JP6276011B2 - Method for producing porous granulated fired product - Google Patents
Method for producing porous granulated fired product Download PDFInfo
- Publication number
- JP6276011B2 JP6276011B2 JP2013249525A JP2013249525A JP6276011B2 JP 6276011 B2 JP6276011 B2 JP 6276011B2 JP 2013249525 A JP2013249525 A JP 2013249525A JP 2013249525 A JP2013249525 A JP 2013249525A JP 6276011 B2 JP6276011 B2 JP 6276011B2
- Authority
- JP
- Japan
- Prior art keywords
- granulated
- primary
- raw material
- spraying
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000007921 spray Substances 0.000 claims description 70
- 239000002994 raw material Substances 0.000 claims description 57
- 239000011148 porous material Substances 0.000 claims description 51
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 50
- 238000005507 spraying Methods 0.000 claims description 46
- 238000005096 rolling process Methods 0.000 claims description 45
- 239000000843 powder Substances 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 36
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- 238000005469 granulation Methods 0.000 claims description 23
- 230000003179 granulation Effects 0.000 claims description 23
- 238000010304 firing Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 14
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 13
- 239000011361 granulated particle Substances 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000000314 lubricant Substances 0.000 claims description 10
- 239000008187 granular material Substances 0.000 claims description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000005550 wet granulation Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 3
- 238000004438 BET method Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 229920002689 polyvinyl acetate Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- -1 etc.) Polymers 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000003703 image analysis method Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000009817 primary granulation Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000001965 increasing effect Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 239000010680 novolac-type phenolic resin Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Glanulating (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は、多孔質造粒焼成物及びその製造方法に関する。ここでは、アルミナの多孔質造粒焼成物を主として例に採り説明するが、本発明の製造方法は他のセラミックの多孔質造粒焼成物にも適用できる。 The present invention relates to a porous granulated fired product and a method for producing the same. Here, the porous granulated fired product of alumina will be mainly described as an example, but the production method of the present invention can be applied to other porous granulated fired products of ceramic.
ここで「焼成」とは、アルミナ微粉体からなる造粒物を、γ体が得られる温度(例えば、700℃)以上で高温処理して固結することをいう。ただし、気孔が完全に塞がれる完全焼結は含まない。 Here, “sintering” means that a granulated product made of fine alumina powder is solidified by high-temperature treatment at a temperature (for example, 700 ° C.) or higher at which a γ-form is obtained. However, complete sintering in which the pores are completely blocked is not included.
なお、以下の説明で、配合単位を示す「%」、「部」は、特に断らない限り、それぞれ「質量%」および「質量部」を意味する。 In the following description, “%” and “part” indicating a blending unit mean “% by mass” and “part by mass”, respectively, unless otherwise specified.
また、各特性値は、下記の如く定義されるものである。 Each characteristic value is defined as follows.
「平均粒径」・・・メジアン径を意味し、レーザ回折法で測定した値(平均粒径50μm未満又はJIS標準網ふるいによる値(平均粒径50μm以上)。 “Average particle diameter” means a median diameter and is a value measured by a laser diffraction method (average particle diameter less than 50 μm or a value obtained by JIS standard mesh sieve (average particle diameter of 50 μm or more)).
「比表面積」・・・JIS Z 8830「ガス吸着による粉体の比表面積測定方法」(BET法jに準拠して測定した値。 “Specific surface area”: JIS Z 8830 “Method for measuring specific surface area of powder by gas adsorption” (value measured according to BET method j).
「真球度」・・・走査式電子顕微鏡(SEM)による画像解析法による二値化測定法で測定した算術平均値(n=10)。 “Sphericality”: An arithmetic average value (n = 10) measured by a binarization measurement method by an image analysis method using a scanning electron microscope (SEM).
「気孔径」・・・走査式電子顕微鏡(SEM)を用いた画像解析法の内の二値価測定法により求めた合計算術平均値(n=10)。 “Pore diameter”: a mean value of arithmetic calculation (n = 10) determined by a binary valence measurement method among image analysis methods using a scanning electron microscope (SEM).
「圧縮強度」・・JISR1608「ファインセラミックスの圧縮強さ試験方法」に準拠して測定した値。 “Compressive strength” ·· Measured according to JISR1608 “Testing method for compressive strength of fine ceramics”.
アルミナは、その高耐熱性及び低反応性に基づき、多岐にわたり利用されている。特に、αアルミナの多孔質造粒焼成物は機能性製品の材料として様々な用途、触媒担体、微生物固定床、培養床、ろ過媒体に使用されている。 Alumina is widely used based on its high heat resistance and low reactivity. In particular, α-alumina porous granulated calcined products are used as materials for functional products in various applications, catalyst carriers, microorganism fixed beds, culture beds, and filtration media.
そして、これらの多孔質造粒焼成物には、簡便かつ安価に、細孔分布を制御でき高強度の触媒担体として使用可能であり、さらには、低ソーダ含有であることが要求されている(特許文献1)。 And these porous granulated calcined products are required to be able to control pore distribution easily and inexpensively and to be used as a high-strength catalyst carrier, and to further contain a low soda content ( Patent Document 1).
これらの要求に応えるために、特許文献1において、下記構成のαアルミナ成形体(αアルミナ焼成物)の製造方法が提案されている。 In order to meet these requirements, Patent Document 1 proposes a method of manufacturing an α-alumina molded body (α-alumina fired product) having the following configuration.
「粒径と重装嵩密度を制御したギブサイト結晶水酸化アルミニウムを仮焼することにより得られる少なくとも部分的に再水和性を有するアルミナ粉を水と混合し、この混合物を成形して成形体を得、この成形体を110〜200℃の湿潤雰囲気中または水蒸気中に保持して再水和させ、次いで再水和させた成形体を1200℃以上で焼成するα−アルミナ成形体の製造方法。」 “At least partially rehydratable alumina powder obtained by calcining gibbsite crystal aluminum hydroxide with controlled particle size and bulk density is mixed with water, and this mixture is molded to form a molded body The molded body is rehydrated while being held in a humid atmosphere or steam at 110 to 200 ° C., and then the rehydrated molded body is fired at 1200 ° C. or higher. . "
そして、特許文献1段落0051・0052には、仮焼した再水和性アルミナの粉末原料を、皿形造粒機を用いて、水をスプレーしながら直径2〜4mmの球状の造粒物とし、該造粒物を焼成することが記載されている。 In Patent Document 1, paragraphs 0051 and 0052, the calcined rehydratable alumina powder raw material is formed into a spherical granulated product having a diameter of 2 to 4 mm while spraying water using a dish granulator. And firing the granulated product.
また、αアルミナの多孔質造粒焼成物に関するものではないが、特許文献2では、下記構成の遷移アルミナ成形体(活性アルミナ成形体)(多孔質焼成物の前駆体)の製造方法が提案されている。 Further, although not related to the porous granulated fired product of α-alumina, Patent Document 2 proposes a method for producing a transition alumina molded body (active alumina molded body) (precursor of porous fired product) having the following configuration. ing.
「少なくとも部分的に再水和性を有する遷移アルミナ粉末を湿式成形し、再水和し、次いで再水和後の成形体を焼成してなる遷移アルミナ成形体の製造方法において、遷移アルミナ粉末の湿式成形時に中心粒径が0.01〜100μmのポリメタクリル酸エステルを主成分とする粉末もしくはラテックスを存在せしめることを特徴とする遷移アルミナ成形体の製造方法。」 “In a method for producing a transition alumina molded product obtained by wet-molding a transition alumina powder having at least partially rehydratability, rehydrating, and then firing the rehydrated molded product, A process for producing a transition alumina molded article characterized by having a powder or latex mainly composed of polymethacrylate having a center particle diameter of 0.01 to 100 μm during wet molding. ”
そして、特許文献2段落0032には、仮焼した再水和性アルミナに対して気孔形成剤であるポリメタクリル酸メチルを添加した混合粉末を、回転皿を備えた転動造粒機を用いて、水をスプレーしながら直径2〜4mmの球状の造粒物(湿式成形)とし、該造粒物を再水和処理後、焼成することが記載されている。 In paragraph 0032 of Patent Document 2, mixed powder obtained by adding polymethyl methacrylate, which is a pore-forming agent, to calcined rehydratable alumina is mixed using a rolling granulator equipped with a rotating dish. In addition, it is described that a spherical granulated product (wet molding) having a diameter of 2 to 4 mm is formed while spraying water, and the granulated product is fired after rehydration treatment.
しかし、上記多孔質造粒焼成物又はその前駆体の製造方法は、いずれも、転動造粒した造粒物をオートクレーブ等に投入して再水和させる必要があり、生産工数および熱エネルギーコストが嵩んだ。また、内部まで気孔、すなわち、粒子断面全体に網目状の連通する気孔が形成されてなる造粒焼成物を調製することが困難であった。 However, any of the methods for producing the above-mentioned porous granulated calcined product or precursor thereof requires the rolling granulated product to be rehydrated by introducing it into an autoclave, etc. Was bulky. Further, it is difficult to prepare a granulated fired product in which pores are formed up to the inside, that is, pores communicating in a mesh shape are formed on the entire particle cross section.
本発明の目的は、上記課題(問題点及び要望)を解決することができるアルミナの多孔質造粒焼成物及びその製造方法の提供にある。 An object of the present invention is to provide a porous granulated fired product of alumina that can solve the above problems (problems and demands) and a method for producing the same.
本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の多孔質造粒焼成物(1)およびその製造方法(2)に想到した。 As a result of diligent development to solve the above-mentioned problems, the present inventors have conceived a porous granulated fired product (1) having the following constitution and a production method (2) thereof.
(1)無数のアルミナ粒子同士が、主として連続する気孔を造粒物粒子の断面全体に網目状に残存させて固結してなる造粒焼成物であって、前記気孔は、その内径が気孔形成剤の液滴径で制御されている、ことを特徴とする。 (1) An innumerable alumina particle is a granulated fired product obtained by consolidating the pores that remain mainly in the entire cross-section of the granulated particles, and the pores have an inner diameter of pores. It is controlled by the droplet diameter of the forming agent.
連通する気孔が造粒物粒子の断面全体に網目状に形成されているため、比表面積の大きなものが得やすいとともに、網目状の気孔径が均質であるため、造粒焼成物の強度および品質が安定し易い。 The pores that communicate with each other are formed in a mesh shape on the entire cross section of the granulated particles, so that it is easy to obtain a large specific surface area, and the mesh pore size is uniform, so the strength and quality of the granulated fired product Is easy to stabilize.
(2)上記構成の多孔質造粒焼成物の製造方法は、下記構成となる。 (2) The method for producing a porous granulated fired product having the above-described configuration has the following configuration.
アルミナ微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒物を焼成する焼成工程とを含み、
前記造粒工程が、
1)前記回転皿の斜め下方部に位置する排出部に対向する上方部側から投入され、回転皿の外周部に沿って、一次転動循環をする投入原料に対して、気孔形成剤を一次噴霧する工程、
2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して、結合剤を二次噴霧する工程、及び、
3) 二次噴霧後原料を、さらなる転動循環により造粒を進行させて所要径の造粒物に整粒する工程、
の各副工程を含み、
前記一次・二次噴霧を、それぞれ一次・二次転動循環する反転側部位で行う、ことを特徴とする。
A raw material comprising alumina fine powder, including a granulation step of wet granulation while spraying a liquid agent using a rolling granulator equipped with a rotating dish, and a firing step of firing the granulated product,
The granulation step is
1) A pore-forming agent is primarily introduced into the raw material charged from the upper part side facing the discharge part located obliquely below the rotating dish and primaryly circulated along the outer peripheral part of the rotating dish. Spraying process,
2) a step of secondary spraying the binder on the raw material after the primary spraying that undergoes secondary rolling circulation inside the primary rolling circulation; and
3) A step of granulating the raw material after the secondary spraying into a granulated product of a required diameter by further granulation by rolling.
Each sub-process of
The primary / secondary spraying is performed at the reversing side portions where the primary / secondary rolling circulation circulates, respectively.
上記製造方法においては、従来の如く、湿式造粒後の造粒物をオートクレーブ等に投入して再水和する必要がなく、生産工数および熱エネルギーコストが削減できる。また、各噴霧液を回転皿の別位置で噴霧することにより、それらの薬剤の単位時間噴霧量を調節でき、均質な比表面積、気孔径及び粒径を有する多孔質造粒焼成物を容易に得ることができる。 In the above production method, it is not necessary to put the granulated product after wet granulation into an autoclave or the like for rehydration as in the prior art, and the production man-hours and heat energy cost can be reduced. In addition, by spraying each spray solution at a different position on the rotating dish, the amount of spray of these drugs per unit time can be adjusted, and a porous granulated calcined product having a homogeneous specific surface area, pore diameter and particle size can be easily obtained. Can be obtained.
なお、各噴霧位置が転動循環の反転側部位でないと、一次・二次の各転動循環の重なりが大きく、別位置での噴霧が困難であるためである。 In addition, if each spray position is not the reversal side part of rolling circulation, the overlap of each primary and secondary rolling circulation is large, and spraying at another position is difficult.
以下、本発明の多孔質造粒焼成物およびその製造方法について、図面を参照しながら説明する。 Hereinafter, the porous granulated fired product of the present invention and the production method thereof will be described with reference to the drawings.
多孔質焼成造粒物の粒子11は、無数のアルミナ粒子同士が主として連通する気孔(以下単に「気孔」という。)13を網目状に残存させて固結してなるものである(図1参照)。そして、気孔13は、その内径が気孔形成剤の液滴径で制御されている。 The porous fired granulated particles 11 are formed by solidifying pores (hereinafter simply referred to as “pores”) 13 in which innumerable alumina particles are mainly communicated with each other (see FIG. 1). ). The pore 13 has an inner diameter controlled by the droplet diameter of the pore-forming agent.
ここで、本焼成物の実用的な特性を下記する。それらの範囲から適宜選定する。 Here, the practical characteristics of the fired product will be described below. Select from these ranges as appropriate.
1)平均粒径(メジアン):0.1〜5mm(望ましくは0.5〜5mm)、
2)比表面積(BET):0.1〜10m2/g(望ましくは0.5〜5m2/g)、
3)真球度:1.0−1.5、
4)気孔径:0.5−50μm。
1) Average particle diameter (median): 0.1 to 5 mm (preferably 0.5 to 5 mm),
2) Specific surface area (BET): 0.1 to 10 m 2 / g (preferably 0.5 to 5 m 2 / g),
3) Sphericity: 1.0-1.5,
4) Pore diameter: 0.5-50 μm.
次に、本発明の多孔質造粒焼成物の製造方法について、図2〜5に基づいて説明する。 Next, the manufacturing method of the porous granulated fired material of this invention is demonstrated based on FIGS.
アルミナ微粉体を原料とし、回転皿を備えた転動造粒機を用いて薬剤被覆しながら造粒する造粒工程と、該造粒物を焼成する焼成工程とを含むことを前提とする。 It is premised on including a granulation step of granulating while using an alumina fine powder as a raw material while coating a drug using a rolling granulator equipped with a rotating dish, and a firing step of firing the granulated product.
上記原料とするアルミナ微粉体の特性は、製品である造粒焼成物における要求特性により異なる。例えば、触媒担体等に使用する場合は、多孔質造粒焼成物にソーダ含有率が低く且つ気孔分布が密である特性が要求される。このため、相対的に安価なアルミナ微粉体である仮焼アルミナ微粉体であって、ソーダ成分の含有率の低い低ソーダアルミナ微粉体(αアルミナ)として上市されているものを好適に使用できる。具体的には、ソーダ(Na2O基準)含有率において0.3%以下、さらには0.1%以下、平均粒径において0.1〜100μm、さらには1〜5μmのものを使用することが望ましい。なお、原料であるアルミナ微粉体はβアルミナやγアルミナ(ρ、χ、η、δを含む。)であってもよい。 The characteristics of the fine alumina powder used as the raw material differ depending on the required characteristics of the granulated fired product. For example, when used for a catalyst carrier or the like, the porous granulated calcined product is required to have a characteristic that the soda content is low and the pore distribution is dense. For this reason, calcined alumina fine powder, which is a relatively inexpensive alumina fine powder, that is commercially available as low soda alumina fine powder (α alumina) having a low content of soda components can be suitably used. Specifically, it is desirable to use a soda (Na 2 O standard) content of 0.3% or less, further 0.1% or less, and an average particle size of 0.1 to 100 μm, more preferably 1 to 5 μm. The alumina fine powder as a raw material may be β alumina or γ alumina (including ρ, χ, η, and δ).
薬剤としては、1)気孔形成剤(一次噴霧液)、2)結合剤(二次噴霧液)を用いる。具体的には、下記の通りである。 As the drug, 1) a pore-forming agent (primary spray solution) and 2) a binder (secondary spray solution) are used. Specifically, it is as follows.
1)気孔形成剤(一次噴霧液):
気孔形成剤としては、それぞれ非水溶性高分子(合成樹脂、天然ゴム又は合成ゴム)を水分散させたものが使用可能である。水を分散媒とするのは、乾燥速度の制御が容易なためである。また、該気孔形成剤は、一次噴霧後原料の粒子表面に対して濡れ性を有しない(接触角が鈍角)ものが好ましい。気孔形成剤の液滴が粒子表面で広がらず、液滴径を制御し易いためである。
1) Pore forming agent (primary spray):
As the pore forming agent, water-insoluble polymers (synthetic resin, natural rubber or synthetic rubber) dispersed in water can be used. The reason why water is used as a dispersion medium is that the drying speed can be easily controlled. The pore-forming agent is preferably one that does not have wettability with respect to the particle surface of the raw material after primary spraying (contact angle is obtuse). This is because the pore-forming agent droplets do not spread on the particle surface and the droplet diameter can be easily controlled.
合成樹脂としては、熱可塑性でも熱硬化性でもよい。具体的には、焼成時の消失が円滑に行える、ポリ酢酸ビニル(PVAC)類(共重合体を含む。)、アクリル樹脂類(ポリアクリル酸エステル、ポリメタクリル酸エステル)、ノボラック型フェノール樹脂、ポリオレフィン・共重合ナイロン・共重合ポリエステル等を好適に使用できる。合成ゴムとしては、ポリイソプレン等を好適に使用できる。これらのうちで、PVAC類が流動性の良好な噴霧液(エマルション)を調製し易くて望ましい。 The synthetic resin may be thermoplastic or thermosetting. Specifically, polyvinyl acetates (PVAC) (including copolymers), acrylic resins (polyacrylic acid ester, polymethacrylic acid ester), novolac-type phenolic resin, which can be smoothly eliminated during firing, Polyolefin, copolymerized nylon, copolymerized polyester and the like can be suitably used. As the synthetic rubber, polyisoprene can be preferably used. Among these, PVACs are desirable because they are easy to prepare a spray solution (emulsion) having good fluidity.
この一次噴霧液の態様は、通常、エマルションとするが、ラテックス、サスペンションでもよい。一次次噴霧液の濃度は、エマルションの場合、1〜50%、望ましくは5〜15%とする。濃度が高すぎると、真球度の高い粒子からなる造粒物を得難くなる。濃度が低すぎると、適切な気孔径を造粒物の粒子に得ることが困難となる。 The primary spray liquid is usually an emulsion, but may be a latex or a suspension. In the case of an emulsion, the concentration of the primary spray liquid is 1 to 50%, preferably 5 to 15%. When the concentration is too high, it becomes difficult to obtain a granulated product composed of particles having a high sphericity. If the concentration is too low, it becomes difficult to obtain an appropriate pore size in the granulated particles.
2)結合剤(二次噴霧液):
結合剤としては、無機系・有機系を問わない。焼成により熱分解・揮散してアルミナ微粒子に実質的に残存しない有機系が望ましい。無機系の場合、残存すると触媒毒となるおそれがあり、アルミナ結晶の機能を阻害するおそれがある。有機系のうち、噴霧取扱い性に優れている水溶性有機高分子が望ましい。水溶性有機高分子としては、ポリビニルアルコール(PVAL)、ポリビニルアセタール・ポリビニルピロリドン、アクリルモノマー、セルロース誘導体(CMC・HPC・HPMC等)、澱粉等を好適に使用できる。
2) Binder (secondary spray):
The binder may be inorganic or organic. An organic system which is thermally decomposed and volatilized by firing and does not substantially remain in the alumina fine particles is desirable. In the case of an inorganic system, if it remains, it may become a catalyst poison, which may hinder the function of the alumina crystal. Among organic systems, a water-soluble organic polymer excellent in spray handling is desirable. As the water-soluble organic polymer, polyvinyl alcohol (PVAL), polyvinyl acetal / polyvinylpyrrolidone, acrylic monomer, cellulose derivative (CMC / HPC / HPMC, etc.), starch and the like can be suitably used.
この二次噴霧液の態様は、通常、水溶液とするが、適宜、極性溶剤を含有させて揮発度を調節してもよい。三次噴霧液の濃度は、1〜30%、望ましくは5〜15%とする。濃度が高いと、真球度の高い造粒体を得難くなる。 The secondary spray liquid is usually an aqueous solution, but a polar solvent may be appropriately added to adjust the volatility. The concentration of the tertiary spray solution is 1 to 30%, preferably 5 to 15%. When the concentration is high, it becomes difficult to obtain a granulated body with high sphericity.
なお、有機系の場合において、上記気孔形成剤と同一又は同種樹脂を使用して、別位置で噴霧して結合剤噴霧とすることも可能である。 In the case of an organic system, it is possible to use the same or the same kind of resin as the pore forming agent and spray it at a different position to form a binder spray.
3)滑剤
滑剤としては、造粒物の流動性を増大させるものなら、無機系・有機系を問わない。造粒物に付着した後、焼成により熱分解・揮散して分離操作が不要な有機系滑剤が望ましい。有機系滑剤としては、合成樹脂微粉体や、脂肪酸エステル類、金属石鹸、炭化水素類(パラフィンワックス等)、等を使用可能である。これらの内で吸水率が低い(例えば、ASTMD570:0.5%以下)合成樹脂微粉体が望ましい。取扱い性が良好で流動性増大作用が安定しているためである。具体的には、PMMA、ポリエチレン、ポリエステル(PET)、等の微粉体を挙げることができる。これらの滑剤の平均粒径は、1〜50μmとする。
3) Lubricant Any lubricant can be used as long as it increases the fluidity of the granulated product. An organic lubricant that adheres to the granulated material and is pyrolyzed and volatilized by firing and does not require a separation operation is desirable. As the organic lubricant, synthetic resin fine powder, fatty acid esters, metal soaps, hydrocarbons (such as paraffin wax), and the like can be used. Of these, a synthetic resin fine powder having a low water absorption rate (for example, ASTM D570: 0.5% or less) is desirable. This is because the handleability is good and the fluidity increasing action is stable. Specific examples include fine powders such as PMMA, polyethylene, and polyester (PET). The average particle size of these lubricants is 1 to 50 μm.
本発明は、アルミナ微粉体からなる原料を、パン型の回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒物を焼成する焼成工程とを含む、ことを前提とする。 The present invention provides a granulation step of wet granulating a raw material made of fine alumina powder using a tumbling granulator equipped with a pan-type rotating dish while spraying with a liquid agent, and a firing step of firing the granulated product Assuming that
本造粒工程は、下記1)一次噴霧工程、2)二次噴霧工程、及び、3)整粒工程、の各副工程を含むものとする。 This granulation step includes the following sub-steps of 1) primary spraying step, 2) secondary spraying step, and 3) granulating step.
より具体的には、下記の如く行う。以下の説明で、噴霧量の単位:部/minは、アルミナ原料100部に対するものである。 More specifically, it is performed as follows. In the following description, the unit of spray amount: part / min is based on 100 parts of the alumina raw material.
噴霧工程等に先立ち、一次噴霧液および二次噴霧液を調製する。また、それらの噴霧液を噴霧するために、各噴霧液とエアとを混合噴霧する二流体アトマイザー(噴霧器)を転動造粒機に2基付設する(図示せず。)。そして、本実施形態では、各噴霧器のノズルは、回転皿17の排出部位(排出シュート19)から斜め上方に伸びる傾斜直径(傾斜角度30〜45°)Dに沿って配する。ここで、噴霧ノズルを傾斜直径Dに沿って配するのは、噴霧器ノズル相互の離間距離(横(水平)方向および縦方向)を取りやすく、噴霧時の噴霧液相互に重なりが発生し難いためである。 Prior to the spraying process, a primary spray solution and a secondary spray solution are prepared. Moreover, in order to spray those spray liquids, two two-fluid atomizers (sprayer) which mix and spray each spray liquid and air are attached to a rolling granulator (not shown). And in this embodiment, the nozzle of each sprayer is distribute | arranged along the inclination diameter (inclination angle 30-45 degrees) D which extends diagonally upwards from the discharge | emission site | part (discharge chute 19) of the rotating tray 17. FIG. Here, the spray nozzles are arranged along the inclined diameter D because the sprayer nozzles are easily separated from each other (lateral (horizontal) direction and vertical direction), and the spray liquids during spraying are unlikely to overlap each other. It is.
図例では、45°方向の傾斜直径に沿って、原料投入部位側から、一次噴霧部位A帯および二次噴霧部位B帯に、それぞれ、略同一幅で噴霧可能に各噴霧ノズルを配する。このときの噴霧幅は、回転皿の内径が300mmの場合、それぞれ、50〜75mmとする。 In the illustrated example, spray nozzles are arranged along the inclined diameter in the 45 ° direction from the raw material charging site side to the primary spray site A zone and the secondary spray site B zone so as to enable spraying with substantially the same width. The spray width at this time is 50 to 75 mm, respectively, when the inner diameter of the rotating dish is 300 mm.
そして、回転皿を、回転数:15〜60min-1、望ましくは25〜45min-1の範囲で、傾斜角度:20〜70°、望ましくは40〜70°の範囲で、原料の平均粒径に対応させて回転させておく。これらの条件は、回転皿内の造粒状態等を監視しながら、適宜調節する。これらの回転数、傾斜角度範囲外では、原料、一次噴霧後原料、二次噴霧後原料を分級させながら転動循環させることが困難となる。 Then, the rotating dish is adjusted to the average particle diameter of the raw material at the rotation speed: 15 to 60 min −1 , desirably 25 to 45 min −1 , and the inclination angle 20 to 70 °, desirably 40 to 70 °. Rotate in correspondence. These conditions are appropriately adjusted while monitoring the granulation state in the rotating dish. Outside these rotational speed and tilt angle ranges, it is difficult to roll and circulate while classifying the raw material, the raw material after primary spraying, and the raw material after secondary spraying.
なお、粒子が濡れ状態(湿態時)では安息角が大きくなるため、傾斜角度も相対的に大きく設定する必要がある。 In addition, since the angle of repose becomes large when the particles are wet (in a wet state), it is necessary to set the inclination angle relatively large.
1)一次噴霧工程:
運転中の回転皿17の原料投入部位(A帯の上側部)に、アルミナ微粉体である原料(低ソーダアルミナ微粉)を投入する。
1) Primary spraying process:
The raw material (low soda alumina fine powder) which is fine alumina powder is charged into the raw material charging portion (the upper part of the A band) of the rotating dish 17 during operation.
投入原料は、回転皿17の外周部(リム部17a内側)に沿って一次転動循環する。すなわち、遠心力により回転皿の外周部に沿って、回転皿の下端外周部を経て回転皿の上端部を超えてA帯上方位置まで持ち上げられた後、重力が遠心力に勝ることにより反転して、大円弧を描いて、A帯を経る一次転動循環をする。 The input material circulates in a primary rolling manner along the outer peripheral portion (inside the rim portion 17a) of the rotating dish 17. In other words, after being lifted by the centrifugal force along the outer periphery of the rotating dish, through the lower end outer peripheral part of the rotating dish and beyond the upper end of the rotating dish to the position above the A band, the gravity is reversed by surpassing the centrifugal force. Then, draw a large arc and perform primary rolling circulation through the A band.
該A帯(一次転動循環の反転側部位、望ましくは反転直後部位)で、投入原料に対して、気孔形成剤(一次噴霧液)を一次噴霧する(図4(1)参照)。 A pore-forming agent (primary spray solution) is primarily sprayed to the input raw material in the A zone (a part on the reversal side of the primary rolling circulation, preferably a part immediately after the reversal) (see FIG. 4 (1)).
反転直後部位では、転動循環する原料の下方への広がりが殆どなく、粉体の集合密度が高いうちに噴霧でき、噴霧効率が良好となる(二次噴霧も同様である)。 In the part immediately after reversal, the raw material that circulates and circulates almost no downward, and can be sprayed while the aggregate density of the powder is high, and the spray efficiency is good (the same applies to the secondary spray).
この気孔形成剤は、一次噴霧後原料の粒子相互を凝集させて一次造粒すると同時に、気孔形成剤の液滴径により粒子相互間の間隙を制御して、焼成工程で形成される気孔径の調節作用を担う(図4(2))。 This pore-forming agent aggregates the particles of the raw material after the primary spraying and performs primary granulation, and at the same time, controls the gap between the particles by the droplet size of the pore-forming agent, and has the pore size formed in the firing step. Responsible for regulation (Fig. 4 (2)).
二次噴霧の噴霧条件は、液滴径:10〜1000μm、望ましくは10〜30μm、単位時間噴霧量:0.01〜4.5部/min、望ましくは1〜3部/minの範囲で適宜選定する。合計噴霧量は、アルミナ原料粉100部に対して、1〜30部、望ましくは、1〜25部とする。 The spraying conditions for the secondary spraying are appropriately selected in the range of droplet diameter: 10 to 1000 μm, desirably 10 to 30 μm, unit time spraying amount: 0.01 to 4.5 parts / min, desirably 1 to 3 parts / min. The total spray amount is 1 to 30 parts, preferably 1 to 25 parts, per 100 parts of the alumina raw material powder.
気孔形成剤の単位時間噴霧量乃至合計噴霧量が少ないと、十分な気孔密度乃至連続孔を造粒焼成物に得難い。逆に、単位時間噴霧量乃至合計噴霧量が多いと、気孔径のバラツキ度や気孔密度が高くなって造粒形状が異形乃至不揃いとなりやすい。 When the unit time spray amount or the total spray amount of the pore forming agent is small, it is difficult to obtain a sufficient pore density or continuous pores in the granulated fired product. On the other hand, when the spray amount per unit time or the total spray amount is large, the degree of variation in pore diameter and the pore density increase, and the granulated shape tends to be irregular or irregular.
2)二次噴霧工程:
上記一次噴霧液が被覆された粒子からなる一次噴霧後原料(微粉体)は、一次転動循環の内側を二次転動循環する。すなわち、一次噴霧後原料は、気孔形成剤の被覆さらには一次造粒により重量が増大するため、重力の遠心力に勝る位置が、投入原料よりも手前側となり、A帯の上方位置まで至らず反転して、中円弧を描いて、B帯を経る二次転動循環をする。
2) Secondary spraying process:
The primary sprayed raw material (fine powder) composed of particles coated with the primary spray liquid is circulated in a secondary rolling manner inside the primary rolling circulation. That is, since the raw material after the primary spray increases in weight due to the pore forming agent coating and further the primary granulation, the position superior to the centrifugal force of gravity is in front of the input raw material and does not reach the position above the A band. Invert, draw a middle arc, and perform secondary rolling circulation through the B band.
なお、一次噴霧液で被覆されなかった粒子群は、一次転動循環されてA帯に至って一次噴霧が繰り返される。 In addition, the particle group which was not coat | covered with the primary spray liquid is primary-rolled and circulated, reaches A zone | band, and primary spray is repeated.
そして、上記B帯(二次転動循環の反転側部位)で、一次噴霧後原料に対して結合剤(二次噴霧液)を二次噴霧する。 Then, the binder (secondary spray liquid) is secondarily sprayed on the raw material after the primary spraying in the B band (reverse side portion of the secondary rolling circulation).
このときの噴霧条件は、液滴径:10〜1000μm、望ましくは10〜30μm、単位時間噴霧量:0.01〜4.5部/min、望ましくは1〜3部/minの範囲で適宜選定する。合計噴霧量は、アルミナ原料粉100部に対して、1〜30部、望ましくは、1〜25部とする。 The spraying conditions at this time are appropriately selected within the range of droplet diameter: 10 to 1000 μm, desirably 10 to 30 μm, unit time spraying amount: 0.01 to 4.5 parts / min, desirably 1 to 3 parts / min. The total spray amount is 1 to 30 parts, preferably 1 to 25 parts, per 100 parts of the alumina raw material powder.
気孔形成剤の単位時間噴霧量乃至合計噴霧量が少ないと十分な気孔密度乃至連続孔を造粒焼成物に得難い。逆に、単位時間噴霧量乃至合計噴霧量が多いと、気孔径のバラツキ度や気孔密度が高くなって造粒形状が異形乃至不揃いとなりやすい。 If the unit time spray amount or the total spray amount of the pore forming agent is small, it is difficult to obtain a sufficient pore density or continuous pores in the granulated fired product. On the other hand, when the spray amount per unit time or the total spray amount is large, the degree of variation in pore diameter and the pore density increase, and the granulated shape tends to be irregular or irregular.
3)整粒工程:
上記二次噴霧液で一次造粒物の粒子が被覆された二次噴霧後原料は、二次転動循環と略重なるB帯の内側寄りを通過する小径の転動循環をしながら、さらには二次噴霧も繰り返されて、造粒の成長が進行して所要径の二次造粒物(製品造粒物)に整粒される。その後、製品造粒物は排出シュート19から排出される。
3) Granulation process:
The raw material after secondary spraying, in which the particles of the primary granulated material are coated with the secondary spray liquid, while rolling with a small diameter passing through the inner side of the B zone, which substantially overlaps with the secondary rolling circulation, Secondary spraying is also repeated, and the growth of granulation proceeds and the secondary granulated product (product granulated product) having a required diameter is sized. Thereafter, the product granulated material is discharged from the discharge chute 19.
なお、原料の追加投入に際して、前記滑剤を添加することが望ましい。各噴霧後原料の回転皿リムに付着するのを防止するとともに、原料の解砕がより円滑に行われるためである。このときの滑剤の添加量は、追加投入する原料粉末100部に対して1〜50部、望ましくは10〜40部とする。 In addition, it is desirable to add the lubricant when the raw materials are added. This is because the raw material is prevented from adhering to the rotating dish rim after spraying, and the raw material is crushed more smoothly. The addition amount of the lubricant at this time is 1 to 50 parts, preferably 10 to 40 parts with respect to 100 parts of the raw material powder to be additionally charged.
次に、上記で調製した製品造粒物を、電気炉等を用いて、焼成処理を行って焼成させる。焼成工程のモデル断面図を図5に示す。 Next, the product granulated product prepared above is fired using an electric furnace or the like. A model cross-sectional view of the firing process is shown in FIG.
このときの焼成条件を下記する。 The firing conditions at this time are described below.
昇温速度:100〜700℃/h、望ましくは200〜400℃/hとする。昇温速度が速すぎると、焼成物にクラックが発生しやすくなる。逆に遅すぎると、生産性が低下する。 Temperature increase rate: 100 to 700 ° C./h, desirably 200 to 400 ° C./h. If the heating rate is too high, cracks are likely to occur in the fired product. Conversely, if it is too slow, productivity will decrease.
到達温度・保持時間は、造粒物をγアルミナとする場合、500〜1100℃×1〜24h、望ましくは600〜1100℃×1〜20hとする。また、造粒物をαアルミナとする場合、1500〜2000℃×0.1〜3h、望ましくは、1650〜1850℃×0.5〜1hとする。 When the granulated product is γ-alumina, the ultimate temperature and the holding time are 500 to 1100 ° C. × 1 to 24 hours, preferably 600 to 1100 ° C. × 1 to 20 hours. When the granulated product is α-alumina, the temperature is 1500 to 2000 ° C. × 0.1 to 3 hours, preferably 1650 to 1850 ° C. × 0.5 to 1 hour.
この焼成工程において、図5A・B・C・Dに示す如く、焼成が進行するにしたがって、造粒物粒子は縮み、気孔径も縮径して圧縮強度が漸増する。こうして、図1に示す如く、主として連通する気孔が造粒焼成物の造粒物粒子における断面全体に網目状に形成される。 In this firing step, as shown in FIGS. 5A, B, C, and D, as the firing proceeds, the granulated particles shrink, the pore diameter also shrinks, and the compressive strength gradually increases. In this way, as shown in FIG. 1, pores communicating mainly are formed in a mesh shape over the entire cross section of the granulated particles of the granulated fired product.
以上、原料がアルミナ微粉体である場合を例に採り説明したが、本発明は、アルミナ微粉体をセラミック微粉体に替えた下記構成のセラミック微粉焼成物(1)及びその製造方法(2)にも及ぶものである。 As described above, the case where the raw material is an alumina fine powder has been described as an example, but the present invention relates to a ceramic fine powder fired product (1) having the following configuration in which the alumina fine powder is replaced with a ceramic fine powder, and a manufacturing method (2) thereof. It also extends.
(1) 無数のセラミック粒子同士が、主として連通する気孔を造粒物粒子の断面全体に網目状に残存させて固結してなる多孔質造粒焼成物であって、該セラミック粒子相互が、気孔を残存させて固結されてなる、粒子全体に網目状の気孔が形成されてことを特徴とする。 (1) A porous granulated fired product in which countless ceramic particles remain in a net-like manner in which the pores that mainly communicate with each other remain in the entire cross section of the granulated particles, and the ceramic particles are A network-like pore is formed in the whole particle, which is solidified with the pores remaining.
(2) 上記多孔質造粒焼成物の製造方法であって、
セラミック微粉体からなる原料を、回転皿を備えた転動造粒機を用いて液剤噴霧しながら湿式造粒する造粒工程と、該造粒物を焼成する焼成工程とを含み、
前記造粒工程は、
1)回転皿の斜め下方部に位置する排出部に対向する上方部側から投入して、回転皿の外周部に沿って一次転動循環をする投入原料に対して、気孔形成剤を一次噴霧する工程、
2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して、結合剤を二次噴霧する工程、及び、
3) 二次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒物に整粒する工程、
の各副工程を含み、
前記一次・二次噴霧を、それぞれ、一次・二次転動循環する反転側部位で行う、ことを特徴とする。
(2) A method for producing the porous granulated fired product,
Including a granulation step of wet granulating a raw material made of ceramic fine powder while spraying with a liquid agent using a rolling granulator equipped with a rotating dish, and a firing step of firing the granulated product,
The granulation step includes
1) The pore forming agent is primary sprayed on the charged raw material that is charged from the upper part side facing the discharge part located at the obliquely lower part of the rotating dish and performs primary rolling circulation along the outer peripheral part of the rotating dish. The process of
2) a step of secondary spraying the binder on the raw material after the primary spraying that undergoes secondary rolling circulation inside the primary rolling circulation; and
3) The step of granulating the raw material after secondary spraying into a granulated product of the required diameter by further granulating growth by rolling.
Each sub-process of
The primary / secondary spraying is performed at the reversing side portions where the primary / secondary rolling circulation is performed, respectively.
上記原料(微粉体)となるセラミックとしては、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化カルシウム(CaO)、酸化ベリリウム(BeO)等を挙げることができる。 Examples of the ceramic as the raw material (fine powder) include magnesium oxide (MgO), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), calcium oxide (CaO), and beryllium oxide (BeO).
以下、本発明の効果を確認するために比較例とともに行った実施例について説明する。なお、転動造粒機は、実施例・比較例ともに、内径300mmの回転皿を備えたものを使用した。そして、回転皿におけるA帯およびB帯は前述の図2に示す通りである。 Examples carried out together with comparative examples to confirm the effects of the present invention will be described below. The rolling granulator used in both the examples and comparative examples was equipped with a rotating dish having an inner diameter of 300 mm. And the A belt | band | zone and B belt | band | zone in a rotating plate are as showing in above-mentioned FIG.
また、使用原料および薬剤、仕様は、それぞれ下記の通りである。 In addition, the raw materials used, the chemicals, and the specifications are as follows.
1)原料
・仮焼アルミナ微粉体(低ソーダアルミナ)・・・平均粒径:2.5μm、Na2O:0.08%、比表面積:1.4g/m2
2)薬剤
・気孔形成剤(一次次噴霧液)・・・PVAC(平均粒径:10μm)の10%エマルション、PVAC粒径:1μm
・結合剤(二次噴霧液)・・・PVALの10%水溶液、
・滑剤・・・PMMA微粉体(平均粒径5μm)。
1) Raw materials-Calcined alumina fine powder (low soda alumina) ... average particle diameter: 2.5 µm, Na 2 O: 0.08%, specific surface area: 1.4 g / m 2
2) Drugs ・ Porosity forming agent (primary spray solution): 10% emulsion of PVAC (average particle size: 10 μm), PVAC particle size: 1 μm
・ Binder (secondary spray): 10% aqueous solution of PVAL,
・ Lubricant: PMMA fine powder (average particle size 5 μm).
<実施例1>
傾斜角度55°に調節され、回転数25min-1で回転する回転皿に原料投入部位から、低ソーダアルミナ100gを投入した後、適正な転動循環が原料粉体に発生するように回転数及び傾斜角度を調節しながら運転をする。そのとき回転数および傾斜角度の範囲は、前者:25〜35mm-1及び後者:55〜62°とした。
<Example 1>
After introducing 100 g of low soda alumina from a raw material charging site into a rotating dish that is adjusted to an inclination angle of 55 ° and rotates at a rotational speed of 25 min −1 , the rotational speed and the rotational speed are set so that proper rolling circulation occurs in the raw material powder. Operate while adjusting the tilt angle. At that time, the range of the rotation speed and the inclination angle was set to the former: 25 to 35 mm −1 and the latter: 55 to 62 °.
1)一次転動循環する投入原料に対して、A帯で気孔形成剤(一次噴霧液)を噴霧した。このとき、液滴径が10μmになるように噴霧圧・単位時間噴霧量を調節して噴霧した。このときの合計噴霧量は、原料100部に対して20部に設定した。そして、なお、二次噴霧液の単位時間噴霧量を2.5部/minに設定したので、噴霧合計時間は8分となる。 1) A pore-forming agent (primary spray solution) was sprayed in the A zone on the input raw material that undergoes primary rolling circulation. At this time, spraying was carried out while adjusting the spray pressure and the spray amount per unit time so that the droplet diameter was 10 μm. The total spray amount at this time was set to 20 parts with respect to 100 parts of the raw material. And since the unit time spray amount of the secondary spray liquid was set to 2.5 parts / min, the total spray time is 8 minutes.
2)二次転動循環する二次噴霧後原料に対して、B帯で結合剤(二次噴霧液)を噴霧した。このときの結合剤の合計噴霧量は、次の整粒工程を含めて、原料粉末100部に対して10部(固形分換算)に設定した。なお、二次噴霧液の単位時間噴霧量1.25部/minに設定して、前記一次噴霧液の合計噴霧時間8分と対応するようにした。同時噴霧して連続造粒を可能とするためである。 2) The binder (secondary spray solution) was sprayed in the B zone on the secondary sprayed raw material that circulates in a secondary rolling manner. The total spray amount of the binder at this time was set to 10 parts (in terms of solid content) with respect to 100 parts of the raw material powder including the next sizing step. The unit spray amount of the secondary spray solution was set to 1.25 parts / min so as to correspond to the total spray time of the primary spray solution of 8 minutes. This is to enable continuous granulation by simultaneous spraying.
3)二次噴霧後原料は、B帯の内側寄りを経る転動循環を繰り返して、造粒の成長が所要の造粒径となるまで整粒する。 3) The material after secondary spraying is sized until the growth of granulation reaches the required granulated particle size by repeating the rolling circulation through the inner side of the B band.
そして、この整粒の最終段階である造粒終了の直前、本実施例では10分前に、原料20部に滑剤5部を添加したものを、単位時間投入量2.5部/minとなるように、原料投入部位から分割投入した。 Then, immediately before the end of granulation, which is the final stage of the granulation, in this example, 10 parts before 10 minutes before adding 5 parts of lubricant to the raw material, the unit time input is 2.5 parts / min. In this way, it was dividedly charged from the raw material charging site.
上記転動造粒運転中において、回転皿内の温度は28℃以下18℃以上になるように、噴霧液の温度・単位時間噴霧量を調節した。温度が高すぎても低すぎても、噴霧液の揮発速度が速すぎたり、遅すぎたりして、造粒が円滑に行われないためである。なお、蒸発熱により回転皿内の温度が低下するために、回転皿の裏側位置に電熱ヒータを非接触式で配した。 During the rolling granulation operation, the temperature of the spray liquid and the spray amount per unit time were adjusted so that the temperature in the rotating dish was 28 ° C. or lower and 18 ° C. or higher. This is because if the temperature is too high or too low, the volatilization rate of the spray liquid is too fast or too slow, and granulation is not performed smoothly. In addition, in order to reduce the temperature in a rotating tray by evaporative heat, the electric heater was arrange | positioned by the non-contact type in the back side position of the rotating tray.
次に、こうして調製した湿式造粒物を、昇温速度300℃/hで到達温度900℃まで昇温させ3h保持後、さらに、同一昇温速度で到達温度1680℃まで昇温させ0.5h保持して、気孔が残存している焼成物(部分焼成物)とした。 Next, the wet granulated material thus prepared was heated to an ultimate temperature of 900 ° C. at a temperature rising rate of 300 ° C./h and held for 3 hours, and further heated to an ultimate temperature of 1680 ° C. at the same temperature rising rate for 0.5 h. The fired product (partially fired product) in which the pores remained was retained.
<比較例1>
実施例1において、非水溶性高分子分散液(PVAC分散液)の代わりに前記水溶性高分子液(PVAL分散液)を用いた以外は、同様の供給量・噴霧量、運転条件にして転動造粒した湿式造粒物を、同様の条件で焼成させた。
<Comparative Example 1>
In Example 1, except that the water-soluble polymer liquid (PVAL dispersion liquid) was used instead of the water-insoluble polymer dispersion liquid (PVAC dispersion liquid), the same feed amount, spray amount, and operating conditions were used. The wet granulated product obtained by dynamic granulation was fired under the same conditions.
こうして調製した実施例1・比較例1のSEM写真(50倍および1000倍)を図6に示す。SEM写真から、本発明品は、真球度の高い球形状であることが分かる。 FIG. 6 shows SEM photographs (50 times and 1000 times) of Example 1 and Comparative Example 1 thus prepared. It can be seen from the SEM photograph that the product of the present invention has a spherical shape with high sphericity.
また、おなじく比表面積、ソーダ成分および圧縮強度(粒子強度)も測定したので表1に示す。 The specific surface area, soda component, and compressive strength (particle strength) were also measured and are shown in Table 1.
実施例1および比較例1との結果から、下記のことが判明した。 From the results of Example 1 and Comparative Example 1, the following was found.
(1)実施例の粒子強度は、実施例1と同じ低ソーダアルミナを原料とする従来法による焼成物(比較例2)と略同等であった。 (1) The particle strength of the example was substantially the same as that of the fired product (comparative example 2) according to the conventional method using the same low soda alumina as that of example 1.
(2)実施例1の比表面積は、実施例1と同じ低ソーダアルミナを原料とする従来法による焼成物(比較例2)より若干大きい。気孔が均質であるためであると推定される。 (2) The specific surface area of Example 1 is slightly larger than the fired product obtained by the conventional method using the same low soda alumina as that of Example 1 (Comparative Example 2). It is assumed that the pores are homogeneous.
(3)実施例1のソーダ成分は原料の約1/4で、比較例1より少ない。 (3) The soda component of Example 1 is about 1/4 of the raw material and less than Comparative Example 1.
そして、各実施例・比較例の造粒物の走査型電子顕微鏡(SEM)写真を低倍率(×50倍)及び高倍率(×1000倍)で撮影した。それらのSEM写真を図6(A)・(B)に示す。図6のSEM写真から、本発明の実施例1は、比較例1と真球度が余り変わらないが、気孔率が高く、かつ、気孔密度もより均質であることが分かる。 And the scanning electron microscope (SEM) photograph of the granulated material of each Example and a comparative example was image | photographed with low magnification (* 50 time) and high magnification (* 1000 time). Those SEM photographs are shown in FIGS. 6 (A) and 6 (B). From the SEM photograph of FIG. 6, it can be seen that Example 1 of the present invention is not much different from the sphericity in Comparative Example 1, but has a high porosity and a more uniform pore density.
11 多孔質造粒焼成物の粒子
13 気孔
11 Porous granulated fired particles 13 Porosity
Claims (8)
アルミナ微粉体からなる原料を、回転皿を備えた転動造粒機を用いて結合剤を噴霧しながら湿式造粒する造粒工程と、該造粒物を焼成する焼成工程とを含み、
前記造粒工程は、
1)回転皿の斜め下方部に位置する排出部(排出シュート)に対向する上方部側から投入して、回転皿の外周部に沿って一次転動循環をする投入原料に対して、気孔形成剤を一次噴霧する工程、
2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して結合剤を二次噴霧する工程、
3)二次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒物に整粒する工程、
の各副工程を含み、
前記一次・二次噴霧を、それぞれ、一次・二次転動循環する反転側部位で行う、
ことを特徴とする多孔質造粒焼成物の製造方法。 Innumerable alumina particles are porous granulated fired products formed by solidifying the pores that mainly communicate with each other in the entire cross-section of the granulated particles, and the pores have pore diameters that form pores. are controlled by droplet size of agents, a process for the preparation of multi-porous granulated calcined product,
A raw material comprising alumina fine powder, including a granulation step of wet granulation while spraying a binder using a rolling granulator equipped with a rotating dish, and a firing step of firing the granulated product,
The granulation step includes
1) Porosity is formed in the raw material charged from the upper part facing the discharge part (discharge chute) located diagonally below the rotating dish and performing primary rolling circulation along the outer peripheral part of the rotating dish. A step of first spraying the agent,
2) a step of secondary spraying the binder on the raw material after the primary spraying that undergoes secondary rolling circulation inside the primary rolling circulation;
3) The step of granulating and growing the raw material after the secondary spray into a granulated product of a required diameter by further rolling circulation.
Each sub-process of
The primary and secondary sprays are respectively performed on the reversing side portions where the primary and secondary rolling circulation is performed.
A method for producing a porous granulated fired product.
セラミック微粉体からなる原料を、回転皿を備えた転動造粒機を用いて、結合剤を噴霧しながら湿式造粒する造粒工程と、該造粒物を焼成する焼成工程とを含み、
前記造粒工程は、
1)回転皿の斜め下方部に位置する排出部に対向する上方部側から投入して、回転皿の外周部に沿って一次転動循環をする投入原料に対して、気孔形成剤を一次噴霧する工程、
2)前記一次転動循環の内側を二次転動循環する一次噴霧後原料に対して結合剤を二次噴霧する工程、
3)二次噴霧後原料を、さらなる転動循環により造粒成長を進行させて所要径の造粒物に整粒する工程、
の各副工程を含み、
前記一次・二次噴霧を、それぞれ、一次・二次転動循環する反転側部位で行う、
ことを特徴とする多孔質造粒焼成物の製造方法。 An infinite number of ceramic particles are porous granulated fired products formed by solidifying pores that mainly communicate with pores in the entire cross section of the granulated particles, and the pores have a pore forming agent having an inner diameter. A method for producing a porous granulated fired product , which is controlled by the droplet diameter of
Using a rolling granulator equipped with a rotating dish with a raw material made of ceramic fine powder, including a granulation step of wet granulation while spraying a binder, and a firing step of firing the granulated product,
The granulation step includes
1) The pore forming agent is primary sprayed on the charged raw material that is charged from the upper part side facing the discharge part located at the obliquely lower part of the rotating dish and performs primary rolling circulation along the outer peripheral part of the rotating dish. The process of
2) a step of secondary spraying the binder on the raw material after the primary spraying that undergoes secondary rolling circulation inside the primary rolling circulation;
3) The step of granulating and growing the raw material after the secondary spray into a granulated product of a required diameter by further rolling circulation.
Each sub-process of
The primary and secondary sprays are respectively performed on the reversing side portions where the primary and secondary rolling circulation is performed.
A method for producing a porous granulated fired product .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013249525A JP6276011B2 (en) | 2013-12-02 | 2013-12-02 | Method for producing porous granulated fired product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013249525A JP6276011B2 (en) | 2013-12-02 | 2013-12-02 | Method for producing porous granulated fired product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015105223A JP2015105223A (en) | 2015-06-08 |
JP6276011B2 true JP6276011B2 (en) | 2018-02-07 |
Family
ID=53435572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013249525A Active JP6276011B2 (en) | 2013-12-02 | 2013-12-02 | Method for producing porous granulated fired product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6276011B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6276010B2 (en) * | 2013-12-02 | 2018-02-07 | 伊藤忠セラテック株式会社 | Method for producing porous granulated fired body |
ES2816673T3 (en) * | 2015-09-11 | 2021-04-05 | Saint Gobain Ceramics & Plastics Inc | Porous ceramic particle formation procedure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3469746B2 (en) * | 1997-07-25 | 2003-11-25 | 株式会社ノリタケカンパニーリミテド | Method for producing alumina-based porous carrier |
FR2780052B1 (en) * | 1998-06-23 | 2000-07-21 | Ceca Sa | ACTIVATED CARBON AGGLOMERATES, PROCESS FOR THEIR PREPARATION AND THEIR USE AS ADSORPTION AGENTS |
US20020197204A1 (en) * | 2001-05-31 | 2002-12-26 | Sumitomo Chemical Company, Limited | Method for producing alpha-alumina formed body |
JP4378674B2 (en) * | 2003-01-27 | 2009-12-09 | 株式会社エヌ・ケイ・エル | Coarse aggregate and method for producing the same |
JP4502683B2 (en) * | 2003-03-31 | 2010-07-14 | 日本タングステン株式会社 | Porous alumina sintered body and method for producing the same |
JP5231304B2 (en) * | 2009-03-26 | 2013-07-10 | 日本碍子株式会社 | Alumina porous body and method for producing the same |
JP2013220391A (en) * | 2012-04-17 | 2013-10-28 | Energia Eco Materia:Kk | Method and apparatus for manufacturing granulated substance |
KR101664648B1 (en) * | 2012-06-15 | 2016-10-10 | 가부시키가이샤 노리타케 캄파니 리미티드 | Alumina porous body and method for manufacturing same |
JP6276010B2 (en) * | 2013-12-02 | 2018-02-07 | 伊藤忠セラテック株式会社 | Method for producing porous granulated fired body |
JP6321357B2 (en) * | 2013-12-02 | 2018-05-09 | 伊藤忠セラテック株式会社 | Method for producing finely baked alumina powder |
-
2013
- 2013-12-02 JP JP2013249525A patent/JP6276011B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015105223A (en) | 2015-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6562977B2 (en) | Powder material used for powder additive manufacturing and powder additive manufacturing method using the same | |
CN106892648B (en) | Preparation method of spherical alumina | |
US3896196A (en) | Method of producing spherical thermoplastic particles | |
CN108178656B (en) | High-porosity porous ceramic microsphere and preparation method thereof | |
US3942903A (en) | Unitary porous themoplastic writing nib | |
JP6276011B2 (en) | Method for producing porous granulated fired product | |
NL8103692A (en) | COMPOSITE BINDING PREPARATION FOR FORMING POWDER. | |
EP3347328B1 (en) | Method of forming porous ceramic particles | |
US11639314B2 (en) | Porous fired granulated body and method for manufacturing the same | |
JP6321357B2 (en) | Method for producing finely baked alumina powder | |
JP6276010B2 (en) | Method for producing porous granulated fired body | |
WO2015079906A1 (en) | Thermal-spray material and thermal-spray coating film | |
JP6659872B2 (en) | High fluidity thermal spraying particles and method for producing the same | |
Amirjan et al. | Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres | |
JP2004122057A (en) | Fluidized bed apparatus | |
JPH03207763A (en) | Fine granules of rutile- blended pigment | |
JP2007216127A (en) | Method for manufacturing granulated powder, and granulated powder | |
JP4041769B2 (en) | Method for producing zirconia beads | |
JP2006315911A (en) | Ceramic granule | |
EP4194425A1 (en) | Eco-friendly simple processing of pure alkali silicate construction parts based on water-glass | |
JP4945729B2 (en) | Method for producing zirconia beads | |
JP2006027935A (en) | Forming method with ceramic nanoparticle by template method and its sintered compact | |
JPWO2007138806A1 (en) | Method for producing sintered titanium powder | |
WO2016004047A1 (en) | Spray drying mixed batch material for plasma melting | |
Sushma et al. | A review on pellets and pelletization techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6276011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |