JP6277980B2 - Continuous casting method of steel using frictional force estimation method - Google Patents
Continuous casting method of steel using frictional force estimation method Download PDFInfo
- Publication number
- JP6277980B2 JP6277980B2 JP2015049740A JP2015049740A JP6277980B2 JP 6277980 B2 JP6277980 B2 JP 6277980B2 JP 2015049740 A JP2015049740 A JP 2015049740A JP 2015049740 A JP2015049740 A JP 2015049740A JP 6277980 B2 JP6277980 B2 JP 6277980B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- friction force
- cast slab
- frictional force
- estimated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009749 continuous casting Methods 0.000 title claims description 41
- 229910000831 Steel Inorganic materials 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 35
- 239000010959 steel Substances 0.000 title claims description 35
- 230000004907 flux Effects 0.000 claims description 43
- 238000007711 solidification Methods 0.000 claims description 16
- 230000008023 solidification Effects 0.000 claims description 16
- 230000007547 defect Effects 0.000 description 13
- 230000001050 lubricating effect Effects 0.000 description 10
- 230000010355 oscillation Effects 0.000 description 9
- 238000005266 casting Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 4
- 238000013016 damping Methods 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Description
本発明は、鋼の連続鋳造時における鋳型と鋳造鋳片間の摩擦力推定方法、該摩擦力推定方法を用いた鋼の連続鋳造方法に関する。 The present invention relates to a friction force estimation method between a mold and a cast slab during continuous casting of steel, and a steel continuous casting method using the friction force estimation method.
高冷却能を有する鋳型に溶鋼を連続して注入し、冷却によって外殻が凝固した溶鋼、すなわち、鋳造鋳片を引き抜いて必要な長さに切断する連続鋳造設備において、鋳型と鋳造鋳片との間に生じる摩擦力を把握することは、鋳型の最適振動条件(波形、振動数、振幅)の選定、拘束性ブレークアウトの予知、及び、安定した高速鋳造を実現する上で大変重要である。 In a continuous casting facility that continuously injects molten steel into a mold having high cooling capacity and solidifies the outer shell by cooling, i.e., draws the cast slab and cuts it to the required length. It is very important to grasp the frictional force generated during the process to select the optimum vibration conditions (waveform, frequency, amplitude) of the mold, to predict the constraining breakout, and to realize stable high-speed casting. .
把握された鋳型と鋳造鋳片間の摩擦力に基づいて鋳型の振動条件を最適なものとし、かつ、最適なモールドフラックスを選定することにより、該モールドフラックスが鋳型と鋳造鋳片との間の潤滑油として十分に活用され、鋳型と鋳造鋳片間の摩擦力を小さく保持できる。
そして、鋳型と鋳造鋳片との間に潤滑層が十分に存在すれば、焼付きによる拘束性ブレークアウトの発生を防止できるだけでなく、鋳型と鋳造鋳片間の摩擦力が小さくなることで鋳造鋳片に作用する不必要な引張応力がかからなくなるため、鋳造鋳片の横割れを抑制することができる。
By optimizing the vibration condition of the mold based on the grasped frictional force between the mold and the cast slab, and selecting the optimum mold flux, the mold flux is between the mold and the cast slab. It is sufficiently utilized as a lubricating oil, and the frictional force between the mold and the cast slab can be kept small.
And, if there is a sufficient lubricating layer between the mold and the cast slab, not only can the restraint breakout due to seizure be prevented, but also the friction force between the mold and the cast slab can be reduced. Since unnecessary tensile stress acting on the slab is not applied, lateral cracking of the cast slab can be suppressed.
鋳型と鋳造鋳片間の摩擦力を小さく保持するためには、まずは、鋳型と鋳造鋳片間の摩擦力を把握する必要がある。
これまでに、鋳型と鋳造鋳片間の摩擦力を測定する方法として、油圧計による方法(特許文献1)、ロードセルによる方法(特許文献2)、歪みゲージによる方法(特許文献3)、ピンチロールの回転数計による方法(特許文献4)等が開発、適用され、操業結果との対応付けが行われてきた。しかし、これらの方法は、連続鋳造における操業監視技術として工業的に広く利用されるに至っていなかった。その理由は、高温多湿という過酷な鋳造条件下で長期的に測定するためには、センサの交換やメンテナンスが高頻度で発生し、上記の摩擦力測定方法を利用する上で大きな障害になっていたためである。
In order to keep the frictional force between the mold and the cast slab small, first, it is necessary to grasp the frictional force between the mold and the cast slab.
Up to now, as a method for measuring the frictional force between the mold and the cast slab, a method using a hydraulic gauge (Patent Document 1), a method using a load cell (Patent Document 2), a method using a strain gauge (Patent Document 3), a pinch roll The method (patent document 4) etc. by using a tachometer has been developed and applied, and has been associated with operation results. However, these methods have not been widely used industrially as operation monitoring techniques in continuous casting. The reason for this is that, for long-term measurement under severe casting conditions of high temperature and high humidity, sensor replacement and maintenance occur frequently, which is a major obstacle to using the above friction force measurement method. This is because.
本発明は、上記課題に鑑みて創案されたものであって、センサの交換やメンテナンスを必要とせずに鋳型と鋳造鋳片間の摩擦力を推定する摩擦力推定方法と、該摩擦力推定方法により推定された鋳型と鋳造鋳片間の摩擦力が所定の範囲内となるように操業することによって、最適な操業条件を決定し、拘束性ブレークアウトの発生や横割れ発生を防止した鋼の連続鋳造方法を提供することを目的とする。 The present invention was devised in view of the above problems, and a friction force estimation method for estimating a friction force between a mold and a cast slab without requiring sensor replacement or maintenance, and the friction force estimation method By operating so that the frictional force between the mold and the cast slab estimated by the above is within the specified range, the optimum operating conditions are determined, and the occurrence of constraining breakout and lateral cracking is prevented. An object is to provide a continuous casting method.
(1)本発明に係る鋳型と鋳造鋳片間の摩擦力推定方法は、鋼の連続鋳造時における溶鋼温度T[℃]、鋳型と鋳造鋳片間の平均相対速度Vr[m/min]、モールドフラック凝固温度Ts[℃]及びフラックス消費量Q[kg/m2]を用いて、鋳型と鋳造鋳片間の摩擦力F[kN/m2]を下式により推定することを特徴とするものである。
ただし、A、Bはフィッティングパラメータである。 However, A and B are fitting parameters.
(2)本発明に係る鋼の連続鋳造方法は、上記(1)記載の鋼の連続鋳造時における鋳型と鋳造鋳片間の摩擦力推定方法を用いた鋼の連続鋳造方法であって、上記(1)記載の式に基づいて鋳型と鋳造鋳片間の摩擦力を推定する摩擦力推定工程と、該摩擦力推定工程で推定された摩擦力が最適範囲内であるかどうかを判定する摩擦力判定工程と、該摩擦力判定工程において前記推定された摩擦力が前記最適範囲外であると判定された場合、前記摩擦力推定工程で推定される摩擦力が前記最適範囲内となるように、鋳型と鋳片鋳片間の平均相対速度、モールドフラックスの種類、フラックス消費量のうちいずれか一つあるいは複数の操業条件を変更する操業条件変更工程とを備えたことを特徴とするものである。 (2) A continuous casting method of steel according to the present invention is a continuous casting method of steel using a friction force estimation method between a mold and a cast slab at the time of continuous casting of steel according to (1), (1) A friction force estimation step for estimating the friction force between the mold and the cast slab based on the formula described above, and a friction for determining whether or not the friction force estimated in the friction force estimation step is within an optimum range A force determination step, and when it is determined in the friction force determination step that the estimated friction force is outside the optimum range, the friction force estimated in the friction force estimation step is within the optimum range. And an operation condition changing step for changing one or a plurality of operation conditions among an average relative speed between the mold and the slab slab, a type of mold flux, and a flux consumption amount. is there.
(3)上記(2)記載のものにおいて、前記推定された摩擦力の前記最適範囲は30kN/m2以上45kN/m2以下であることを特徴とするものである。 (3) In the above (2), the optimum range of the estimated frictional force is 30 kN / m 2 or more and 45 kN / m 2 or less.
(4)本発明に係る鋼の連続鋳造方法は、鋼の連続鋳造時において、鋳型と鋳造鋳片間の平均相対速度Vr[m/min]、溶鋼温度T[℃]、モールドフラックス凝固温度Ts[℃]、フラックス消費量Q[kg/m2]を用いて下式により推定される鋳型と鋳造鋳片間の摩擦力Fが30kN/m2以上45kN/m2以下であることを特徴とするものである。
ただし、A、Bはフィッティングパラメータである。 However, A and B are fitting parameters.
本発明により、鋼の連続鋳造時において鋳型と鋳造鋳片間の摩擦力を操業条件により推定することができ、前記摩擦力を測定するためのセンサの交換やメンテナンスを行うことなく、長期的に監視することができる。さらに、操業条件から推定された前記摩擦力が所定値より大きい場合においては、前記摩擦力が小さくなるように、又は、前記摩擦力が所定値より小さい場合においては、前記摩擦力が大きくなるように鋳型振動条件、モールドフラックスの種類又はフラックス消費量といった操業条件を変更することで、高品質な鋳造鋳片を安定して提供することが可能となる。 According to the present invention, it is possible to estimate the frictional force between the mold and the cast slab at the time of continuous casting of steel based on operating conditions, and without replacing or maintaining the sensor for measuring the frictional force for a long period of time. Can be monitored. Further, when the frictional force estimated from operating conditions is larger than a predetermined value, the frictional force is reduced, or when the frictional force is smaller than a predetermined value, the frictional force is increased. By changing the operating conditions such as mold vibration conditions, mold flux type or flux consumption, it becomes possible to stably provide high-quality cast slabs.
[実施の形態1]
本発明の一実施の形態は、図1に示すような鋳型3、ピボット7を介したレバー9の両端に鋳型3と油圧シリンダー11を配置したオシレーション装置13、鋳型3の変位計15、油圧シリンダー11の油圧計17を備えた連続鋳造設備1による鋳造鋳片5の連続鋳造時において、操業条件である溶鋼温度T[℃]、鋳型3と鋳造鋳片5間の平均相対速度Vr[m/min]、モールドフラック凝固温度Ts[℃]及びフラックス消費量Q[kg/m2]を用いて、鋳型3と鋳造鋳片5間の単位面積当たりの摩擦力F[kN/m2]を式(1)により推定するものである。
[Embodiment 1]
An embodiment of the present invention includes an oscillation device 13 in which a mold 3 and a hydraulic cylinder 11 are arranged at both ends of a lever 9 via a mold 3 and a pivot 7 as shown in FIG. At the time of continuous casting of the cast slab 5 by the continuous casting equipment 1 equipped with the hydraulic gauge 17 of the cylinder 11, the molten steel temperature T [° C.] which is the operating condition, and the average relative speed Vr [m] between the mold 3 and the cast slab 5 / min], mold flack solidification temperature Ts [° C.] and flux consumption Q [kg / m 2 ], the friction force F [kN / m 2 ] per unit area between the mold 3 and the cast slab 5 is It is estimated by equation (1).
式(1)において、A、Bはフィッティングパラメータである。 In equation (1), A and B are fitting parameters.
以下、式(1)の導出過程を説明する。
本発明では、鋳型と鋳造鋳片間の潤滑層において潤滑が十分に確保されている場合、鋳型と鋳造鋳片との間に生じる単位面積当たりの摩擦力Fは流体摩擦が支配的であるとし、以下の式(2)が成立すると仮定した。
Hereinafter, the process of deriving Equation (1) will be described.
In the present invention, when sufficient lubrication is ensured in the lubricating layer between the mold and the cast slab, fluid friction is dominant in the friction force F per unit area generated between the mold and the cast slab. The following equation (2) is assumed to hold.
式(2)において、μは潤滑層粘度、dは潤滑層厚み、Vrは鋳型と鋳造鋳片間の平均相対速度である。 In equation (2), μ is the lubricating layer viscosity, d is the lubricating layer thickness, and Vr is the average relative speed between the mold and the cast slab.
ここで、前記潤滑層粘度μは、モールドフラックスの粘度に影響されるため、該モールドフラックスの粘度の温度依存性を考慮して、溶鋼温度T及びモールドフラックスの凝固温度Tsを用いる経験則μ∝(T-Ts)-1で与えられると仮定した。
前記潤滑層厚みdは、連続鋳造時におけるフラックス消費量Qに比例する(d∝Q)と仮定した。
前記鋳型と鋳造鋳片間の平均相対速度Vrは、鋳型が鉛直上向きに運動する時の速度を正として算出した鋳型振動速度の瞬時値と鋳造速度Vcとの差を、鋳型振動1周期で時間平均した値である。
Here, since the lubricating layer viscosity μ is affected by the viscosity of the mold flux, the temperature dependence of the viscosity of the mold flux is taken into consideration, and the rule of thumb μ∝ using the molten steel temperature T and the solidification temperature Ts of the mold flux is used. It is assumed that (T-Ts) -1 is given.
The lubrication layer thickness d was assumed to be proportional to the flux consumption Q during continuous casting (d∝Q).
The average relative speed Vr between the mold and the cast slab is the difference between the casting speed Vc and the instantaneous value of the mold vibration speed calculated with the speed when the mold moves upward in the vertical direction as one cycle of the mold vibration. The average value.
前記潤滑層粘度μ及び前記潤滑層厚みdに関する仮定を式(2)に代入することにより、鋳型と鋳造鋳片間の単位面積当たりの摩擦力Fを推定する式(1)が導出される。
前述のとおり、式(1)中のA、Bはフィッティングパラメータであり、該フィッティングパラメータA、Bが決定されれば、連続鋳造の操業条件である溶鋼温度T、鋳型と鋳造鋳片間の平均相対速度Vr、モールドフラックス凝固温度Ts及びフラックス消費量Qを式(1)に代入して、鋳型と鋳造鋳片間の摩擦力Fが推定できる。
By substituting assumptions regarding the lubricating layer viscosity μ and the lubricating layer thickness d into Expression (2), Expression (1) for estimating the frictional force F per unit area between the mold and the cast slab is derived.
As described above, A and B in the formula (1) are fitting parameters. If the fitting parameters A and B are determined, the molten steel temperature T, which is the operating condition of continuous casting, the average between the mold and the cast slab By substituting the relative speed Vr, the mold flux solidification temperature Ts, and the flux consumption Q into the equation (1), the frictional force F between the mold and the cast slab can be estimated.
なお、溶鋼温度Tはタンディッシュにおいて測定した値を用いることができる。さらに、フラックス消費量Qは鋳型に一定量のモールドパウダーを投入し終えるまでの鋳込み長さから求めた値を用いることができるが、フラックス消費量Qを定常的に測定するのが困難である場合においては、鋳型振動条件、溶鋼温度、モールドフラックスの物性値をパラメータとした経験式から求めた値を用いても良い。 As the molten steel temperature T, a value measured in a tundish can be used. Furthermore, the flux consumption Q can be a value obtained from the casting length until a certain amount of mold powder is put into the mold, but it is difficult to measure the flux consumption Q constantly. In this case, a value obtained from an empirical formula using parameters of mold vibration conditions, molten steel temperature, and physical properties of mold flux may be used.
前記フィッティングパラメータA、Bは、例えば、鋳型と鋳造鋳片間の単位面積当たりの摩擦力Fの実測値との相関から決定することができ、例えば、以下の方法により求めることができる。
図1に示す連続鋳造設備1において、鋳型3と鋳造鋳片5間に生じる単位面積当たりの摩擦力Fは、オシレーション装置13の油圧シリンダー11の入側圧力P1を入側油圧計17aにより、出側圧力P2を出側油圧計17bにより測定することによって求めた鋳型3の加振に係る負荷から、変位計15により測定した鋳型3の変位の2階時間微分値により与えられる鋳型3の加速運動による負荷を差し引くことにより得られ、式(3)で算出することができる。
The fitting parameters A and B can be determined, for example, from the correlation with the measured value of the frictional force F per unit area between the mold and the cast slab, and can be determined by the following method, for example.
In the continuous casting facility 1 shown in FIG. 1, the frictional force F per unit area generated between the mold 3 and the cast slab 5 is determined by changing the inlet side pressure P1 of the hydraulic cylinder 11 of the oscillation device 13 by the inlet side hydraulic gauge 17a. The acceleration of the mold 3 given by the second-order time differential value of the displacement of the mold 3 measured by the displacement meter 15 from the load related to the vibration of the mold 3 obtained by measuring the delivery pressure P2 by the delivery hydraulic gauge 17b. It is obtained by subtracting the load due to exercise, and can be calculated by equation (3).
ここで、Mは見掛けの鋳型質量(kg)、aは変位計15により測定した鋳型3の変位の時系列データを2階時間微分して求めた鋳型3加振時の加速度(m2/s)、gは重力加速度(m2/s)、Cvは減衰定数(N)、P1は油圧シリンダー11の入側圧力(Pa)、P2は油圧シリンダー11の出側圧力(Pa)、S1は油圧シリンダー11の入側断面積(m2)、S2は油圧シリンダー11の出側断面積(m2)、rはレバー比(L1/L2)、L1は油圧シリンダー11のロッド軸心線からピボット7までの距離(m)、L2は鋳型3の厚み中心線からピボット7までの距離(m)、Dは鋳型幅(m)、Wは鋳型幅(m)、Leは鋳型有効長(m)である。 Here, M is the apparent mold mass (kg), and a is the acceleration (m 2 / s) when the mold 3 is excited by second-order time differentiation of the time series data of the displacement of the mold 3 measured by the displacement meter 15. ), G is the gravitational acceleration (m 2 / s), Cv is the damping constant (N), P1 is the inlet pressure (Pa) of the hydraulic cylinder 11, P2 is the outlet pressure (Pa) of the hydraulic cylinder 11, and S1 is the hydraulic pressure Cross-sectional area of the cylinder 11 (m 2 ), S2 is the cross-sectional area of the hydraulic cylinder 11 (m 2 ), r is the lever ratio (L1 / L2), L1 is the pivot axis 7 from the rod axis of the hydraulic cylinder 11 Distance (m), L2 is the distance (m) from the thickness center line of the mold 3 to the pivot 7, D is the mold width (m), W is the mold width (m), Le is the effective mold length (m) is there.
前記見掛けの鋳型質量Mは、鋳型3の真の質量に加えて油圧シリンダー11と鋳型3とを繋ぐレバー9等の質量も含み、前記減衰定数Cvは油圧による応力の減衰を考慮している。
前記見掛けの鋳型質量Mと前記減衰定数Cvは、オフライン時、つまり鋳造を行わずに鋳型3の振動のみを行う空運転時において、鋳型3と鋳造鋳片5間に生じる摩擦力がF=0である関係から決定することができる。
The apparent mold mass M includes not only the true mass of the mold 3 but also the mass of the lever 9 or the like that connects the hydraulic cylinder 11 and the mold 3, and the damping constant Cv considers the attenuation of stress due to hydraulic pressure.
The apparent mold mass M and the damping constant Cv are such that the frictional force generated between the mold 3 and the cast slab 5 is F = 0 in the off-line state, that is, in the idle operation in which only the vibration of the mold 3 is performed without casting. Can be determined from the relationship.
本実施の形態1では、鋳型3の振動の1周期の10分の1より短い周期で鋳型3の変位等をサンプリングし、式(3)により鋳型3と鋳造鋳片5間の摩擦力(以下、実測摩擦力という)を算出した。なお、該実測摩擦力は鋳型3の振動に伴って周期的に変動する値であり、鋳造鋳片5にかかる力(引張応力と圧縮応力の和)の変化量が鋳造鋳片5の表面品質に影響すると考えられるため、鋳型3の振動1周期における最大値と最小値の差を前記実測摩擦力の代表値とした。 In the first embodiment, the displacement or the like of the mold 3 is sampled at a cycle shorter than 1/10 of one cycle of the vibration of the mold 3, and the frictional force between the mold 3 and the cast slab 5 (hereinafter, referred to as the formula 3) The measured friction force) was calculated. The measured frictional force is a value that periodically fluctuates with the vibration of the mold 3, and the amount of change in the force applied to the cast slab 5 (the sum of tensile stress and compressive stress) is the surface quality of the cast slab 5. Therefore, the difference between the maximum value and the minimum value in one vibration period of the mold 3 was used as the representative value of the measured friction force.
本実施の形態1に係る摩擦力推定方法により摩擦力を推定した結果の一例を以下に示す。ここでは、表1に示す操業条件で行った鋼の連続鋳造を対象とした。 An example of the result of estimating the friction force by the friction force estimation method according to the first embodiment is shown below. Here, the object was continuous casting of steel performed under the operating conditions shown in Table 1.
表1において、振幅は鋳型振動の上死点と下死点の差の全振幅である(以下、本明細書中において、振幅は全振幅を表す)。また、表1に示すとおり、モールドフラックス中のCaO/SiO2mass%比及び凝固温度の異なる3種類のモールドフラックス(M1、M2、M3)を用いた。
表2に各モールドフラックス中のCaO/SiO2mass%比及び凝固温度を示す。
In Table 1, the amplitude is the total amplitude of the difference between the top dead center and the bottom dead center of the mold vibration (hereinafter, the amplitude represents the total amplitude in the present specification). Moreover, as shown in Table 1, three types of mold fluxes (M1, M2, M3) having different CaO / SiO 2 mass% ratio and solidification temperature in the mold flux were used.
Table 2 shows the CaO / SiO 2 mass% ratio and solidification temperature in each mold flux.
表1及び表2の操業条件で連続鋳造した時の鋳型と鋳造鋳片間の実測摩擦力を式(3)により算出し、該実測摩擦力の値との相関から式(1)におけるフィッティングパラメータA、Bを決定した。
前記実測摩擦力との相関から決定された式(1)中の前記フィッティングパラメータA、Bの値はそれぞれA=520、B=20であった。
The measured friction force between the casting mold and the cast slab when continuously cast under the operating conditions shown in Tables 1 and 2 is calculated by Equation (3), and the fitting parameter in Equation (1) is calculated from the correlation with the value of the measured friction force. A and B were determined.
The values of the fitting parameters A and B in the equation (1) determined from the correlation with the measured friction force were A = 520 and B = 20, respectively.
図2に、決定された前記フィッティングパラメータA、Bの値を用いて推定した摩擦力(以下、推定摩擦力という)と実測摩擦力との相関を示す。推定摩擦力と実測摩擦力との相関性は高く(相関係数R2=0.98)、式(1)を用いることによって鋳型と鋳造鋳片間の摩擦力Fを精度良く推定できることが分かる。 FIG. 2 shows the correlation between the frictional force estimated using the determined values of the fitting parameters A and B (hereinafter referred to as estimated frictional force) and the measured frictional force. The correlation between the estimated friction force and the measured friction force is high (correlation coefficient R 2 = 0.98), and it can be seen that the friction force F between the mold and the cast slab can be accurately estimated by using the equation (1).
なお、前記実測摩擦力を求める式(3)は、図1に示すようなピボット7を介したレバー9の両端に鋳型3と油圧シリンダー11を配したオシレーション装置13について導出したものであるが、連続鋳造設備におけるオシレーション装置はこのような形式に限定されず、例えば、鋳型に油圧シリンダーを直結した直動タイプの油圧式オシレーション装置であってもよい。この場合、式(3)においてレバー比をr=1とすれば良い。ただし、式(3)により実測摩擦力を求める際、見掛けの鋳型質量Mと減衰定数Cvの値を変更する必要がある。 The equation (3) for obtaining the measured frictional force is derived for the oscillation device 13 in which the mold 3 and the hydraulic cylinder 11 are arranged at both ends of the lever 9 via the pivot 7 as shown in FIG. The oscillation device in the continuous casting facility is not limited to this type, and may be a direct-acting type hydraulic oscillation device in which a hydraulic cylinder is directly connected to a mold, for example. In this case, the lever ratio in equation (3) may be r = 1. However, when the actually measured frictional force is obtained by Equation (3), it is necessary to change the values of the apparent mold mass M and the damping constant Cv.
フィッティングパラメータA、Bの値は、上記のようにオシレーション装置の変更等、振動系を変更した場合には変更する必要はないが、鋳型形状を変更した場合には、実摩擦力との相関から前記フィッティングパラメータA、Bの値を新たに決定する必要がある。 The values of the fitting parameters A and B do not need to be changed when the vibration system is changed, such as when the oscillation device is changed as described above, but when the mold shape is changed, the correlation with the actual friction force Therefore, it is necessary to newly determine the values of the fitting parameters A and B.
[実施の形態2]
本発明の他の実施の形態に係る鋼の連続鋳造方法は、実施の形態1で述べた鋼の連続鋳造時における鋳型と鋳造鋳片間の摩擦力推定方法を用いて推定された摩擦力に基づいて連続鋳造時の操業条件を変更するものであって、鋳型と鋳造鋳片間の摩擦力を推定する摩擦力推定工程と、該摩擦力推定工程で推定された摩擦力が予め定めた所定の範囲内であるかどうかを判定する摩擦力判定工程と、該摩擦力判定工程において前記摩擦力が前記所定の範囲外であると判定された場合、前記摩擦力推定工程で推定される摩擦力が前記所定の範囲内となるように一つあるいは複数の操業条件を変更する操業条件変更工程とを備えたものである。
以下、各工程を詳細に説明する。
[Embodiment 2]
The steel continuous casting method according to another embodiment of the present invention has a friction force estimated by using the friction force estimation method between the mold and the cast slab at the time of continuous casting of steel described in the first embodiment. The operation conditions during continuous casting are changed based on a friction force estimation step for estimating the friction force between the mold and the cast slab, and the friction force estimated in the friction force estimation step is predetermined. A friction force determination step for determining whether the friction force is within a range of the friction force, and when the friction force determination step determines that the friction force is outside the predetermined range, the friction force estimated in the friction force estimation step Is provided with an operation condition changing step of changing one or a plurality of operation conditions so that the value falls within the predetermined range.
Hereinafter, each process will be described in detail.
<摩擦力推定工程>
摩擦力推定工程は、実施の形態1に係る鋼の連続鋳造時における鋳型と鋳造鋳片間の摩擦力推定方法を用い、鋳型と鋳造鋳片間の摩擦力を式(1)により推定する工程である。
<Friction force estimation process>
The frictional force estimating step is a step of estimating the frictional force between the mold and the cast slab by the formula (1) using the method for estimating the frictional force between the mold and the cast slab at the time of continuous casting of the steel according to the first embodiment. It is.
式(1)中のA、Bはフィッティングパラメータであり、実施の形態1で述べたように、式(3)により算出した実測摩擦力との相関からA、Bの値を予め決定する。
そして、決定したフィッティングパラメータA及びBの値を用い、連続鋳造の操業条件である溶鋼温度T、鋳型と鋳造鋳片間の平均相対速度Vr、モールドフラックス凝固温度Ts及びフラックス消費量Qを式(1)に代入して、鋳型と鋳造鋳片間の摩擦力を推定する。
A and B in equation (1) are fitting parameters, and as described in the first embodiment, the values of A and B are determined in advance from the correlation with the actually measured friction force calculated by equation (3).
Then, using the determined values of the fitting parameters A and B, the molten steel temperature T, the average relative speed Vr between the mold and the cast slab, the mold flux solidification temperature Ts, and the flux consumption Q, which are the operating conditions of continuous casting, are expressed by the formula ( Substituting into 1), the frictional force between the mold and the cast slab is estimated.
<摩擦力判定工程>
図1に示すような連続鋳造設備1を用いた鋼の連続鋳造時において、鋳型3と鋳造鋳片5間の摩擦力が著しく高い場合、鋳造鋳片5に不必要な引張応力が作用して横割れ発生の危険性が増す。
一方、鋳型3と鋳造鋳片5間の摩擦力が著しく低い場合、鋳型3と鋳造鋳片5との間の潤滑が過多となって、オシレーションマーク深さや溶鋼のメニスカス部における初期凝固シェルの倒れ込み(爪)が増大する。その結果、スラグや気泡が凝固シェルに捕捉されて鋳造鋳片5の表面性状が悪化したり、介在物のトラップの危険性が増す。
<Friction force judgment process>
In the continuous casting of steel using the continuous casting equipment 1 as shown in FIG. 1, if the frictional force between the mold 3 and the cast slab 5 is extremely high, unnecessary tensile stress acts on the cast slab 5. Increased risk of lateral cracking.
On the other hand, when the frictional force between the mold 3 and the cast slab 5 is remarkably low, the lubrication between the mold 3 and the cast slab 5 becomes excessive, and the initial solidified shell in the oscillation mark depth and the meniscus portion of the molten steel Falling down (nails) increases. As a result, slag and bubbles are trapped by the solidified shell, and the surface properties of the cast slab 5 are deteriorated, and the risk of trapping inclusions increases.
そこで、当該摩擦力判定工程においては、これらの危険性を回避するため、前記摩擦力推定工程において推定された摩擦力が、鋳造鋳片における横割れ発生や表面性状悪化等を生じることなく鋳造鋳片を製造することができる最適範囲内であるかどうかを判定する。
前記推定された摩擦力が前記最適範囲外である場合、続く操業条件変更工程において連続鋳造の操業条件を変更する。
Therefore, in the frictional force determination step, in order to avoid these dangers, the frictional force estimated in the frictional force estimation step does not cause the occurrence of transverse cracks in the cast slab, deterioration of surface properties, or the like. It is determined whether it is within the optimum range where the piece can be manufactured.
When the estimated frictional force is outside the optimum range, the continuous casting operation condition is changed in the subsequent operation condition changing step.
<操業条件変更工程>
操業条件変更工程は、前記摩擦力判定工程において前記推定された摩擦力が前記最適範囲外であると判定された場合、連続鋳造の操業条件を変更する工程である。
前記推定された摩擦力が前記最適範囲よりも大きい値であると判定された場合、鋳型と鋳造鋳片間の摩擦力を減少させるように、例えば、フラックス消費量の増加、凝固温度の低いモールドフラックスへの変更、鋳型の振動条件(振幅、振動数、波形)の変更、のうちのいずれか一つあるいは複数の操業条件を変更する。
<Operation condition change process>
The operation condition changing step is a step of changing the operation condition of continuous casting when it is determined in the friction force determining step that the estimated friction force is outside the optimum range.
When it is determined that the estimated friction force is larger than the optimum range, for example, an increase in flux consumption and a mold with a low solidification temperature are used so as to reduce the friction force between the mold and the cast slab. One or a plurality of operation conditions are changed among the change to the flux and the change of the vibration conditions (amplitude, vibration frequency, waveform) of the mold.
鋳型振動の波形としては、例えば、サイン波の他、鋳型振動時の上昇速度よりも下降速度の方が大きい非サイン波が使用される。 As the waveform of the mold vibration, for example, a sine wave or a non-sine wave having a descending speed larger than the rising speed at the time of mold vibration is used.
一方、前記推定された摩擦力が前記最適範囲よりも小さい値であると判定された場合、鋳型と鋳造鋳片間の実際の摩擦力を増加させるような操業条件の変更、例えば、フラックス消費量の減少、凝固温度の高いモールドフラックスへの変更、鋳型の振動条件(振幅、振動数、波形)の変更、のうちのいずれか一つあるいは複数の操業条件を変更する。 On the other hand, when it is determined that the estimated friction force is a value smaller than the optimum range, a change in operation condition that increases the actual friction force between the mold and the cast slab, for example, flux consumption , Change to mold flux with high solidification temperature, change of mold vibration conditions (amplitude, vibration frequency, waveform), or change one or more operation conditions.
なお、鋳型の振動条件の変更として、例えば、振動数を大きくする、又は、以下の式(4)で表わされる歪率を小さくすることにより、鋳型と鋳造鋳片間の実際の摩擦力を増加させることができる。
歪率=(非sin波の上死点時刻―sin波の上死点時刻)/(振動周期の1/4)・・・(4)
ここで、非sin波は、振動の上昇時間が長く、加工時間が短いノコギリ波状にsin波を歪ませた波形である。
In addition, as a change in the vibration conditions of the mold, for example, the actual frictional force between the mold and the cast slab is increased by increasing the frequency or decreasing the distortion represented by the following formula (4). Can be made.
Distortion = (Top dead center time of non-sin wave-Top dead center time of sin wave) / (1/4 of vibration period) (4)
Here, the non-sin wave is a waveform in which the sin wave is distorted into a sawtooth wave having a long vibration rise time and a short machining time.
前記鋳型の振動条件は鋳型と鋳造鋳片間の相対速度に影響するものであるが、実際の摩擦力は該相対速度だけでなく潤滑層厚みにも影響され、該潤滑層厚みは振幅が小さいと薄くなって、摩擦力を増加する方向に作用する。したがって、実際の摩擦力は、鋳型と鋳造鋳片間の相対速度と潤滑層の厚みのバランスで決定される。 The vibration conditions of the mold affect the relative speed between the mold and the cast slab, but the actual frictional force is influenced not only by the relative speed but also by the thickness of the lubricating layer, and the thickness of the lubricating layer has a small amplitude. It becomes thinner and acts in the direction of increasing the frictional force. Therefore, the actual frictional force is determined by the balance between the relative speed between the mold and the cast slab and the thickness of the lubricating layer.
なお、前記摩擦力判定工程において判定の基準となる摩擦力の最適範囲は、連続鋳造の操業条件である溶鋼温度、鋳型振動条件、モールドフラックスの種類及びフラックス消費量を変更して鋳造鋳片を製造し、該鋳造鋳片における横割れ発生率及びノロカミ・ブロー欠陥発生率と式(1)より推定された摩擦力との関係から求めることができる。 Note that the optimum range of frictional force used as a criterion for determination in the frictional force determination step is to change the cast steel slab by changing the molten steel temperature, mold vibration conditions, mold flux type and flux consumption, which are continuous casting operation conditions. It can be obtained from the relationship between the rate of occurrence of lateral cracks and the rate of occurrence of flaws and blow defects in the cast slab and the frictional force estimated from equation (1).
ここで、横割れ発生率とは、黒皮状態の前記鋳造鋳片を目視で確認し、鋳造鋳片の単位面積当たりの割れ個数により評価したものである。
一方、ノロカミ・ブロー欠陥発生率とは、前記鋳造鋳片の表面を1mmスカーフして目視で確認し、凝固シェルにスラグが捕捉(ノロカミ)あるいは気泡が捕捉(ブロー)されて生じた欠陥の単位面積当たりの個数により評価したものである。
Here, the transverse crack occurrence rate is obtained by visually confirming the black cast cast slab and evaluating it based on the number of cracks per unit area of the cast slab.
On the other hand, the incidence rate of blow slag and blow defects is the unit of defects produced by slag trapping (sloping) or bubbles trapping (blowing) on the solidified shell by visually checking the surface of the cast slab with a 1mm scarf. It is evaluated by the number per area.
図3に、推定摩擦力と横割れ発生率及びノロカミ・ブロー欠陥率との関係を示す。
図3において、推定摩擦力は式(1)においてフィッティングパラメータをA=520、B=20とし、操業条件である鋳型と鋳造鋳片間の平均相対速度Vr[m/min]、溶鋼温度T[℃]、モールドフラックス凝固温度Ts[℃]及びフラックス消費量Q[kg/m2]を式(1)に代入して算出した。
FIG. 3 shows the relationship between the estimated frictional force, the rate of occurrence of lateral cracks, and the rate of throat and blow defects.
In FIG. 3, the estimated frictional force is the fitting parameter A = 520 and B = 20 in the equation (1), the average relative speed Vr [m / min] between the casting mold and the cast slab and the molten steel temperature T [ [° C.], mold flux solidification temperature Ts [° C.] and flux consumption Q [kg / m 2 ] were calculated by substituting into equation (1).
推定摩擦力が30kN/m2以上45kN/m2以下の範囲内にある場合、横割れ発生率とノロカミ・ブロー欠陥発生率ともにほぼ0個/m2であり、製造された鋳造鋳片に欠陥はほとんど生じていなかった。 When the estimated friction force is in the range of 30 kN / m 2 or more and 45 kN / m 2 or less, both the rate of occurrence of transverse cracks and the rate of occurrence of blown-off flaws are almost 0 pieces / m 2 , and the manufactured cast slab is defective. Hardly occurred.
推定摩擦力が30kN/m2よりも小さい場合、製造された鋳造鋳片は横割れ、ヘゲ共に悪く、推定摩擦力の減少に伴って横割れ発生率及びノロカミ・ブロー欠陥発生率が増加した。これは、潤滑層厚み過多によるオシレーションマーク深さや爪深さが増大したことが原因であると考えられる。 When the estimated friction force was less than 30 kN / m 2, the cast slabs produced had poor lateral cracking and sag, and as the estimated frictional force decreased, the incidence of transverse cracks and the occurrence of throat and blow defects increased. . This is considered to be caused by an increase in the oscillation mark depth and the claw depth due to excessive lubrication layer thickness.
推定摩擦力が45kN/m2よりも大きい場合、ノロカミ・ブロー欠陥発生率はほぼ0個/m2であったのに対し、推定摩擦力の増加に伴って横割れ発生率は増加した。これは、鋳型内において鋳造鋳片に過大な引張応力がかかったためであると考えられる。 When the estimated friction force was greater than 45 kN / m 2, the occurrence rate of throat and blow defects was almost 0 / m 2 , whereas the incidence of transverse cracks increased with the increase of the estimated friction force. This is considered to be because an excessive tensile stress was applied to the cast slab in the mold.
以上より、高品質な鋳造鋳片を製造するためには、式(1)より推定された摩擦力の最適範囲は30kN/m2以上45kN/m2以下であることが分かり、前記推定された摩擦力が前記最適範囲内となるように連続鋳造すれば良いことが分かった。 From the above, in order to produce a high-quality cast slab, it was found that the optimum range of the frictional force estimated from Equation (1) is 30 kN / m 2 or more and 45 kN / m 2 or less. It has been found that continuous casting may be performed so that the frictional force is within the optimum range.
さらに、図3の結果は、鋼の連続鋳造時において、連続鋳造の操業条件である鋳型と鋳造鋳片間の平均相対速度Vr[m/min]、溶鋼温度T[℃]、モールドフラックス凝固温度Ts[℃]、フラックス消費量Q[kg/min]を用いて式(1)により推定される鋳型と鋳造鋳片間の摩擦力Fが30kN/m2以上45kN/m2以下であれば、当該範囲の摩擦力が式(1)により推定される操業条件においては、横割れやノロカミ・ブロー欠陥等を発生せずに高品質な鋳造鋳片を製造できることを示唆するものである。 Furthermore, the results in FIG. 3 show that, during continuous casting of steel, the average relative speed Vr [m / min], molten steel temperature T [° C], mold flux solidification temperature, which are the operating conditions for continuous casting. If the frictional force F between the mold and the cast slab estimated by Equation (1) using Ts [° C] and flux consumption Q [kg / min] is 30 kN / m 2 or more and 45 kN / m 2 or less, This suggests that high-quality cast slabs can be produced without causing transverse cracks, blades, blow defects, etc., under the operating conditions in which the frictional force in this range is estimated by equation (1).
本発明に係る鋼の連続鋳造時における鋳型と鋳造鋳片間の摩擦力推定方法を用いた鋼の連続鋳造方法の効果を実証すべく実験を行った。以下、これについて説明する。
本実施例では、図1に示すような連続鋳造設備1において、表3に示す操業条件にて連続鋳造を行った。
なお、本実施例で使用した3種類のモールドフラックス(M1、M2、M3)の物性値は、前掲した表2に示すとおりである。
An experiment was conducted to verify the effect of the steel continuous casting method using the method for estimating the frictional force between the mold and the cast slab during continuous casting of the steel according to the present invention. This will be described below.
In this example, continuous casting was performed under the operating conditions shown in Table 3 in a continuous casting facility 1 as shown in FIG.
The physical property values of the three types of mold fluxes (M1, M2, M3) used in this example are as shown in Table 2 above.
摩擦力推定工程において摩擦力の推定に用いる式(1)のフィッティングパラメータA及びBの値は、式(3)により算出した実測摩擦力との相関から決定し、本実施例ではそれぞれA=520、B=20であった。 The values of the fitting parameters A and B in the equation (1) used for estimating the friction force in the friction force estimation step are determined from the correlation with the actually measured friction force calculated by the equation (3). In this embodiment, A = 520 B = 20.
摩擦力判定工程において、前記摩擦力推定工程で推定された摩擦力の最適範囲は、実施の形態2と同様、30kN/m2以上45kN/m2以下とした(図3参照)。
そして、該摩擦力判定工程において前記推定された摩擦力が前記最適範囲外であると判定された場合、操業条件変更工程において、式(1)により推定される摩擦力が前記最適範囲内となるように操業条件を変更した。
In the frictional force determination step, the optimum range of the frictional force estimated in the frictional force estimation step is set to 30 kN / m 2 or more and 45 kN / m 2 or less as in the second embodiment (see FIG. 3).
When it is determined that the estimated friction force is outside the optimum range in the friction force determination step, the friction force estimated by the expression (1) is within the optimum range in the operation condition changing step. The operating conditions were changed as follows.
前掲した表3に、式(1)により推定された摩擦力(推定摩擦力)と、各操業条件にて製造された鋳造鋳片における横割れ発生率及びノロカミ・ブロー欠陥発生率の結果を示す。
横割れ発生率及びノロカミ・ブロー欠陥発生率は、前述した実施の形態2と同様の方法により求めた。
Table 3 above shows the frictional force (estimated frictional force) estimated by the equation (1), and the results of the lateral crack occurrence rate and the noro-blowing defect occurrence rate in the cast slab manufactured under each operating condition. .
The rate of occurrence of lateral cracks and the rate of occurrence of throat and blow defects was determined by the same method as in the second embodiment.
発明例1において、操業条件を変更する前における推定摩擦力が51kN/m2で前記最適範囲外であった。そして、ノロカミ・ブロー欠陥発生率は低い値(0.02個/m2)であるものの、横割れ発生率が10個/m2と高い値であった。 In Invention Example 1, the estimated friction force before changing the operating conditions was 51 kN / m 2 , which was out of the optimum range. Although the occurrence rate of noro-kami blow defects was low (0.02 / m 2 ), the rate of occurrence of transverse cracks was as high as 10 / m 2 .
そこで、前記推定摩擦力が減少するように、モールドフラックスの種類を凝固温度がTc=1190℃であるM1から凝固温度が低いTc=1120℃であるM2に変更するとともに、フラックス消費量Qを0.36kg/m2から0.39kg/m2へと増加した。
上記変更した操業条件を式(1)に代入して算出される推定摩擦力は最適範囲内である44kN/m2となった。そこで、前記変更した操業条件で実際に鋳造鋳片を製造したところ、該鋳造鋳片の横割れ発生率は0個/m2となった。
Therefore, the type of mold flux is changed from M1 where the solidification temperature is Tc = 1190 ° C. to M2 where the solidification temperature is low Tc = 1120 ° C. so that the estimated frictional force is reduced, and the flux consumption Q is 0.36. It was increased from kg / m 2 to 0.39kg / m 2.
The estimated frictional force calculated by substituting the changed operating conditions into Equation (1) was 44 kN / m 2 which is within the optimum range. Therefore, when a cast slab was actually manufactured under the changed operating conditions, the rate of occurrence of transverse cracks in the cast slab was 0 / m 2 .
発明例2において、操業条件を変更する前における推定摩擦力が24kN/m2で前記最適範囲外であった。そして、横割れ発生率は5個/m2、ノロカミ・ブロー欠陥発生率は0.4個/m2であり、どちらも高い値であった。 In Invention Example 2, the estimated friction force before changing the operating conditions was 24 kN / m 2 , which was outside the optimum range. The rate of occurrence of transverse cracks was 5 / m 2 , and the rate of occurrence of throat and blow defects was 0.4 / m 2 , both of which were high values.
そこで、推定摩擦力が増大するように、フラックス消費量Qを0.51kg/m2から0.22kg/m2へと減少し、鋳型振動の振幅を6mmから4mmへと変更した。
上記変更した操業条件を式(1)に代入して算出される推定摩擦力は最適範囲内である30kN/m2となった。そこで、前記変更した操業条件で実際に鋳造鋳片を製造したところ、該鋳造鋳片の横割れ発生率及びノロカミ・ブロー欠陥発生率ともにほぼ0個/m2となった。
Therefore, the flux consumption Q was decreased from 0.51 kg / m 2 to 0.22 kg / m 2 and the mold vibration amplitude was changed from 6 mm to 4 mm so that the estimated friction force increased.
The estimated frictional force calculated by substituting the changed operating conditions into Equation (1) was 30 kN / m 2 which is within the optimum range. Therefore, when a cast slab was actually manufactured under the changed operating conditions, both the rate of occurrence of lateral cracks and the rate of occurrence of throat and blow defects in the cast slab were almost 0 pieces / m 2 .
以上より、鋳型振動条件、モールドフラックスの物性値である凝固温度、フラックス消費量といった連続鋳造の操業条件から鋼の鋳型と鋳造鋳片間の摩擦力を推定し、該推定された摩擦力が最適範囲内となるように操業条件を変更することで、横割れ等の欠陥のない高品質な鋳造鋳片を安定して製造できることが実証された。 Based on the above, the friction force between the steel mold and the cast slab is estimated from the casting conditions such as mold vibration conditions, solidification temperature, which is the physical property value of the mold flux, and flux consumption, and the estimated friction force is optimal. It was proved that high-quality cast slabs without defects such as transverse cracks could be stably produced by changing the operating conditions to be within the range.
1 連続鋳造設備
3 鋳型
5 鋳造鋳片
7 ピボット
9 レバー
11 油圧シリンダー
13 オシレーション装置
15 変位計
17 油圧計
17a 入側油圧計
17b 出側油圧計
DESCRIPTION OF SYMBOLS 1 Continuous casting equipment 3 Mold 5 Cast slab 7 Pivot 9 Lever 11 Hydraulic cylinder 13 Oscillation device 15 Displacement meter 17 Hydraulic gauge 17a Inlet side hydraulic gauge 17b Outlet side hydraulic gauge
Claims (1)
該摩擦力推定工程で推定された摩擦力が30kN/m2以上45kN/m2以下であるかどうかを判定する摩擦力判定工程と、
該摩擦力判定工程において前記推定された摩擦力が30kN/m2以上45kN/m2以下でないと判定された場合、前記摩擦力推定工程で推定される摩擦力が30kN/m2以上45kN/m2以下となるように、鋳型と鋳片鋳片間の平均相対速度、モールドフラックスの種類、フラックス消費量のうちいずれか一つあるいは複数の操業条件を変更する操業条件変更工程とを備え、
前記摩擦力推定工程は、鋼の連続鋳造時における溶鋼温度T[℃]、鋳型と鋳造鋳片間の平均相対速度Vr[m/min]、モールドフラック凝固温度Ts[℃]及びフラックス消費量Q[kg/m2]を用いて、鋳型と鋳造鋳片間の摩擦力F[kN/m2]を下式により推定することを特徴とする鋼の連続鋳造方法。
A friction force determination step for determining whether the friction force estimated in the friction force estimation step is 30 kN / m 2 or more and 45 kN / m 2 or less;
When it is determined that the estimated friction force is not 30 kN / m 2 or more and 45 kN / m 2 or less in the friction force determination step, the friction force estimated in the friction force estimation step is 30 kN / m 2 or more and 45 kN / m. 2 or less, so as to include an average relative speed between the mold and the slab slab, a type of mold flux, and an operation condition change step for changing any one or more of the operation conditions of the flux consumption,
The frictional force estimation step includes molten steel temperature T [° C.] during continuous casting of steel, average relative speed Vr [m / min] between mold and cast slab, mold flack solidification temperature Ts [° C.], and flux consumption Q A continuous casting method of steel, wherein the frictional force F [kN / m 2 ] between a mold and a cast slab is estimated by the following equation using [kg / m 2 ].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049740A JP6277980B2 (en) | 2015-03-12 | 2015-03-12 | Continuous casting method of steel using frictional force estimation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015049740A JP6277980B2 (en) | 2015-03-12 | 2015-03-12 | Continuous casting method of steel using frictional force estimation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016168608A JP2016168608A (en) | 2016-09-23 |
JP6277980B2 true JP6277980B2 (en) | 2018-02-14 |
Family
ID=56982833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015049740A Active JP6277980B2 (en) | 2015-03-12 | 2015-03-12 | Continuous casting method of steel using frictional force estimation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6277980B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3101069B2 (en) * | 1992-03-31 | 2000-10-23 | 川崎製鉄株式会社 | Continuous casting method |
JPH0639512A (en) * | 1992-07-24 | 1994-02-15 | Aichi Steel Works Ltd | Device for replenishing mold lubricator for continuous casting |
JPH0857591A (en) * | 1994-08-18 | 1996-03-05 | Kawasaki Steel Corp | Continuous casting method |
JP2856077B2 (en) * | 1994-08-25 | 1999-02-10 | 住友金属工業株式会社 | Method and apparatus for controlling powder layer thickness for continuous casting |
DE19515316C1 (en) * | 1995-04-19 | 1996-08-29 | Mannesmann Ag | Method for operating a mold |
JP5712685B2 (en) * | 2011-03-07 | 2015-05-07 | 新日鐵住金株式会社 | Continuous casting method |
-
2015
- 2015-03-12 JP JP2015049740A patent/JP6277980B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016168608A (en) | 2016-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6358178B2 (en) | Continuous casting method and mold cooling water control device | |
KR101477117B1 (en) | Method for preventing breakout in continuous casting | |
JP6277980B2 (en) | Continuous casting method of steel using frictional force estimation method | |
Xu et al. | Molten steel breakout prediction based on thermal friction measurement | |
JP2013111603A (en) | Method of evaluating mold powder in continuous casting and continuous casting method using the same | |
JP6859919B2 (en) | Breakout prediction method | |
KR102487307B1 (en) | Apparatus of manufacturing for continuous casting and methods of manufacturing high-quality strand | |
KR20150025233A (en) | Design methods of mold powder for low carbon steel | |
JP6787235B2 (en) | Continuous steel casting method | |
KR101344897B1 (en) | Device for predicting quality of plate in continuous casting and method therefor | |
JP6107770B2 (en) | Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method | |
JP5831118B2 (en) | Method and apparatus for continuous casting of steel | |
JP5712685B2 (en) | Continuous casting method | |
JP4501892B2 (en) | Method and apparatus for estimating molten metal temperature in continuous casting mold | |
KR101505158B1 (en) | Continuous casting method | |
KR101545937B1 (en) | Method for determining the occurence of surface crack of slab | |
JP5828295B2 (en) | Continuous casting mold and steel continuous casting method using the same | |
JP5652362B2 (en) | Steel continuous casting method | |
JP7001074B2 (en) | Prediction method of restrictive breakout and continuous casting method of steel | |
JP4417899B2 (en) | Continuous casting method | |
JP5915463B2 (en) | Breakout prediction method | |
JP2013078796A (en) | Method for designing mold for continuously casting beam blank cast slab | |
KR101466358B1 (en) | Evaluation method for validation of cracks in piece by using friction | |
JP4325451B2 (en) | Method for detecting surface defect of continuous cast slab and removing method thereof | |
KR101505154B1 (en) | Method for manufacturing coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6277980 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |