JP6278459B2 - Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition - Google Patents

Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition Download PDF

Info

Publication number
JP6278459B2
JP6278459B2 JP2014106561A JP2014106561A JP6278459B2 JP 6278459 B2 JP6278459 B2 JP 6278459B2 JP 2014106561 A JP2014106561 A JP 2014106561A JP 2014106561 A JP2014106561 A JP 2014106561A JP 6278459 B2 JP6278459 B2 JP 6278459B2
Authority
JP
Japan
Prior art keywords
reaction
oxidation
organic
oxidation reaction
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014106561A
Other languages
Japanese (ja)
Other versions
JP2015007028A (en
Inventor
裕介 井出
裕介 井出
庸治 佐野
庸治 佐野
正洋 定金
正洋 定金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014106561A priority Critical patent/JP6278459B2/en
Publication of JP2015007028A publication Critical patent/JP2015007028A/en
Application granted granted Critical
Publication of JP6278459B2 publication Critical patent/JP6278459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は酸化反応方法、有機合成方法に関し、特に酸化を所望の部分酸化段階で停止可能とする新しい方法に関するものである。   The present invention relates to an oxidation reaction method and an organic synthesis method, and more particularly to a new method that enables oxidation to be stopped at a desired partial oxidation stage.

太陽光中のUV光・可視光光励起(本願では太陽光励起と称する)触媒作用によるファインケミカル合成、特に酸素分子、水といった環境上安全な反応物質を使用したこの種の合成は、現代科学において最も喫緊の目標の一つである。また、TiOは豊富に存在する上に、光に対して安定性が高いことから、この目的のための有望な光触媒である。しかしながら、有機基質は、高い酸化性を有する種の存在により、TiO上では過剰に酸化されて(overoxidized)二酸化炭素等の望ましくない副生成物をもたらす傾向がある。このため、過剰酸化を抑えて、所望の部分酸化段階で停止させて有用な有機化合物を取得するための新たな触媒の設計が広範に研究されてきている(例えば非特許文献1〜5)。しかし、所望のレベルまでの部分的な酸化を行うための光触媒活性については、実用的な用途に十分なものは未だに実現されていない。例えばシリカ骨格と高度に分散したTiOとからなるチタノケイ酸ゼオライトを使用する方法は、光触媒による部分酸化のための環境に害のない方法である(非特許文献6)。だが、開口径が1nm未満の微細孔が存在するため、これが光活性に悪影響を与える拡散上の制約をしばしばもたらし、利用可能な有機物の基質が制約されていた。 Fine chemical synthesis catalyzed by UV / visible light excitation in sunlight (referred to herein as sunlight excitation), especially this type of synthesis using environmentally safe reactants such as oxygen molecules and water, is the most urgent in modern science. Is one of the goals. TiO 2 is a promising photocatalyst for this purpose because it is abundant and has high stability to light. However, organic substrates tend to be overoxidized on TiO 2 resulting in undesirable byproducts such as carbon dioxide due to the presence of highly oxidizable species. For this reason, the design of a new catalyst for obtaining a useful organic compound by suppressing excessive oxidation and stopping at a desired partial oxidation stage has been extensively studied (for example, Non-Patent Documents 1 to 5). However, photocatalytic activity for performing partial oxidation to a desired level has not yet been realized for practical use. For example, a method using a titanosilicate zeolite composed of a silica skeleton and highly dispersed TiO 2 is a harmless method for partial oxidation by a photocatalyst (Non-patent Document 6). However, due to the presence of micropores with an opening diameter of less than 1 nm, this often resulted in diffusion constraints that adversely affect photoactivity, limiting available organic substrates.

太陽光励起触媒における上記のような事情は、いわゆるグリーンテクノロジーとしてのファインケミカル合成の発展のための大きな障害となっている。そして、このような事情は、過剰酸化が懸念される部分酸化反応の共通の課題としての性格をも有している。   The above-described circumstances in solar-excited catalysts are major obstacles for the development of fine chemical synthesis as so-called green technology. And such a situation also has the character as a common subject of the partial oxidation reaction in which excessive oxidation is a concern.

そこで、本発明は、以上のとおりの背景から、過剰酸化を抑制して所定の部分酸化段階で反応を停止可能とし、所望の有用有機化合物の酸化合成を実現するための新しい技術的方策を提供することを課題としている。   Accordingly, the present invention provides a new technical measure for realizing the oxidative synthesis of a desired useful organic compound by suppressing excessive oxidation and making it possible to stop the reaction at a predetermined partial oxidation stage from the background as described above. The challenge is to do.

本発明は、上記課題を解決するものとして、過剰酸化を抑制して所定の部分酸化段階で反応を停止可能とする、有機反応基質の酸化反応触媒の存在下での酸化剤をもっての不均
一系液相酸化反応方法であって、
前記所定の部分酸化段階での有機反応生成物を吸着回収可能とする吸着剤を共存させることを特徴としている。
In order to solve the above-mentioned problems, the present invention provides a heterogeneous system with an oxidant in the presence of an oxidation reaction catalyst of an organic reaction substrate that can suppress the excessive oxidation and stop the reaction at a predetermined partial oxidation stage. A liquid phase oxidation reaction method,
An adsorbent that makes it possible to adsorb and recover the organic reaction product in the predetermined partial oxidation stage coexists.

この酸化反応方法では、吸着剤は、酸化反応触媒を担持可能とすることが好ましい。   In this oxidation reaction method, the adsorbent preferably supports an oxidation reaction catalyst.

また、吸着剤は、無機または無機・有機複合層状体であることが好ましく、さらに詳しくは、例えば吸着剤は、ケイ酸層状体 またはこれを主として含むものであることが好ましい。   Further, the adsorbent is preferably an inorganic or inorganic / organic composite layered body, and more specifically, for example, the adsorbent is preferably a silicate layered body or a substance mainly containing the same.

酸化反応触媒は、無機化合物、錯体および金属のうちの1種以上であることや、酸化反応触媒は、光励起触媒作用を有することも好ましい。   The oxidation reaction catalyst is preferably at least one of an inorganic compound, a complex and a metal, and the oxidation reaction catalyst preferably has a photoexcitation catalytic action.

さらに詳しくは、例えば、酸化反応触媒は、酸化チタンまたはこれを主として含むものであることが好ましい。   More specifically, for example, the oxidation reaction catalyst is preferably one containing titanium oxide or the main component thereof.

そして、本発明の上記酸化反応方法では、分子状酸素を酸化剤とする酸素酸化反応方法であることも好ましく考慮される。   And in the said oxidation reaction method of this invention, it is preferably considered that it is an oxygen oxidation reaction method which uses molecular oxygen as an oxidizing agent.

また、吸着剤に吸着された有機反応生成物を脱着分離して回収することが考慮される。   Further, it is considered that the organic reaction product adsorbed on the adsorbent is desorbed and recovered.

本発明では、上記の酸化反応方法において、有機反応生成物より所定の有機化合物を取得することを特徴とする有機合成方法が提供される。   The present invention provides an organic synthesis method characterized in that in the above oxidation reaction method, a predetermined organic compound is obtained from an organic reaction product.

例えば、反応基質の有機炭素環化合物よりその炭素環炭素に水酸基を結合形成することを特徴とする有機合成方法である。   For example, an organic synthesis method is characterized in that a hydroxyl group is bonded to a carbocyclic carbon from an organic carbocyclic compound as a reaction substrate.

より詳しくは、反応基質ベンゼンより高収率でフェノールを取得することを特徴とする有機合成方法が好適なものとして示される。   More specifically, an organic synthesis method characterized by obtaining phenol in a higher yield than the reaction substrate benzene is shown as being preferable.

また、本発明では、上記の酸化反応方法における触媒組成物であって、酸化反応触媒とともに所定の部分酸化段階での有機反応生成物を吸着回収可能とする吸着剤とを含むことを特徴とする酸化反応触媒組成物も提供される。   Further, the present invention is a catalyst composition in the above oxidation reaction method, characterized in that it comprises an adsorption reaction catalyst and an adsorbent capable of adsorbing and recovering an organic reaction product in a predetermined partial oxidation stage. An oxidation reaction catalyst composition is also provided.

本発明によれば、有機物を光触媒反応などにより酸化する場合、所望の段階まで酸化した生成物を高収率・高効率で得ることができる。   According to the present invention, when an organic substance is oxidized by a photocatalytic reaction or the like, a product oxidized to a desired stage can be obtained with high yield and high efficiency.

TiO及びフェノール吸着剤である層状ケイ酸(プロトン型マガディアイト、H−mag )を使用した光触媒反応によりベンゼンからフェノールへの効率的な変換を行う本発明の一実施例の過程を概念的に説明する図である。(a)は光触媒反応によって形成されたフェノールをH−magによって直ちにかつ高い選択性を以て捕獲し、また光触媒反応が終わった後にフェノールをH−magから溶出する過程を示す概念図であり、(b)はマガディアイト(magadiite、NaSi1429)(Na−mag)の層間のナトリウムイオンをプロトンで陽イオン交換することによってH−magを作製する過程を示す。Conceptually showing the process of an embodiment of the present invention in which benzene and phenol are efficiently converted by a photocatalytic reaction using TiO 2 and a layered silicic acid (proton magadiite, H-mag) as a phenol adsorbent. It is a figure explaining. (A) is a conceptual diagram showing a process of capturing phenol formed by photocatalytic reaction immediately and with high selectivity by H-mag and eluting phenol from H-mag after photocatalytic reaction is finished, (b) ) Shows a process for producing H-mag by cation exchange of sodium ions between layers of magadiite (Na 2 Si 14 O 29 ) (Na-mag) with protons. Na−mag及びH−magのフェノール吸着の挙動を示すグラフである。(a)はベンゼンを含有する水からH−magへのフェノール吸着量の時間変化を、(b)はベンゼンを含む水からNa−mag(淡色の小円)及びH−mag(濃色の小円)へのフェノールの吸着等温線である。フェノール及びベンゼンの初期濃度はそれぞれ0.05〜3ppm及び600ppmであった。It is a graph which shows the behavior of phenol adsorption of Na-mag and H-mag. (A) shows time-dependent changes in the amount of phenol adsorbed from water containing benzene to H-mag, (b) shows water from benzene containing Na-mag (light small circle) and H-mag (dark colored small). It is an adsorption isotherm of phenol to the circle. The initial concentrations of phenol and benzene were 0.05-3 ppm and 600 ppm, respectively. (a)太陽光シミュレーター下でのTiO使用光触媒反応後のベンゼン水溶液のクロマトグラムである。3本のカーブ中、ベースラインが一番下にあるカーブが吸着材を含まない場合の、またベースラインが中央にあるカーブがNa−magが入っている場合の、またベースラインが一番上のカーブがH−magが入っている場合のクロマトグラムである。ここで、ピークB、P及びSはぞれぞれベンゼン、フェノール及びフェノールの過剰酸化生成物(overoxidized product)に割り当てられる。(b)回収されたNa−mag及びH−magをエタノール水溶液によって洗浄して得られた溶出物のクロマトグラムであり(下側のカーブはNa−mag、上側のカーブはH−mag)、(c)H−magを使用したTiOの光触媒反応の間のベンゼン水溶液中のベンゼン量及びフェノール量の時間変化のグラフ(ベンゼン量は黒色小正方形、フェノール量は黒色小円)である。(A) it is a chromatogram of the benzene solution after TiO 2 using photocatalytic reaction under sunlight simulator. Of the three curves, the curve with the bottom line at the bottom contains no adsorbent, and the curve with the base line at the center contains Na-mag, and the baseline is at the top. This curve is a chromatogram when H-mag is included. Here, peaks B, P and S are assigned to benzene, phenol and phenol overoxidized products, respectively. (B) Chromatogram of eluate obtained by washing recovered Na-mag and H-mag with aqueous ethanol (lower curve is Na-mag, upper curve is H-mag), ( c) A graph showing the change over time in the amount of benzene and the amount of phenol in the aqueous benzene solution during the photocatalytic reaction of TiO 2 using H-mag (the amount of benzene is a black small square, and the amount of phenol is a black small circle). 本発明を実施することができる流通式反応装置を概念的に説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates notionally the flow-type reaction apparatus which can implement this invention. カテコールを精密に認識する吸着材であるHUS−7を用いることで、TiOによりベンゼンをカテコールへ選択的に酸化してカテコールを合成する、本発明の別の実施例の過程を概念的に説明する図である。Conceptual explanation of the process of another embodiment of the present invention in which catechol is synthesized by selectively oxidizing benzene to catechol with TiO 2 by using HUS-7, which is an adsorbent that accurately recognizes catechol. It is a figure to do. カテコールを合成する実施例で吸着剤として使用したHUS−7の構造を図式的に示す図である。It is a figure which shows typically the structure of HUS-7 used as an adsorbent in the Example which synthesize | combines catechol. ベンゼン、フェノール及びカテコールを含むアセトニトリル混合溶液におけるHUS−7によるカテコール(黒四角)及びフェノール(黒丸)の吸着量の時間変化を示す図である。It is a figure which shows the time change of the adsorption amount of catechol (black square) and phenol (black circle) by HUS-7 in the acetonitrile mixed solution containing benzene, phenol, and catechol. ベンゼン、フェノール及びカテコールを含むアセトニトリル混合溶液におけるHUS−7によるカテコール(黒四角)及びフェノール(黒丸)の吸着等温線を示す図である。It is a figure which shows the adsorption isotherm of catechol (black square) and phenol (black circle) by HUS-7 in the acetonitrile mixed solution containing benzene, phenol, and catechol. HUS−7の(疑似太陽光に含まれる)紫外光に対する安定性を評価するために行った実験結果である、ベンゼンアセトニトリル溶液とHUS−7との混合液に紫外領域の様々な波長の単色光を6h照射した後の上澄液のHPLCクロマトグラムである。Monochromatic light of various wavelengths in the ultraviolet region in the mixed solution of benzene acetonitrile solution and HUS-7, which is the result of an experiment conducted to evaluate the stability of HUS-7 against ultraviolet light (included in pseudo sunlight) It is the HPLC chromatogram of the supernatant liquid after 6h irradiation. 本発明のカテコール合成の実施例で使用した装置の構成を示す写真である。It is a photograph which shows the structure of the apparatus used in the Example of the catechol synthesis | combination of this invention.

本発明の酸化反応方法では、過剰酸化を抑制して所定の部分酸化段階で反応を停止可能とする、有機反応基質の酸化反応触媒の存在下での酸化剤をもっての不均一系液相酸化反応方法であって、
前記所定の部分酸化段階での有機反応生成物を吸着回収可能とする吸着剤を共存させることを特徴としている。
In the oxidation reaction method of the present invention, a heterogeneous liquid phase oxidation reaction with an oxidant in the presence of an oxidation reaction catalyst of an organic reaction substrate that can suppress the excessive oxidation and stop the reaction at a predetermined partial oxidation stage. A method,
An adsorbent that makes it possible to adsorb and recover the organic reaction product in the predetermined partial oxidation stage coexists.

ここで、吸着剤は、本発明において必須の要件であり、かつ、本質的な特徴点である。吸着剤は、所定の部分酸化段階での有機反応生成物を吸着する。このことによって、過剰酸化反応を抑え、所定の部分酸化段階で反応を停止可能とする。   Here, the adsorbent is an essential requirement in the present invention and is an essential characteristic point. The adsorbent adsorbs the organic reaction product in a predetermined partial oxidation stage. As a result, the excessive oxidation reaction is suppressed, and the reaction can be stopped at a predetermined partial oxidation stage.

このため、所定の有機反応生成物の反応選択性、反応収率は、従来では全く予期、予想できない極めて高いレベルにまで向上することになる。   For this reason, the reaction selectivity and reaction yield of a predetermined organic reaction product are improved to an extremely high level that cannot be expected or predicted in the past.

このような本発明の吸着剤は、不均一系液相酸化反応系において、酸化反応触媒と共存状態にあればよく、液媒体中に混合分散状態でもよいし、その一部は、酸化反応触媒を付着もしくは担持した状態であってもよい。より好ましくは、少くとも一部の酸化触媒を担持可能とすることが考慮される。   Such an adsorbent of the present invention may be in a heterogeneous liquid phase oxidation reaction system as long as it is in a coexisting state with the oxidation reaction catalyst, and may be mixed and dispersed in the liquid medium, part of which is an oxidation reaction catalyst. May be attached or supported. More preferably, it is considered that at least a part of the oxidation catalyst can be supported.

吸着剤の種類や形状、構造、大きさ等については、酸化反応の種類、目的、そして酸化反応触媒の種類や機能によって定めることができる。一般的には、無機質または無機・有機複合の多孔質体や層状体が考慮される。これらはいずれも、所定の有機反応生成物を吸着保持することができ、また、これらを脱着分離可能として、有機反応生成物より所望の有機化合物を取得可能とするものであることが条件となる。これらは粒状体、板状体、あるいは円板状、筒状、柱状等の形態であってよい。各種の層状体をはじめ、ゼオライト、メソポーラスシリカ、多孔性配位高分子(PCP、MOFなど)等も考慮される。   The type, shape, structure, size, etc. of the adsorbent can be determined by the type and purpose of the oxidation reaction and the type and function of the oxidation reaction catalyst. In general, an inorganic or inorganic / organic composite porous body or layered body is considered. All of these are capable of adsorbing and holding a predetermined organic reaction product, and that they can be desorbed and separated to obtain a desired organic compound from the organic reaction product. . These may be in the form of granules, plates, disks, cylinders, columns, or the like. In addition to various layered bodies, zeolite, mesoporous silica, porous coordination polymers (PCP, MOF, etc.) and the like are also considered.

なかでも、層状体が本発明において好ましく考慮される。層状体の層間に前記有機反応生成物が吸着保持されること、さらには前記の酸化反応触媒の少くとも一部が担持されることが考慮される。   Among these, a layered body is preferably considered in the present invention. It is considered that the organic reaction product is adsorbed and held between the layers of the layered body, and that at least a part of the oxidation reaction catalyst is supported.

このような層状体としては、例えばケイ酸系層状体やアルミノケイ酸系層状体(層状アルミノケイ酸塩、層状粘土鉱物)、チタン酸系層状体(層状チタン酸塩)、ニオブ酸系層状体(層状ニオブ酸塩)、チタノニオブ酸系層状体(層状チタノニオブ酸塩)、リン酸系層状体(層状リン酸塩)、層状複水酸化物、グラファイト等が例として挙げられる。層状体においては、層間へのインターカレーションにより層間距離や、層間のイオン性状等が制御される。これによって、目的とする有機反応生成物の分子の大きさや酸性度、塩基性度等に応じた吸着剤の調製が可能となる。   Examples of such layered bodies include silicic acid-based layered bodies and aluminosilicate-based layered bodies (layered aluminosilicates, layered clay minerals), titanic acid-based layered bodies (layered titanates), niobic acid-based layered bodies (layered layers) Examples thereof include niobate salts, titanoniobic acid layered bodies (layered titanoniobate salts), phosphoric acid layered bodies (layered phosphates), layered double hydroxides, and graphite. In the layered body, interlayer distance, interlayer ionic properties, and the like are controlled by intercalation between layers. This makes it possible to prepare an adsorbent according to the molecular size, acidity, basicity, etc. of the target organic reaction product.

酸化反応触媒についても様々に、酸化反応の種類、所望の目的、有機反応生成物の種類、そして酸化反応の選択性や収率の観点より定めることができる。   The oxidation reaction catalyst can also be variously determined from the viewpoints of the type of oxidation reaction, the desired purpose, the type of organic reaction product, and the selectivity and yield of the oxidation reaction.

その種類については、一般的には、酸化物等の無機化合物、錯体、金属のうちの1種以上が考慮される。これらは、その形態も、粒状、塊状、板状等の各種であってよい。酸化反応触媒は、太陽光等による光励起触媒作用を有していてもよい。光酸化反応として注目される反応のための触媒である。例えば、酸化チタン(TiO等)をはじめ、酸化チタンに硫黄や窒素など陰のイオンをドープしたもの、酸化亜鉛、酸化タングステン、酸化ニオブ、酸化セシウム、およびこれらと金などの貴金属微粒子との複合体、窒化ガリウム、酸化亜鉛固溶体等が例示される。なかでも、酸化チタンまたはこれを主として含むものが好ましく考慮される。 In general, one or more of inorganic compounds such as oxides, complexes, and metals are considered for the type. These may be in various forms such as granular, lump, and plate. The oxidation reaction catalyst may have a photoexcitation catalytic action by sunlight or the like. It is a catalyst for a reaction that is attracting attention as a photo-oxidation reaction. For example, titanium oxide (TiO 2 etc.), titanium oxide doped with negative ions such as sulfur and nitrogen, zinc oxide, tungsten oxide, niobium oxide, cesium oxide, and composites of these with noble metal fine particles such as gold Body, gallium nitride, zinc oxide solid solution and the like. Among these, titanium oxide or one mainly containing this is preferably considered.

酸化剤については分子状酸素、あるいは酸素供与性物質を反応系に共存させることであってもよい。   As for the oxidizing agent, molecular oxygen or an oxygen donating substance may coexist in the reaction system.

本発明の酸化反応は、反応基質は有機化合物の各種であってよく、例えば炭化水素、そして各種の官能基をこれに有するもの等である。   In the oxidation reaction of the present invention, the reaction substrate may be various organic compounds such as hydrocarbons and those having various functional groups.

本発明においては、特に、具体的には、反応基質としてのベンゼン、フェノール、カテコール、ヒドロキノン、シクロヘキサン、シクロペンタン等の有機炭素環化合物よりその炭素環炭素に水酸基を結合形成する有機合成方法、例えば、反応基質ベンゼンより高収率でフェノールを取得することを特徴とする有機合成方法に着目している。   In the present invention, specifically, an organic synthesis method in which a hydroxyl group is bonded to a carbocyclic carbon from an organic carbocyclic compound such as benzene, phenol, catechol, hydroquinone, cyclohexane, cyclopentane, etc. as a reaction substrate, for example, Attention is focused on an organic synthesis method characterized in that phenol is obtained in a higher yield than the reaction substrate benzene.

以下の実施例では、TiOを使用した場合でさえも所望の部分酸化をおこなうための高度の光触媒活性を達成する新規な方法について説明する。なお、実施例では部分酸化の例としてベンゼンからフェノール及びカテコールを高い選択性を以て合成するという二種類の具体的な反応を例として説明するが、これにより本発明の一般性が失われるわけではない。 The following examples describe a novel method of achieving a high degree of photocatalytic activity for performing the desired partial oxidation even when using TiO 2 . In the examples, two specific reactions of synthesizing phenol and catechol from benzene with high selectivity will be described as examples of partial oxidation. However, this does not lose the generality of the present invention. .

[ベンゼンからのフェノールの高選択性合成]
フェノールは現在のところ3段階のクメン法によってベンゼンから製造されているが、これは産業上最も重要な化学物質の一つである。クメン法はエネルギーを多く消費し、フェノールの収率が低く、また以降の工程で分離を必要とすることになる複製物を生成するため、ベンゼンの直接酸化を行うための触媒の開発の努力が精力的に払われてきた(非特許文献7〜18)。
[Highly selective synthesis of phenol from benzene]
Phenol is currently produced from benzene by a three-stage cumene process, which is one of the most important chemicals in the industry. The cumene process consumes a lot of energy, yields low phenol yields, and produces replicas that will require separation in subsequent steps, thus making efforts to develop catalysts for direct oxidation of benzene. It has been paid vigorously (Non-Patent Documents 7 to 18).

TiO上で有機基質を部分酸化する場合の困難な問題の一つは、所望の生成物が簡単に過剰酸化されてしまうことである。Oが溶融している水を使ってTiO上でベンゼンの光触媒酸化を行っている間に、一旦生成されたフェノールは直ちに過剰酸化されてカテコールおよびヒドロキノンといったヒドロキシフェノールとなり、最終的には二酸化炭素に酸化されるが、これはヒロドキシルラジカルのような高度に酸化性のラジカル種が存在するからである(非特許文献19)。 One of the difficult problems with partial oxidation of organic substrates on TiO 2 is that the desired product is easily overoxidized. During the photocatalytic oxidation of benzene on TiO 2 using water in which O 2 is melted, the phenol once produced is immediately over-oxidized to hydroxyphenols such as catechol and hydroquinone, and finally the dioxide. It is oxidized to carbon because there are highly oxidizing radical species such as a hydroxyl radical (Non-patent Document 19).

本発明者はこの問題を解決するため鋭意研究を行った結果、図1に概念的に示すように、光触媒反応が行われている間に水、ベンゼン及びフェノールの混合物中からフェノールを直ちにかつ高い選択性を以て吸着する吸着剤を反応系に共存させておくことで、光触媒反応で形成されたフェノールをTiOから分離して過剰酸化を防止できることを確認した。 As a result of intensive studies to solve this problem, the present inventor has found that phenol is immediately and high out of a mixture of water, benzene and phenol during the photocatalytic reaction as conceptually shown in FIG. It was confirmed that by allowing an adsorbent that adsorbs with selectivity to coexist in the reaction system, phenol formed by the photocatalytic reaction can be separated from TiO 2 to prevent excessive oxidation.

層状粘土鉱物のような層状無機固体は、層毎に構成されているナノメートル厚の層によりもたらされる大きな表面積及び表面反応性(イオン交換性、水素結合、その他)を有しているため、吸着材として広く研究されてきた(非特許文献20)。例えば、マガディアイトは天然の層状ケイ酸塩の一種であり、また単純な水熱反応によって容易に得ることができる(非特許文献21、22)。図1(b)に示すように、マガディアイトの層間ナトリウムイオンを陽イオン交換することで得られる層状ケイ酸H−magは、表面のシラノール基との水素結合相互作用により、層間スペースにアルコールのような各種の極性有機物分子を取り込むことが知られている(非特許文献23、24)。本発明では、Na−mag及びH−magを作製して、水とベンゼンとの存在下での(つまり、ベンゼン水溶液からの)フェノール吸着の挙動を評価している。   Layered inorganic solids such as layered clay minerals adsorb because of the large surface area and surface reactivity (ion exchange, hydrogen bonding, etc.) provided by the nanometer-thick layers made up of layers It has been widely studied as a material (Non-patent Document 20). For example, magadiite is a kind of natural layered silicate and can be easily obtained by a simple hydrothermal reaction (Non-patent Documents 21 and 22). As shown in FIG. 1 (b), the layered silicic acid H-mag obtained by cation exchange of the sodium sodium ions of magadiite is free of alcohol in the interlayer space due to hydrogen bond interaction with the silanol groups on the surface. It is known to incorporate such various polar organic molecules (Non-patent Documents 23 and 24). In the present invention, Na-mag and H-mag are produced and the behavior of phenol adsorption in the presence of water and benzene (that is, from an aqueous benzene solution) is evaluated.

図2(a)には、ベンゼンとフェノールの混合水溶液からH−magへのフェノールの吸着量の時間変化を示す。この結果から、フェノールの吸着は分のスケールで起こったことがわかる。図2(b)より、ベンゼン混合物水溶液からH−magへのフェノール吸着の吸着等温線は、Giles分類によればH型であった(非特許文献25)。このことは吸着材−吸着質間の強い相互作用を表している。これらの結果から、H−magはベンゼンが存在していてもフェノールを水から直ちにかつ選択的に吸着できることがわかる。他方、ナトリウムイオン交換を行っていないNa−magは、図2(b)に示されているようにフェノールをベンゼン混合水溶液からほとんど吸着しない。これは層間スペースに入っているナトリウムイオンと強い相互作用を示す水との競合によるものであると推定される。   FIG. 2 (a) shows the change over time of the amount of adsorption of phenol from the mixed aqueous solution of benzene and phenol to H-mag. This result shows that the adsorption of phenol occurred on the scale of minutes. From FIG. 2 (b), the adsorption isotherm of the phenol adsorption from the aqueous benzene mixture solution to H-mag was H type according to the Giles classification (Non-patent Document 25). This represents a strong interaction between the adsorbent and adsorbate. From these results, it can be seen that H-mag can adsorb phenol immediately and selectively from water even in the presence of benzene. On the other hand, Na-mag not performing sodium ion exchange hardly adsorbs phenol from the benzene mixed aqueous solution as shown in FIG. It is presumed that this is due to competition between sodium ions in the interlaminar space and water that has a strong interaction.

TiO上での光触媒反応によるベンゼンの酸化は水を溶媒かつ酸化剤として、またOを酸化剤として使用し、太陽光シミュレーターの照射(λ≧320nm)下で、Na−magあるいはH−magが入った状態及び入っていない状態で行った。TiOは微粒子ではなくサイズが数mm平方のフレーク状のものを使用し、これにより光触媒反応後、反応混合物中からTiOを簡単に取り出し、吸着材だけからそれに取り込まれているかもしれない反応生成物を溶出できるようにした。その際のフレーク状TiOの製造方法、それを使用した光触媒反応の実験方法、その結果の測定方法については後述の「実施例」において説明している。このようにして行った光触媒反応による酸化の結果を表1にまとめた。 Oxidation of benzene by photocatalytic reaction on TiO 2 uses water as a solvent and an oxidizing agent, and O 2 as an oxidizing agent. Under irradiation of a solar simulator (λ ≧ 320 nm), Na-mag or H-mag The test was performed with and without. TiO 2 is not a fine particle, but a flake with a size of several millimeters square is used. By this, after photocatalytic reaction, TiO 2 can be easily taken out from the reaction mixture, and the reaction may be taken in only from the adsorbent. The product was allowed to elute. The production method of flaky TiO 2 at that time, the experimental method of the photocatalytic reaction using the same, and the measurement method of the result are described in “Examples” described later. The results of oxidation by the photocatalytic reaction thus performed are summarized in Table 1.

表1の結果は、「実施例」での「光触媒反応」によるものである。「溶出液」は反応終了後の吸着材をエタノール水溶液(体積比1:1)100mLで洗浄して得られた液体である。「フェノール選択率」は[上澄み液中のフェノール]/[反応したベンゼン]×100で定義される。「ベンゼン変換率」は[反応したベンゼン]/[投入したベンゼン]×100で定義される。「フェノール回収選択率」はHPLCの結果に基づくものである。 The results in Table 1 are based on the “photocatalytic reaction” in “Example”. The “eluent” is a liquid obtained by washing the adsorbent after the reaction with 100 mL of an aqueous ethanol solution (volume ratio 1: 1). “Phenol selectivity” is defined as [phenol in the supernatant] / [reacted benzene] × 100. “Benzene conversion rate” is defined as [reacted benzene] / [input benzene] × 100. “Phenol recovery selectivity” is based on HPLC results.

吸着材なしでTiOだけを使用した場合には、カテコール、ハイドロキノン、1,2,3−トリヒドロキシベンゼンのような過剰酸化生成物が光触媒反応後の反応混合物の上澄みのクロマトグラム(図3(a)中の最下部)中に検出され、表1に示すように、24時間の光照射後、約80%のベンゼン変換率に対して4%のフェノール選択率が得られている。 When only TiO 2 is used without an adsorbent, an excess oxidation product such as catechol, hydroquinone, 1,2,3-trihydroxybenzene is a chromatogram of the supernatant of the reaction mixture after the photocatalytic reaction (FIG. 3 ( As shown in Table 1, after 4 hours of light irradiation, a phenol selectivity of 4% was obtained for a benzene conversion of about 80%.

しかしながら、H−magが入っていた場合には、同一の光照射条件の下で、約80%のベンゼン変換率にもかかわらず、フェノールも過剰酸化生成物も上澄み液中には検出されず(図3(a)の最上部のクロマトグラム)、H−magのエタノール水溶液による溶出液のクロマトグラム(図3(b)の上部)中にはフェノールだけが検出された。この反応条件の場合には、表1に示すように、約80%のベンゼン変換率に対して、フェノールは選択率100%で回収された。ここで、図3(c)のグラフ中に黒色小円でプロットしてあるように、光触媒反応の全過程にわたって、反応混合物中にはフェノールがほとんど検出されなかったことに注目される。   However, when H-mag was contained, neither phenol nor excessive oxidation products were detected in the supernatant liquid under the same light irradiation conditions despite the benzene conversion rate of about 80% ( Only phenol was detected in the chromatogram of the eluate of the aqueous ethanol solution of H-mag (upper part of FIG. 3B) in FIG. 3A. Under these reaction conditions, as shown in Table 1, phenol was recovered at a selectivity of 100% for a benzene conversion of about 80%. Here, it is noted that almost no phenol was detected in the reaction mixture over the entire photocatalytic reaction, as plotted with black circles in the graph of FIG. 3 (c).

これらの結果から、H−magは一旦形成されたフェノールを非常に急速かつ選択的に吸着するので、フェノールはほとんど過剰酸化されず、その結果、選択的にまた効率的に回収されることが確認された。フェノールがTiO表面から分離された結果、吸着されたフェノールは安定化された(非特許文献26)。TiO表面上に生成された酸化性のラジカル種が活性を失う前にH−mag内部に拡散していくのは困難であると考えられる。他方、表1に示すように、H−magに代えてNa−magを使用した場合には、フェノール回収の効率はかなり低いものとなった。この場合にはフェノールが反応混合物とNa−magからの溶出液の双方から検出された(図3(a)の中央のクロマトグラム及び図3(b)の下側のクロマトグラム)という事実から判断するに、Na−magは光触媒反応過程において相対的に弱い相互作用によりフェノールを繰り返し吸着しまた放出していたものと考えられる。他の要因として、疎水性と親水性のような反応媒体(純水、水・H−mag分散系、水・Na−mag分散系)の性質の変動がTiOの光触媒反応の性能に影響した可能性もある(非特許文献27)。 From these results, H-mag adsorbs the phenol once formed very rapidly and selectively, so that the phenol is hardly over-oxidized, and as a result, it is confirmed that it is selectively and efficiently recovered. It was done. As a result of the separation of the phenol from the TiO 2 surface, the adsorbed phenol was stabilized (Non-patent Document 26). It is considered difficult for the oxidizing radical species generated on the TiO 2 surface to diffuse into the H-mag before losing activity. On the other hand, as shown in Table 1, when Na-mag was used instead of H-mag, the efficiency of phenol recovery was considerably low. In this case, judgment was made based on the fact that phenol was detected from both the reaction mixture and the eluate from Na-mag (the central chromatogram in FIG. 3 (a) and the lower chromatogram in FIG. 3 (b)). Thus, Na-mag is thought to have repeatedly adsorbed and released phenol due to relatively weak interaction during the photocatalytic reaction process. As another factor, fluctuations in properties of reaction media such as hydrophobicity and hydrophilicity (pure water, water / H-mag dispersion, water / Na-mag dispersion) affected the performance of TiO 2 photocatalytic reaction. There is a possibility (Non-patent Document 27).

本プロセスは豊富に存在しまた安全な材料及び試薬(TiO、ケイ酸塩、水、O及びエタノール)しか必要としないにもかかわらず、ここで達成されたフェノール製造(回収)の活性度はベンゼンの直接酸化についての触媒プロセスや光触媒プロセスについてこれまでに報告されたものに比べて大幅に高い。この活性度はまた、チタノケイ酸ゼオライトについて報告された結果と比べてもかなり高い。このチタノケイ酸ゼオライトの結果では、24時間の紫外光(太陽光ではなく)照射によりベンゼン変換率が20%未満で65%のフェノール選択率を達成したというものである(非特許文献6)。本発明で用いた非多孔質TiOはベンゼン及びフェノールの拡散を制限しないため、高い活性が実現した。 The process abundant and also safe materials and reagents even though no (TiO 2, silicates, water, O 2 and ethanol) requires only the activity of the achieved are phenol produced (recovered) where Is significantly higher than previously reported for catalytic and photocatalytic processes for direct oxidation of benzene. This activity is also considerably higher than the results reported for titanosilicate zeolites. According to the result of this titanosilicate zeolite, a phenol selectivity of 65% was achieved at a benzene conversion rate of less than 20% by irradiation with ultraviolet light (not sunlight) for 24 hours (Non-patent Document 6). Since the non-porous TiO 2 used in the present invention does not limit the diffusion of benzene and phenol, high activity was realized.

従来技術においては、TiO微粒子を層間スペースに担持した層状粘土(非特許文献28)や層状粘土の粒子表面上に担持されたTiO(非特許文献29)のようなTiOと層状ケイ酸塩との組み合わせは、有機基質の分解(完全酸化)を志向して研究されてきた。この種の研究においては、層状の粘土は有機基質を触媒表面近傍に集める役割を演じていた。これに対して、本発明は層状ケイ酸塩が有機基質の部分酸化のためにTiOから隔離する物質として重要な機能を果たすことを初めて明らかにしている。 In the prior art, TiO 2 and layered silicic acid such as layered clay in which TiO 2 fine particles are supported in an interlayer space (Non-patent Document 28) and TiO 2 (Non-patent Document 29) supported on the particle surface of the layered clay are used. Combinations with salts have been studied with the aim of degrading organic substrates (complete oxidation). In this type of research, layered clay played the role of collecting organic substrates near the catalyst surface. In contrast, the present invention demonstrates for the first time that layered silicates serve an important function as sequestering substances from TiO 2 for partial oxidation of organic substrates.

層状無機固体に基づく吸着材は、前記したとおり、多様なサイズ及び構造を有する広範な有機物分子に対して、インターカレーション反応により吸着機能を個別に調整することができる(非特許文献20)。フェノールその他のファインケミカル物質を環境面でまた経済面で良好な態様での製造を現実的なものにするためには、反応条件(光照射強度、光触媒の種類(非特許文献30、31)、添加する吸着材の種類及び量、反応装置(非特許文献32)、その他)の最適化を行うことができる。   As described above, the adsorbent based on the layered inorganic solid can individually adjust the adsorption function for a wide range of organic molecules having various sizes and structures by an intercalation reaction (Non-patent Document 20). In order to make the production of phenol and other fine chemical substances in an environmentally and economically favorable manner realistic, reaction conditions (light irradiation intensity, type of photocatalyst (Non-patent Documents 30, 31), addition It is possible to optimize the type and amount of adsorbent to be used and the reactor (Non-Patent Document 32) and the like.

なお、以上説明した例では、少量のバッジ生産に適する装置、手順を使用して行ったものであるが、より工業用途に適する反応装置構成(流通式反応装置)も可能である。例えば、図4に概略的に示した構成では、光を透過する反応管中にTiO等の光触媒粉末とH−mag等の吸着材粉末とを充填する。ここに太陽光(あるいは人工照明光)を照射しながらOを含んだベンゼン水溶液を流す。上記の例と同様にして、ベンゼン水溶液中のベンゼンは光触媒表面近傍で酸化される。ベンゼンの酸化がフェノールまで進行した段階で、このフェノールは直ちに近接した吸着剤に吸着される((a)ベンゼン酸化過程)。反応管の長さ、光の強度、ベンゼン水溶液の流速などを適切に設定することにより、高いベンゼン変換率が得られる。吸着剤がフェノールで飽和する前にベンゼン水溶液の流通を停止し、また光照射を停止してから、エタノール水溶液を反応管に流す((b)フェノール溶出過程)。これにより、吸着剤からフェノールが溶出されるので、下流の工程でこの溶出液からフェノールを取り出す。これにより、ベンゼンの部分酸化によるフェノールの合成を本発明に基づいて連続的に行うことができる。 In the example described above, the apparatus and procedure suitable for producing a small amount of badges are used. However, a reaction apparatus configuration (flow-type reaction apparatus) more suitable for industrial use is also possible. For example, in the configuration schematically shown in FIG. 4, a photocatalyst powder such as TiO 2 and an adsorbent powder such as H-mag are filled in a reaction tube that transmits light. A benzene aqueous solution containing O 2 is allowed to flow while irradiating sunlight (or artificial illumination light). Similarly to the above example, benzene in the benzene aqueous solution is oxidized near the surface of the photocatalyst. At the stage where the oxidation of benzene has progressed to phenol, this phenol is immediately adsorbed by the adjacent adsorbent ((a) benzene oxidation process). By appropriately setting the length of the reaction tube, the light intensity, the flow rate of the aqueous benzene solution, etc., a high benzene conversion rate can be obtained. Before the adsorbent is saturated with phenol, the flow of the benzene aqueous solution is stopped, and after the light irradiation is stopped, the aqueous ethanol solution is passed through the reaction tube ((b) phenol elution process). Thereby, since phenol is eluted from the adsorbent, phenol is taken out from this eluate in a downstream process. Thereby, the synthesis | combination of the phenol by the partial oxidation of benzene can be continuously performed based on this invention.

ここで、以上説明したところの、ベンゼンからフェノールを高い選択性を以て合成する反応で使用したフレーク状TiO光触媒、Na−mag及びH−magの作製並びに光触媒反応の実際の手順を説明する。 Here, the preparation of the flaky TiO 2 photocatalyst used in the reaction for synthesizing phenol from benzene with high selectivity as described above, Na-mag and H-mag, and the actual procedure of the photocatalytic reaction will be described.

○フレーク状TiO光触媒の作製
粒子サイズが20nmのアナターゼ型TiOを6重量%含み、pHを10に調整した水性懸濁液(多木化学株式会社製Tynoc A-6)をガラス基板上に塗布した。室温で3日間溶媒を蒸発させた後、厚さが1mm未満のひびの入った膜が得られた。この膜を基板から剥離して数mm平方のTiOフレークを得た。これを400℃で5時間、空気中で焼成して、TiO表面に吸着していた界面活性剤を除去した。
○Na−mag及びH−magの作製、並びに吸着試験
Na−magをSiO、NaOH、HO間の150℃で2日間の水熱反応によって合成した(非特許文献22)。Na−mag(5g)をHCl水溶液(200mL、1mol/L)で処理し、次いで水洗することで、H−magを得た。ガラス容器中のベンゼンとフェノールの混合水溶液中にこの吸着剤を60mg添加し、この混合物を室温で1日振盪した。その上澄みをろ過によって分離し、高性能液体クロマトグラフィー(HPLC)によって定量分析した。
○光触媒反応
Pyrex(登録商標)ガラス製の透明部分を備えたステンレス製密閉容器(75mL)中のフレーク状TiO(60mg)、吸着剤(H−magまたはNa−mag)(60mg)及びベンゼン(154μmol)水溶液(20mL、O飽和)の混合物を42℃で振盪しながら太陽光シミュレーターXES-155S1(株式会社三永電機製作所製)により24時間光照射した。反応後、その上澄みをろ過によって分離し、HPLCによって定量分析した。また、ろ過で得られた固形分からフレーク状TiOをピンセットで取り除いた後のもの、つまり吸着剤として使用したH−mag/Na−mag、を100mLのエタノール水溶液(体積比1:1)で洗浄し、その溶出液をやはりHPLCにより定量分析した。
Preparation of flaky TiO 2 photocatalyst An aqueous suspension (Tynoc A-6, manufactured by Taki Chemical Co., Ltd.) containing 6% by weight of anatase TiO 2 having a particle size of 20 nm and adjusted to pH 10 on a glass substrate Applied. After evaporating the solvent at room temperature for 3 days, a cracked film with a thickness of less than 1 mm was obtained. This film was peeled from the substrate to obtain TiO 2 flakes of several mm square. This was baked in the air at 400 ° C. for 5 hours to remove the surfactant adsorbed on the TiO 2 surface.
○ Production of Na-mag and H-mag, and adsorption test Na-mag was synthesized by a hydrothermal reaction at 150 ° C between SiO 2 , NaOH and H 2 O for 2 days (Non-patent Document 22). Na-mag (5 g) was treated with an aqueous HCl solution (200 mL, 1 mol / L) and then washed with water to obtain H-mag. 60 mg of this adsorbent was added to a mixed aqueous solution of benzene and phenol in a glass container, and the mixture was shaken at room temperature for 1 day. The supernatant was separated by filtration and quantitatively analyzed by high performance liquid chromatography (HPLC).
○ Photocatalytic reaction
Flaky TiO 2 (60 mg), adsorbent (H-mag or Na-mag) (60 mg), and aqueous solution of benzene (154 μmol) in a stainless sealed container (75 mL) with a transparent portion made of Pyrex® glass. The mixture (20 mL, O 2 saturated) was irradiated with light by a solar simulator XES-155S1 (manufactured by Mitsunaga Electric Co., Ltd.) for 24 hours while shaking at 42 ° C. After the reaction, the supernatant was separated by filtration and quantitatively analyzed by HPLC. Further, the flaky TiO 2 from solids obtained by filtration which is after removal with tweezers, i.e. H-mag / Na-mag, the 100mL of aqueous ethanol was used as the adsorbent (volume ratio 1: 1) washed The eluate was quantitatively analyzed by HPLC.

これらの分析に基づく結果を前記表1として示した。   The results based on these analyzes are shown in Table 1 above.

[ベンゼンからのカテコールの高選択性合成] 上の実施例においては、TiOによるベンゼンの酸化の際にフェノールを精密に認識する吸着材を添加すると、生成したフェノールが迅速かつ選択的、効率的に吸着材にトラップされ過剰酸化が抑制されるのでことを利用し、反応後吸着剤を洗浄することでフェノールを高効率かつ高純度に回収できることを示した。本発明はこのような特定の形態に限定されるものではなく、より汎用的なものであることを明らかにするため、以下では本発明をカテコール合成に適用した別の実施例を示す。 [Highly Selective Synthesis of Catechol from Benzene] In the above example, when an adsorbent that accurately recognizes phenol is added during the oxidation of benzene with TiO 2, the resulting phenol is rapidly, selectively and efficiently produced. It was shown that phenol can be recovered with high efficiency and high purity by washing the adsorbent after the reaction by utilizing the fact that it is trapped by the adsorbent and excessive oxidation is suppressed. In order to clarify that the present invention is not limited to such a specific form and is more versatile, another embodiment in which the present invention is applied to catechol synthesis will be described below.

カテコールは様々な用途で使用されている基礎化学品であるが、現在は主にフェノールを過酸化水素で酸化することにより製造されている。しかしながら、この製造法は生成物中にタール成分を多量に生成してしまい、目的物の選択率が低い(例えば、特許文献1)。光触媒によるフェノール酸化プロセスも検討されているが、他のフェノール類の生成や生成したカテコールの過剰酸化が起こり、カテコールを選択的に合成するのは困難であった(例えば、非特許文献35)。   Catechol is a basic chemical used in various applications, but it is currently produced mainly by oxidizing phenol with hydrogen peroxide. However, this production method produces a large amount of tar components in the product, and the selectivity of the target product is low (for example, Patent Document 1). A phenol oxidation process using a photocatalyst has also been studied. However, it has been difficult to selectively synthesize catechol due to the generation of other phenols and excessive oxidation of the produced catechol (for example, Non-Patent Document 35).

本実施例では、図5にその反応の過程を概念的に示すように、カテコールを精密に認識する吸着材を用いることで、TiOによるベンゼンのカテコールへの選択的な酸化を行い、これによってカテコールの高選択性合成を行う。ここで吸着材として用いたHUS−7(Hiroshima University Silicate-7)は、最近非特許文献36によりその合成が報告された材料である。HUS−7は、図6にその構造を図式的に示すように、シリケートシートと層間のベンジルトリメチルアンモニウムイオンからなる層状ケイ酸塩である。 In this example, as shown conceptually in FIG. 5, the adsorbent that accurately recognizes catechol is used to selectively oxidize benzene to catechol by TiO 2 , thereby Performs highly selective synthesis of catechol. Here HUS-7 was used as an adsorbent in (H iroshima U niversity S ilicate- 7) is a material whose synthesis was reported by recent Non-Patent Document 36. HUS-7 is a layered silicate composed of a silicate sheet and benzyltrimethylammonium ions between layers, as schematically shown in FIG.

非特許文献36自体には、HUS−7がカテコールを選択的に吸着すること等については開示がない。本願発明者らはHUS−7について研究を進めた結果、HUS−7がベンゼン、フェノール及びカテコールを含むアセトニトリル混合溶液中からカテコールを迅速に(図7)、しかも選択的かつ効率的(図8)に吸着することを発見した。具体的に説明すれば、図5はベンゼン、フェノール、カテコールを含むアセトニトリル混合溶液からのHUS−7によるカテコール及びフェノールのそれぞれの吸着の速度を表し、図8は混合溶液からのカテコール及びフェノールのそれぞれの吸着等温線を表す。何れの測定でも、混合液(20mL)とHUS−7(50mg)とを攪拌し、攪拌後、固液分離して得た上澄み液をHPLCで分析することで、上澄み液中の各成分の残存量を求めた。なお、吸着等温線を求めるに当たっては、上記攪拌を24時間行って平衡に達したところで固液分離した。図7から、HUS−7は混合溶液中からカテコール(黒四角)をごく短時間(数分〜十数分程度)のうちに急速に吸収する一方で、フェノール(黒丸)については1500分経過後もほとんど吸収しないことが判る。また、図8の吸着等温線を見ると、HUS−7は混合溶液中のカテコール(黒四角)が低濃度でも効率的に吸着する(グラフの左上側)ことで、生成されたカテコールを、低濃度のうちに即座に吸着するが、フェノール(黒丸)については混合液中の濃度にかかわらずほとんど吸着しない(グラフの右下側)ことがわかる。先の実施例でフェノールの吸着について説明したのと同様に、混合溶液からのHUS−7へのカテコールの吸着等温線もH型を示し、HUS−7とカテコールとの強い相互作用を示唆している。   Non-Patent Document 36 itself does not disclose that HUS-7 selectively adsorbs catechol. As a result of advancing research on the HUS-7, the inventors of the present application quickly (see FIG. 7), and selectively and efficiently catechol from an acetonitrile mixed solution containing benzene, phenol and catechol (see FIG. 8). Found to adsorb to Specifically, FIG. 5 shows the rate of adsorption of catechol and phenol by HUS-7 from an acetonitrile mixed solution containing benzene, phenol and catechol, and FIG. 8 shows each of catechol and phenol from the mixed solution. Represents the adsorption isotherm. In any measurement, the liquid mixture (20 mL) and HUS-7 (50 mg) were stirred, and after stirring, the supernatant liquid obtained by solid-liquid separation was analyzed by HPLC, whereby each component in the supernatant liquid remained. The amount was determined. In obtaining the adsorption isotherm, solid-liquid separation was performed when the above stirring was performed for 24 hours and equilibrium was reached. From FIG. 7, HUS-7 absorbs catechol (black square) rapidly from the mixed solution within a very short time (several minutes to several tens of minutes), while phenol (black circle) after 1500 minutes. Can hardly be absorbed. In addition, when the adsorption isotherm in FIG. 8 is seen, HUS-7 efficiently adsorbs catechol in the mixed solution (black square) even at a low concentration (upper left side of the graph), thereby reducing the generated catechol. Although it adsorbs immediately within the concentration, phenol (black circle) hardly adsorbs regardless of the concentration in the mixed solution (lower right side of the graph). Similar to the description of the adsorption of phenol in the previous example, the adsorption isotherm of catechol from the mixed solution to HUS-7 also shows the H type, suggesting a strong interaction between HUS-7 and catechol. Yes.

本願発明者らはこの知見に基づいて、TiOによるアセトニトリル中のベンゼンの酸化をHUS−7の存在下で行えばカテコールを選択的に回収できるとの着想を得た。光触媒反応の検討の前に、先ず有機化合物を含むHUS−7の(疑似太陽光に含まれる)紫外光に対する安定性を評価した。図9は、ベンゼンアセトニトリル溶液とHUS−7との混合液に紫外領域の様々な波長の単色光を6h照射した後の上澄液のHPLCクロマトグラムである。どの波長の紫外光を照射した後も、ベンジルアルコールなど、HUS−7層間ベンジルトリメチルアンモニウムイオンの分解で派生したと思われる様々な化学種が検出された。この結果は、TiO光触媒作用の発現に必要な紫外光照射下では、HUS−7が安定な吸着材として利用できないことを強く示唆している。実際にHUS−7(60mg)を、バッチ式での(すなわち、ベンゼンのアセトニトリル溶液、TiO及びHUS−7をすべて収容した単一の光照射容器を用いて混合物を攪拌)、疑似太陽光照射下でのTiO(数mm角のフレーク状に成形、60mg)によるアセトニトリル中のベンゼン(600ppm、20mL)の酸化に利用したところ、反応後回収したHUS−7を洗浄しても、カテコールは全く溶出しなかった。これは紫外光照射によって吸着材の構造が壊れ、カテコール認識機能が損なわれたためと考えられる。なお、未照射の場合もピークが観察されてるが、これはY軸がかなり拡大されて表示されているため、溶媒(高純度アセトニトリル)中の不純物が見えているためである。 Based on this finding, the inventors of the present application have come up with the idea that catechol can be selectively recovered by oxidizing benzene in acetonitrile with TiO 2 in the presence of HUS-7. Before examining the photocatalytic reaction, first, the stability of HUS-7 containing an organic compound to ultraviolet light (included in pseudo sunlight) was evaluated. FIG. 9 is an HPLC chromatogram of the supernatant after irradiating a mixture of a benzeneacetonitrile solution and HUS-7 with monochromatic light of various wavelengths in the ultraviolet region for 6 hours. After irradiation with ultraviolet light of any wavelength, various chemical species such as benzyl alcohol, which are thought to be derived from the decomposition of HUS-7 interlayer benzyltrimethylammonium ions, were detected. This result strongly suggests that HUS-7 cannot be used as a stable adsorbent under ultraviolet light irradiation necessary for the expression of TiO 2 photocatalysis. Actually HUS-7 (60 mg) in batch mode (ie, stirring the mixture using a single light irradiation vessel containing all benzene in acetonitrile, TiO 2 and HUS-7), simulated sunlight irradiation When used for the oxidation of benzene (600 ppm, 20 mL) in acetonitrile with TiO 2 (formed into a few mm square flakes, 60 mg) below, no catechol was obtained even when HUS-7 recovered after the reaction was washed. It did not elute. This is thought to be because the structure of the adsorbent was broken by ultraviolet light irradiation and the catechol recognition function was impaired. In addition, although the peak is observed also in the case of non-irradiation, this is because the Y axis is displayed in a considerably enlarged manner, so that impurities in the solvent (high purity acetonitrile) are visible.

そこで、図10の反応装置構成の写真に示すように、反応系をTiO(数ミリ角フレーク、600mg)を設置した光照射部(反応室)及びHUS−7(数ミリ角のフレーク状に成形、600mg)を設置した暗所部(吸着室)に分離し、両者をシリコーン製チューブと循環ポンプで連結した反応装置を設計した。そして、装置内のベンゼンアセトニトリル溶液(600pm、135mL)を流動させながら(流速2mLmin−1)、疑似太陽光照射を行った。触媒量や吸着材量、流速及びチューブ長を最適化した結果、6時間の反応でも、反応後HUS−7を回収してエタノール水溶液(100mL、体積比1:1)で洗浄することで、カテコールを回収率(収率=生成カテコール/添加ベンゼン)1.1%、純度(選択率、HPLCベース)92%(残り8%はフェノール)で得ることができた。この実験では使用した装置固有の制限のために反応時間をフェノールの場合の実施例の24時間に比べて大幅に短い6時間とした。この反応時間の短さに加えて、カテコールはベンゼンからフェノールを経て二段階の酸化を行うことで初めて得られ、かつフェノールの酸化でカテコール以外にもその異性体が生成されることを考えると、ここで達成された収率は良好な収率であると言うことができる。また、純度も十分に良好なものである。 Therefore, as shown in the photograph of the reactor configuration in FIG. 10, the reaction system is a light irradiation part (reaction chamber) in which TiO 2 (several millimeter square flakes, 600 mg) is installed and HUS-7 (several millimeter square flakes). A reactor was designed in which the molded part was separated into a dark place (adsorption chamber) where 600 mg was installed, and both were connected by a silicone tube and a circulation pump. Then, simulated sunlight irradiation was performed while flowing the benzeneacetonitrile solution (600 pm, 135 mL) in the apparatus (flow rate: 2 mLmin −1 ). As a result of optimizing the amount of catalyst, adsorbent, flow rate and tube length, even after 6 hours of reaction, HUS-7 was recovered after the reaction and washed with an aqueous ethanol solution (100 mL, volume ratio 1: 1). In a recovery rate (yield = product catechol / added benzene) of 1.1% and purity (selectivity, HPLC base) of 92% (the remaining 8% was phenol). In this experiment, due to the limitations inherent in the equipment used, the reaction time was 6 hours, which was significantly shorter than the 24 hours of the example in the case of phenol. In addition to this short reaction time, catechol is obtained for the first time by performing two-stage oxidation from benzene via phenol, and considering that the isomers are produced in addition to catechol by oxidation of phenol, It can be said that the yield achieved here is a good yield. Also, the purity is sufficiently good.

以上のように、反応装置を工夫することで、HUS−7のように紫外光に弱い有機物を含む材料でも吸着材として用いることができた。今後、有機修飾粘土などの有機無機複合体、多孔性配位高分子(PCP)や金属有機構造体(MOF)など、様々なテーラーメード型吸着材を利用でき、本手法はさらに多様な基礎化学品の合成に応用できる。   As described above, by devising the reactor, a material containing an organic substance that is weak against ultraviolet light, such as HUS-7, could be used as an adsorbent. In the future, various tailor-made adsorbents such as organic-inorganic composites such as organically modified clay, porous coordination polymers (PCP), and metal organic structures (MOF) can be used. It can be applied to the synthesis of

上記分離型の反応装置のもう一つの利点として、光触媒反応および吸着反応を、温度制御によりそれぞれ独立に促進させることができる点が挙げられる。固体への液相からの有機化合物の吸着は低温ほど促進されることが良く知られている。一方、光触媒反応に関しては、高温ほど光触媒活性が向上することがある(例えば非特許文献37)。光照射部および吸着部それぞれの温度を最適化することで、カテコールをはじめとする様々な基礎化学品を効率よく生産できる可能性がある。   Another advantage of the separation-type reaction apparatus is that the photocatalytic reaction and the adsorption reaction can be independently promoted by temperature control. It is well known that the adsorption of an organic compound from a liquid phase to a solid is promoted at a lower temperature. On the other hand, with respect to the photocatalytic reaction, the photocatalytic activity may improve as the temperature increases (for example, Non-Patent Document 37). There is a possibility that various basic chemicals including catechol can be efficiently produced by optimizing the temperatures of the light irradiation part and the adsorption part.

もちろん、本発明は以上説明した実施例に限定されるものではなく、他の光触媒や吸着剤を利用することができる。また、本発明はベンゼンからフェノールを合成する以外の反応にも利用することができ、更には光触媒反応以外にも応用が可能である。   Of course, the present invention is not limited to the embodiments described above, and other photocatalysts and adsorbents can be used. The present invention can also be used for reactions other than the synthesis of phenol from benzene, and can be applied to applications other than photocatalytic reactions.

特開昭55−31763号JP-A-55-31763

Fox, M. A. & Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 93, 341-357 (1993).Fox, M. A. & Dulay, M. T. Heterogeneous photocatalysis. Chem. Rev. 93, 341-357 (1993). Maldotti, A. Molinari, A. & Amadelli, R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem. Rev. 102, 3811-3836 (2002).Maldotti, A. Molinari, A. & Amadelli, R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem. Rev. 102, 3811-3836 (2002). Shiraishi, Y. & Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C: Photochem. Rev. 9, 157-170 (2008).Shiraishi, Y. & Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C: Photochem. Rev. 9, 157-170 (2008). Tada, H., Kiyonaga, T. & Naya, S. Rational design and applications of highly efficient reaction systems photocatalyzed by novel metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849-1858 (2009).Tada, H., Kiyonaga, T. & Naya, S. Rational design and applications of highly efficient reaction systems photocatalyzed by novel metal nanoparticle-loaded titanium (IV) dioxide. Chem. Soc. Rev. 38, 1849-1858 (2009) . Furukawa, S., Shishido, T., Teramura, K. & Tanaka, T. Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catal. 2, 175-179 (2012).Furukawa, S., Shishido, T., Teramura, K. & Tanaka, T. Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catal. 2, 175-179 (2012). Shiraishi, Y., Tsukamoto, D. & Hirai, T. Selective photocatalytic transformation on microporous titanosilicate ETS-10 driven by size and polarity of molecules. Langmuir 24, 12658-12663 (2008).Shiraishi, Y., Tsukamoto, D. & Hirai, T. Selective photocatalytic transformation on microporous titanosilicate ETS-10 driven by size and polarity of molecules.Langmuir 24, 12658-12663 (2008). Panov. G. I. Advances in oxidation catalysis. Oxidation of benzene to phenol by nitrous oxide. CATTECH 4, 18-31 (2000).Panov.G.I.Advances in oxidation catalysis.Oxidation of benzene to phenol by nitrous oxide.CATTECH 4, 18-31 (2000). Ohkubo, K., Kobayashi, T. & Fukuzumi, S. Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts. Angew. Chem. Int. Ed. 50, 8652-8655 (2011).Ohkubo, K., Kobayashi, T. & Fukuzumi, S. Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts. Angew. Chem. Int. Ed. 50, 8652-8655 (2011). Suzuki, E., Nakashiro, K. & Ono, Y. Hydroxylation of benzene with dinitrogen monoxide over H-ZSM-5 zeolite. Chem. Lett. 6, 953-956 (1988).Suzuki, E., Nakashiro, K. & Ono, Y. Hydroxylation of benzene with dinitrogen monoxide over H-ZSM-5 zeolite. Chem. Lett. 6, 953-956 (1988). Tanev, P. T. Chibwe, M. & Pinnavaia, T. J. Titanium-containing mesoporous molecular-sieves for catalytic oxidation of aromatic compounds. Nature 368, 321-323 (1994).Tanev, P. T. Chibwe, M. & Pinnavaia, T. J. Titanium-containing mesoporous molecular-sieves for catalytic oxidation of aromatic compounds.Nature 368, 321-323 (1994). Niwa, S., Eswaramoorthy, M., Nair, J., Raj, A., Itoh, N., Shoji, H., Namba, T. & Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science 295, 105-107 (2002).Niwa, S., Eswaramoorthy, M., Nair, J., Raj, A., Itoh, N., Shoji, H., Namba, T. & Mizukami, F. A one-step conversion of benzene to phenol with a palladium membrane. Science 295, 105-107 (2002). Izumi, I.,Dunn, W. W., Wilbourn, K. O., Fan, F.-R. F. & Bard, A. J. Heterogeneous photocatalytic oxidation of hydrocarbons on platinized TiO2powders. J. Phys. Chem. 84, 3207-3210 (1980).Izumi, I., Dunn, W. W., Wilbourn, K. O., Fan, F.-R. F. & Bard, A. J. Heterogeneous photocatalytic oxidation of hydrocarbons on platinized TiO2powders. J. Phys. Chem. 84, 3207-3210 (1980). Fujihira, M., Satoh, Y. & Osa, T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293, 206-208 (1981).Fujihira, M., Satoh, Y. & Osa, T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293, 206-208 (1981). Shiraishi, Y., Saito, N. & Hirai, T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J. Am. Chem. Soc. 127, 12820-12822 (2005).Shiraishi, Y., Saito, N. & Hirai, T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide.J. Am. Chem. Soc. 127, 12820-12822 (2005). Yoshida, H., Yuzawa, H., Aoki, M., Otake, K., Itoh, H. & Hattori, T. Photocatalytic hydroxylation of aromatic ring by using water as an oxidant. Chem. Commun. 38, 4634-4636 (2008).Yoshida, H., Yuzawa, H., Aoki, M., Otake, K., Itoh, H. & Hattori, T. Photocatalytic hydroxylation of aromatic ring by using water as an oxidant. Chem. Commun. 38, 4634-4636 (2008). Ide, Y., Matsuoka, M. & Ogawa, M. Effective visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762-16764 (2010).Ide, Y., Matsuoka, M. & Ogawa, M. Effective visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762-16764 (2010). Ide, Y., Nakamura, N., Hattori, H., Ogino, R., Ogawa, M., Sadakane, M. & Sano, T. Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2atmosphere. Chem. Commun. 47, 11531-11533 (2011).Ide, Y., Nakamura, N., Hattori, H., Ogino, R., Ogawa, M., Sadakane, M. & Sano, T. Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2atmosphere. Chem. Commun. 47, 11531-11533 (2011). Tomita, O., Abe, R. & Ohtani, B. Direct synthesis of phenol from benzene over platinum-loaded tungsten(VI) oxide photocatalysts with water and molecular oxygen. Chem. Lett. 40, 1405-1407 (2011).Tomita, O., Abe, R. & Ohtani, B. Direct synthesis of phenol from benzene over platinum-loaded tungsten (VI) oxide photocatalysts with water and molecular oxygen.Chem. Lett. 40, 1405-1407 (2011). Bui, T. D., Kimura, A., Ikeda, S. & Matsumura, M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J. Am. Chem. Soc. 132, 8453-8458 (2010).Bui, TD, Kimura, A., Ikeda, S. & Matsumura, M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen.J. Am. Chem. Soc. 132, 8453-8458 ( 2010). Okada, T., Ide, Y. & Ogawa, M. Organic-inorganic hybrids based on ultrathin oxide layers: Designed nanostructures for molecular recognition. Chem. Asian J. 7, 1980-1992 (2012).Okada, T., Ide, Y. & Ogawa, M. Organic-inorganic hybrids based on ultrathin oxide layers: Designed nanostructures for molecular recognition.Chem. Asian J. 7, 1980-1992 (2012). Eugster, H. P. Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157, 1177-1180 (1967).Eugster, H. P. Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert.Science 157, 1177-1180 (1967). Kosuge, K., Yamazaki, A., Tsunashima, A. & Otsuka, R. Hydrothermal synthesis of magadiite and kenyaite. J. Ceram. Soc. Jpn. 100, 326-331 (1992).Kosuge, K., Yamazaki, A., Tsunashima, A. & Otsuka, R. Hydrothermal synthesis of magadiite and kenyaite. J. Ceram. Soc. Jpn. 100, 326-331 (1992). Lagaly, G., Beneke, A. & Weiss, A. Magadiite and H-magadiite 2. H-magadiite and its intercalation compounds. Am. Miner. 60, 650-658 (1975).Lagaly, G., Beneke, A. & Weiss, A. Magadiite and H-magadiite 2. H-magadiite and its intercalation compounds. Am. Miner. 60, 650-658 (1975). Ruiz-Hitzky, E. & Rojo, J. M. Intercrystalline grafting on layer silicic acids. Nature 287, 28-30 (1980).Ruiz-Hitzky, E. & Rojo, J. M. Intercrystalline grafting on layer silicic acids.Nature 287, 28-30 (1980). Giles, C. H., Macewan, T. H., Nakhwa, S. N. & Smith, D. Studies in adsorption 11. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3973-3993 (1960).Giles, CH, Macewan, TH, Nakhwa, SN & Smith, D. Studies in adsorption 11.A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Chem. Soc. 3973-3993 (1960). Ogawa, M., Sohmiya, M. & Watase, Y. Stabilization of photosensitizing dyes by complexation with clay. Chem. Commun. 47, 8602-8604 (2011).Ogawa, M., Sohmiya, M. & Watase, Y. Stabilization of photosensitizing dyes by complexation with clay. Chem. Commun. 47, 8602-8604 (2011). Ide, Y., Matsuoka, M. & Ogawa, M. Controlled photocatalytic oxidation of benzene in aqueous clay suspension. ChemCatChem 4, 628-630 (2012).Ide, Y., Matsuoka, M. & Ogawa, M. Controlled photocatalytic oxidation of benzene in aqueous clay suspension.ChemCatChem 4, 628-630 (2012). Mogyorosi, K., Dekany, I. & Fendler J. H. Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles. Langmuir 19, 2938-2946 (2003).Mogyorosi, K., Dekany, I. & Fendler J. H. Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles.Langmuir 19, 2938-2946 (2003). Mogyorosi, K., Farkas, A., Dekany, I., Ilisz, I. & Dombi, A. TiO2-based photocatalytic degradation of 2-chlorophenol adsorbed on hydrophobic clay. Environ. Sci. Technol. 36, 3618-3624 (2002).Mogyorosi, K., Farkas, A., Dekany, I., Ilisz, I. & Dombi, A. TiO2-based photocatalytic degradation of 2-chlorophenol adsorbed on hydrophobic clay.Environ. Sci. Technol. 36, 3618-3624 ( 2002). Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746-750 (2011).Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746-750 (2011). Tao, J., Luttrell, T. & Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap. Nature Chem. 3, 296-300 (2011).Tao, J., Luttrell, T. & Batzill, M. A two-dimensional phase of TiO2 with a reduced bandgap.Nature Chem. 3, 296-300 (2011). Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J. & Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147, 1-59 (2009).Malato, S., Fernandez-Ibanez, P., Maldonado, MI, Blanco, J. & Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147, 1-59 (2009) . Ogawa, M., Okutomo, S. & Kuroda, K. Control or interlayer microstructures of a layered silicate by surface modification with organochlorosilanes. J. Am. Chem. Soc. 120, 7361-7362 (1998).Ogawa, M., Okutomo, S. & Kuroda, K. Control or reducing microstructures of a layered silicate by surface modification with organochlorosilanes. J. Am. Chem. Soc. 120, 7361-7362 (1998). Ide, Y. & Ogawa, M. Interlayer modification of a layered titanate with two kinds of organic functional units for molecule-specific adsorption. Angew. Chem. Int. Ed. 46, 8449-8451 (2007).Ide, Y. & Ogawa, M. Interlayer modification of a layered titanate with two kinds of organic functional units for molecule-specific adsorption. Angew. Chem. Int. Ed. 46, 8449-8451 (2007). Huixian, S., Tianyong, Z., Bin, L., Xiao, W., Meng, H & Mingyan, Q. Photocatalytic hydroxylation of phenol with Fe-Al-silicate photocatalyst: A clean and highly selective synthesis of dihydroxybenzenes. Catal. Commun., 12, 1022-1026 (2011).Huixian, S., Tianyong, Z., Bin, L., Xiao, W., Meng, H & Mingyan, Q. Photocatalytic hydroxylation of phenol with Fe-Al-silicate photocatalyst: A clean and highly selective synthesis of dihydroxybenzenes. Commun., 12, 1022-1026 (2011). Tsunoji, N., Ikeda, T., Sadakane, M. & Sano, T. Synthesis and characterization of novel layered silicate HUS-7 using benzyltrimethylammonium hydroxide and its unique and selective phenol adsorption. J. Mater. Chem. A, 2, 3372-3380 (2014).Tsunoji, N., Ikeda, T., Sadakane, M. & Sano, T. Synthesis and characterization of novel layered silicate HUS-7 using benzyltrimethylammonium hydroxide and its unique and selective phenol adsorption. J. Mater. Chem. A, 2, 3372-3380 (2014). Matsuoka, M., Ide, Y. & Ogawa, M. Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate, Phys. Chem. Chem. Phys. 15, 3520-3522 (2014).Matsuoka, M., Ide, Y. & Ogawa, M. Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate, Phys. Chem. Chem. Chem. Phys. 15, 3520-3522 (2014).

Claims (12)

過剰酸化を抑制して所定の部分酸化段階で反応を停止可能とする、有機反応基質の酸化反応触媒の存在下での酸化剤をもっての不均一系液相酸化反応方法であって、
前記酸化反応触媒と吸着剤との間で前記液相を循環させて前記所定の部分酸化段階での有機反応生成物を前記吸着剤で吸着することにより吸着回収可能とすることを特徴とする酸化反応方法。
A heterogeneous liquid-phase oxidation reaction method with an oxidant in the presence of an oxidation reaction catalyst for an organic reaction substrate, capable of stopping the reaction at a predetermined partial oxidation stage by suppressing excessive oxidation,
Oxide, characterized in that to enable the suction recovery by adsorbing the organic reaction product at the predetermined portion oxidation stage by circulating the liquid phase within the adsorbent and the oxidation catalyst in said adsorbent Reaction method.
前記吸着剤は、無機または無機・有機複合体であることを特徴とする請求項1に記載の酸化反応方法。 The oxidation reaction method according to claim 1 , wherein the adsorbent is inorganic or an inorganic / organic composite. 前記吸着剤は、ケイ酸層状体またはこれを主として含むものであることを特徴とする請求項2に記載の酸化反応方法。 3. The oxidation reaction method according to claim 2 , wherein the adsorbent is a silicate layered body or a substance mainly containing the same. 前記酸化反応触媒は、無機化合物、錯体および金属のうちの1種以上であることを特徴とする請求項1から3のうちのいずれか一項に記載の酸化反応方法。 The oxidation reaction method according to any one of claims 1 to 3 , wherein the oxidation reaction catalyst is one or more of an inorganic compound, a complex, and a metal. 前記酸化反応触媒は、光励起触媒作用を有することを特徴とする請求項1から4のうちのいずれか一項に記載の酸化反応方法。 The oxidation reaction method according to any one of claims 1 to 4 , wherein the oxidation reaction catalyst has a photoexcitation catalyst action. 前記酸化反応触媒は、酸化チタンまたはこれを主として含むものであることを特徴とする請求項4または5に記載の酸化反応方法。 The oxidation reaction method according to claim 4 or 5 , wherein the oxidation reaction catalyst is titanium oxide or mainly contains the same. 分子状酸素を酸化剤とする酸素酸化反応方法であることを特徴とする請求項1から6のうちのいずれか一項に記載の酸化反応方法。 The oxidation reaction method according to any one of claims 1 to 6 , which is an oxygen oxidation reaction method using molecular oxygen as an oxidizing agent. 前記吸着剤に吸着された前記有機反応生成物を脱着分離して回収することを特徴とする請求項1から7のうちのいずれか一項に記載の酸化反応方法。 Oxidation process according to any one of claims 1 7, characterized in that the recovered desorbed separating the organic reaction product adsorbed on the adsorbent. 請求項8に記載の酸化反応方法において、前記有機反応生成物より所定の有機化合物を取得することを特徴とする有機合成方法。 9. The organic synthesis method according to claim 8 , wherein a predetermined organic compound is obtained from the organic reaction product. 前記有機反応基質の有機炭素環化合物よりその炭素環炭素に水酸基を結合形成することを特徴とする請求項9に記載の有機合成方法。 10. The organic synthesis method according to claim 9 , wherein a hydroxyl group is bonded to the carbocyclic carbon from the organic carbocyclic compound of the organic reaction substrate. 前記有機反応基質としてのベンゼンよりフェノールまたはカテコールを取得することを特徴とする請求項10に記載の有機合成方法。 11. The organic synthesis method according to claim 10 , wherein phenol or catechol is obtained from benzene as the organic reaction substrate. 過剰酸化を抑制して所定の部分酸化段階で反応を停止可能とする、有機反応基質の酸化反応触媒の存在下での酸化剤をもっての不均一系液相酸化反応装置であって、
前記酸化反応触媒を収容して前記有機反応基質の酸化反応が行われる反応室と、
吸着剤を収容して前記所定の部分酸化段階での有機反応生成物の吸着が行われる吸着室とを設け、
前記反応室と前記吸着室との間で前記液相を循環させる不均一系液相酸化反応装置。
A heterogeneous liquid-phase oxidation reaction apparatus with an oxidant in the presence of an oxidation reaction catalyst for an organic reaction substrate, capable of suppressing excessive oxidation and stopping the reaction at a predetermined partial oxidation stage,
A reaction chamber containing the oxidation reaction catalyst and in which an oxidation reaction of the organic reaction substrate is performed;
An adsorbing chamber containing an adsorbent and adsorbing an organic reaction product in the predetermined partial oxidation stage; and
A heterogeneous liquid phase oxidation reaction apparatus for circulating the liquid phase between the reaction chamber and the adsorption chamber.
JP2014106561A 2013-05-29 2014-05-22 Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition Active JP6278459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106561A JP6278459B2 (en) 2013-05-29 2014-05-22 Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013113068 2013-05-29
JP2013113068 2013-05-29
JP2014106561A JP6278459B2 (en) 2013-05-29 2014-05-22 Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition

Publications (2)

Publication Number Publication Date
JP2015007028A JP2015007028A (en) 2015-01-15
JP6278459B2 true JP6278459B2 (en) 2018-02-14

Family

ID=52337634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106561A Active JP6278459B2 (en) 2013-05-29 2014-05-22 Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition

Country Status (1)

Country Link
JP (1) JP6278459B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7270240B2 (en) * 2018-10-02 2023-05-10 国立研究開発法人物質・材料研究機構 Photocatalyst material and method for producing oxygen-containing organic compound
JP7290330B2 (en) * 2020-01-29 2023-06-13 平岡織染株式会社 Deodorant antibacterial sheet-like material and method for producing the same
CN114735715B (en) * 2022-04-12 2023-06-30 东北大学 Green synthesis method of cobalt-silicon molecular sieve
CN116078439A (en) * 2022-09-08 2023-05-09 上海理工大学 Two-dimensional material modified zirconium-based catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP2015007028A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
Lazar et al. Achieving selectivity in TiO 2-based photocatalysis
Yang et al. Defective WO3 nanoplates controllably decorated with MIL-101 (Fe) nanoparticles to efficiently remove tetracycline hydrochloride by S-scheme mechanism
Usubharatana et al. Photocatalytic process for CO2 emission reduction from industrial flue gas streams
Shahzad et al. Fabrication of Periodic Mesoporous Organo Silicate (PMOS) composites of Ag and ZnO: Photo-catalytic degradation of methylene blue and methyl orange
Ji et al. 3DOM BiVO4 supported silver bromide and noble metals: High-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol
Martínez et al. Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst
Mohamed et al. A novel design of porous Cr2O3@ ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: a case study of ciprofloxacin
Colmenares et al. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds
Cai et al. Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation
He et al. Effective enhancement of the degradation of oxalic acid by catalytic ozonation with TiO2 by exposure of {001} facets and surface fluorination
Liu et al. CeO2/Co3O4 hollow microsphere: Pollen-biotemplated preparation and application in photo-catalytic degradation
Surolia et al. Photocatalytic degradation of nitrobenzene in an aqueous system by transition-metal-exchanged ETS-10 zeolites
JP6278459B2 (en) Oxidation reaction method, organic synthesis method, and oxidation reaction catalyst composition
US8940656B2 (en) CoP2 loaded red phosphorus, preparation and use of the same
Shangguan et al. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater
Cheng et al. Photocatalytic oxidation of glucose in water to value-added chemicals by zinc oxide-supported cobalt thioporphyrazine
Zhou et al. Design and application of Ag3PO4@ Ag4V2O7 Z-scheme photocatalysts with a micro-nano tube-cluster structure for the co-degradation of nitrate and ammonia in wastewater
Sasai et al. Preparation and characterization of titania-and organo-pillared clay hybrid photocatalysts capable of oxidizing aqueous bisphenol A under visible light
Chen et al. Photocatalytic performance of the MOF-coating layer on SPR-excited Ag nanowires
Xu et al. Recent Developments on Gas‐Phase Volatile Organic Compounds Abatement Based on Photocatalysis
Chatti et al. Influence of zeolitic structure on photoreduction property and hydrogen evolution reaction
Colmenares et al. Ultrasound and photochemical procedures for nanocatalysts preparation: application in photocatalytic biomass valorization
Li et al. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism
Xiao et al. Rational design of bimetal Mn-Ce nanosheets anchored on porous nano-sized ZSM-5 zeolite for adsorption-enhanced catalytic oxidation of toluene
Guan et al. Potassium-Promoted Three-Dimensional Mesoporous Pt/MnO2 for Formaldehyde Elimination at Zero Degree.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180111

R150 Certificate of patent or registration of utility model

Ref document number: 6278459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250