,2番目の要素を入力軸と直接または固定された回転数比で結合しておき,バリエータの回転数比を変えると1番目の要素の変速レシオ幅と4番目の要素の変速レシオ幅の積が,バリエータの変速レシオ幅を上回ることを特徴とする。 In order to achieve the above object, a continuously variable transmission according to the present invention includes a planetary gear mechanism that restricts the number of rotations of four elements to two degrees of freedom. The first and third elements are connected to the two variator axes directly or at a fixed speed ratio, and the second element is connected to the input shaft directly or at a fixed speed ratio. When the rotation speed ratio of the variator is changed, the product of the shift ratio width of the first element and the shift ratio width of the fourth element exceeds the shift ratio width of the variator.
従って詳細については後述するが、4つの要素の回転数を2つの自由度に規制する上記遊星歯車機構の速度線図上の端から1番目の要素(5)からの出力1と,端から4番目の要素(7)からの出力2とを選択的に出力軸(13)から取り出す時の変速機全体の変速レシオ幅はバリエータの変速レシオ幅を上回ることが可能となる。従って、出力1と出力2を係合機構を介して選択的に出力軸(13)に係合することにより,全体としてバリエータの変速レシオ幅を上回る変速レシオ幅の無段変速機を構成することが可能となる。 Therefore, as will be described in detail later, the
また上記無段変速機においては入力軸から出力1への経路において,速度線図上の端から2番目の要素(2)に入った動力は,一部が端から3番目の要素(6)を経由してバリエータ軸2(17)に伝達されベルトを介してバリエータ軸1(16)に伝達され,残りは端から1番目の要素(5)に伝達され,分割された動力は出力軸(13)で合流して出力されるから,バリエータを通過する動力は変速機の伝達動力より小さくなる。 In the continuously variable transmission, the power that has entered the second element (2) from the end on the speed diagram in the path from the input shaft to the
さらに、上記無段変速機においては入力軸から出力2への経路において,速度線図上の端から2番目の要素(2)に入った動力は,一部が端から1番目の要素(5)を経由してバリエータ軸1(16)に伝達されベルトを介してバリエータ軸2(17)に伝達されて端から3番目(6)の要素から遊星歯車機構へ戻って遊星歯車機構内部を経由する動力と合流して端から4番目の要素(7)から出力されるから,バリエータを通過する動力を変速機の伝達動力より小さくすることができる。 Further, in the continuously variable transmission, the power that has entered the second element (2) from the end on the speed diagram in the path from the input shaft to the
このように,バリエータを通過する動力を変速機の伝達動力より常に小さくすることができるため,摩擦伝動による動力損失を好適に低減することができ,かつバリエータの寸法・重量を小さくすることが可能となる。 In this way, the power passing through the variator can always be made smaller than the transmission power of the transmission, so power loss due to friction transmission can be suitably reduced and the size and weight of the variator can be reduced. It becomes.
本発明の無段変速機の第2の特徴は,4つの要素の回転数を2つの自由度に規制する遊星歯車機構を備え,速度線図上に並ぶ4つの要素のうち,端から1番目の要素と3番目の要素にバリエータの2つの軸が結合され,2番目の要素に入力軸が結合され,1番目の要素と4番目の要素は係合機構を介してそれぞれ出力軸と係合することができ,かつ特定のバリエータの回転数比(一般的にはバリエータ変速レシオ幅の端)で,1番目の要素と係合したときの出力軸回転数と4番目の要素と係合したときの出力軸回転数が等しくなることである。 The second feature of the continuously variable transmission according to the present invention includes a planetary gear mechanism that regulates the number of rotations of the four elements to two degrees of freedom, and is the first of the four elements arranged on the speed diagram from the end. The second and third elements are connected to the two axes of the variator, the second element is connected to the input shaft, and the first and fourth elements are engaged with the output shaft via the engagement mechanism, respectively. And at a specific variator speed ratio (generally at the end of the variator gear ratio), the output shaft speed when engaged with the first element and the fourth element engaged. The output shaft rotation speed at that time becomes equal.
上記構成では,一方の係合要素からもう一方の係合要素へ切り替えを行う際に,特定のバリエータの回転数比で切り替えれば,切り替えに際して各要素の回転数は変わらないから,それぞれの係合状態の間に変速比の継ぎ目はなく,かつ変速機の変速レシオ幅をバリエータ変速レシオ幅より大きくとりつつ,バリエータの寸法・重量を小さくすることが可能となる。 In the above configuration, when switching from one engaging element to the other engaging element, if the switching is performed at a specific variator rotational speed ratio, the rotational speed of each element does not change during switching. It is possible to reduce the size and weight of the variator while keeping the transmission ratio seamless between the states and making the transmission ratio width larger than the variator transmission ratio width.
本発明に係る無段変速機の第3の特徴は,入力軸(1)と,キャリア(2)と第1ピニオン(3)と第2ピニオン(4)とサンギヤ(5)と第1リングギヤ(6)と第2リングギヤ(7)で構成される遊星歯車機構(19)と,第5ギヤ(12)と同軸上に一体化され対向配置された第1円錐部材(16a)と第2円錐部材(16b)とで構成される第1プーリー(16)と,前記第1リングギヤ(6)と同軸上に一体化され対向配置された第3円錐部材(17a)と第4円錐部材(17b)とで構成される第2プーリー(17)と,前記第1プーリー(16)と前記第2プーリー(17)に巻き掛けられたベルト(18)とから構成され,前記第1プーリー(16)の2つの円錐部材の距離により定まる巻き掛け径と前記第2プーリー(17)の2つの円錐部材の距離により定まる巻き掛け径の比に応じて回転数比を変えることができるバリエータ(15)と,前記第2リングギヤ(7)と第1クラッチ(20)により係合することができる第1ギヤ(8)と,前記第1ギヤ(8)とかみ合う第2ギヤ(9)と,前記サンギヤ(5)と同軸上に一体化された第3ギヤ(10)と,前記第3ギヤ(10)及び前記第5ギヤ(12)とかみ合う第4ギヤ(11)と,第2クラッチ(21)により前記第4ギヤ(11)と係合することができかつ前記第2ギヤ(9)と一体化された出力軸(13)とから構成されていることである。 A third feature of the continuously variable transmission according to the present invention is that an input shaft (1), a carrier (2), a first pinion (3), a second pinion (4), a sun gear (5), and a first ring gear ( 6) and the planetary gear mechanism (19) composed of the second ring gear (7), the first conical member (16a) and the second conical member which are coaxially integrated with the fifth gear (12) and arranged opposite to each other. A first pulley (16) composed of (16b), a third conical member (17a) and a fourth conical member (17b) which are coaxially integrated with and opposed to the first ring gear (6). A first pulley (16), a belt (18) wound around the first pulley (16) and the second pulley (17), and two of the first pulley (16). The winding diameter determined by the distance between the two conical members and 2 of the second pulley (17) Can be engaged by the variator (15) capable of changing the rotation speed ratio according to the ratio of the winding diameter determined by the distance of the conical member, the second ring gear (7) and the first clutch (20). A first gear (8), a second gear (9) meshing with the first gear (8), a third gear (10) coaxially integrated with the sun gear (5), and the third gear (10) and the fourth gear (11) meshing with the fifth gear (12), and the second gear (9) can be engaged with the fourth gear (11) by the second clutch (21). And an output shaft (13) integrated with each other.
上記構成では,前記出力軸(13)は前記サンギヤ(5)、前記第2リングギヤ(7)及び前記第1プーリー(16)と歯車対を介してそれぞれ連結されているから,歯車の歯数比を調整すれば,遊星歯車機構及びバリエータの回転数とは独立に,出力先の要求に応じて前記出力軸(13)の回転数を決めることが可能となる。 In the above configuration, since the output shaft (13) is connected to the sun gear (5), the second ring gear (7), and the first pulley (16) via a gear pair, the gear ratio of the gears. By adjusting, the rotation speed of the output shaft (13) can be determined according to the request of the output destination independently of the rotation speed of the planetary gear mechanism and the variator.
本発明に係る無段変速機の第4の特徴は,前記入力軸(1)と同軸上に最も入力に近い場所に前記第3ギヤ(10),次に前記第1ギヤ(8),その次に前記第1クラッチ(20)の順に各機構要素が配置されており,前記出力軸(13)と同軸上に軸方向で最も入力に近い場所に前記第4ギヤ(11),次に前記第2クラッチ(21),その次に前記第2ギヤ(9)が配置されていることである。 The fourth feature of the continuously variable transmission according to the present invention is that the third gear (10) is located on the same axis as the input shaft (1) and closest to the input, then the first gear (8), Next, each mechanism element is arranged in the order of the first clutch (20). The fourth gear (11) is next to the output shaft (13) in the axial direction and closest to the input in the axial direction. The second clutch (21) and then the second gear (9) are arranged.
上記構成では,前記第1クラッチ(20)と前記第2クラッチ(21)は前記第1ギヤ(8)および前記第2ギヤ(9)を挟んで軸方向に離れているから2つのクラッチの外径同士は干渉せず,伝達トルクに応じたクラッチ外径の拡大が容易となり結果としてクラッチの軸方向の寸法を小さくして変速機の軸方向寸法を小さくすることが可能となる。 In the above configuration, the first clutch (20) and the second clutch (21) are separated from each other in the axial direction with the first gear (8) and the second gear (9) interposed therebetween. The diameters do not interfere with each other, and the outer diameter of the clutch can be easily increased in accordance with the transmission torque. As a result, the axial dimension of the clutch can be reduced and the axial dimension of the transmission can be reduced.
本発明に係る無段変速機の第5の特徴は,前記入力軸(1)と同軸上の入力から最も遠い場所に第2プーリー(17)が配置されていることである。 A fifth feature of the continuously variable transmission according to the present invention is that a second pulley (17) is disposed at a position farthest from an input coaxial with the input shaft (1).
上記構成では,前記第2プーリー(17)は同軸配置された要素の端に位置するから,前記第2プーリー(17)を油圧により作動させる際に,軸端から容易に作動油を供給することが可能となる。 In the above configuration, since the second pulley (17) is located at the end of the coaxially arranged element, when the second pulley (17) is hydraulically operated, hydraulic oil is easily supplied from the shaft end. Is possible.
本発明に係る無段変速機の第6の特徴は,少なくとも3つの穴があけられた固定部材(30)の3つの穴に,それぞれ前記第1リングギヤ(6)又は前記第2プーリー(17)を支持する第1軸受と前記出力軸(13)の端部を支持する第2軸受と前記第5ギヤ(12)又は第1プーリー(16)を支持する第3軸受が固定されており,かつ前記固定部材(30)がケース(40)に固定されていることである. A sixth feature of the continuously variable transmission according to the present invention is that the first ring gear (6) or the second pulley (17) is provided in three holes of the fixing member (30) having at least three holes, respectively. A first bearing for supporting the second shaft, a second bearing for supporting the end of the output shaft (13), and a third bearing for supporting the fifth gear (12) or the first pulley (16), and The fixing member (30) is fixed to the case (40).
上記構成によれば,変速機を構成する部品をあらかじめ前記固定部材(30)に組み付けておき,これを前記ケース(40)へ固定することにより組立性が向上する。 According to the above configuration, the parts constituting the transmission are assembled to the fixing member (30) in advance, and the assembly is improved by fixing the component to the case (40).
本発明に係る無段変速機の第7の特徴は、3つの要素の回転数を2つの自由度にそれぞれ規制する第1遊星歯車機構及び第2遊星歯車機構を備え,該第1遊星歯車機構の速度線図上で端から1番目の要素と3番目の要素に前記バリエータの2つの軸が結合され,2番目の要素に前記入力軸が結合されており,前記1番目の要素と前記出力軸との間に係合機構を備えており,前記第2遊星歯車機構の速度線図上で端から2番目の要素と前記第1遊星歯車機構の前記3番目の要素が結合されており,前記第2遊星歯車機構の端から3番目の要素は前記出力軸と結合されており,該第2遊星歯車機構の端から1番目の要素と前記入力軸との間に係合機構を備えており,2つの係合機構を選択的に係合することができることである。 A seventh feature of the continuously variable transmission according to the present invention includes a first planetary gear mechanism and a second planetary gear mechanism that restrict the rotation speeds of the three elements to two degrees of freedom, respectively, and the first planetary gear mechanism. Two axes of the variator are coupled to the first element and the third element from the end on the velocity diagram, and the input shaft is coupled to the second element, and the first element and the output An engagement mechanism is provided between the shaft and the second element from the end on the velocity diagram of the second planetary gear mechanism and the third element of the first planetary gear mechanism are coupled; A third element from the end of the second planetary gear mechanism is coupled to the output shaft, and an engagement mechanism is provided between the first element from the end of the second planetary gear mechanism and the input shaft. Thus, the two engagement mechanisms can be selectively engaged.
上記構成によれば、3つの要素の回転数を2つの自由度に規制する遊星歯車機構を2組用いることにより、4つの要素の回転数を2つの自由度に規制する遊星歯車機構を備えた上記無段変速機と同等の機能を実現することが可能となる。 According to the above configuration, the planetary gear mechanism that restricts the rotational speed of the four elements to two degrees of freedom is provided by using two sets of planetary gear mechanisms that restrict the rotational speed of the three elements to two degrees of freedom. A function equivalent to the continuously variable transmission can be realized.
本発明の無段変速機によれば,摩擦伝動を用いた無段変速機において,動力源から入力軸に入る動力を4つの要素を2つの自由度に規制する遊星歯車機構に入力して,バリエータによる変速を行うことにより,バリエータの伝達動力が変速機の伝達動力より常に小さくかつバリエータの変速レシオ幅を上回る変速レシオ幅を付与することが可能となる。これにより,バリエータの寸法・重量は著しく軽減され,摩擦伝動に伴う動力損失は小さくなる。さらに,本発明の無段変速機によれば,構成部品を固定部材に組み付けたうえでケースに固定することにより,組立作業性が向上する。 According to the continuously variable transmission of the present invention, in the continuously variable transmission using friction transmission, the power that enters the input shaft from the power source is input to the planetary gear mechanism that restricts the four elements to two degrees of freedom, By performing the shift by the variator, it is possible to provide a shift ratio width in which the transmission power of the variator is always smaller than the transmission power of the transmission and exceeds the shift ratio width of the variator. This significantly reduces the size and weight of the variator and reduces the power loss associated with frictional transmission. Furthermore, according to the continuously variable transmission of the present invention, the assembly workability is improved by assembling the component parts to the fixing member and then fixing them to the case.
以下、図に示す実施の形態により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.
図1は本発明の無段変速機の変速原理(すなわち、4つの要素の回転数を2つの自由度に規制する遊星歯車機構の,速度線図上に並ぶ4つの要素のうち,端から1番目の要素及び3番目の要素をバリエータの2つの軸と直接または固定された回転数比で結合しておき,2番目の要素を入力軸と直接または固定された回転数比で結合しておき,前記バリエータの回転数比を変えると前記1番目の要素の変速レシオ幅と前記4番目の要素の変速レシオ幅の積が,前記バリエータの変速レシオ幅を上回る、という変速原理)を表す遊星歯車機構の速度線図である。前記1番目の要素から動力を取り出す場合を出力1,前記4番目の要素から動力を取り出す場合を出力2と呼ぶ。
速度線図の縦軸は回転数を示し,横方向の距離は遊星歯車機構の各要素の回転数比を示す。FIG. 1 shows the speed change principle of a continuously variable transmission according to the present invention (that is, one of four elements arranged on a speed diagram of a planetary gear mechanism that regulates the number of rotations of four elements to two degrees of freedom from the end. The first and third elements are connected to the two variator axes directly or at a fixed speed ratio, and the second element is connected to the input shaft directly or at a fixed speed ratio. , A planetary gear representing a shift principle that the product of the shift ratio width of the first element and the shift ratio width of the fourth element exceeds the shift ratio width of the variator when the rotation speed ratio of the variator is changed. It is a speed diagram of a mechanism. The case where power is taken out from the first element is called
The vertical axis of the velocity diagram indicates the rotational speed, and the lateral distance indicates the rotational speed ratio of each element of the planetary gear mechanism.
左から数えて1番目の要素の回転数をN1,2番目の要素の回転数をN2,3番目の要素の回転数をN3,4番目の要素の回転数をN4と呼ぶ。
速度線図上の左から1番目の要素と2番目の要素との間隔を1としたときの,2番目の要素と3番目の要素との間隔をλ1,2番目の要素と4番目の要素との間隔をλ2とする。2番目の要素と4番目の要素との間隔は,2番目の要素と3番目の要素との間隔より大きくなければ,4番目にはなりえないことからλ2>λ1となる。左から2番目の要素を入力に結合するからN2=Ninである。左から1番目の要素をバリエータ軸1に直接又は固定された回転数比で結合して,3番目の要素をバリエータ軸2に直接または固定された回転数比で結合する。
速度線図上でN1に対するN3の回転数比をrとする。From the left, the rotation speed of the first element is called N1, the rotation speed of the second element is N2, the rotation speed of the third element is N3, and the rotation speed of the fourth element is N4.
The distance between the 2nd element and the 3rd element is λ1, 2nd element and 4th element when the distance between the 1st element and the 2nd element from the left on the velocity diagram is 1. Is set to λ2. Since the interval between the second element and the fourth element cannot be the fourth unless it is larger than the interval between the second element and the third element, λ2> λ1. Since the second element from the left is connected to the input, N2 = Nin. The first element from the left is coupled to the
On the velocity diagram, let r be the rotation speed ratio of N3 to N1.
バリエータ軸1とバリエータ軸2の円と線分はベルト式バリエータを模しており,大きな円は巻き掛け径の最大状態を,小さな円は巻き掛け径の最小状態を示し,円と円を結ぶ線分は巻き掛けられたベルトの状態を示す。
第1プーリーの巻き掛け径が最小で第2プーリーの巻き掛け径が最大のとき,rは最小値r_minをとり,各要素の回転数は速度線図上の右下がりの線分上の黒丸で表される。このときの遊星歯車機構の3つの要素の回転数はN1_min,N3_min,N4_minとする.なお2番目の要素は入力軸に結合されるから,rが変わってもN2は変化しない。
第1プーリーの巻き掛け径が最大で第2プーリーの巻き掛け径が最小のとき,rは最大値r_maxをとり,各要素の回転数は速度線図上の右上がりの線分上の黒丸で表される。このときの遊星歯車機構の3つの要素の回転数はN1_min,N3_min,N4_minとする。
バリエータ変速レシオ幅はr_max/r_minである。
N1はr=r_minのとき最大値となり,r=r_maxのとき最小値となる.出力1の変速レシオ幅はN1の最大値と最小値の比に相当するから,N1_min/N1_maxで表される。
N4はr=r_maxのとき最大値となり,r=r_minのとき最小値となる.出力2の変速レシオ幅はN4の最大値と最小値の比に相当するから,N4_max/N4_minで表される。The circle and line segment of the
When the winding diameter of the first pulley is the minimum and the winding diameter of the second pulley is the maximum, r takes the minimum value r_min, and the rotation speed of each element is a black circle on the lower right line segment on the speed diagram. expressed. The rotation speeds of the three elements of the planetary gear mechanism at this time are N1_min, N3_min, and N4_min. Since the second element is connected to the input shaft, N2 does not change even if r changes.
When the winding diameter of the first pulley is the maximum and the winding diameter of the second pulley is the minimum, r takes the maximum value r_max, and the number of rotations of each element is a black circle on the upper right line segment on the speed diagram. expressed. The rotation speeds of the three elements of the planetary gear mechanism at this time are N1_min, N3_min, and N4_min.
The variator shift ratio width is r_max / r_min.
N1 has the maximum value when r = r_min, and the minimum value when r = r_max. Since the shift ratio width of
N4 has the maximum value when r = r_max, and the minimum value when r = r_min. Since the shift ratio width of
ここで、上記変速原理が成り立つことを証明する。
遊星歯車機構における入力軸回転数をNinとすれば,N1,N2,N3,N4は式1から式4に従う。式1:N1×r=N3
式2:N2=Nin
式3:(N2-N1)×λ1=N3-N2
式4:(N2-N1)×λ2=N4-N2
式3に式1と式2を代入すれば式5となる。
式5:(Nin-N1)×λ1=N1×r-Nin
式5をN1について解けば式6となる。
式6:N1={(1+λ1)/(r+λ1)}×Nin
式1に式6を代入すれば式7となる。
式7:N3={r×(1+λ1)/(r+λ1)}×Nin
式4に式2と式6を代入してN4について整理すれば式8となる。
式8:N4={r×(1+λ2)+λ1-λ2}/(r+λ1)×NinHere, it is proved that the above-mentioned speed change principle holds.
If the input shaft speed in the planetary gear mechanism is Nin, N1, N2, N3, and N4 follow
Formula 2: N2 = Nin
Formula 3: (N2-N1) × λ1 = N3-N2
Formula 4: (N2-N1) × λ2 = N4-N2
If
Formula 5: (Nin-N1) × λ1 = N1 × r-Nin
Solving
Formula 6: N1 = {(1 + λ1) / (r + λ1)} × Nin
If
Formula 7: N3 = {r × (1 + λ1) / (r + λ1)} × Nin
Substituting
Formula 8: N4 = {r × (1 + λ2) + λ1-λ2} / (r + λ1) × Nin
上記変速原理は,出力1の変速レシオ幅と出力2の変速レシオ幅の積と,バリエータ変速レシオ幅の大小関係が,式9を満たすことと等値である。
式9:(N1_min/N1_max)×(N4_max/N4_min)>r_max/r_min
式9の左辺に式6と式8を代入すれば式10となる。
式10:{(1+λ1)/(r_min+λ1)}/{(1+λ1)/(r_max+λ1)}×[{r_max×(1+λ2)+λ1-λ2}/(r_max+λ1)]/[{r_min×(1+λ2)+λ1-λ2}/(r_min+λ1)]>r_max/r_min
式10の左辺を整理すれば式11となる。
式11:{r_max×(1+λ2)-(λ2-λ1)}/{r_min×(1+λ2)-(λ2-λ1)}>r_max/r_min
N4は常に正の値だから式11の左辺の分母は常に正の値であることを利用して,式11の両辺にr_min×{r_min×(1+λ2)-(λ2-λ1)}を掛けると式12となる。
式12:(λ2-λ1)×(r_max-r_min)>0
λ2>λ1かつr_max>r_minなので式12は常に成り立つ。
式12と等値である式9も常に成り立つから,上記変速原理が証明された。The speed change principle is equivalent to the fact that the product of the speed ratio width of
Formula 9: (N1_min / N1_max) × (N4_max / N4_min)> r_max / r_min
Substituting
Formula 10: {(1 + λ1) / (r_min + λ1)} / {(1 + λ1) / (r_max + λ1)} × [{r_max × (1 + λ2) + λ1-λ2} / (r_max + λ1 )] / [{r_min × (1 + λ2) + λ1-λ2} / (r_min + λ1)]> r_max / r_min
If the left side of
Expression 11: {r_max × (1 + λ2) − (λ2−λ1)} / {r_min × (1 + λ2) − (λ2−λ1)}> r_max / r_min
Since N4 is always a positive value, using the fact that the denominator on the left side of
Formula 12: (λ2-λ1) × (r_max-r_min)> 0
Since λ2> λ1 and r_max> r_min,
Since the equation (9), which is equivalent to the equation (12), always holds, the above speed change principle has been proved.
次に、上記変速原理においてバリエータの伝達動力が変速機の伝達動力より常に小さくなることを示す。
先ず、トルクを求める。ここでは歯車やバリエータの伝達効率は1と仮定した。遊星歯車機構の軸上での入力トルクをTinとして,遊星歯車の速度線図上の4つの要素に入るトルクを、それぞれT1,T2,T3,T4とする。速度線図で左から2番目の要素に入力されるから,常に式13が成り立つ。
式13:T2=Tin
遊星歯車の速度線図で,左から1番目の要素から出力する場合のトルクを求める。
梃子の原理からT1は式14で表せる。
式14:T1=-λ1/(1+λ1)×Tin
同様にT3は式15で表せる。
式15:T3=-1/(1+λ1)×Tin
なお,T4はゼロである。
遊星歯車の速度線図で,左から4番目の要素から出力する場合のトルクを求める.
遊星歯車の公転のトルクつり合いは式16で表される。
式16:T1+T2+T3+T4=0
遊星歯車の自転のトルクつり合いは式17で表される。
式17:T1=T3×λ1+T4×λ2
T1とT3はバリエータでつながっているから,トルクの関係は式18で表される。
式18:T1=-r×T3
式17に式18を代入して整理すると,式19となる。
式19:T3=-{λ2/(λ1+r)}×T4
式16に式19を代入して整理すると,式20となる。
式20:T4=-[(λ1+r)/{λ1-λ2+(λ2+1)×r}]×Tin
式19に式20を代入して整理すると,式21となる。
式21:T3=λ2/{λ1-λ2+(λ2+1)×r}×Tin
式18に式21を代入して整理すると,式22となる。
式22:T1=-[r×λ2/{λ1-λ2+(λ2+1)×r}]×Tin
以上でトルクが求められた。Next, it will be shown that the transmission power of the variator is always smaller than the transmission power of the transmission in the above speed change principle.
First, the torque is obtained. Here, the transmission efficiency of the gears and variator is assumed to be 1. The input torque on the axis of the planetary gear mechanism is Tin, and the torques that enter the four elements on the planetary gear speed diagram are T1, T2, T3, and T4, respectively. Since it is input to the second element from the left in the velocity diagram,
Formula 13: T2 = Tin
In the speed diagram of the planetary gear, find the torque when outputting from the first element from the left.
From the principle of Choshi, T1 can be expressed by Equation 14.
Formula 14: T1 = −λ1 / (1 + λ1) × Tin
Similarly, T3 can be expressed by
Formula 15: T3 = -1 / (1 + λ1) × Tin
T4 is zero.
Calculate the torque when output from the fourth element from the left in the planetary gear speed diagram.
The torque balance of the revolution of the planetary gear is expressed by
Formula 16: T1 + T2 + T3 + T4 = 0
The torque balance of rotation of the planetary gear is expressed by
Formula 17: T1 = T3 × λ1 + T4 × λ2
Since T1 and T3 are connected by a variator, the torque relationship is expressed by
Formula 18: T1 = −r × T3
Substituting
Formula 19: T3 =-{λ2 / (λ1 + r)} × T4
Substituting
Expression 20: T4 = − [(λ1 + r) / {λ1-λ2 + (λ2 + 1) × r}] × Tin
Substituting
Formula 21: T3 = λ2 / {λ1-λ2 + (λ2 + 1) × r} × Tin
Substituting
Formula 22: T1 = − [r × λ2 / {λ1-λ2 + (λ2 + 1) × r}] × Tin
Thus, the torque was obtained.
次に、本発明に係る上記変速原理においてバリエータ伝達動力が変速機の伝達動力より小さくなる効果に関する成立条件を以下に示す。
変速機の伝達動力をPとすれば,これは回転数とトルクの積だから式23で表される。式23:P=Nin×Tin
図1の遊星歯車機構の速度線図で,左から1番目の要素から出力した場合のバリエータ伝達動力をP1とする.これは左から3番目の要素から出てバリエータ軸2に入りバリエータ軸1に伝わる動力にほかならないから,P1は式24で表される。
式24:P1=-N3×T3 ただしT3は式15
式24に式7と式15を代入して整理すると式25となる。
式25:P1=r/(r+λ1)×P
左から4番目の要素から出力した場合のバリエータ伝達動力をP2とする。これは左から1番目の要素から出てバリエータ軸1に入りバリエータ軸2に伝わり,左から3番目の要素に入る動力だから,P2は式26で表される。
式26:P2=N3×T3 ただしT3は式21
式26に式7と式21を代入して整理すると式27となる。
式27:P2={r×λ2×(1+λ1)}/[{r+λ1}×{λ1-λ2+(1+λ2)×r}]×P
P1とP2が式28と式29を満たす場合,バリエータ伝達動力が変速機の伝達動力より小さい。
式28:P1<P
式29:P2<P
式28はλ1>0だから常に成立する。
式29に式27を代入すると式30となる。
式30:{r×λ2×(1+λ1)}/[{r+λ1}×{λ1-λ2+(1+λ2)×r}]×P<P
式30の両辺をPで割ると式31となる。
式31:{r×λ2×(1+λ1)}/[{r+λ1}×{λ1-λ2+(1+λ2)×r}]<1
P2は常に正であり,式31の分子も常に正だから,式31の分母は常に正である.これを利用して式31を整理すれば式32となる。
式32:r×λ2×(1+λ1)<{r+λ1}×{λ1-λ2+(1+λ2)×r}
式32をrについて整理すると式33となる。
式33:r^2+2×(λ1-λ2)/(1+λ2)×r+{λ1×(λ1-λ2)/(1+λ2)}>0
式33の左辺をrについて因数分解すれば式34となる。
式34:(r+[λ1-λ2+{λ2×(λ2-λ1)×(1+λ1)}^0.5)]/(1+λ2))×(r+[λ1-λ2-{λ2×(λ2-λ1)×(1+λ1)}^0.5)]/(1+λ2))>0
式32の右辺が常に正であることを利用すれば,式35となる。
式35:λ1-λ2+r×(1+λ2)>0
式35の左辺を1+λ2で割れば式36となる。
式36:r+(λ1-λ2)/(1+λ2)>0
式34は2つの式の積だが,第1式は式36から常に正である.式34の不等式から第1式を削除すれば式37となる。
式37:r+[λ1-λ2-{λ2×(λ2-λ1)×(1+λ1)}^0.5)]/(1+λ2)>0
式37をrについて整理すると式38となる。
式38:r>[(λ2-λ1)+{λ2×(λ2-λ1)×(1+λ1)}^0.5]/(1+λ2)
rの最小値はr_minだから,式38を満たす条件は式39となる。
式39:r_min>[(λ2-λ1)+{λ2×(λ2-λ1)×(1+λ1)}^0.5]/(1+λ2)
式39を満たすようにr_min,λ1,λ2の値を決めれば,常にバリエータ伝達動力が変速機の伝達動力より小さくなる。Next, conditions for establishing the effect that the variator transmission power becomes smaller than the transmission power of the transmission in the above-described speed change principle according to the present invention will be described below.
If the transmission power of the transmission is P, this is the product of the rotation speed and the torque, so it is expressed by Equation 23. Formula 23: P = Nin × Tin
In the speed diagram of the planetary gear mechanism in Fig. 1, let P1 be the variator transmission power when output from the first element from the left. Since this is nothing but the power transmitted from the third element from the left to the
Equation 24: P1 = −N3 × T3 where T3 is
Substituting
Formula 25: P1 = r / (r + λ1) × P
Let P2 be the variator transmission power when output from the fourth element from the left. Since this is the power that comes out of the first element from the left, enters the
Equation 26: P2 = N3 × T3 where T3 is
When
Expression 27: P2 = {r × λ2 × (1 + λ1)} / [{r + λ1} × {λ1-λ2 + (1 + λ2) × r}] × P
When P1 and P2 satisfy Expressions 28 and 29, the variator transmission power is smaller than the transmission transmission power.
Formula 28: P1 <P
Formula 29: P2 <P
Equation 28 always holds because λ1> 0.
Substituting Equation 27 into Equation 29
Expression 30: {r × λ2 × (1 + λ1)} / [{r + λ1} × {λ1-λ2 + (1 + λ2) × r}] × P <P
Dividing both sides of
Formula 31: {r × λ2 × (1 + λ1)} / [{r + λ1} × {λ1-λ2 + (1 + λ2) × r}] <1
Since P2 is always positive and the numerator of Equation 31 is always positive, the denominator of Equation 31 is always positive. If formula 31 is arranged using this, formula 32 will be obtained.
Expression 32: r × λ2 × (1 + λ1) <{r + λ1} × {λ1-λ2 + (1 + λ2) × r}
When formula 32 is arranged with respect to r, formula 33 is obtained.
Expression 33: r ^ 2 + 2 × (λ1-λ2) / (1 + λ2) × r + {λ1 × (λ1-λ2) / (1 + λ2)}> 0
If the left side of Expression 33 is factored with respect to r, Expression 34 is obtained.
Formula 34: (r + [λ1-λ2 + {λ2 × (λ2-λ1) × (1 + λ1)} ^ 0.5)] / (1 + λ2)) × (r + [λ1-λ2- {λ2 × (λ2-λ1) ) × (1 + λ1)} ^ 0.5)] / (1 + λ2))> 0
Using the fact that the right side of Expression 32 is always positive, Expression 35 is obtained.
Formula 35: λ1-λ2 + r × (1 + λ2)> 0
If the left side of Expression 35 is divided by 1 + λ2, Expression 36 is obtained.
Formula 36: r + (λ1-λ2) / (1 + λ2)> 0
Equation 34 is the product of two equations, but the first equation is always positive from Equation 36. If the first expression is deleted from the inequality of Expression 34, Expression 37 is obtained.
Formula 37: r + [λ1-λ2- {λ2 × (λ2-λ1) × (1 + λ1)} ^ 0.5)] / (1 + λ2)> 0
When formula 37 is arranged with respect to r, formula 38 is obtained.
Formula 38: r> [(λ2-λ1) + {λ2 × (λ2-λ1) × (1 + λ1)} ^ 0.5] / (1 + λ2)
Since the minimum value of r is r_min, the condition that satisfies Expression 38 is Expression 39.
Formula 39: r_min> [(λ2-λ1) + {λ2 × (λ2-λ1) × (1 + λ1)} ^ 0.5] / (1 + λ2)
If the values of r_min, λ1, and λ2 are determined so as to satisfy Equation 39, the variator transmission power is always smaller than the transmission transmission power.
出力1と出力2を選択的に係合して,変速レシオ幅の範囲内で任意の回転数比をとれる無段変速機を構成するためには,バリエータがとりうる回転数比の中に,出力1と出力2のどちらを選んでも入力軸に対する出力軸の回転数比が等しくなるようなバリエータの回転数比が存在する必要がある。そこで,出力1と出力2が,出力軸上で回転数が等しくなるための条件を示す。
1番目の要素に対する出力軸の回転数比をr1とする。4番目の要素に対する出力軸の回転数比をr2とする。式40が成立することが,出力軸上で回転数が等しくなる条件である。
式40:N1×r1=N4×r2
式40へ式6と式8を代入すると式41となる。
式41:(1+λ1)/(r+λ1)×Nin×r1={r×(1+λ2)+λ1-λ2}/(r+λ1)×Nin×r2
式41を整理すると式42となる。
式42:r1/r2={r×(1+λ2)+λ1-λ2}/(1+λ1)
バリエータの回転数比がr=r_minのときに各要素の回転数を変えずに2つの係合機構の切り替えを行う場合は,式43が成立するようにr1とr2を決める。
式43:r1/r2={r_min×(1+λ2)+λ1-λ2}/(1+λ1)
一方、バリエータの回転数比がr=r_maxのときに各要素の回転数を変えずに2つの係合機構の切り替えを行う場合は,式44が成立するようにr1とr2を決める。
式44:r1/r2={r_max×(1+λ2)+λ1-λ2}/(1+λ1)In order to construct a continuously variable transmission that can take any rotational speed ratio within the range of the speed ratio ratio by selectively engaging the
Let r1 be the rotation speed ratio of the output shaft to the first element. Let r2 be the rotation speed ratio of the output shaft to the fourth element. The fact that
Formula 40: N1 × r1 = N4 × r2
Substituting
Formula 41: (1 + λ1) / (r + λ1) × Nin × r1 = {r × (1 + λ2) + λ1-λ2} / (r + λ1) × Nin × r2
When formula 41 is arranged, formula 42 is obtained.
Formula 42: r1 / r2 = {r × (1 + λ2) + λ1-λ2} / (1 + λ1)
When the two engagement mechanisms are switched without changing the rotation speed of each element when the rotation speed ratio of the variator is r = r_min, r1 and r2 are determined so that Expression 43 is satisfied.
Expression 43: r1 / r2 = {r_min × (1 + λ2) + λ1-λ2} / (1 + λ1)
On the other hand, when the two engagement mechanisms are switched without changing the rotation speed of each element when the rotation speed ratio of the variator is r = r_max, r1 and r2 are determined so that Expression 44 is satisfied.
Formula 44: r1 / r2 = {r_max × (1 + λ2) + λ1-λ2} / (1 + λ1)
図2は本発明の無段変速機(100)を示す構成図である。
この無段変速機(100)は、入力軸(1)と,キャリア(2)と第1ピニオン(3)と第2ピニオン(4)とサンギヤ(5)と第1リングギヤ(6)と第2リングギヤ(7)で構成される遊星歯車機構(19)と,第5ギヤ(12)と同軸上に一体化され対向配置された第1円錐部材(16a)と第2円錐部材(16b)とで構成される第1プーリー(16)と,前記第1リングギヤ(6)と同軸上に一体化され対向配置された第3円錐部材(17a)と第4円錐部材(17b)とで構成される第2プーリー(17)と,前記第1プーリー(16)と前記第2プーリー(17)に巻き掛けられたベルト(18)とから構成され,前記第1プーリー(16)の2つの円錐部材の距離により定まる巻き掛け径と前記第2プーリー(17)の2つの円錐部材の距離により定まる巻き掛け径の比に応じて回転数比を変えることができるバリエータ(15)と,前記第2リングギヤ(7)と第1クラッチ(20)により係合することができる第1ギヤ(8)と,前記第1ギヤ(8)とかみ合う第2ギヤ(9)と,前記サンギヤ(5)と同軸上に一体化された第3ギヤ(10)と,前記第3ギヤ(10)及び前記第5ギヤ(12)とかみ合う第4ギヤ(11)と,第2クラッチ(21)により前記第4ギヤ(11)と係合することができかつ前記第2ギヤ(9)と一体化された出力軸(13)とから構成されている。FIG. 2 is a block diagram showing a continuously variable transmission (100) of the present invention.
The continuously variable transmission (100) includes an input shaft (1), a carrier (2), a first pinion (3), a second pinion (4), a sun gear (5), a first ring gear (6), and a second gear. A planetary gear mechanism (19) composed of a ring gear (7), and a first conical member (16a) and a second conical member (16b) which are coaxially integrated with and arranged opposite to the fifth gear (12). A first pulley (16) configured, and a third conical member (17a) and a fourth conical member (17b) which are coaxially integrated with and disposed opposite to the first ring gear (6). The two pulleys (17), the first pulley (16), and the belt (18) wound around the second pulley (17), the distance between the two conical members of the first pulley (16) The winding diameter determined by the above and the two conical parts of the second pulley (17) A variator (15) capable of changing the rotation speed ratio according to the ratio of the winding diameter determined by the distance, and the first gear that can be engaged by the second ring gear (7) and the first clutch (20). (8), a second gear (9) meshing with the first gear (8), a third gear (10) coaxially integrated with the sun gear (5), and the third gear (10) And a fourth gear (11) meshing with the fifth gear (12), and can be engaged with the fourth gear (11) by a second clutch (21) and integrated with the second gear (9). Output shaft (13).
前記遊星歯車機構(19)で,前記第1ピニオン(3)は前記第1リングギヤ(6)とかみ合い,前記第2ピニオン(4)は前記サンギヤ(5)及び前記第2リングギヤ(7)とかみ合う.前記第1ピニオン(3)と前記第2ピニオン(4)は一体となって回転する。 In the planetary gear mechanism (19), the first pinion (3) meshes with the first ring gear (6), and the second pinion (4) meshes with the sun gear (5) and the second ring gear (7). . The first pinion (3) and the second pinion (4) rotate together.
また、後述する遊星歯車機構の速度線図において、左端から1番目の要素であるサンギヤ(5)が第1プーリー(16)の軸に回転数比rg2・rg3(固定値)で結合され且つ3番目の要素である第1リングギヤ(6)は第2プーリー(17)の回転軸に直接結合されており、加えて2番目の要素であるキャリア(2)が入力軸(1)に直結され、且つ1番目の要素であるサンギヤ(5)あるいは4番目の要素である第2リングギヤ(7)は第2クラッチ(21)又は第1クラッチ(20)によって選択的に出力軸(13)に係合されるように構成されている。従って、本発明の無段変速機(100)は上記変速原理を満足しており、無段変速機(100)全体の変速レシオ幅はバリエータ(15)の変速レシオ幅を上回ると共に、バリエータ伝達動力が変速機の伝達動力より小さくなる。 In the speed diagram of the planetary gear mechanism described later, the sun gear (5), which is the first element from the left end, is coupled to the shaft of the first pulley (16) with a rotation speed ratio rg2 · rg3 (fixed value) and 3 The first ring gear (6) as the second element is directly coupled to the rotation shaft of the second pulley (17), and the carrier (2) as the second element is directly coupled to the input shaft (1), The sun gear (5) as the first element or the second ring gear (7) as the fourth element is selectively engaged with the output shaft (13) by the second clutch (21) or the first clutch (20). It is configured to be. Therefore, the continuously variable transmission (100) of the present invention satisfies the above-described speed change principle, and the overall speed ratio width of the continuously variable transmission (100) exceeds the speed ratio width of the variator (15) and the variator transmission power. Becomes smaller than the transmission power of the transmission.
遊星歯車機構の第1ピニオン(3)の歯数と第2ピニオン(4)の歯数はいずれもZp,サンギヤ(5)の歯数をZs,第1リングギヤ(6)の歯数をZr1,第2リングギヤ(7)の歯数をZr2とする。
また,第1ギヤ(8)に対する第2ギヤ(9)の回転数比をrg1,第3ギヤ(10)に対する第4ギヤ(11)の回転数比をrg2,第4ギヤ(11)に対する第5ギヤ(12)の回転数比をrg3とする。第1プーリー(16)に対する第2プーリー(17)の回転数比をrb(バリエータ回転数比)とする。これら構造によるパラメータを速度線図のパラメータに代入していく。
λ1は式45で表される。
式45:λ1=Zs/Zr1
λ2は式46で表される。
式46:λ2=Zs/Zr2
rは式47で表される。
式47:r=rg2×rg3×rb
rbの範囲のうち最小値をrb_min,最大値をrb_maxとすると,r_minとr_maxはそれぞれ式48と式49となる。
式48:r_min=rg2×rg3×rb_min
式49:r_max=rg2×rg3×rb_max
バリエータ伝達動力が常に変速機の伝達動力より小さくするため,式39に式45と式46と式48を代入して整理すると式50となる.
式50:rb_min>Zs×[Zr1-Zr2+{(Zr1-Zr2)×(Zr1+Zs)}^0.5]/{rg2×rg3×Zr1×(Zr2+Zs)}
式50を満たすように各ギヤの歯数を決める。The number of teeth of the first pinion (3) and the number of teeth of the second pinion (4) of the planetary gear mechanism are both Zp, the number of teeth of the sun gear (5) is Zs, the number of teeth of the first ring gear (6) is Zr1, The number of teeth of the second ring gear (7) is Zr2.
Further, the rotation speed ratio of the second gear (9) to the first gear (8) is rg1, the rotation speed ratio of the fourth gear (11) to the third gear (10) is rg2, and the rotation speed ratio to the fourth gear (11) is Let rg3 be the rotation speed ratio of 5 gears (12). The rotation speed ratio of the second pulley (17) to the first pulley (16) is rb (variator rotation speed ratio). The parameters according to these structures are substituted into the parameters of the velocity diagram.
λ1 is expressed by Equation 45.
Formula 45: λ1 = Zs / Zr1
λ2 is expressed by Equation 46.
Formula 46: λ2 = Zs / Zr2
r is expressed by Equation 47.
Formula 47: r = rg2 × rg3 × rb
If the minimum value in the range of rb is rb_min and the maximum value is rb_max, r_min and r_max are expressed by Equation 48 and Equation 49, respectively.
Formula 48: r_min = rg2 × rg3 × rb_min
Formula 49: r_max = rg2 × rg3 × rb_max
Formula 50 is obtained by substituting Formula 45, Formula 46, and Formula 48 into Formula 39 so that the variator transmission power is always smaller than the transmission power of the transmission.
Formula 50: rb_min> Zs × [Zr1-Zr2 + {(Zr1-Zr2) × (Zr1 + Zs)} ^ 0.5] / {rg2 × rg3 × Zr1 × (Zr2 + Zs)}
The number of teeth of each gear is determined so as to satisfy Equation 50.
ここではrb_maxのときに2つのクラッチの切り替えを行うことにする。つまり,式44が成り立つ必要がある。式44に含まれるr1とr2は,それぞれ式51と式52で表される。
式51:r1=rg2
式52:r2=rg1
式45と式46と式49と式51と式52を,式44に代入すると式53となる。
式53:rg2/rg1={rg2×rg3×rb_max×(1+Zs/Zr2)+Zs/Zr1-Zs/Zr2}/(1+Zs/Zr1)
式53をrg1について解くと式54となる。
式54:rg1={Zr2×(Zr1+Zs)}/{rg2×rg3×rb_max×Zr1×(Zr2+Zs)+Zs×(Zr2-Zr1)}×rg2式54の回転数比になるように第1ギヤ(8)と第2ギヤ(9)の歯数比を決定すれば,第1プーリー(16)に対する第2プーリー(17)の回転数比が最大のとき,第1クラッチ(20)と第2クラッチ(21)のどちらを係合しても,入力軸(1)の回転数に対する各要素の回転数比は変わらない。Here, the two clutches are switched when rb_max. That is, Formula 44 needs to hold. R1 and r2 included in Expression 44 are expressed by Expression 51 and Expression 52, respectively.
Formula 51: r1 = rg2
Formula 52: r2 = rg1
When Expression 45, Expression 46, Expression 49, Expression 51, and Expression 52 are substituted into Expression 44, Expression 53 is obtained.
Formula 53: rg2 / rg1 = {rg2 × rg3 × rb_max × (1 + Zs / Zr2) + Zs / Zr1-Zs / Zr2} / (1 + Zs / Zr1)
When Formula 53 is solved for rg1, Formula 54 is obtained.
Formula 54: rg1 = {Zr2 × (Zr1 + Zs)} / {rg2 × rg3 × rb_max × Zr1 × (Zr2 + Zs) + Zs × (Zr2-Zr1)} × rg2 If the gear ratio of the first gear (8) and the second gear (9) is determined, the first clutch (20) can be obtained when the rotation speed ratio of the second pulley (17) to the first pulley (16) is maximum. No matter which of the second clutch (21) is engaged, the rotational speed ratio of each element to the rotational speed of the input shaft (1) does not change.
次に,無段変速機(100)を運転する方法について説明する。
第1クラッチ(20)を係合する時の動力の流れは図3の太線のようになる。この場合、第2リングギヤ(7)が出力軸(13)に回転数比rg1の第1ギヤ(8)と第2ギヤ(9)のギヤ対によって結合される。
入力軸(1)からの動力は,一部がサンギヤ(5)へ伝わって第3ギヤ(10)と第4ギヤ(11)と第5ギヤ(12)と第1プーリー(16)と第2プーリー(17)を順に流れて第1リングギヤ(6)に戻り,遊星歯車内部を流れる残りの動力と合流して第2リングギヤ(7)に伝達されて第1ギヤ(8)と第2ギヤ(9)を経由して出力軸(13)から出力される。このとき,入力軸(1)に対する出力軸(13)の回転数比R1(=rg1×N4/Nin)は、式8に式45〜式47を代入して整理することにより、式55で表される。
式55:R1={rb×rg2×rg3×Zr1×(Zr2+Zs)+Zs×(Zr2-Zr1)}/(rb×rg2×rg3×Zr1×Zr2+Zs×Zr2)×rg1Next, a method for operating the continuously variable transmission (100) will be described.
The power flow when the first clutch (20) is engaged is as shown by the thick line in FIG. In this case, the second ring gear (7) is coupled to the output shaft (13) by a gear pair of the first gear (8) and the second gear (9) having a rotation speed ratio rg1.
Part of the power from the input shaft (1) is transmitted to the sun gear (5), and the third gear (10), the fourth gear (11), the fifth gear (12), the first pulley (16), and the second gear. Flowing through the pulley (17) in sequence and returning to the first ring gear (6), the remaining power flowing through the planetary gear is joined and transmitted to the second ring gear (7) to be transmitted to the first gear (8) and the second gear ( 9) and output from the output shaft (13). At this time, the rotational speed ratio R1 (= rg1 × N4 / Nin) of the output shaft (13) with respect to the input shaft (1) is expressed by Equation 55 by substituting Equations 45 to 47 into
Formula 55: R1 = {rb × rg2 × rg3 × Zr1 × (Zr2 + Zs) + Zs × (Zr2-Zr1)} / (rb × rg2 × rg3 × Zr1 × Zr2 + Zs × Zr2) × rg1
図4は、第1クラッチの係合時における,本発明に係る遊星歯車機構の速度線図ならびに各要素に特化した動力フローをそれぞれ示す説明図である。
本発明の無段変速機(100)の速度線図では、第1プーリー(16)に対する第2プーリー(17)の回転数比rbをrb_minからrb_maxへ変化させると、サンギヤ(5)の回転数N1はN1_min→N1_maxへ、第1リングギヤ(6)の回転数N3はN3_min→N3_maxへ、第2リングギヤ(7)の回転数N4はN4_min→N4_maxへそれぞれ変化し、全体として速度線図はバリエータの上記回転数比rbに応じてキャリア(2)を中心として実線から点線へ連続的に変化する。また、伝達動力はキャリア(2)において二分割され一部がバリエータを通過せずに第2リングギヤ(7)から直に出力軸(13)に出力され、残りがバリエータを通過して第1リングギヤ(6)で左記動力フローと合流しながら出力軸(13)に出力され、これによりバリエータの伝達動力を変速機の伝達動力より常に小さくすることができる。FIG. 4 is an explanatory diagram showing a speed diagram of the planetary gear mechanism according to the present invention and a power flow specialized for each element when the first clutch is engaged.
In the speed diagram of the continuously variable transmission (100) of the present invention, when the rotational speed ratio rb of the second pulley (17) to the first pulley (16) is changed from rb_min to rb_max, the rotational speed of the sun gear (5) N1 changes from N1_min to N1_max, the rotation speed N3 of the first ring gear (6) changes from N3_min to N3_max, and the rotation speed N4 of the second ring gear (7) changes from N4_min to N4_max. It changes continuously from the solid line to the dotted line around the carrier (2) according to the rotation speed ratio rb. Further, the transmission power is divided into two in the carrier (2), and a part thereof does not pass through the variator, but is output directly from the second ring gear (7) to the output shaft (13), and the rest passes through the variator and passes through the first ring gear. In (6), the motive power is output to the output shaft (13) while merging with the power flow described on the left, whereby the transmission power of the variator can always be made smaller than the transmission power of the transmission.
本発明の無段変速機(100)では、出力軸(13)はサンギヤ(5)、第2リングギヤ(7)及び第1プーリー(16)に対し所定のギヤ対を介してそれぞれ結合されているため、1番目の要素の回転数N1×回転数比rg2=出力1に係る出力軸の回転数、4番目の要素の回転数N4×rg1=出力2に係る出力軸の回転数、1番目の要素に対する3番目の要素の回転数比r=バリエータ軸1に対するバリエータ軸2の回転数比rb×回転数比rg2×回転数比rg3、という関係がそれぞれ成立している。その結果、出力軸(13)の回転数はギヤの歯数比を調整することにより,遊星歯車機構及びバリエータの回転数とは独立に出力先の要求に応じて出力軸(13)の回転数を決めることが可能となる。 In the continuously variable transmission (100) of the present invention, the output shaft (13) is coupled to the sun gear (5), the second ring gear (7), and the first pulley (16) via a predetermined gear pair. Therefore, the rotational speed N1 of the first element × the rotational speed ratio rg2 = the rotational speed of the output shaft related to the
他方、第2クラッチ(21)を係合すると動力の流れは図5の太線のようになる.
入力軸(1)からの動力は,一部が第1リングギヤ(6)へ伝わって第2プーリー(17)と第1プーリー(16)と第5ギヤ(12)と第4ギヤ(11)へ流れる。残りはサンギヤ(5)から第3ギヤ(10)を経由して第4ギヤ(11)へ流れて,第4ギヤ(11)で合流して第2クラッチ(21)に伝わり出力軸(13)から出力される。このとき,入力軸(1)に対する出力軸(13)の回転数比R2(=rg2×N1/Nin)は、式6に式45〜式47を代入して整理することにより、式56で表される。
式56:R2=(Zr1+Zs)/(rb×rg2×rg3×Zr1+Zs)×rg2On the other hand, when the second clutch (21) is engaged, the power flow becomes as shown by the thick line in FIG.
Part of the power from the input shaft (1) is transmitted to the first ring gear (6) to the second pulley (17), the first pulley (16), the fifth gear (12), and the fourth gear (11). Flowing. The remainder flows from the sun gear (5) to the fourth gear (11) via the third gear (10), and then merges at the fourth gear (11) and is transmitted to the second clutch (21) to be output to the output shaft (13). Is output from. At this time, the rotational speed ratio R2 (= rg2 × N1 / Nin) of the output shaft (13) with respect to the input shaft (1) is expressed by Equation 56 by substituting Equation 45 to Equation 47 into
Formula 56: R2 = (Zr1 + Zs) / (rb × rg2 × rg3 × Zr1 + Zs) × rg2
図6は、第2クラッチの係合時における,本発明に係る遊星歯車機構の速度線図ならびに各要素に特化した動力フローをそれぞれ示す説明図である。
切り替え後,バリエータ回転数比rbをrb_maxからrb_minへ変化させると、サンギヤ(5)の回転数N1はN1_max→N1_minへ、第1リングギヤ(6)の回転数N3はN3_max→N3_minへ、第2リングギヤ(7)の回転数N4はN4_max→N4_minへそれぞれ変化し、全体として速度線図はバリエータの上記回転数比rbに応じてキャリア(2)を中心として実線から点線へ連続的に変化する。また、伝達動力はキャリア(2)において二分割され一部がバリエータを通過せずにサンギヤ(5)から直に出力軸(13)に出力され、残りがバリエータを通過して第4ギヤ(11)で左記動力フローと合流しながら出力軸(13)に出力され、これによりバリエータの伝達動力が変速機の伝達動力より常に小さくなることが分かる。FIG. 6 is an explanatory diagram showing a velocity diagram of the planetary gear mechanism according to the present invention and a power flow specialized for each element when the second clutch is engaged.
When the variator speed ratio rb is changed from rb_max to rb_min after switching, the speed N1 of the sun gear (5) is changed from N1_max to N1_min, the speed N3 of the first ring gear (6) is changed from N3_max to N3_min, and the second ring gear. The rotational speed N4 in (7) changes from N4_max to N4_min, respectively, and the speed diagram as a whole changes continuously from the solid line to the dotted line around the carrier (2) according to the rotational speed ratio rb of the variator. Further, the transmission power is divided into two in the carrier (2), and a part thereof does not pass through the variator and is output directly from the sun gear (5) to the output shaft (13), and the rest passes through the variator and passes through the fourth gear (11 ) And output to the output shaft (13) while merging with the power flow shown on the left, it can be seen that the transmission power of the variator is always smaller than the transmission power of the transmission.
第1プーリー(16)に対する第2プーリー(17)の回転数比がrb_minのときのR1とR2を,それぞれR1_minとR2_minとして,第1プーリー(16)に対する第2プーリー(17)の回転数比がrb_maxのときのR1とR2を,それぞれR1_maxとR2_maxとすれば,これらの大小関係は,式57となる。
式57:R1_min<R1_max=R2_max<R2_min
無段変速機(100)の,入力軸(1)に対する出力軸(13)の回転数比の取りうる範囲は,R1_minからR2_minの間であり,これがバリエータ変速レシオ幅を上回るのは前述の通りである。R1 and R2 when the rotational speed ratio of the second pulley (17) to the first pulley (16) is rb_min are R1_min and R2_min, respectively, and the rotational speed ratio of the second pulley (17) to the first pulley (16) If R1 and R2 when rb_max is R1_max and R2_max, respectively, the magnitude relationship between them is expressed by Equation 57.
Formula 57: R1_min <R1_max = R2_max <R2_min
The range of the speed ratio of the output shaft (13) to the input shaft (1) of the continuously variable transmission (100) is between R1_min and R2_min, which exceeds the variator speed ratio width as described above. It is.
次に,入力軸(1)に対する出力軸(13)の回転数比の目標値をRとして,このレシオになるようなクラッチとバリエータの設定を求める。前提として,Rは式58を満たす。
式58:R1_min≦R≦R2_min
このRに対して,式59が成り立つ場合は第1クラッチ(20)を係合し,式60が成り立つ場合は第2クラッチ(21)を係合する.式61が成り立つ場合は第1クラッチと第2クラッチのいずれか一方,あるいは両方を係合する。
式59:R1_min≦R<R1_max
式60:R2_max<R≦R2_min
式61:R=R1_max=R2_max
第1クラッチ(20)を係合しているとき,バリエータレシオを式62のように決めれば,所望の回転数比が得られる。
式62:rb={rg1×Zs×(Zr2-Zr1)-R×Zs×Zr2}/{R×rg2×rg3×Zr1×Zr2-rg1×rg2×rg3×Zr1×(Zr2+Zs)}
第2クラッチ(21)を係合しているとき,バリエータレシオを式63のように決めれば,所望の回転数比が得られる.
式63:rb={rg2×(Zr1+Zs)-R×Zs}/(R×rg2×rg3×Zr1)
第1クラッチ(20)の係合状態から第2クラッチ(21)の係合状態への切り替えは,rb=rb_maxとしておき,第1クラッチ(20)を係合したまま第2クラッチ(21)を係合し,次いで第1クラッチ(20)を開放する.第2クラッチ(21)の係合状態から第1クラッチ(20)の係合状態への切り替えも同様に行う.
以上で,バリエータ変速レシオ幅を上回る変速レシオ幅を有する無段変速機として運転できるようになる.Next, assuming that the target value of the rotation speed ratio of the output shaft (13) to the input shaft (1) is R, the clutch and variator settings are obtained so as to satisfy this ratio. As a premise, R satisfies Equation 58.
Formula 58: R1_min ≦ R ≦ R2_min
When R 59 is satisfied, the first clutch (20) is engaged. When R 60 is satisfied, the second clutch (21) is engaged. When Formula 61 is satisfied, either one or both of the first clutch and the second clutch are engaged.
Formula 59: R1_min ≦ R <R1_max
Formula 60: R2_max <R ≦ R2_min
Formula 61: R = R1_max = R2_max
When the first clutch (20) is engaged, a desired speed ratio can be obtained by determining the variator ratio as shown in Equation 62.
Formula 62: rb = {rg1 × Zs × (Zr2-Zr1) -R × Zs × Zr2} / {R × rg2 × rg3 × Zr1 × Zr2-rg1 × rg2 × rg3 × Zr1 × (Zr2 + Zs)}
When the second clutch (21) is engaged, the desired speed ratio can be obtained by determining the variator ratio as shown in Equation 63.
Formula 63: rb = {rg2 × (Zr1 + Zs) −R × Zs} / (R × rg2 × rg3 × Zr1)
To switch from the engaged state of the first clutch (20) to the engaged state of the second clutch (21), rb = rb_max is set, and the second clutch (21) is engaged with the first clutch (20) engaged. Engage and then release the first clutch (20). The switching from the engaged state of the second clutch (21) to the engaged state of the first clutch (20) is similarly performed.
With the above, it will be possible to operate as a continuously variable transmission having a transmission ratio width exceeding the variator transmission ratio width.
図7は本発明の上記変速原理の変形例に係る速度線図を示しており,図1の速度線図で表される4つの要素の回転数を2つの自由度に規制する遊星歯車機構を,3つの要素を2つの自由度に規制する2組の遊星歯車機構で置き換えたものである。具体的には速度線図において第1遊星歯車機構の3番目の要素と第2遊星歯車機構の2番目の要素を結合すると共に、第1遊星歯車機構の2番目の要素と第2遊星歯車機構の1番目の要素を係合機構1を介して結合し、第2遊星歯車機構の3番目の要素を歯車対を介して出力軸に結合する。従って、係合機構1を締結すると共に係合機構2を開放しバリエータの回転数比を変える時、速度線図上においてこれら2組の遊星歯車機構は4つの要素の回転数を2つの自由度に規制する遊星歯車機構と等価な動作を示し、出力2が速度線図の左端から4番目の要素から出力される。他方、係合機構1を開放すると共に係合機構2を締結しバリエータの回転数比を変える時、第1遊星歯車機構は速度線図上の左端から2番目の要素の回転数を中心として、第2遊星歯車機構は第1遊星歯車機構の3番目の要素の回転数を中心としてそれぞれ動作し、出力1が速度線図の左端から1番目の要素から出力される。図7のようにλ2がλ1の倍よりも小さい場合は,図1の速度線図上で左から4番目の要素と係合機構を直接結合するよりも,係合機構にかかるトルクを小さくすることができる。後述する変形例のうち図15、図17および図22で有効かつ適用可能である。 FIG. 7 is a velocity diagram according to a modification of the above-described speed change principle of the present invention. A planetary gear mechanism that restricts the rotational speed of the four elements represented by the velocity diagram of FIG. 1 to two degrees of freedom. , The three elements are replaced by two sets of planetary gear mechanisms that regulate to two degrees of freedom. Specifically, in the velocity diagram, the third element of the first planetary gear mechanism and the second element of the second planetary gear mechanism are coupled, and the second element of the first planetary gear mechanism and the second planetary gear mechanism are combined. The first element of the second planetary gear mechanism is coupled to the output shaft via the gear pair. Therefore, when the
図8は本発明の無段変速機(100)における変速機のバリエータの回転数比を従来例と比較したグラフである.本発明では従来例とバリエータ変速レシオ幅は同一でありながら変速機の変速レシオ幅が広くなることがわかる。 FIG. 8 is a graph comparing the speed ratio of the variator of the transmission in the continuously variable transmission (100) of the present invention with that of the conventional example. In the present invention, it is understood that the transmission ratio width of the transmission is wide while the variator transmission ratio width is the same as that of the conventional example.
図9は本発明の無段変速機(100)におけるプーリー回転数を従来例と比較したグラフで,従来例はプーリー1が駆動側でプーリー2が従動側である。
いずれも入力軸の回転数を一定としたプーリーの回転数であり,図9(b)の本発明では,図9(a)の従来例の最大回転数Nmaxよりもプーリーの最大回転数N'maxが小さいことがわかる。FIG. 9 is a graph comparing the pulley rotation speed in the continuously variable transmission (100) of the present invention with that of the conventional example. In the conventional example, the
Both are the rotation speeds of the pulley with the rotation speed of the input shaft being constant. In the present invention of FIG. 9B, the maximum rotation speed N ′ of the pulley is larger than the maximum rotation speed Nmax of the conventional example of FIG. 9A. It turns out that max is small.
図10は本発明の無段変速機(100)におけるプーリートルクを従来例と比較したグラフで,従来例はプーリー1が駆動側でプーリー2が従動側である。
いずれも入力軸のトルクを一定としたプーリーの回転数であり,図10(b)の本発明では,図10(a)の従来例の最大トルクTmaxよりもプーリーの最大トルクT'maxが小さいことがわかる。FIG. 10 is a graph comparing the pulley torque in the continuously variable transmission (100) of the present invention with that of the conventional example. In the conventional example, the
Both are the rotational speeds of the pulley with the input shaft torque being constant. In the present invention of FIG. 10 (b), the maximum torque T'max of the pulley is smaller than the maximum torque Tmax of the conventional example of FIG. 10 (a). I understand that.
図11は本発明の無段変速機(100)におけるプーリー伝達動力を従来例と比較したグラフで,従来例はプーリー1が駆動側でプーリー2が従動側である。いずれも入力軸からの動力Pinを一定としたプーリーの伝達動力であり,プーリー伝達動力は図11(a)の従来例では常に入力軸からの動力Pinと等しくなるが,図11(b)の本発明では常に入力軸からの動力Pinより小さくなる。 FIG. 11 is a graph comparing the pulley transmission power in the continuously variable transmission (100) of the present invention with a conventional example. In the conventional example, the
なお、本発明の無段変速機は上記実施例(無段変速機(100))のみに限定されるものではなく、本発明の技術的特徴の要旨を変更しない範囲内において種々の設計変更事項が含まれる。例えば、4つの要素の回転数を2つの自由度に規制する上記遊星歯車機構(19)については、図12から図24に示される変形例1から変形例13に係る遊星歯車機構が提供される。以下、簡単に説明する。 The continuously variable transmission according to the present invention is not limited to the above-described embodiment (the continuously variable transmission (100)), and various design changes may be made without changing the gist of the technical features of the present invention. Is included. For example, for the planetary gear mechanism (19) that restricts the rotational speed of four elements to two degrees of freedom, planetary gear mechanisms according to the first to thirteenth modifications shown in FIGS. 12 to 24 are provided. . A brief description is given below.
図12は、本発明の無段変速機の変形例1に係る遊星歯車機構(19A)及びその速度線図を示す説明図である。
この遊星歯車機構(19A)は、上記遊星歯車機構(19)においてサンギヤ(5)が第1ピニオン(3)に噛み合うように変更されたものである。その他の構成については上記遊星歯車機構(19)と同じである。従って、速度線図上に並ぶ端から1番目から4番目の各要素についても上記遊星歯車機構(19)と同じである。FIG. 12 is an explanatory diagram showing a planetary gear mechanism (19A) according to
This planetary gear mechanism (19A) is modified so that the sun gear (5) meshes with the first pinion (3) in the planetary gear mechanism (19). About another structure, it is the same as the said planetary gear mechanism (19). Accordingly, each of the first to fourth elements from the end arranged on the velocity diagram is the same as the planetary gear mechanism (19).
図13は、本発明の無段変速機の変形例2に係る遊星歯車機構(19B)及びその速度線図を示す説明図である。
この遊星歯車機構(19B)は、上記遊星歯車機構(19A)のサンギヤとリングギヤの関係および左右を反転させたものである。第1ギヤ(8)を第2プーリー(17)側に配置し、そして第1サンギヤ(5)と第2プーリー(17)が結合されると共にリングギヤ(6)と第3ギヤ(10)が結合され、さらに第2リングギヤ(7)に代わって第2サンギヤ(5')が備えられ、その第2サンギヤ(5')と第1ギヤ(8)が結合されたものに相当する。その結果、リングギヤ(6)及び第1サンギヤ(5)は第1プーリー(16)及び第2プーリー(17)にそれぞれ結合され、さらに第2サンギヤ(5')は第1クラッチ(20)を介して第1ギヤ(8)に結合される。従って、速度線図上に並ぶ左端から1番目の要素はリングギヤ(6)、2番目の要素はキャリア(2)、3番目の要素は第1サンギヤ(5)、4番目の要素は第2サンギヤ(5')となる。FIG. 13 is an explanatory view showing a planetary gear mechanism (19B) according to
This planetary gear mechanism (19B) is obtained by reversing the relationship between the sun gear and the ring gear and the left and right of the planetary gear mechanism (19A). The first gear (8) is disposed on the second pulley (17) side, and the first sun gear (5) and the second pulley (17) are coupled, and the ring gear (6) and the third gear (10) are coupled. Further, a second sun gear (5 ′) is provided in place of the second ring gear (7), which corresponds to a combination of the second sun gear (5 ′) and the first gear (8). As a result, the ring gear (6) and the first sun gear (5) are coupled to the first pulley (16) and the second pulley (17), respectively, and the second sun gear (5 ′) is connected via the first clutch (20). To the first gear (8). Therefore, the first element from the left end on the speed diagram is the ring gear (6), the second element is the carrier (2), the third element is the first sun gear (5), and the fourth element is the second sun gear. (5 ').
図14は、本発明の無段変速機の変形例3に係る遊星歯車機構(19C)及びその速度線図を示す説明図である。
この遊星歯車機構(19C)は、上記遊星歯車機構(19B)においてリングギヤ(6)が第2ピニオン(4)に噛み合うように変更されたものである。その他の構成については上記遊星歯車機構(19B)と同じである。従って、速度線図上に並ぶ端から1番目から4番目の各要素についても上記遊星歯車機構(19B)と同じである。FIG. 14 is an explanatory view showing a planetary gear mechanism (19C) according to
The planetary gear mechanism (19C) is modified so that the ring gear (6) meshes with the second pinion (4) in the planetary gear mechanism (19B). About another structure, it is the same as the said planetary gear mechanism (19B). Accordingly, each of the first to fourth elements from the end arranged on the velocity diagram is the same as the planetary gear mechanism (19B).
なお、以後の図15から図23に示される変形例は、4つの要素の回転数を2つの自由度に規制する遊星歯車機構を、3つの要素の回転数を2つの自由度に規制する2組の遊星歯車機構によって構築した例である。また、2組の遊星歯車機構について入力軸(1)と結合するキャリア(2)を備える遊星歯車機構のことを第1遊星歯車機構と呼び、それ以外の遊星歯車機構を第2遊星歯車機構と呼ぶことにする。 In the following modification examples shown in FIGS. 15 to 23, the planetary gear mechanism that restricts the rotational speed of the four elements to two degrees of freedom is controlled by the
図15は、本発明の無段変速機の変形例4に係る遊星歯車機構(19D)及びその速度線図を示す説明図である。
この遊星歯車機構(19D)では、3つの要素の回転数を2つの自由度に規制する2組の第1遊星歯車機構(19D-1)及び第2遊星歯車機構(19D-2)において第1キャリア(2)と第2サンギヤ(5')並びに第1リングギヤ(6)と第2キャリア(2')がそれぞれ結合されることにより、上記変速原理を満足する4つの要素の回転数を2つの自由度に規制する遊星歯車機構が構築される。この場合、速度線図上に並ぶ1番目の要素である第1サンギヤ(5)及び3番目の要素である第1リングギヤ(6)と第1プーリー(16)及び第2プーリー(17)がそれぞれ結合されており、2番目の要素である第1キャリア(2)と入力軸(1)が結合され、更に1番目の要素である第1サンギヤ(5)と4番目の要素である第2リングギヤ(7)は第2クラッチ(21)及び第1クラッチ(20)を介して選択的に出力軸(13)と係合可能に構成されている。FIG. 15 is an explanatory diagram showing a planetary gear mechanism (19D) according to
In this planetary gear mechanism (19D), the first of the two sets of the first planetary gear mechanism (19D-1) and the second planetary gear mechanism (19D-2) restricts the rotational speed of the three elements to two degrees of freedom. By combining the carrier (2) and the second sun gear (5 ′) and the first ring gear (6) and the second carrier (2 ′), the rotational speeds of the four elements satisfying the speed change principle are reduced to two. A planetary gear mechanism that regulates the degree of freedom is established. In this case, the first sun gear (5), which is the first element arranged on the velocity diagram, and the first ring gear (6), the first pulley (16), and the second pulley (17), which are the third element, respectively. The first carrier (2) that is the second element and the input shaft (1) are coupled, and the first sun gear (5) that is the first element and the second ring gear that is the fourth element. (7) is configured to be selectively engageable with the output shaft (13) via the second clutch (21) and the first clutch (20).
図16は、本発明の無段変速機の変形例5に係る遊星歯車機構(19E)及びその速度線図を示す説明図である。
この遊星歯車機構(19E)は、上記遊星歯車機構(19D)において第1キャリア(2)と第2サンギヤ(5')の間を第1クラッチ(20)を介して結合すると共に,出力2を取り出すための第1ギヤ(8)と第2リングギヤ(7)を直接結合したものに相当する。従って、第1クラッチ(20)を係合してバリエータの回転数比を変える時、速度線図上においてこの遊星歯車機構(19E)は4つの要素の回転数を2つの自由度に規制する上記遊星歯車機構(19D)と同様な動作を示し、出力2が速度線図上の4番目の要素である第2リングギヤ(7)から出力軸(13)へ出力される。他方、第2クラッチ(21)を係合してバリエータの回転数比を変える時、第1遊星歯車機構(19E-1)は速度線図上の2番目の要素である第1キャリア(2)の回転数を中心として、第2遊星歯車機構(19E-2)は速度線図上の3番目の要素である第2キャリア(2')の回転数を中心としてそれぞれ動作し、出力1が速度線図上の1番目の要素である第1サンギヤ(5)から出力軸(13)へ出力される。FIG. 16 is an explanatory diagram showing a planetary gear mechanism (19E) according to
The planetary gear mechanism (19E) connects the first carrier (2) and the second sun gear (5 ′) via the first clutch (20) in the planetary gear mechanism (19D), and outputs an
図17は、本発明の無段変速機の変形例6に係る遊星歯車機構(19F)及びその速度線図を示す説明図である。
この遊星歯車機構(19F)では、上記遊星歯車機構(19D)と同様に、3つの要素の回転数を2つの自由度に規制する2組の第1遊星歯車機構(19F-1)及び第2遊星歯車機構(19F-2)において第1キャリア(2)と第2サンギヤ(5')並びに第1リングギヤ(6)と第2キャリア(2')がそれぞれ結合されることにより、上記変速原理を満足する4つの要素の回転数を2つの自由度に規制する遊星歯車機構が構築される。上記遊星歯車機構(19D)と異なり、第2遊星歯車機構(19F-2)が入力側に位置し、第1遊星歯車機構(19F-1)が第2プーリー(17)の側に位置している。FIG. 17 is an explanatory diagram showing a planetary gear mechanism (19F) according to
In this planetary gear mechanism (19F), similarly to the planetary gear mechanism (19D), two sets of the first planetary gear mechanism (19F-1) and the second one that restrict the rotation speed of the three elements to two degrees of freedom. In the planetary gear mechanism (19F-2), the first carrier (2) and the second sun gear (5 ′), and the first ring gear (6) and the second carrier (2 ′) are coupled to each other, whereby the above-described speed change principle is achieved. A planetary gear mechanism that restricts the rotational speeds of the four satisfactory elements to two degrees of freedom is constructed. Unlike the planetary gear mechanism (19D), the second planetary gear mechanism (19F-2) is located on the input side, and the first planetary gear mechanism (19F-1) is located on the second pulley (17) side. Yes.
図18は、本発明の無段変速機の変形例7に係る遊星歯車機構(19G)及びその速度線図を示す説明図である。
この遊星歯車機構(19G)は、上記遊星歯車機構(19F)において第1キャリア(2)と第2サンギヤ(5')の間を第1クラッチ(20)を介して結合すると共に,出力2を取り出すための第1ギヤ(8)と第2リングギヤ(7)を直接結合したものに相当する。従って、第1クラッチ(20)を係合してバリエータの回転数比を変える時、速度線図上においてこの遊星歯車機構(19G)は4つの要素の回転数を2つの自由度に規制する上記遊星歯車機構(19F)と同様な動作を示し、出力2が速度線図上の4番目の要素である第2リングギヤ(7)から出力軸(13)へ出力される。他方、第2クラッチ(21)を係合してバリエータの回転数比を変える時、第1遊星歯車機構(19G-1)は速度線図上の2番目の要素である第1キャリア(2)の回転数を中心として、第2遊星歯車機構(19G-2)は速度線図上の3番目の要素である第2キャリア(2')の回転数を中心としてそれぞれ動作し、出力1が速度線図上の1番目の要素である第1サンギヤ(5)から出力軸(13)へ出力される。FIG. 18 is an explanatory diagram showing a planetary gear mechanism (19G) according to
The planetary gear mechanism (19G) connects the first carrier (2) and the second sun gear (5 ′) via the first clutch (20) in the planetary gear mechanism (19F), and outputs an
図19は、本発明の無段変速機の変形例8に係る遊星歯車機構(19H)及びその速度線図を示す説明図である。
この遊星歯車機構(19H)は、上記遊星歯車機構(19F)と同様に、3つの要素の回転数を2つの自由度に規制する第2遊星歯車機構(19H-2)が入力側に位置し、同第1遊星歯車機構(19H-1)が第2プーリー(17)の側に位置している。上記遊星歯車機構(19F)と異なり、第1遊星歯車機構(19H-1)の第1キャリア(2)と第2遊星歯車機構(19H-2)の第2リングギヤ(7)が結合され、さらに第1リングギヤ(6)と第2キャリア(2')が結合されることにより、上記変速原理を満足する4つの要素の回転数を2つの自由度に規制する遊星歯車機構を構築している。その結果、出力2は第2サンギヤ(5')から出力される。従って、速度線図上に並ぶ左端から4番目の要素は第2サンギヤ(5')となる。FIG. 19 is an explanatory diagram showing a planetary gear mechanism (19H) according to
In the planetary gear mechanism (19H), the second planetary gear mechanism (19H-2) that restricts the number of rotations of the three elements to two degrees of freedom is located on the input side in the same manner as the planetary gear mechanism (19F). The first planetary gear mechanism (19H-1) is located on the second pulley (17) side. Unlike the planetary gear mechanism (19F), the first carrier (2) of the first planetary gear mechanism (19H-1) and the second ring gear (7) of the second planetary gear mechanism (19H-2) are coupled, and By combining the first ring gear (6) and the second carrier (2 ′), a planetary gear mechanism is constructed that restricts the rotational speeds of the four elements that satisfy the above-mentioned speed change principle to two degrees of freedom. As a result,
図20は、本発明の無段変速機の変形例9に係る遊星歯車機構(19I)及びその速度線図を示す説明図である。
この遊星歯車機構(19I)は、上記遊星歯車機構(19H)のサンギヤとリングギヤの関係および左右を反転させたものである。第1ギヤ(8)を第2プーリー(17)側に配置し、そして第1サンギヤ(5)と第2プーリー(17)が結合されると共に第1リングギヤ(6)と第3ギヤ(10)が結合され、さらに第2サンギヤ(5')と第1ギヤ(8)が結合されたものに相当する。その結果、第1リングギヤ(6)及び第1サンギヤ(5)と第1プーリー(16)及び第2プーリー(17)がそれぞれ結合され、さらに第2サンギヤ(5')は第1クラッチ(20)を介して第1ギヤ(8)に結合される。従って、速度線図上に並ぶ左端から1番目の要素は第1リングギヤ(6)、2番目の要素は第1キャリア(2)、3番目の要素は第1サンギヤ(5)、4番目の要素は第2サンギヤ(5')となる。FIG. 20 is an explanatory diagram showing a planetary gear mechanism (19I) according to
This planetary gear mechanism (19I) is obtained by inverting the relationship between the sun gear and the ring gear and the left and right of the planetary gear mechanism (19H). The first gear (8) is disposed on the second pulley (17) side, and the first sun gear (5) and the second pulley (17) are coupled, and the first ring gear (6) and the third gear (10). Corresponds to a combination of the second sun gear (5 ′) and the first gear (8). As a result, the first ring gear (6) and the first sun gear (5) are coupled to the first pulley (16) and the second pulley (17), respectively, and the second sun gear (5 ′) is coupled to the first clutch (20). And is coupled to the first gear (8). Therefore, the first element from the left end on the speed diagram is the first ring gear (6), the second element is the first carrier (2), the third element is the first sun gear (5), and the fourth element. Becomes the second sun gear (5 ').
図21は、本発明の無段変速機の変形例10に係る遊星歯車機構(19J)及びその速度線図を示す説明図である。
この遊星歯車機構(19J)は、上記遊星歯車機構(19H)において第1キャリア(2)と第2リングギヤ(7)が結合されると共に第1サンギヤ(5)と第2キャリア(2')が結合され、第1サンギヤ(5)及び第1リングギヤ(6)と第2プーリー(17)及び第1プーリー(16)がそれぞれ結合されたものに相当する。従って、上記遊星歯車機構(19H)と異なり速度線図上に並ぶ左端から1番目の要素は第1リングギヤ(6)、3番目の要素は第1サンギヤ(5)となる。FIG. 21 is an explanatory diagram showing a planetary gear mechanism (19J) according to
In the planetary gear mechanism (19J), the first carrier (2) and the second ring gear (7) are coupled in the planetary gear mechanism (19H), and the first sun gear (5) and the second carrier (2 ′) are connected. The first sun gear (5) and the first ring gear (6) are connected to the second pulley (17) and the first pulley (16). Therefore, unlike the planetary gear mechanism (19H), the first element from the left end arranged on the velocity diagram is the first ring gear (6), and the third element is the first sun gear (5).
図22は、本発明の無段変速機の変形例11に係る遊星歯車機構(19K)及びその速度線図を示す説明図である。
この遊星歯車機構(19K)は、上記遊星歯車機構(19I)において第1キャリア(2)と第2サンギヤ(5')が結合されると共に第1サンギヤ(5)と第2キャリア(2')が結合され、第1サンギヤ(5)及び第1リングギヤ(6)と第2プーリー(17)及び第1プーリー(16)がそれぞれ結合されたものに相当する。従って、上記遊星歯車機構(19I)と異なり速度線図上に並ぶ左端から3番目の要素は第2リングギヤ(7)となる。FIG. 22 is an explanatory diagram showing a planetary gear mechanism (19K) according to
In the planetary gear mechanism (19K), the first carrier (2) and the second sun gear (5 ′) are coupled to the planetary gear mechanism (19I), and the first sun gear (5) and the second carrier (2 ′). Is coupled to the first sun gear (5) and the first ring gear (6), and the second pulley (17) and the first pulley (16). Therefore, unlike the planetary gear mechanism (19I), the third element from the left end arranged on the velocity diagram is the second ring gear (7).
図23は、本発明の無段変速機の変形例12に係る遊星歯車機構(19L)及びその速度線図を示す説明図である。
この遊星歯車機構(19L)は、上記遊星歯車機構(19K)において第1キャリア(2)と第2サンギヤ(5')の間を第1クラッチ(20)を介して結合すると共に,出力2を取り出すための第1ギヤ(8)と第2リングギヤ(7)を直接結合したものに相当する。従って、第1クラッチ(20)を係合してバリエータの回転数比を変える時、速度線図上においてこの遊星歯車機構(19L)は4つの要素の回転数を2つの自由度に規制する上記遊星歯車機構(19K)と同様な動作を示し、出力2が速度線図上の4番目の要素である第2リングギヤ(7)から出力軸(13)へ出力される。他方、第2クラッチ(21)を係合してバリエータの回転数比を変える時、第1遊星歯車機構(19L-1)は速度線図上の2番目の要素である第1キャリア(2)の回転数を中心として、第2遊星歯車機構(19L-2)は速度線図上の3番目の要素である第2キャリア(2')の回転数を中心としてそれぞれ動作し、出力1が速度線図上の1番目の要素である第1リングギヤ(6)から出力軸(13)へ出力される。FIG. 23 is an explanatory diagram showing a planetary gear mechanism (19L) according to
The planetary gear mechanism (19L) connects the first carrier (2) and the second sun gear (5 ′) via the first clutch (20) in the planetary gear mechanism (19K) and outputs the
図24は、本発明の無段変速機の変形例13に係る遊星歯車機構(19M)及びその速度線図を示す説明図である。
この遊星歯車機構(19M)は、上記遊星歯車機構(19B、19C)と同様に、1つのリングギヤ(6)に対し2つのサンギヤ(5,5')が具備され上記変速原理を満足している。上記遊星歯車機構(19B、19C)では自転可能で互いに歯車ピッチ円径の異なる第1ピニオン(3)と第2ピニオン(4)が同軸で一体化され、第1サンギヤ(5)と第1ピニオン(3)が噛み合い、第2サンギヤ(5')と第2ピニオン(4)が噛み合う。それに対し、この遊星歯車機構(19M)では自転可能な互いに軸方向長さの異なる第1ピニオン(3')と第2ピニオン(4')がギヤ対を成して構成され、第1サンギヤ(5)と第1ピニオン(3')が噛み合い、第2サンギヤ(5')と第2ピニオン(4')が噛み合い,第1ピニオン(3')と第2ピニオン(4')が噛み合う。なお、速度線図上に並ぶ端から数えて1番目から4番目の各要素は,それぞれ第1サンギヤ(5)、第1キャリア(2)、第1リングギヤ(6)、第2サンギヤ(5')となる。FIG. 24 is an explanatory view showing a planetary gear mechanism (19M) according to
This planetary gear mechanism (19M), like the planetary gear mechanism (19B, 19C), is provided with two sun gears (5, 5 ') for one ring gear (6) and satisfies the above-mentioned speed change principle. . In the planetary gear mechanism (19B, 19C), the first pinion (3) and the second pinion (4) that can rotate and have different gear pitch circle diameters are coaxially integrated, and the first sun gear (5) and the first pinion are integrated. (3) meshes, and the second sun gear (5 ') and the second pinion (4) mesh. On the other hand, in the planetary gear mechanism (19M), the first pinion (3 ′) and the second pinion (4 ′) that can rotate and have different axial lengths are formed as a gear pair, and the first sun gear ( 5) and the first pinion (3 ′) mesh, the second sun gear (5 ′) and the second pinion (4 ′) mesh, and the first pinion (3 ′) and the second pinion (4 ′) mesh. Note that the first to fourth elements counted from the ends arranged on the velocity diagram are respectively the first sun gear (5), the first carrier (2), the first ring gear (6), and the second sun gear (5 ′). )
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014256632 | 2014-12-18 | ||
JP2014256632 | 2014-12-18 | ||
PCT/JP2015/084731 WO2016098685A1 (en) | 2014-12-18 | 2015-12-10 | Stepless transmission |
Publications (4)
Publication Number | Publication Date |
---|---|
JPWO2016098685A1 JPWO2016098685A1 (en) | 2017-08-10 |
JPWO2016098685A6 JPWO2016098685A6 (en) | 2017-08-10 |
JP6280994B2 JP6280994B2 (en) | 2018-02-14 |
JP6280994B6 true JP6280994B6 (en) | 2018-06-27 |
Family
ID=56126577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016564820A Active JP6280994B6 (en) | 2014-12-18 | 2015-12-10 | Continuously variable transmission |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6280994B6 (en) |
WO (1) | WO2016098685A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108386538A (en) * | 2018-03-25 | 2018-08-10 | 大连碧蓝节能环保科技有限公司 | Planetary gear stepless speed changing retarder |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3147447C2 (en) * | 1981-12-01 | 1984-06-14 | Jarchow, Friedrich, Prof. Dr.-Ing., 4300 Essen | Hydrostatic-mechanical actuating coupling gear with input-side power split |
JP4483819B2 (en) * | 2005-04-28 | 2010-06-16 | 株式会社豊田中央研究所 | Power transmission system |
JP2006329338A (en) * | 2005-05-26 | 2006-12-07 | Nissan Motor Co Ltd | Shunt type stepless transmission |
JP5340336B2 (en) * | 2011-03-25 | 2013-11-13 | ジヤトコ株式会社 | Automatic transmission |
-
2015
- 2015-12-10 WO PCT/JP2015/084731 patent/WO2016098685A1/en active Application Filing
- 2015-12-10 JP JP2016564820A patent/JP6280994B6/en active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2016098685A1 (en) | 2017-08-10 |
JP6280994B2 (en) | 2018-02-14 |
WO2016098685A1 (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5800088B2 (en) | Power transmission device for vehicle | |
JP5340336B2 (en) | Automatic transmission | |
JP6137809B2 (en) | Dual clutch automatic transmission | |
JP6014968B2 (en) | Continuously variable transmission | |
JP4983301B2 (en) | Transmission | |
JP6193092B2 (en) | Power transmission device | |
US10030749B2 (en) | Continuously variable transmission | |
JP2006329338A (en) | Shunt type stepless transmission | |
JP2008144904A (en) | Continuously variable transmission of power split type | |
JP6280994B6 (en) | Continuously variable transmission | |
WO2015137124A1 (en) | Automatic transmission | |
JPWO2016098685A6 (en) | Continuously variable transmission | |
JP5946484B2 (en) | Continuously variable transmission | |
JP2016080108A (en) | transmission | |
JP2017155841A (en) | Gear change device | |
WO2015114873A1 (en) | Power-dividing continuously variable transmission | |
JP6379218B2 (en) | Continuously variable transmission | |
JP5790575B2 (en) | transmission | |
JP5821700B2 (en) | Drive train | |
JP2017115918A (en) | Stepless speed change device | |
JP6533084B2 (en) | Power split type continuously variable transmission | |
JP2015218797A (en) | Vehicle transmission | |
JP5816952B2 (en) | Continuously variable transmission for vehicle | |
JP2016188690A (en) | Automatic transmission | |
JP6219234B2 (en) | Multi-speed transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6280994 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |