JP6272033B2 - Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition - Google Patents

Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition Download PDF

Info

Publication number
JP6272033B2
JP6272033B2 JP2014000206A JP2014000206A JP6272033B2 JP 6272033 B2 JP6272033 B2 JP 6272033B2 JP 2014000206 A JP2014000206 A JP 2014000206A JP 2014000206 A JP2014000206 A JP 2014000206A JP 6272033 B2 JP6272033 B2 JP 6272033B2
Authority
JP
Japan
Prior art keywords
thin film
silicon
silicon oxide
gas
atomic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014000206A
Other languages
Japanese (ja)
Other versions
JP2015129317A (en
Inventor
章浩 西田
章浩 西田
広幸 内生蔵
広幸 内生蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2014000206A priority Critical patent/JP6272033B2/en
Publication of JP2015129317A publication Critical patent/JP2015129317A/en
Application granted granted Critical
Publication of JP6272033B2 publication Critical patent/JP6272033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法に関する。   The present invention relates to a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method.

酸化ケイ素や酸窒化ケイ素薄膜は、層間絶縁膜、キャパシタ膜、ゲート膜、バリア膜、ゲート絶縁膜等の電子部品の電子部材や光導波路、光スイッチ、光増幅器等の光通信用デバイスの光学部材として用いられる。近年、電子デバイスの高集積化、高密度化に伴って、 上記電子部材や光学部材は、微細化、精密化がなされており、これに対応できる酸化ケイ素や酸窒化ケイ素薄膜の製造方法が検討されている。   Silicon oxide and silicon oxynitride thin films are electronic members for electronic components such as interlayer insulating films, capacitor films, gate films, barrier films, and gate insulating films, and optical members for optical communication devices such as optical waveguides, optical switches, and optical amplifiers. Used as In recent years, along with higher integration and higher density of electronic devices, the above-mentioned electronic members and optical members have been miniaturized and refined, and methods for manufacturing silicon oxide and silicon oxynitride thin films that can handle this have been studied. Has been.

上記の酸化ケイ素や酸窒化ケイ素薄膜の製造方法としては、塗布熱分解法、ゾルゲル法、Chemical Vapor Deposition法(以下、CVD法と言う場合がある。)や原子層堆積法(以下、ALD法と言う場合がある。)等が挙げられるが、組成制御性、段差被覆性に優れること、量産化に適すること、ハイブリッド集積が可能であること等多くの長所を有しているので、CVD法、ALD法等のプレカーサを気化させて用いる方法が多く用いられており、得られる酸化ケイ素や酸窒化ケイ素薄膜の質が高いことからALD法が最適な製造方法である。   Examples of the method for producing the silicon oxide or silicon oxynitride thin film include a coating pyrolysis method, a sol-gel method, a chemical vapor deposition method (hereinafter sometimes referred to as a CVD method), an atomic layer deposition method (hereinafter referred to as an ALD method). However, since it has many advantages such as excellent composition controllability, step coverage, suitable for mass production, and capable of hybrid integration, the CVD method, A method of vaporizing a precursor such as the ALD method is often used, and the ALD method is an optimum manufacturing method because the quality of the obtained silicon oxide or silicon oxynitride thin film is high.

ALD法による酸化ケイ素や酸窒化ケイ素薄膜の製造方法としては、従来から、様々な製造方法が知られている。例えば、特許文献1には、(a)少なくとも1枚の基板をチャンバ内に位置決めするステップと、(b)該少なくとも1枚の基板をシリコン前駆体にさらすステップと、(c)該少なくとも1枚の基板をピリジン浸漬液にさらすステップと、(d)該少なくとも1枚の基板を酸化源にさらすステップとを含む方法によって、二酸化ケイ素を原子法堆積法によって低温で堆積することができることが開示されている。しかし、この方法を採用するためには、大型の装置の導入が必須なことや、工程が煩雑であることから、生産性が低いことが問題点となっており、特に膜質の良い薄膜を低温下で製造した場合には、1サイクル当たりに得られる膜厚が非常に薄くなってしまうことが大きな問題となっていた。
また、特許文献2には、CVD法等の化合物を気化させて薄膜を形成する方法に用いられる薄膜形成用原料に適したケイ素アルコキシド化合物が開示されている。また、該方法に用いられる反応ガスの1つとしてオゾンが挙げられている。しかし、特許文献2には、ALD法による酸化ケイ素又は酸窒化ケイ素薄膜の製造において、該ケイ素アルコキシド化合物とオゾンガスを組み合わせて用いた場合にのみ得られる特異的に優れた効果については、何等開示されていない。
Various methods for producing silicon oxide and silicon oxynitride thin films by the ALD method are conventionally known. For example, U.S. Patent No. 6,053,836 includes (a) positioning at least one substrate in a chamber, (b) exposing the at least one substrate to a silicon precursor, and (c) the at least one substrate. It is disclosed that silicon dioxide can be deposited at low temperatures by atomic deposition methods by a method comprising exposing the substrate to a pyridine soak solution and (d) exposing the at least one substrate to an oxidation source. ing. However, in order to adopt this method, it is essential to introduce a large-sized apparatus and the process is complicated, so the productivity is low, and in particular, a thin film with good film quality is a low temperature. When manufactured below, the problem is that the film thickness obtained per cycle becomes very thin.
Patent Document 2 discloses a silicon alkoxide compound suitable for a raw material for forming a thin film used in a method for forming a thin film by vaporizing a compound such as a CVD method. Moreover, ozone is mentioned as one of the reactive gases used for this method. However, Patent Document 2 discloses nothing specifically about the excellent effect obtained only when the silicon alkoxide compound and ozone gas are used in combination in the production of a silicon oxide or silicon oxynitride thin film by the ALD method. Not.

特開2012−142611号公報JP 2012-142611 A 国際公開2005/085175号公報International Publication No. 2005/085175

CVD法等の化合物を気化させて薄膜を形成する原料に適する化合物(プレカーサ)に求められる性質は、融点が低く液体の状態で輸送が可能であること、液体の粘度が低いこと、蒸気圧が大きく気化させやすいこと、熱安定性が高いことである。特にALD法によって酸化ケイ素や酸窒化ケイ素薄膜を得る場合においては、低い温度で、生産性良く、良質な薄膜を得ることができ、さらに広い温度範囲で薄膜を得ることができる酸化ケイ素や酸窒化ケイ素薄膜の製造方法が求められていた。より具体的には、基体温度がケイ素化合物を気化させて安定的に基体が設置された成膜チャンバー内に供給するために必要な温度から250℃以下の温度範囲で、生産性良く、良質な酸化ケイ素や酸窒化ケイ素薄膜を得ることができる原子層堆積法による酸化ケイ素や酸窒化ケイ素薄膜の製造方法が求められていた。   The properties required of a compound (precursor) suitable for a raw material for vaporizing a compound such as a CVD method to form a thin film are that the melting point is low and that it can be transported in a liquid state, the liquid has a low viscosity, and the vapor pressure is low. It is easy to vaporize greatly and has high thermal stability. In particular, when obtaining a silicon oxide or silicon oxynitride thin film by the ALD method, it is possible to obtain a good quality thin film with low productivity at a low temperature, and silicon oxide or oxynitride capable of obtaining a thin film over a wider temperature range. There has been a demand for a method for producing a silicon thin film. More specifically, the substrate temperature is high in productivity and good quality within a temperature range of 250 ° C. or lower from the temperature necessary for vaporizing the silicon compound and supplying it stably into the film forming chamber in which the substrate is installed. There has been a demand for a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method capable of obtaining a silicon oxide or silicon oxynitride thin film.

本発明者は、検討を重ねた結果、特定の工程を有することを特徴とする原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法が上記課題を解決し得ることを知見し、本発明に到達した。   As a result of repeated studies, the present inventor has found that a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method characterized by having a specific process can solve the above problems, and the present invention. Reached.

即ち、本発明は、原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法において、(A)基体が設置された成膜チャンバー内に下記一般式(1)で表されるケイ素化合物を供給する工程(以下、(A)工程と略す場合がある。)及び(B)基体が設置された成膜チャンバー内にオゾンを供給する工程(以下、(B)工程と略す場合がある。) を有することを特徴とする原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法を提供するものである。   That is, according to the present invention, in a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method, (A) a silicon compound represented by the following general formula (1) is supplied into a film forming chamber in which a substrate is installed. And (B) a step of supplying ozone into the film formation chamber in which the substrate is installed (hereinafter may be abbreviated as (B) step). The present invention provides a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method.

(式中、R1〜R4は各々独立に水素又は炭素数1〜5の直鎖若しくは分岐状のアルキル基を表し、Aは炭素数1〜8のアルカンジイル基を表す。) (In the formula, R 1 to R 4 each independently represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms, and A represents an alkanediyl group having 1 to 8 carbon atoms.)

本発明によれば、原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法において、基体温度が上記一般式(1)で表されるケイ素化合物を気化させて安定的に基体に供給するために必要な温度から250℃以下の温度範囲である場合にも、良質な酸化ケイ素又は酸窒化ケイ素薄膜を得ることができる。より具体的には、基体温度が100℃〜250℃の温度範囲である場合にも、生産性よく良質な薄膜を得ることができる。   According to the present invention, in a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method, the substrate temperature is supplied to the substrate stably by vaporizing the silicon compound represented by the general formula (1). Even when the temperature is in the range of 250 ° C. or lower from the temperature required for the above, a good quality silicon oxide or silicon oxynitride thin film can be obtained. More specifically, even when the substrate temperature is in the temperature range of 100 ° C. to 250 ° C., a good quality thin film can be obtained with high productivity.

図1は、本発明に係る原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法に用いられる原子層堆積法用装置の一例を示す概要図である。FIG. 1 is a schematic diagram showing an example of an apparatus for an atomic layer deposition method used in a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method according to the present invention. 図2は、本発明に係る原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法に用いられる原子層堆積法用装置の別の例を示す概要図である。FIG. 2 is a schematic diagram showing another example of an apparatus for atomic layer deposition used in the method for producing a silicon oxide or silicon oxynitride thin film by atomic layer deposition according to the present invention. 図3は、本発明に係る原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法に用いられる原子層堆積法用装置の別の例を示す概要図である。FIG. 3 is a schematic view showing another example of an apparatus for an atomic layer deposition method used in the method for producing a silicon oxide or silicon oxynitride thin film by the atomic layer deposition method according to the present invention. 図4は、本発明に係る原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法に用いられる原子層堆積法用装置の別の例を示す概要図である。FIG. 4 is a schematic diagram showing another example of an apparatus for atomic layer deposition used in the method for producing a silicon oxide or silicon oxynitride thin film by atomic layer deposition according to the present invention.

以下、本発明の原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法について、好ましい実施形態に基づき詳細に説明する。
先ず、本発明の製造方法における(A)工程に用いられる上記一般式(1)で表されるケイ素化合物について説明する。
Hereinafter, a method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method of the present invention will be described in detail based on preferred embodiments.
First, the silicon compound represented by the general formula (1) used in the step (A) in the production method of the present invention will be described.

上記一般式(1)において、R1〜R4は各々独立に水素又は炭素数1〜5の直鎖又は分岐状のアルキル基を表す。R1〜R4で表される炭素数1〜5の直鎖又は分岐状のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、ペンチル、第二ペンチル、第三ペンチル、イソペンチル、ネオペンチルが挙げられる。また、上記一般式(I)において、Aで表される炭素数1〜8のアルカンジイル基としては、直鎖でもよく、任意の位置に1以上の分岐を有していてもよい。このようなアルカンジイル基としては、メチレン、エチレン、プロパン−1,3−ジイル、プロパン−1,2−ジイル、ブチレン、ブタン−1,3−ジイル、ブタン−2,3−ジイル、ブタン−1,2−ジイル、ペンタン−1,5−ジイル、ペンタン−1,3−ジイル、ペンタン−1,4−ジイル、ペンタン−2,3−ジイル、ヘキサン−1,6−ジイル、ヘキサン−1,2−ジイル、ヘキサン−1,3−ジイル、ヘキサン−1,4−ジイル、ヘキサン−2,5−ジイル、ヘキサン−2,4−ジイル、ヘキサン−3,4−ジイル、ヘプチレン、オクチレン、エタン−1,1−ジイル、プロパン−2,2−ジイル等が挙げられる。 In the general formula (1), R 1 to R 4 each independently represent hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms. Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 1 to R 4 include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, isobutyl, pentyl, sec Examples include pentyl, tertiary pentyl, isopentyl, and neopentyl. In the general formula (I), the alkanediyl group having 1 to 8 carbon atoms represented by A may be a straight chain or may have one or more branches at any position. Such alkanediyl groups include methylene, ethylene, propane-1,3-diyl, propane-1,2-diyl, butylene, butane-1,3-diyl, butane-2,3-diyl, butane-1 , 2-diyl, pentane-1,5-diyl, pentane-1,3-diyl, pentane-1,4-diyl, pentane-2,3-diyl, hexane-1,6-diyl, hexane-1,2 -Diyl, hexane-1,3-diyl, hexane-1,4-diyl, hexane-2,5-diyl, hexane-2,4-diyl, hexane-3,4-diyl, heptylene, octylene, ethane-1 , 1-diyl, propane-2,2-diyl and the like.

上記一般式(1)において、R1〜R4及びAは、常温常圧下において、上記一般式(1)で表されるケイ素化合物が液体状態であり、蒸気圧が大きくなるものが好ましい。具体的には、Aがメチレン又はエチレンである場合は蒸気圧が高いことから好ましく、メチレンである場合は特に蒸気圧が高いことから特に好ましい。また、R1及びR2は、R1、R2の少なくとも一方が水素である場合は、酸化ケイ素又は酸窒化ケイ素膜を製造する際にオゾンと組み合わせて用いた場合に酸化ケイ素又は酸窒化ケイ素膜を製造する温度を低くすることができる効果が高いことから好ましい。
中でも、R1が水素であり、R2が炭素数1〜5の直鎖又は分岐状のアルキル基である場合はオゾンと組み合わせて用いた場合に酸化ケイ素又は酸窒化ケイ素膜を製造する温度を低くすることができる効果が高いことから好ましく、メチル基である場合は前述の効果が特に高いことから好ましい。R3及びR4は、各々独立に水素又は炭素数1〜3の直鎖若しくは分岐状のアルキル基である場合は蒸気圧が高いことから好ましい。また、R1が水素であり、R2〜R4がメチル基であり、Aがメチレンである場合は蒸気圧が高く、酸化ケイ素又は酸窒化ケイ素膜を製造する際にオゾンと組み合わせて用いた場合に酸化ケイ素又は酸窒化ケイ素膜を製造する温度を低くすることができる効果が高いことから特に好ましい。
In the general formula (1), R 1 to R 4 and A are preferably those in which the silicon compound represented by the general formula (1) is in a liquid state and has a high vapor pressure under normal temperature and normal pressure. Specifically, when A is methylene or ethylene, it is preferable because of high vapor pressure, and when it is methylene, it is particularly preferable because of high vapor pressure. Further, R 1 and R 2, R 1, when at least one of R 2 is hydrogen, silicon oxide or silicon oxynitride when used in combination with ozone in the manufacture of silicon oxide or silicon oxynitride film It is preferable because the effect of reducing the temperature for producing the film is high.
In particular, when R 1 is hydrogen and R 2 is a linear or branched alkyl group having 1 to 5 carbon atoms, the temperature at which the silicon oxide or silicon oxynitride film is produced when used in combination with ozone The effect that can be lowered is preferable because it is high, and a methyl group is preferable because the above-described effect is particularly high. R 3 and R 4 are each preferably hydrogen or a linear or branched alkyl group having 1 to 3 carbon atoms because of high vapor pressure. In addition, when R 1 is hydrogen, R 2 to R 4 are methyl groups, and A is methylene, the vapor pressure is high and used in combination with ozone when producing a silicon oxide or silicon oxynitride film. In particular, it is particularly preferable since the effect of reducing the temperature for producing the silicon oxide or silicon oxynitride film is high.

上記一般式(1)で表されるケイ素化合物としては、例えば、下記化学式No.1〜No.18で表されるケイ素化合物が挙げられる。尚、下記化学式中において「Me」はメチル基を表し、「Et」はエチル基を表す。   As a silicon compound represented by the general formula (1), for example, the following chemical formula No. 1-No. A silicon compound represented by 18 is mentioned. In the chemical formulas below, “Me” represents a methyl group, and “Et” represents an ethyl group.

上記一般式(1)で表されるケイ素化合物は、その製造方法により特に制限されることはなく、周知の反応を応用して製造される。製造方法としては、該当するアミノアルコールを用いた周知一般のアルコキシド化合物の合成方法を応用することができ、例えば、珪素のハロゲン化物、硝酸塩等の無機塩又はその水和物と、該当するアルコール化合物とを、ナトリウム、水素化ナトリウム、ナトリウムアミド、水酸化ナトリウム、ナトリウムメチラート、アンモニア、アミン等の塩基の存在下で反応させる方法、珪素のハロゲン化物、硝酸塩等の無機塩又はその水和物と、該当するアルコール化合物のナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等のアルカリ金属アルコキシドとを反応させる方法、珪素のメトキシド、エトキシド、イソプロポキシド、ブトキシド等の低分子アルコールのアルコキシド化合物と、該当するアルコール化合物とを交換反応させる方法、珪素のハロゲン化物、硝酸塩等の無機塩と反応性中間体を与える誘導体とを反応させて、反応性中間体とし、これと該当するアルコール化合物とを反応させる方法が挙げられる。反応性中間体としては、テトラキス( ジアルキルアミノ) 珪素、テトラキス( ビス( トリメチルシリル) アミノ) 珪素、珪素のアミド化合物等が挙げられる。   The silicon compound represented by the general formula (1) is not particularly limited by the production method, and is produced by applying a known reaction. As a production method, a known general alkoxide compound synthesis method using a corresponding amino alcohol can be applied. For example, inorganic salts such as silicon halides and nitrates or hydrates thereof, and corresponding alcohol compounds And an inorganic salt such as a halide of silicon or a nitrate thereof, or a hydrate thereof, in the presence of a base such as sodium, sodium hydride, sodium amide, sodium hydroxide, sodium methylate, ammonia or amine. , A method of reacting the corresponding alcohol compound with an alkali metal alkoxide such as sodium alkoxide, lithium alkoxide, potassium alkoxide, etc., an alkoxide compound of a low molecular alcohol such as silicon methoxide, ethoxide, isopropoxide, butoxide, and the corresponding alcohol compound And Method of conversion reaction, a halide of silicon, is reacted with a derivative giving the reactive intermediate with an inorganic salt of nitrate, a reactive intermediate, and a method of reacting the alcohol compound corresponding thereto. Examples of the reactive intermediate include tetrakis (dialkylamino) silicon, tetrakis (bis (trimethylsilyl) amino) silicon, silicon amide compounds, and the like.

上記一般式(1)で表されるケイ素化合物の形態は使用される輸送供給方法等の手法により適宜選択されるものである。   The form of the silicon compound represented by the general formula (1) is appropriately selected depending on the method of transport and supply used.

上記輸送供給方法としては、上記一般式(1)で表されるケイ素化合物を、原料容器中で加熱及び/又は減圧することにより気化させ、必要に応じて用いられるアルゴン、窒素、ヘリウム等のキャリアガスと共に、基体が設置された成膜チャンバー内(以下、堆積反応部と記載することもある)へと導入する気体輸送法、上記一般式(1)で表されるケイ素化合物を、液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて、成膜チャンバー内へと導入する液体輸送法がある。気体輸送法の場合は、上記一般式(1)で表されるケイ素化合物そのものであり、液体輸送法の場合は、上記一般式(1)で表されるケイ素化合物そのもの又は該化合物を有機溶剤に溶かした溶液であり、これらは、更に、求核性試薬を含んでもよい。   As the transport and supply method, the silicon compound represented by the general formula (1) is vaporized by heating and / or decompressing in a raw material container, and a carrier such as argon, nitrogen, and helium used as necessary. A gas transport method for introducing into a film forming chamber (hereinafter sometimes referred to as a deposition reaction section) where a substrate is installed together with a gas, a silicon compound represented by the above general formula (1), a liquid or a solution In this state, there is a liquid transport method in which the material is transported to the vaporizing chamber, vaporized by heating and / or decompressing in the vaporizing chamber, and introduced into the film forming chamber. In the case of the gas transport method, it is the silicon compound itself represented by the general formula (1). In the case of the liquid transport method, the silicon compound itself represented by the general formula (1) or the compound is used as an organic solvent. These are dissolved solutions, which may further contain a nucleophilic reagent.

上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることが出来る。該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1−シアノプロパン、1−シアノブタン、1−シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3−ジシアノプロパン、1,4−ジシアノブタン、1,6−ジシアノヘキサン、1,4−ジシアノシクロヘキサン、1,4−ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられ、これらは、溶質の溶解性、使用温度と沸点、引火点の関係等により、単独又は二種類以上の混合溶媒として用いられる。これらの有機溶剤を使用する場合、該有機溶剤中における上記一般式(1)で表されるケイ素化合物の量が0.01〜2.0モル/リットル、特に0.05〜1.0モル/リットルとなるようにするのが好ましい。   As said organic solvent, it does not receive a restriction | limiting in particular, A well-known general organic solvent can be used. Examples of the organic solvent include acetates such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; Ketones such as butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, toluene, Hydrocarbons such as xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexa , Hydrocarbons having a cyano group such as cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene Pyridine, lutidine and the like, and these are used alone or as a mixed solvent of two or more kinds depending on the solubility of the solute, the relationship between the use temperature and boiling point, the flash point, and the like. When these organic solvents are used, the amount of the silicon compound represented by the general formula (1) in the organic solvent is 0.01 to 2.0 mol / liter, particularly 0.05 to 1.0 mol / liter. It is preferable to make it liter.

また、本発明の製造方法においては、必要に応じて、上記一般式(1)で表されるケイ素化合物の安定性を付与するため、求核性試薬を含有してもよい。該求核性試薬としては、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18−クラウン−6、ジシクロヘキシル−18−クラウン−6、24−クラウン−8、ジシクロヘキシル−24−クラウン−8、ジベンゾ−24−クラウン−8等のクラウンエーテル類、エチレンジアミン、N,N’−テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N−メチルピロリジン、N−メチルピペリジン、N−メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−2−メトキシエチル等のβ−ケトエステル類又はアセチルアセトン、2,4−ヘキサンジオン、2,4−ヘプタンジオン、3,5−ヘプタンジオン等のβ−ジケトン類が挙げられ、これら求核性試薬の使用量は、上記一般式(1)で表されるケイ素化合物1モルに対して通常0.1モル〜10モルの範囲で使用され、好ましくは1〜4モルで使用される。   Moreover, in the manufacturing method of this invention, in order to provide the stability of the silicon compound represented by the said General formula (1) as needed, you may contain a nucleophilic reagent. Examples of the nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-crown-8. , Crown ethers such as dibenzo-24-crown-8, ethylenediamine, N, N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7- Polyamines such as pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine and triethoxytriethyleneamine, cyclic polyamines such as cyclam and cyclen, pyridine, pyrrolidine and pipette Heterocyclic compounds such as gin, morpholine, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, oxathiolane, methyl acetoacetate, ethyl acetoacetate, Β-ketoesters such as acetoacetate-2-methoxyethyl or β-diketones such as acetylacetone, 2,4-hexanedione, 2,4-heptanedione, 3,5-heptanedione, etc., and these nucleophilic properties The usage-amount of a reagent is normally used in 0.1 mol-10 mol with respect to 1 mol of silicon compounds represented by the said General formula (1), Preferably it is used in 1-4 mol.

本発明の製造方法において用いられる上記一般式(1)で表されるケイ素化合物には、これを構成する成分以外の不純物金属元素分、不純物塩素等の不純物ハロゲン分、及び不純物有機分が極力含まれないようにする。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素、アルカリ土類金属元素、及び同属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下が更に好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下が更に好ましい。
また、水分は、上記一般式(1)で表されるケイ素化合物が加水分解することによりパーティクルが発生することや、薄膜形成中におけるパーティクル発生の原因となるので、金属化合物、有機溶剤、及び、求核性試薬については、それぞれの水分の低減のために、使用の際にあらかじめできる限り水分を取り除いた方がよい。上記一般式(1)で表されるケイ素化合物、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下が更に好ましい。
The silicon compound represented by the general formula (1) used in the production method of the present invention contains as much as possible impurity metal elements other than the components constituting the compound, impurity halogen components such as impurity chlorine, and impurity organic components. Do not let it. The impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less. In particular, when it is used as an LSI gate insulating film, gate film, or barrier layer, the content of alkali metal elements, alkaline earth metal elements, and related elements that affect the electrical characteristics of the resulting thin film may be reduced. is necessary. The impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and still more preferably 1 ppm or less. The total amount of impurity organic components is preferably 500 ppm or less, more preferably 50 ppm or less, and still more preferably 10 ppm or less.
In addition, moisture is generated by the hydrolysis of the silicon compound represented by the general formula (1), and causes generation of particles during the formation of the thin film. Therefore, the metal compound, the organic solvent, and About a nucleophilic reagent, in order to reduce each water content, it is better to remove water as much as possible before use. The water content of each of the silicon compound, the organic solvent and the nucleophilic reagent represented by the general formula (1) is preferably 10 ppm or less, and more preferably 1 ppm or less.

また、本発明の製造方法において用いられる上記一般式(1)で表されるケイ素化合物は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにするのが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1ml中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1ml中に1000個以下であることがより好ましく、0.2μmより大きい粒子の数が液相1ml中に100個以下であることが更に好ましい。   Moreover, the silicon compound represented by the general formula (1) used in the production method of the present invention is to prevent particles from being contained as much as possible in order to reduce or prevent particle contamination of the formed thin film. preferable. Specifically, in the particle measurement by the light scattering liquid particle detector in the liquid phase, the number of particles larger than 0.3 μm is preferably 100 or less in 1 ml of the liquid phase, and larger than 0.2 μm. The number of particles is more preferably 1000 or less in 1 ml of the liquid phase, and the number of particles larger than 0.2 μm is further preferably 100 or less in 1 ml of the liquid phase.

本発明の製造方法における(B)工程に用いられるオゾンガスは特に限定されるものではなく、アルゴン、窒素、酸素、過酸化水素、水、アンモニア及び水素等のガスとの混合ガスでもよい。混合ガスの場合の混合ガス中のオゾンの濃度は、0.1〜99.9質量%が好ましい。   The ozone gas used in step (B) in the production method of the present invention is not particularly limited, and may be a mixed gas with a gas such as argon, nitrogen, oxygen, hydrogen peroxide, water, ammonia and hydrogen. The concentration of ozone in the mixed gas in the case of the mixed gas is preferably 0.1 to 99.9% by mass.

本発明の製造方法は、(A)基体が設置された成膜チャンバー内に上記一般式(1)で表されるケイ素化合物を供給する工程及び(B)基体が設置された成膜チャンバー内にオゾンガスを供給する工程を有する原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法であり、(A)工程と(B)工程を組み合わせた製造方法を用いることによって、基体温度が一般式(1)で表されるケイ素化合物を気化させて安定的に基体に供給するために必要な温度から250℃までの温度範囲である場合にも、良質な酸化ケイ素又は酸窒化ケイ素薄膜を得ることができるという効果を奏することができる。上記一般式(1)で表されるケイ素化合物の輸送及び供給方法及び原子層堆積法の製造条件、製造装置等については、特に制限を受けるものではなく、周知一般の条件、方法を用いることができる。   The manufacturing method of the present invention includes (A) a step of supplying a silicon compound represented by the general formula (1) into a film forming chamber in which a substrate is installed, and (B) a film forming chamber in which the substrate is installed. A method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method having a step of supplying ozone gas. By using a production method in which the steps (A) and (B) are combined, the substrate temperature is expressed by the general formula ( It is possible to obtain a high-quality silicon oxide or silicon oxynitride thin film even in the temperature range from a temperature required to vaporize the silicon compound represented by 1) and stably supply it to the substrate to 250 ° C. The effect that it is possible can be produced. The method for transporting and supplying the silicon compound represented by the above general formula (1) and the manufacturing conditions and manufacturing apparatus of the atomic layer deposition method are not particularly limited, and well-known general conditions and methods may be used. it can.

本発明の製造方法における(A)工程において、基体が設置された成膜チャンバー内への上記一般式(1)で表されるケイ素化合物の供給方法は特に限定されるものではなく、前記に記載の気体輸送法、液体輸送法等を用いることができる。
また、本発明の製造方法における(B)工程において、基体が設置された成膜チャンバー内へのオゾンガスの供給方法は、特に限定されるものではなく、例えば、圧送によって供給することができる。
In the step (A) in the production method of the present invention, the method for supplying the silicon compound represented by the general formula (1) into the film forming chamber in which the substrate is installed is not particularly limited, and is described above. The gas transport method, liquid transport method and the like can be used.
In addition, in the step (B) in the production method of the present invention, the method for supplying ozone gas into the film forming chamber in which the substrate is installed is not particularly limited, and for example, it can be supplied by pressure feeding.

上記基体の材質としては、例えばシリコン;インジウムヒ素、インジウムガリウム砒素、酸化ケイ素、窒化ケイ素、炭化ケイ素、窒化チタン、酸化タンタル、窒化タンタル、酸化チタン、窒化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン、窒化ガリウム等のセラミックス;ガラス;白金ルテニウム、アルミニウム、銅、ニッケル、コバルト、タングステン、モリブデン等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられ、基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。   Examples of the material of the substrate include silicon; indium arsenide, indium gallium arsenide, silicon oxide, silicon nitride, silicon carbide, titanium nitride, tantalum oxide, tantalum nitride, titanium oxide, titanium nitride, ruthenium oxide, zirconium oxide, hafnium oxide, Ceramics such as lanthanum oxide and gallium nitride; glass; metals such as platinum ruthenium, aluminum, copper, nickel, cobalt, tungsten, and molybdenum. Examples of the shape of the substrate include a plate shape, a spherical shape, a fiber shape, and a scale shape, and the surface of the substrate may be a flat surface or a three-dimensional structure such as a trench structure.

上記の原子層堆積法の製造条件としては、上記一般式(1)で表されるケイ素化合物の供給条件(気化温度、気化圧力)、基体温度(反応温度)、反応圧力等が挙げられる。   Examples of the production conditions of the atomic layer deposition method include supply conditions (vaporization temperature, vaporization pressure), substrate temperature (reaction temperature), reaction pressure, and the like of the silicon compound represented by the general formula (1).

上記原子層堆積法の製造装置としては、周知な原子層堆積法用装置を用いることができる。具体的な装置の例としては図1のようなプレカーサをバブリング供給で行うことのできる装置や、図2のように気化室を有する装置や、図3又は図4のように反応性ガスに対してプラズマ処理を行うことのできる装置等が挙げられる。また、図1、図2、図3及び図4のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。   As a manufacturing apparatus for the atomic layer deposition method, a known atomic layer deposition method apparatus can be used. Specific examples of the apparatus include an apparatus capable of carrying a precursor as shown in FIG. 1 by bubbling supply, an apparatus having a vaporization chamber as shown in FIG. 2, and a reactive gas as shown in FIG. 3 or FIG. And an apparatus capable of performing plasma treatment. In addition, the present invention is not limited to the single wafer type apparatus as shown in FIGS. 1, 2, 3 and 4, and an apparatus capable of simultaneously processing a large number of sheets using a batch furnace can also be used.

本発明の製造方法を具体的に説明する。先ず、ガス導入口から、支持台上に基体が設置された成膜チャンバー内に上記一般式(1)で表されるケイ素化合物を上述の輸送供給方法によって供給する(原料導入工程)。上記一般式(1)で表されるケイ素化合物の供給条件としては、気化温度は室温〜150℃が好ましく、気化圧力は0.01〜300Paが好ましい。次に、基体が設置された成膜チャンバー内(堆積反応部)に導入した上記一般式(1)で表されるケイ素化合物により、基体表面に前駆体薄膜を成膜させる(前駆体薄膜成膜工程)。このときに、基体を加熱するか、堆積反応部を加熱して、熱を加えてもよい。この工程で成膜される前駆体薄膜は、酸化ケイ素又は酸窒化ケイ素薄膜、又は、上記一般式(1)で表されるケイ素化合物の一部が分解及び/又は反応して生成した薄膜であり、目的の酸化ケイ素又は酸窒化ケイ素薄膜とは異なる組成を有する。本工程が行われる際の基体温度は、室温〜300℃が好ましく、100℃〜250℃が特に好ましい。   The production method of the present invention will be specifically described. First, the silicon compound represented by the above general formula (1) is supplied from the gas introduction port into the film forming chamber in which the substrate is installed on the support base by the above-described transportation supply method (raw material introduction step). As supply conditions of the silicon compound represented by the general formula (1), the vaporization temperature is preferably room temperature to 150 ° C., and the vaporization pressure is preferably 0.01 to 300 Pa. Next, a precursor thin film is formed on the surface of the substrate with the silicon compound represented by the general formula (1) introduced into the film formation chamber (deposition reaction part) where the substrate is installed (precursor thin film formation). Process). At this time, heat may be applied by heating the substrate or heating the deposition reaction part. The precursor thin film formed in this step is a silicon oxide or silicon oxynitride thin film or a thin film formed by decomposition and / or reaction of a part of the silicon compound represented by the general formula (1). The target silicon oxide or silicon oxynitride thin film has a different composition. The substrate temperature when this step is performed is preferably room temperature to 300 ° C, particularly preferably 100 ° C to 250 ° C.

次に、堆積反応部から、未反応の上記一般式(1)で表されるケイ素化合物ガスや副生したガスを排気する(排気工程)。未反応の上記一般式(1)で表されるケイ素化合物ガスや副生したガスは、堆積反応部から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、窒素、ヘリウム、アルゴン等の不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法等が挙げられる。減圧する場合の減圧度は、0.01〜300Paが好ましく、0.01〜100Paがより好ましい。   Next, the unreacted silicon compound gas represented by the general formula (1) and by-produced gas are exhausted from the deposition reaction part (exhaust process). The unreacted silicon compound gas represented by the general formula (1) and the by-produced gas are ideally exhausted completely from the deposition reaction part, but it is not always necessary to exhaust them completely. Examples of the exhaust method include a method of purging the system with an inert gas such as nitrogen, helium, and argon, a method of exhausting the system by depressurizing the system, a method combining these, and the like. When the pressure is reduced, the degree of pressure reduction is preferably 0.01 to 300 Pa, and more preferably 0.01 to 100 Pa.

次に、堆積反応部に上述の輸送供給方法によってオゾンガスを供給し、オゾンガス及び熱の作用により、先の前駆体薄膜成膜工程で得た前駆体薄膜から酸化ケイ素又は酸窒化ケイ素薄膜を形成する(酸化ケイ素又は酸窒化ケイ素薄膜形成工程)。本工程において熱を作用させる場合の温度は、室温〜300℃が好ましく、100〜250℃がより好ましい。なお、所望とする酸化ケイ素又は酸窒化ケイ素薄膜の組成に応じて、酸素、過酸化水素、水、アンモニア及び水素等のガス等の反応性ガスをあらかじめオゾンガスと混合して供給してもよいし、オゾンガスとは別の供給ラインを使用して堆積反応部に供給してもよい。該反応性ガスをオゾンガスとは別の供給ラインを使用して堆積反応部に供給する場合は、オゾンガスを堆積反応部に供給する前に該反応性ガスを堆積反応部に供給してもよいし、オゾンガスを堆積反応部に供給した後に該反応性ガスを堆積反応部に供給してもよい。オゾンガスを堆積反応部に供給する前に該反応性ガスを堆積反応部に供給する場合においては、オゾンガスを供給する前に該反応性ガスを上述の排気方法によって排気してもよい。また、オゾンガスを堆積反応部に供給した後に該反応性ガスを堆積反応部に供給する場合は、該反応性ガスを供給する前にオゾンガスを上述の排気方法によって排気してもよい。   Next, ozone gas is supplied to the deposition reaction section by the above-described transport supply method, and a silicon oxide or silicon oxynitride thin film is formed from the precursor thin film obtained in the previous precursor thin film formation step by the action of ozone gas and heat. (Silicon oxide or silicon oxynitride thin film forming step). The temperature when heat is applied in this step is preferably room temperature to 300 ° C, more preferably 100 to 250 ° C. Depending on the desired composition of the silicon oxide or silicon oxynitride thin film, a reactive gas such as oxygen, hydrogen peroxide, water, ammonia and hydrogen may be mixed with ozone gas and supplied in advance. The deposition reaction unit may be supplied using a supply line different from ozone gas. When the reactive gas is supplied to the deposition reaction unit using a supply line different from the ozone gas, the reactive gas may be supplied to the deposition reaction unit before the ozone gas is supplied to the deposition reaction unit. The reactive gas may be supplied to the deposition reaction unit after the ozone gas is supplied to the deposition reaction unit. In the case where the reactive gas is supplied to the deposition reaction unit before the ozone gas is supplied to the deposition reaction unit, the reactive gas may be exhausted by the above-described exhaust method before the ozone gas is supplied. In addition, when the reactive gas is supplied to the deposition reaction unit after the ozone gas is supplied to the deposition reaction unit, the ozone gas may be exhausted by the above-described exhaust method before the reactive gas is supplied.

本発明の製造方法では、前駆体薄膜成膜工程及び酸化ケイ素又は酸窒化ケイ素薄膜形成工程時の基体温度が100℃〜250℃であっても品質の良い酸化ケイ素又は酸窒化ケイ素薄膜を製造することができる。   In the production method of the present invention, a high-quality silicon oxide or silicon oxynitride thin film is produced even when the substrate temperature during the precursor thin film formation step and the silicon oxide or silicon oxynitride thin film formation step is 100 ° C. to 250 ° C. be able to.

本発明の製造方法では、上記の原料導入工程、前駆体薄膜成膜工程、排気工程、及び酸化ケイ素又は酸窒化ケイ素薄膜形成工程からなる一連の操作による薄膜堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返してもよい。この場合、1サイクル行った後、上記排気工程と同様にして、堆積反応部から未反応の上記一般式(1)で表されるケイ素化合物ガス及びオゾンガス、更に副成したガスを排気した後、次の1サイクルを行うことが好ましい。   In the manufacturing method of the present invention, one cycle is a thin film deposition by a series of operations including the raw material introduction step, the precursor thin film formation step, the exhaust step, and the silicon oxide or silicon oxynitride thin film formation step, and this cycle is necessary. It may be repeated a plurality of times until a thin film with a sufficient thickness is obtained. In this case, after performing one cycle, in the same manner as in the exhaust process, after exhausting the silicon compound gas and ozone gas represented by the general formula (1) unreacted from the deposition reaction part, and further by-produced gas, It is preferable to perform the next one cycle.

また、酸化ケイ素又は酸窒化ケイ素薄膜の原子層堆積法による形成においては、プラズマ、光、電圧等のエネルギーを印加してもよい。これらのエネルギーを印加する時期は、特には限定されず、例えば、原料導入工程における上記一般式(1)で表されるケイ素化合物ガス導入時、前駆体薄膜成膜工程又は酸化ケイ素又は酸窒化ケイ素薄膜形成工程における加温時、排気工程における系内の排気時、酸化ケイ素又は酸窒化ケイ素薄膜形成工程におけるオゾンガス導入時でもよく、上記の各工程の間でもよい。   In the formation of a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method, energy such as plasma, light, or voltage may be applied. The timing for applying these energies is not particularly limited. For example, when introducing the silicon compound gas represented by the above general formula (1) in the raw material introducing step, the precursor thin film forming step, or silicon oxide or silicon oxynitride It may be at the time of heating in the thin film forming process, at the time of exhausting in the system in the exhausting process, at the time of introducing ozone gas in the silicon oxide or silicon oxynitride thin film forming process, or between each of the above processes.

また、本発明の製造方法においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、通常200〜1100℃であり、400〜700℃が好ましい。   In the manufacturing method of the present invention, after thin film deposition, annealing may be performed in an inert atmosphere, an oxidizing atmosphere, or a reducing atmosphere in order to obtain better electrical characteristics. If necessary, a reflow process may be provided. The temperature in this case is usually 200 to 1100 ° C, preferably 400 to 700 ° C.

本発明の製造方法により製造される薄膜としては、SiO2膜やSiON薄膜が挙げられ、これらの用途としては、高誘電キャパシタ膜、ゲート絶縁膜、ゲート膜、強誘電キャパシタ膜、コンデンサ膜、バリア膜等の電子部品部材、光ファイバ、光導波路、光増幅器、光スイッチ等の光学ガラス部材が挙げられる。 Examples of the thin film produced by the production method of the present invention include a SiO 2 film and a SiON thin film, and these applications include a high dielectric capacitor film, a gate insulating film, a gate film, a ferroelectric capacitor film, a capacitor film, and a barrier. Examples thereof include electronic component members such as membranes, and optical glass members such as optical fibers, optical waveguides, optical amplifiers, and optical switches.

以下、実施例並びに評価例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and evaluation examples. However, the present invention is not limited by the following examples.

[実施例1〜3]ALD法による酸化ケイ素薄膜の製造
化合物No.4をALD法用原料とし、反応性ガスA(オゾン20質量%と酸素80質量%の混合ガス)を反応性ガスとして用い、図1に示す装置を用いて表1に示す気化条件及び基体温度条件におけるALD法により、シリコンウエハ上に酸化ケイ素薄膜No.1〜3を製造した。得られた薄膜について、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、いずれの薄膜も膜組成は酸化ケイ素(SiO2)であり、炭素含有量は検出下限である0.1atom%よりも少なかった。
(工程)
下記(1)〜(4)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
(1)表1に示す気化温度及び気化室圧力100Paの条件で気化させた化合物No.4の蒸気を導入し、表1に示す基体温度まで加熱したシリコンウエハに系圧100Paで60秒間堆積させる。
(2)10秒間のアルゴンパージにより、未反応原料を除去する。
(3)反応性ガスAを導入し、系圧力100Paで60秒間反応させる。
(4)10秒間のアルゴンパージにより、未反応原料を除去する。
[Examples 1 to 3] Production of silicon oxide thin film by ALD method 4 is a raw material for the ALD method, a reactive gas A (mixed gas of ozone 20% by mass and oxygen 80% by mass) is used as a reactive gas, and the vaporization conditions and substrate temperature shown in Table 1 using the apparatus shown in FIG. The silicon oxide thin film No. 1 was formed on the silicon wafer by the ALD method. 1-3 were produced. About the obtained thin film, when the thin film structure and the thin film composition were confirmed by the X-ray diffraction method and the X-ray photoelectron spectroscopy, the film composition was silicon oxide (SiO 2 ) and the carbon content was detected. It was less than the lower limit of 0.1 atom%.
(Process)
A series of steps consisting of the following (1) to (4) was taken as one cycle and repeated 100 cycles.
(1) Compound No. vaporized under the conditions of vaporization temperature and vaporization chamber pressure of 100 Pa shown in Table 1. 4 is introduced and deposited on a silicon wafer heated to the substrate temperature shown in Table 1 at a system pressure of 100 Pa for 60 seconds.
(2) Unreacted raw materials are removed by argon purging for 10 seconds.
(3) Reactive gas A is introduced and reacted at a system pressure of 100 Pa for 60 seconds.
(4) Unreacted raw materials are removed by argon purging for 10 seconds.

[比較製造例1〜3]ALD法による酸化ケイ素薄膜の製造
テトラキスジメチルアミノシランをALD法用原料とし、反応性ガスAを反応性ガスとして用い、図1に示す装置を用いて表2に示す気化条件及び基体温度条件におけるALD法により、シリコンウエハ上に比較膜1〜3を製造した。得られた薄膜について、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、いずれの薄膜も膜組成は酸化ケイ素(SiO2)であり、炭素含有量は検出下限である0.1atom%よりも少なかった。
(工程)
下記(5)〜(8)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
(5)表1に示す気化温度及び気化室圧力100Paの条件で気化させた化合物テトラキスジメチルアミノシランの蒸気を導入し、表1に示す基体温度まで加熱したシリコンウエハに系圧 100Paで1秒間堆積させる。
(6)10秒間のアルゴンパージにより、未反応原料を除去する。
(7)反応性ガスAを導入し、系圧力100Paで10秒間反応させる。
(8)10秒間のアルゴンパージにより、未反応原料を除去する。
[Comparative Production Examples 1 to 3] Production of silicon oxide thin film by ALD method Tetrakisdimethylaminosilane is used as a raw material for ALD method, reactive gas A is used as a reactive gas, and vaporization shown in Table 2 using the apparatus shown in FIG. Comparative films 1 to 3 were manufactured on a silicon wafer by the ALD method under conditions and substrate temperature conditions. About the obtained thin film, when the thin film structure and the thin film composition were confirmed by the X-ray diffraction method and the X-ray photoelectron spectroscopy, the film composition was silicon oxide (SiO 2 ) and the carbon content was detected. It was less than the lower limit of 0.1 atom%.
(Process)
A series of steps consisting of the following (5) to (8) was taken as one cycle and repeated 100 cycles.
(5) Vapor of compound tetrakisdimethylaminosilane vaporized under the conditions of vaporization temperature and vaporization chamber pressure of 100 Pa shown in Table 1 is introduced and deposited on a silicon wafer heated to the substrate temperature shown in Table 1 at a system pressure of 100 Pa for 1 second. .
(6) Unreacted raw material is removed by argon purge for 10 seconds.
(7) Reactive gas A is introduced and reacted at a system pressure of 100 Pa for 10 seconds.
(8) Unreacted raw material is removed by argon purge for 10 seconds.

[評価例1]
実施例1〜3及び比較例1〜3によって得られた酸化ケイ素薄膜No.1〜3及び比較膜1〜3について、X線反射率法によって膜厚測定し、1サイクル当たりに得られる膜厚を算出した。結果を表2に示す。
[Evaluation Example 1]
Silicon oxide thin film No. 1 obtained by Examples 1-3 and Comparative Examples 1-3. About 1-3 and the comparative films 1-3, the film thickness was measured by the X-ray reflectivity method, and the film thickness obtained per cycle was calculated. The results are shown in Table 2.

表3の結果により、評価例1−1〜1−3は比較例1−1〜1−3に比べて、1サイクル当たりに得られる膜厚が2倍であることがわかった。これにより、本発明の製造方法は生産性よく酸化ケイ素薄膜を得ることができる製造方法であることがわかった。   From the results shown in Table 3, it was found that Evaluation Examples 1-1 to 1-3 had twice the film thickness obtained per cycle as compared with Comparative Examples 1-1 to 1-3. Thereby, it turned out that the manufacturing method of this invention is a manufacturing method which can obtain a silicon oxide thin film with sufficient productivity.

[比較製造例4〜9]ALD法による酸化ケイ素薄膜の製造
化合物No.4をALD法用原料とし、水蒸気又は酸素を反応性ガスとして用い、図1に示す装置を用いて表4に示す気化条件及び基体温度条件におけるALD法によって薄膜の製造を試みたが、いずれの条件においても、薄膜を得ることができなかった。
(工程)
下記(9)〜(12)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
(9)表1に示す気化温度及び気化室圧力100Paの条件で気化させた化合物No.4の蒸気を導入し、表4に示す基体温度まで加熱したシリコンウエハに系圧100Paで1秒間堆積させる。
(10)10秒間のアルゴンパージにより、未反応原料を除去する。
(11)水蒸気又は酸素を導入し、系圧力100Paで10秒間反応させる。
(12)10秒間のアルゴンパージにより、未反応原料を除去する。
[Comparative Production Examples 4 to 9] Production of silicon oxide thin film by ALD method 4 was used as a raw material for the ALD method, water vapor or oxygen was used as a reactive gas, and an attempt was made to produce a thin film by the ALD method under the vaporization conditions and substrate temperature conditions shown in Table 4 using the apparatus shown in FIG. Even under the conditions, a thin film could not be obtained.
(Process)
A series of steps consisting of the following (9) to (12) was taken as one cycle and repeated 100 cycles.
(9) Compound No. vaporized under the conditions of vaporization temperature and vaporization chamber pressure of 100 Pa shown in Table 1. 4 is introduced and deposited on a silicon wafer heated to the substrate temperature shown in Table 4 at a system pressure of 100 Pa for 1 second.
(10) Unreacted raw materials are removed by argon purging for 10 seconds.
(11) Introduce water vapor or oxygen and react at a system pressure of 100 Pa for 10 seconds.
(12) Unreacted raw materials are removed by argon purging for 10 seconds.

本研究の一部は、文部科学省の支援を受けて、東京大学「超微細リソグラフィー・ナノ計測拠点」において実施されました。   Part of this research was carried out at the University of Tokyo's “Ultrafine Lithography / Nano Measurement Center” with the support of the Ministry of Education, Culture, Sports, Science and Technology.

Claims (4)

原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法において、
(A)基体が設置された成膜チャンバー内に下記一般式(1)で表されるケイ素化合物を供給する工程及び
(B)基体が設置された成膜チャンバー内にオゾンガスと、アルゴンガス、窒素ガス、酸素ガス、過酸化水素ガス、水のガス、アンモニアガス又は水素ガスとの混合ガスを供給する工程を有し、
ケイ素化合物を供給する工程及びオゾンガスを供給する工程時の基体温度が100℃以上200℃以下であることを特徴とする原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法。
(式中、R1〜R4は各々独立に水素又は炭素数1〜5の直鎖若しくは分岐状のアルキル基を表し、Aは炭素数1〜8のアルカンジイル基を表す。)
In the method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method,
(A) A step of supplying a silicon compound represented by the following general formula (1) into a film forming chamber in which the substrate is installed; and (B) ozone gas , argon gas, nitrogen in the film forming chamber in which the substrate is installed. gas, oxygen gas, possess hydrogen peroxide gas, water gas, a step of supplying a mixed gas of ammonia gas or hydrogen gas,
A method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method, wherein the substrate temperature in the step of supplying a silicon compound and the step of supplying ozone gas is 100 ° C. or higher and 200 ° C. or lower .
(In the formula, R 1 to R 4 each independently represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms, and A represents an alkanediyl group having 1 to 8 carbon atoms.)
上記一般式(1)のR1が水素である請求項1に記載の原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法。 The method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method according to claim 1 , wherein R 1 in the general formula (1) is hydrogen. 上記一般式(1)のR2が炭素数1〜5の直鎖又は分岐状のアルキル基である請求項2に記載の原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法。 The method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method according to claim 2, wherein R 2 in the general formula (1) is a linear or branched alkyl group having 1 to 5 carbon atoms. 上記一般式(1)のR2がメチル基であり、Aがメチレンである請求項3に記載の原子層堆積法による酸化ケイ素又は酸窒化ケイ素薄膜の製造方法。
The method for producing a silicon oxide or silicon oxynitride thin film by an atomic layer deposition method according to claim 3, wherein R 2 in the general formula (1) is a methyl group and A is methylene.
JP2014000206A 2014-01-06 2014-01-06 Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition Active JP6272033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000206A JP6272033B2 (en) 2014-01-06 2014-01-06 Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000206A JP6272033B2 (en) 2014-01-06 2014-01-06 Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition

Publications (2)

Publication Number Publication Date
JP2015129317A JP2015129317A (en) 2015-07-16
JP6272033B2 true JP6272033B2 (en) 2018-01-31

Family

ID=53760246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000206A Active JP6272033B2 (en) 2014-01-06 2014-01-06 Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition

Country Status (1)

Country Link
JP (1) JP6272033B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021075397A1 (en) 2019-10-17 2021-04-22

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914150A (en) * 2004-02-18 2007-02-14 株式会社艾迪科 Alkoxide compound, raw material for thin film formation and process for producing thin film
US7723245B2 (en) * 2004-11-29 2010-05-25 Hitachi Kokusai Electric Inc. Method for manufacturing semiconductor device, and substrate processing apparatus
US7749574B2 (en) * 2006-11-14 2010-07-06 Applied Materials, Inc. Low temperature ALD SiO2
JP2009212303A (en) * 2008-03-04 2009-09-17 Hitachi Kokusai Electric Inc Substrate processing method
JP5528762B2 (en) * 2009-10-06 2014-06-25 株式会社Adeka ALD raw material and silicon-containing thin film forming method using the same
US8771807B2 (en) * 2011-05-24 2014-07-08 Air Products And Chemicals, Inc. Organoaminosilane precursors and methods for making and using same

Also Published As

Publication number Publication date
JP2015129317A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP5843318B2 (en) Raw material for forming aluminum nitride thin film for ALD method and method for producing the thin film
TWI795553B (en) Method for manufacturing thin film with the use of a raw material for forming thin film by atomic layer deposition method
US10927460B2 (en) Raw material for forming thin film, and method for manufacturing thin film
JP6735163B2 (en) Vanadium compound, thin film forming raw material, and thin film manufacturing method
JP2008069135A (en) Metal alkoxide compound, film-forming raw material and process for preparing film
EP3677585A1 (en) Metal alkoxide compound, thin-film-forming raw material, and thin film production method
WO2021085210A1 (en) Novel compound, thin film-forming material that contains said compound, and thin film manufacturing method
WO2018088078A1 (en) Compound, thin-film-forming raw material, thin-film-forming raw material for atomic-layer deposition method, and process for producing thin film
KR102308345B1 (en) Copper compound, starting material for forming thin film and method for producing thin film
JP6272033B2 (en) Method for producing silicon oxide or silicon oxynitride thin film by atomic layer deposition
JP5912911B2 (en) Method for producing thin film by ALD method using aluminum compound
WO2018235530A1 (en) Metal alkoxide compound, thin-film-forming raw material, and method for producing thin film
JPWO2020129616A1 (en) Thin film forming raw material for atomic layer deposition method, thin film manufacturing method and alkoxide compound
WO2021117540A1 (en) Method for producing copper-containing layer
WO2019039103A1 (en) Tungsten compound, raw material for thin film formation and method for producing thin film
JP6116007B2 (en) Thin film forming raw material and thin film manufacturing method
WO2021200219A1 (en) Zinc compound, raw material for thin film formation, thin film, and method for producing thin film
US20240060177A1 (en) Indium compound, thin-film forming raw material, thin film, and method of producing same
JP6691009B2 (en) Raw material for forming metal carbide-containing thin film and method for producing metal carbide-containing thin film
JP6704808B2 (en) Raw material for forming thin film and method for producing thin film
WO2019003695A1 (en) Feedstock for forming thin films, thin film production method and novel compound

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6272033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150