JP6267965B2 - COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME - Google Patents

COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME Download PDF

Info

Publication number
JP6267965B2
JP6267965B2 JP2014002753A JP2014002753A JP6267965B2 JP 6267965 B2 JP6267965 B2 JP 6267965B2 JP 2014002753 A JP2014002753 A JP 2014002753A JP 2014002753 A JP2014002753 A JP 2014002753A JP 6267965 B2 JP6267965 B2 JP 6267965B2
Authority
JP
Japan
Prior art keywords
composite particles
magnetic powder
electrophotographic
resin
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014002753A
Other languages
Japanese (ja)
Other versions
JP2015132656A (en
Inventor
佐々木 信也
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2014002753A priority Critical patent/JP6267965B2/en
Publication of JP2015132656A publication Critical patent/JP2015132656A/en
Application granted granted Critical
Publication of JP6267965B2 publication Critical patent/JP6267965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は複合粒子並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。   The present invention relates to composite particles, an electrophotographic developer carrier and an electrophotographic developer using the same.

電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、現像剤である粉体のトナーを感光体上の静電潜像に付着させ、当該付着したトナー像を所定の用紙等へ転写した後、加熱・加圧して用紙等へ溶融定着させている。ここで、現像剤としては、トナーのみを含む一成分系現像剤を用いる一成分系現像法と、トナーとキャリアとを含む二成分系現像剤を用いる二成分系現像法とに大別される。そして、近年は、ほとんどの場合、トナーの荷電制御が容易で安定した高画質を得ることができ、高速現像が可能であることから二成分系現像法が用いられている。   In image forming apparatuses such as facsimiles, printers, and copiers using an electrophotographic system, powder toner as a developer is attached to an electrostatic latent image on a photosensitive member, and the attached toner image is applied to a predetermined sheet or the like. After being transferred to the sheet, it is heated and pressurized to melt and fix it on a sheet or the like. Here, the developer is roughly classified into a one-component development method using a one-component developer containing only toner and a two-component development method using a two-component developer containing toner and carrier. . In recent years, the two-component development method has been used in most cases because toner charge control is easy, stable image quality can be obtained, and high-speed development is possible.

二成分系現像法では、トナーとキャリアとを含む現像剤を現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像スリーブに現像剤を供給し、現像スリーブ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。   In the two-component development method, a developer containing toner and carrier is stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing sleeve, a magnetic brush is formed on the developing sleeve, and the toner is electrically moved to the photosensitive member via the magnetic brush, so that an electrostatic latent image on the photosensitive member can be formed. Visualize.

近年、画像形成装置の高速化に伴い、現像剤の撹拌混合及び回転搬送の速度も速くなっている。一方、省エネルギーの観点から、現像剤を撹拌混合及び回転搬送させるための動力を抑えることが求められている。そのためには、使用するキャリアの見掛け密度を小さくするのが望ましい。   In recent years, with the increase in the speed of image forming apparatuses, the speed of stirring and mixing of developer and rotational conveyance has also increased. On the other hand, from the viewpoint of energy saving, it is required to suppress power for stirring and mixing and rotating and transporting the developer. For this purpose, it is desirable to reduce the apparent density of the carrier used.

そこで、例えば、特許文献1では、断面面積基準で20%〜65%の空孔を少なくとも1つ有し、見掛け密度が0.50g/cm〜1.50g/cmの範囲である磁性コア粒子が提案されている。また、特許文献2では、所定量の強磁性体微粒子とフェノール樹脂とからなり、所定の平均粒子径と嵩密度とを有する複合体粒子からなる静電潜像現像用磁性粉体が提案されている。 Therefore, for example, Patent Document 1, has at least one of 20% to 65% of the pores in the cross-sectional area basis, the magnetic core apparent density is in the range of 0.50g / cm 3 ~1.50g / cm 3 Particles have been proposed. Patent Document 2 proposes a magnetic powder for developing an electrostatic latent image, which is composed of composite particles having a predetermined amount of ferromagnetic fine particles and a phenol resin, and having a predetermined average particle diameter and bulk density. Yes.

特開2008-310104号公報JP 2008-310104 A 特開平3-61955号公報Japanese Unexamined Patent Publication No. 3-61955

しかしながら、内部に空孔を有する粒子や磁性粉を樹脂に分散させた粒子は、通常、粒子の割れや欠けが発生しやすい。   However, particles having pores therein or particles in which magnetic powder is dispersed in a resin are usually prone to cracking or chipping.

本発明はこのような従来の問題に鑑みてなされたものであり、その目的は、見掛け密度が小さく、しかも所定以上の強度を維持する複合粒子を提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide composite particles having a low apparent density and maintaining a strength of a predetermined level or more.

また、本発明の他の目的は、省エネルギー及び高速化を達成できる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。   Another object of the present invention is to provide an electrophotographic developer carrier and an electrophotographic developer capable of achieving energy saving and high speed.

前記目的を達成する本発明に係る複合粒子は、結着樹脂中に磁性粉が分散した複合粒子であって、見掛け密度が1.1g/cm以下であり、粒子断面における磁性粉の占める面積割合が30%〜50%であり、前記粒子断面を複数の領域に区分して求めた前記面積割合の標準偏差σが7.0%以下であることを特徴とする。なお、粒子断面における磁性粉の占める面積割合及びその標準偏差σの求め方は、後段の実施例で詳述する。 The composite particle according to the present invention that achieves the above object is a composite particle in which magnetic powder is dispersed in a binder resin, the apparent density is 1.1 g / cm 3 or less, and the area occupied by the magnetic powder in the particle cross section. The ratio is 30% to 50%, and the standard deviation σ of the area ratio obtained by dividing the particle cross section into a plurality of regions is 7.0% or less. In addition, the area ratio which the magnetic powder occupies in the particle cross section and the method of obtaining the standard deviation σ will be described in detail in the following examples.

ここで、複合粒子の真密度は3.8g/cm〜4.5g/cmの範囲であるのが好ましい。 Here, the true density of the composite particles is preferably in the range of 3.8 g / cm 3 to 4.5 g / cm 3 .

また、複合粒子の体積平均粒径は20μm〜50μmの範囲であるのが好ましい。   The volume average particle size of the composite particles is preferably in the range of 20 μm to 50 μm.

前記結着樹脂はポリウレタン及びポリオレフィンの少なくとも一方を含むのが好ましい。   The binder resin preferably contains at least one of polyurethane and polyolefin.

また、本発明に係る電子写真現像用キャリアは、前記の複合粒子の表面を樹脂で被覆したことを特徴とする。   The electrophotographic developer carrier according to the present invention is characterized in that the surface of the composite particle is coated with a resin.

そしてまた、本発明に係る電子写真用現像剤は、前記の電子写真現像用キャリアとトナーとを含むことを特徴とする。   The electrophotographic developer according to the present invention includes the above-described electrophotographic developer carrier and toner.

本発明の複合粒子は、結着樹脂中に所定量の磁性粉が均一に分散してなるので、見掛け密度が小さく、しかも所定以上の強度を維持する。これにより、小さな動力で撹拌混合等を行うことができ、また、撹拌混合等による粒子の割れや欠けも大幅に減少できる。   In the composite particles of the present invention, since a predetermined amount of magnetic powder is uniformly dispersed in the binder resin, the apparent density is small, and the strength exceeding a predetermined level is maintained. Thereby, stirring and mixing can be performed with small power, and cracking and chipping of particles due to stirring and mixing can be significantly reduced.

本発明に係る電子写真現像用キャリア及び電子写真用現像剤は、前記複合粒子を用いるので、省エネルギー及び高速化に対応できる。   Since the composite particle is used for the electrophotographic developer carrier and the electrophotographic developer according to the present invention, it can cope with energy saving and high speed.

実施例1の複合粒子のSEM写真である。2 is a SEM photograph of composite particles of Example 1. 実施例1の複合粒子の断面SEM写真である。2 is a cross-sectional SEM photograph of the composite particles of Example 1. 実施例2の複合粒子のSEM写真である。4 is a SEM photograph of composite particles of Example 2. 実施例2の複合粒子の断面SEM写真である。2 is a cross-sectional SEM photograph of the composite particles of Example 2. 実施例3の複合粒子のSEM写真である。4 is a SEM photograph of composite particles of Example 3. 実施例3の複合粒子の断面SEM写真である。6 is a cross-sectional SEM photograph of the composite particles of Example 3. 比較例1の複合粒子のSEM写真である。4 is a SEM photograph of composite particles of Comparative Example 1. 比較例1の複合粒子の断面SEM写真である。4 is a cross-sectional SEM photograph of composite particles of Comparative Example 1.

本発明に係る複合粒子は、結着樹脂中に磁性粉が分散した複合粒子であって、見掛け密度が1.1g/cm以下であり、粒子断面における磁性粉の占める面積割合が30%〜50%であり、前記粒子断面を複数の領域に区分して求めた前記面積割合の標準偏差σが7.0%以下であることを特徴とする。粒子断面における磁性粉の占める面積割合を前記範囲とし、粒子中に磁性粉を均一に分散させることによって、見掛け密度を小さくでき且つ高い粒子強度が維持されるようになる。 The composite particles according to the present invention are composite particles in which magnetic powder is dispersed in a binder resin, the apparent density is 1.1 g / cm 3 or less, and the area ratio of the magnetic powder in the particle cross section is 30% to The standard deviation σ of the area ratio obtained by dividing the particle cross section into a plurality of regions is 7.0% or less. By setting the area ratio of the magnetic powder in the particle cross section to the above range and uniformly dispersing the magnetic powder in the particles, the apparent density can be reduced and the high particle strength can be maintained.

粒子断面における磁性粉の占める面積割合が30%未満であると、見掛け密度は小さくなるが粒子強度が低くなる。一方、前記面積割合が50%を超えると、粒子強度は高くなるが見掛け密度が大きくなる。前記面積割合のより好ましい範囲は、35%〜45%の範囲である。   When the area ratio of the magnetic powder in the particle cross section is less than 30%, the apparent density is decreased but the particle strength is decreased. On the other hand, if the area ratio exceeds 50%, the particle strength increases but the apparent density increases. A more preferable range of the area ratio is 35% to 45%.

また、前記面積割合の標準偏差σが7.0%を超える、換言すると、粒子内における磁性粉の分散が不均一であると、粒子に強度の弱い部分が現れ、粒子の割れや欠けが生じるおそれがある。前記面積割合の標準偏差σのより好ましい上限値は6.0%である。   Further, when the standard deviation σ of the area ratio exceeds 7.0%, in other words, when the dispersion of the magnetic powder in the particles is not uniform, a weak portion appears in the particles, and the particles are cracked or chipped. There is a fear. A more preferable upper limit value of the standard deviation σ of the area ratio is 6.0%.

複合粒子の真密度としては3.8g/cm〜4.5g/cmの範囲が好ましい。複合粒子の真密度をこの範囲とすることによって、例えば、複合粒子をキャリア芯材として用いた場合に、キャリアを含む現像剤の撹拌動力の軽減が図れるようになる。また、複合粒子が受ける撹拌ストレスを大幅に軽減することができる。より好ましい複合粒子の真密度の範囲は3.9g/cm〜4.2g/cmである。複合粒子の真密度は、結着樹脂と磁性粉との配合比率などにより制御することができる。 The true density of the composite particles is preferably in the range of 3.8 g / cm 3 to 4.5 g / cm 3 . By setting the true density of the composite particles within this range, for example, when the composite particles are used as the carrier core material, the stirring power of the developer containing the carrier can be reduced. Moreover, the stirring stress which a composite particle receives can be reduced significantly. More preferably a true density range of the composite particles is 3.9g / cm 3 ~4.2g / cm 3 . The true density of the composite particles can be controlled by the blending ratio of the binder resin and the magnetic powder.

複合粒子の体積平均粒径としては20μm〜50μmの範囲が好ましい。複合粒子の体積平均粒径をこの範囲とすることによって、例えば、複合粒子をキャリア芯材として用いた場合に、感光体表面へのキャリア付着を抑制でき、また、画質の鮮明化を図ることができる。さらに、複合粒子が受ける撹拌ストレスを軽減することができる。複合粒子の体積平均粒径を上記範囲とするには、複合粒子の製造工程において篩等を用いて分級処理を行えばよい。また、粒径分布はシャープであるのが好ましい。   The volume average particle size of the composite particles is preferably in the range of 20 μm to 50 μm. By setting the volume average particle size of the composite particles in this range, for example, when the composite particles are used as a carrier core material, carrier adhesion to the surface of the photoreceptor can be suppressed, and the image quality can be clarified. it can. Furthermore, the stirring stress that the composite particles receive can be reduced. In order to make the volume average particle diameter of the composite particles within the above range, classification may be performed using a sieve or the like in the manufacturing process of the composite particles. The particle size distribution is preferably sharp.

また、本発明の複合粒子の形状は球状であるのが好ましい。複合粒子を、例えば、キャリア芯材として用いた場合に、キャリアを含む現像剤の撹拌動力の軽減が図れるようになるからである。   In addition, the composite particles of the present invention are preferably spherical. This is because, when the composite particles are used as, for example, a carrier core material, the stirring power of the developer containing the carrier can be reduced.

本発明で使用する磁性粉としては、Mg,Ca,Ti,Cu,Zn,Sr,Ni等の鉄以外の金属を1種類以上含むフェライト、γ−Fe、マグネタイト等が挙げられる。また、種類の異なる2種以上の磁性粉を使用してもよい。磁性粉の粒径は0.05μm〜5μmの範囲のものが好ましく、0.1μm〜3μmの範囲がより好ましい。使用する磁性粉の粒径が複合粒子の所望粒径に対してあまり大きいと、樹脂により結着させて複合粒子としたとき、粒子強度が低下するおそれがあり、また複合粒子の粒子形状が非球形化しやすくなり好ましくない。 Examples of the magnetic powder used in the present invention include ferrite, γ-Fe 2 O 3 , and magnetite containing one or more metals other than iron such as Mg, Ca, Ti, Cu, Zn, Sr, and Ni. Moreover, you may use 2 or more types of magnetic powder from which a kind differs. The particle size of the magnetic powder is preferably in the range of 0.05 μm to 5 μm, more preferably in the range of 0.1 μm to 3 μm. If the particle size of the magnetic powder used is too large relative to the desired particle size of the composite particle, the particle strength may decrease when the composite particle is bound by a resin, and the particle shape of the composite particle is not good. Since it becomes easy to spheroidize, it is not preferable.

本発明で使用する結着樹脂としては、熱可塑性樹脂や未硬化あるいは初期縮合物の形の熱硬化性樹脂などが挙げられ、例えば、ポリスチレン等のビニル芳香族樹脂、ポリビニルアセタール樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、ポリオレフィン樹脂等が挙げられる。また、これらの樹脂を変性した樹脂でもあってもよい。これらの内でもポリウレタン樹脂、ポリオレフィン樹脂が好適に使用される。   Examples of the binder resin used in the present invention include thermoplastic resins and thermosetting resins in the form of uncured or precondensed materials, such as vinyl aromatic resins such as polystyrene, polyvinyl acetal resins, polyester resins, Examples thereof include an epoxy resin, a phenol resin, a polyurethane resin, and a polyolefin resin. Further, these resins may be modified resins. Among these, polyurethane resins and polyolefin resins are preferably used.

本発明の複合粒子をキャリア芯材として用いる場合には、それ自体公知の助剤、例えば電気抵抗を調節するためのカーボンブラック、分散剤、分散助剤、低分子又は高分子の電荷制御剤等を配合してもよい。   When the composite particles of the present invention are used as a carrier core material, auxiliary agents known per se, such as carbon black for adjusting electric resistance, dispersing agents, dispersing aids, low-molecular or high-molecular charge control agents, etc. May be blended.

本発明の複合粒子は各種用途に用いることができ、例えば、電子写真現像用キャリアや電磁波吸収材、電磁波シールド材用材料粉末、ゴム、プラスチック用充填材・補強材、ペンキ、絵具・接着剤用艶消材、充填材、補強材等として用いることができる。これらの中でも特に電子写真現像用キャリアとして好適に用いられる。   The composite particles of the present invention can be used for various applications, for example, electrophotographic developing carriers, electromagnetic wave absorbing materials, electromagnetic shielding material powders, rubber, fillers / reinforcing materials for plastics, paints, paints / adhesives It can be used as a matting material, filler, reinforcing material and the like. Among these, it is particularly preferably used as a carrier for electrophotographic development.

本発明の複合粒子の製造方法に特に限定はないが、以下に説明する製造方法が好適である。   Although there is no limitation in particular in the manufacturing method of the composite particle of this invention, the manufacturing method demonstrated below is suitable.

まず、磁性粉と結着樹脂とを秤量して分散媒中に投入し混合してスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記の磁性粉及び結着樹脂の他、必要により分散剤等を配合してもよい。分散剤の配合量としてはスラリー中の濃度が0.5〜2wt%程度とするのが好ましい。   First, a magnetic powder and a binder resin are weighed, put into a dispersion medium, and mixed to prepare a slurry. Water is preferred as the dispersion medium used in the present invention. In addition to the magnetic powder and the binder resin, a dispersant or the like may be added to the dispersion medium as necessary. As the blending amount of the dispersant, the concentration in the slurry is preferably about 0.5 to 2 wt%.

そして、作製されたスラリーを噴霧して造粒する。具体的には、スプレードライヤーなどの噴霧造粒機にスラリーを導入し、雰囲気中へ噴霧することによって球状に造粒する。噴霧造粒時の雰囲気温度は120℃〜250℃の範囲が好ましい。これにより、平均粒径20〜50μmの球状の造粒物が得られる。なお、得られた造粒物は、振動ふるい等を用いて、粗大粒子や微粉を除去し粒度分布をシャープなものとするのが望ましい。   And the produced slurry is sprayed and granulated. Specifically, the slurry is introduced into a spray granulator such as a spray dryer and sprayed into the atmosphere to granulate into a spherical shape. The atmospheric temperature during spray granulation is preferably in the range of 120 ° C to 250 ° C. Thereby, the spherical granulated material with an average particle diameter of 20-50 micrometers is obtained. In addition, it is desirable that the obtained granulated product has a sharp particle size distribution by removing coarse particles and fine powder using a vibration sieve or the like.

次いで、造粒物を送風乾燥機に投入し、乾燥温度(硬化温度)120℃〜200℃で0.5時間〜5時間乾燥し、結着樹脂を硬化させて複合粒子を得る。   Next, the granulated product is put into a blower dryer and dried at a drying temperature (curing temperature) of 120 ° C. to 200 ° C. for 0.5 hour to 5 hours to cure the binder resin to obtain composite particles.

そして、複合粒子が互いに固着している場合には必要により解粒する。具体的には、例えば、ハンマーミル等によって複合粒子を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。そして、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。   When the composite particles are fixed to each other, they are pulverized as necessary. Specifically, for example, the composite particles are pulverized by a hammer mill or the like. The form of the granulation step may be either a continuous type or a batch type. And if necessary, classification may be performed in order to make the particle size in a predetermined range. As a classification method, a conventionally known method such as air classification or sieve classification can be used. In addition, after primary classification with an air classifier, the particle size may be aligned within a predetermined range with a vibration sieve or an ultrasonic sieve.

以上のようにして作製した本発明の複合粒子を、電子写真現像用キャリアとして用いる場合、複合粒子をそのまま電子写真現像用キャリアとして用いることもできるが、帯電性等の観点からは、複合粒子の表面を樹脂で被覆して用いるのが好ましい。   When the composite particles of the present invention produced as described above are used as an electrophotographic development carrier, the composite particles can be used as they are as an electrophotographic development carrier. However, from the viewpoint of chargeability and the like, It is preferable to coat the surface with a resin.

複合粒子の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ−4−メチルペンテン−1、ポリ塩化ビニリデン、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。   As the resin for coating the surface of the composite particles, conventionally known resins can be used, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). Examples thereof include resins, polystyrene, (meth) acrylic resins, polyvinyl alcohol resins, polyvinyl chloride-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based thermoplastic elastomers, fluorine silicone-based resins, and the like.

複合粒子の表面を樹脂で被覆するには、樹脂の溶液又は分散液を複合粒子に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.0010wt%〜30wt%、特に0.0010wt%〜2wt%の範囲内にあるのがよい。   In order to coat the surface of the composite particles with a resin, a resin solution or dispersion may be applied to the composite particles. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol, and butanol Alcohol solvents such as ethyl cellosolve, cellosolve solvents such as butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide, etc. . The resin component concentration in the coating solution should generally be in the range of 0.0010 wt% to 30 wt%, particularly 0.0010 wt% to 2 wt%.

複合粒子への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。   As a method for coating the composite particles with the resin, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferable in that it can be efficiently applied with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of resin solution sprayed and the spraying time.

本発明に係る電子写真用現像剤は、以上のようにして作製した電子写真現像用キャリアとトナーとを混合してなる。電子写真現像用キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1wt%〜20wt%の範囲が好ましい。トナー濃度が1wt%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が20wt%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3wt%〜15wt%の範囲である。   The electrophotographic developer according to the present invention is obtained by mixing the electrophotographic developer carrier prepared as described above and a toner. The mixing ratio of the electrophotographic developing carrier and the toner is not particularly limited, and may be appropriately determined from the developing conditions of the developing device to be used. Generally, the toner concentration in the developer is preferably in the range of 1 wt% to 20 wt%. When the toner density is less than 1 wt%, the image density becomes too low, and when the toner density exceeds 20 wt%, the toner scatters in the developing device, and the toner adheres to the background portion such as internal dirt or transfer paper. This is because there is a risk of occurrence. A more preferable toner concentration is in the range of 3 wt% to 15 wt%.

電子写真現像用キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。   For mixing the electrophotographic carrier and the toner, a conventionally known mixing device can be used. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer, or the like can be used.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these examples at all.

実施例1
複合粒子を下記方法で作製した。出発原料として、1000gのフェライト粉(組成:Mn0.86Fe2.14,平均粒径:2.9μm)と、231gのポリウレタン樹脂(樹脂濃度30wt%)とを、587gの純水中に分散し、濃度58.0wt%で粘度690cpの混合スラリーを得た。この混合スラリーをスプレードライヤーにて約150℃の熱風中に噴霧して造粒物を得た。得られた造粒物を送風乾燥機に投入し、温度150℃で60分間乾燥させポリウレタン樹脂を硬化させて複合粒子を得た。得られた複合粒子を振動ふるいを用いて分級し、体積平均粒径32.0μmの複合粒子を得た。
Example 1
Composite particles were produced by the following method. As starting materials, 1000 g of ferrite powder (composition: Mn 0.86 Fe 2.14 O 4 , average particle size: 2.9 μm) and 231 g of polyurethane resin (resin concentration 30 wt%) were mixed with 587 g of pure water. To obtain a mixed slurry having a concentration of 58.0 wt% and a viscosity of 690 cp. This mixed slurry was sprayed into hot air at about 150 ° C. with a spray dryer to obtain a granulated product. The obtained granulated material was put into a blower dryer and dried at a temperature of 150 ° C. for 60 minutes to cure the polyurethane resin to obtain composite particles. The obtained composite particles were classified using a vibration sieve to obtain composite particles having a volume average particle size of 32.0 μm.

複合粒子断面における、磁性粉の占める面積割合およびその標準偏差、複合粒子の見掛け密度、粒子強度、真密度、体積平均粒径、磁気特性、電気抵抗を下記の方法で測定した。結果を表2にまとめて示す。また、図1及び図2に、実施例1の複合粒子のSEM写真及び断面SEM写真をそれぞれ示す。   In the composite particle cross section, the area ratio of the magnetic powder and its standard deviation, the apparent density of the composite particles, the particle strength, the true density, the volume average particle size, the magnetic properties, and the electrical resistance were measured by the following methods. The results are summarized in Table 2. 1 and 2 show an SEM photograph and a cross-sectional SEM photograph of the composite particles of Example 1, respectively.

(複合粒子における磁性粉の占める面積割合の測定)
得られた複合粒子を熱硬化性樹脂中に分散させた後、加熱により樹脂を硬化させた。この硬化物の表面をクロスセクションポリッシャー(日本電子社製)を用いて研磨した。研磨した粒子表面を走査電子顕微鏡(日本電子社製)を用いて観察し、粒子の断面写真を撮影した。そして、100個の粒子の断面をそれぞれ9つに等分し、それぞれの区分における粒子部分と樹脂部分とを画像解析ソフト「Image-Pro」を使用して計測して、総面積に対する磁性粉部分の面積比(磁性粉面積割合)を算出し、その平均値と標準偏差を算出した。
(Measurement of area ratio of magnetic powder in composite particles)
After the obtained composite particles were dispersed in a thermosetting resin, the resin was cured by heating. The surface of the cured product was polished using a cross section polisher (manufactured by JEOL Ltd.). The polished particle surface was observed using a scanning electron microscope (manufactured by JEOL Ltd.), and a cross-sectional photograph of the particle was taken. Then, the cross-section of 100 particles is equally divided into 9 parts, and the particle part and resin part in each section are measured using image analysis software “Image-Pro”, and the magnetic powder part relative to the total area is measured. The area ratio (magnetic powder area ratio) was calculated, and the average value and standard deviation were calculated.

(見掛け密度の測定)
複合粒子の見掛け密度はJIS Z 2504に準拠して測定した。
(Apparent density measurement)
The apparent density of the composite particles was measured according to JIS Z 2504.

(粒子強度)
複合粒子30gをサンプルミルに投入した。サンプルミルは、協立理工株式会社製のSK−M10型を用い、回転数14000rpmで60秒間破砕試験を行った。次いで、レーザー回折式粒度分布測定装置(「マイクロトラックModel9320−X100」日機装社製)を用いて、粒径20μm以下の累積粒子頻度を測定する。そして、サンプルミルによる処理前後の、粒径20μm以下の累積粒子頻度の増加率(%)を算出し、粒子強度の指標とした。
○:破砕後の20μm以下の破砕片における増加率が40%未満
×:破砕後の20μm以下の破砕片における増加率が40%以上
(Particle strength)
30 g of composite particles were put into a sample mill. The sample mill used a SK-M10 model manufactured by Kyoritsu Riko Co., Ltd., and a crushing test was performed at a rotational speed of 14,000 rpm for 60 seconds. Next, using a laser diffraction particle size distribution measuring apparatus (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.), the cumulative particle frequency with a particle size of 20 μm or less is measured. And the increase rate (%) of the cumulative particle frequency with a particle size of 20 μm or less before and after the treatment with the sample mill was calculated and used as an index of particle strength.
○: Increase rate in crushed pieces of 20 μm or less after crushing is less than 40% ×: Increase rate in crushed pieces of 20 μm or less after crushing is 40% or more

(真密度)
複合粒子の真密度は、Quantachrome社製、「ULTRA PYCNOMETER 1000」を用いて測定を行った。
(True density)
The true density of the composite particles was measured using “ULTRA PYCNOMETER 1000” manufactured by Quantachrome.

(体積平均粒径の測定)
体積平均粒径の測定については、日機装株式会社製のマイクロトラック、Model9320−X100を用いて実施した。
(Measurement of volume average particle diameter)
The volume average particle diameter was measured using a Microtrack, Model 9320-X100 manufactured by Nikkiso Co., Ltd.

(磁気特性の測定)
VSM(東英工業株式会社製、VSM−P7)を用いて、飽和磁化σs及び磁化σ1k、残留磁化σr、保磁力Hcをそれぞれ測定した。
(Measurement of magnetic properties)
Saturation magnetization σs, magnetization σ 1k , residual magnetization σr, and coercive force Hc were measured using VSM (manufactured by Toei Kogyo Co., Ltd., VSM-P7).

(電気抵抗)
表面を電解研磨した厚さ2mmの電極としての真鍮板2枚を、距離2mm離して対向するように配置した。電極間に複合粒子200mgを装入した後、それぞれの電極の背後に断面積240cm2の磁石(表面磁束密度が1500ガウスのフェライト磁石)を配置して、電極間に複合粒子のブリッジを形成させた。そして、1000Vの直流電圧を電極間に印加し、複合粒子に流れる電流値を測定し、電圧1000Vのときの複合粒子の電気抵抗を算出した。
(Electrical resistance)
Two brass plates as electrodes having a thickness of 2 mm whose surfaces were electropolished were arranged to face each other with a distance of 2 mm. After inserting 200 mg of composite particles between the electrodes, a magnet having a cross-sectional area of 240 cm 2 (ferrite magnet having a surface magnetic flux density of 1500 gauss) was placed behind each electrode to form a bridge of composite particles between the electrodes. . Then, a DC voltage of 1000 V was applied between the electrodes, the value of the current flowing through the composite particles was measured, and the electrical resistance of the composite particles at a voltage of 1000 V was calculated.

実施例2
出発原料として、1000gのフェライト粉(組成:Mn0.86Fe2.14,平均粒径:2.9μm)と、188gのポリウレタン樹脂(樹脂濃度35wt%)とを、578gの純水中に分散し、濃度57.7wt%で粘度654cpの混合スラリーを得た。この混合スラリーをスプレードライヤーにて約150℃の熱風中に噴霧して造粒物を得た。得られた造粒物を送風乾燥機に投入し、温度150℃で60分間乾燥させポリウレタン樹脂を硬化させて複合粒子を得た。得られた複合粒子を振動ふるいを用いて分級し、体積平均粒径39.9μmの複合粒子を得た。
得られた複合粒子の特性を実施例1と同様にして測定した。結果を表2にまとめて示す。また、図3及び図4に、実施例2の複合粒子のSEM写真及び断面SEM写真をそれぞれ示す。
Example 2
As starting materials, 1000 g of ferrite powder (composition: Mn 0.86 Fe 2.14 O 4 , average particle size: 2.9 μm) and 188 g of polyurethane resin (resin concentration 35 wt%) were added to 578 g of pure water. A mixed slurry having a concentration of 57.7 wt% and a viscosity of 654 cp was obtained. This mixed slurry was sprayed into hot air at about 150 ° C. with a spray dryer to obtain a granulated product. The obtained granulated material was put into a blower dryer and dried at a temperature of 150 ° C. for 60 minutes to cure the polyurethane resin to obtain composite particles. The obtained composite particles were classified using a vibration sieve to obtain composite particles having a volume average particle diameter of 39.9 μm.
The properties of the obtained composite particles were measured in the same manner as in Example 1. The results are summarized in Table 2. 3 and 4 show a SEM photograph and a cross-sectional SEM photograph of the composite particles of Example 2, respectively.

実施例3
出発原料として、1000gのフェライト粉(組成:Mn0.86Fe2.14,平均粒径:2.9μm)と、316gのポリオレフィン樹脂(樹脂濃度22wt%)とを、225gの純水中に分散し、濃度68.9wt%で粘度1234cpの混合スラリーを得た。この混合スラリーをスプレードライヤーにて約150℃の熱風中に噴霧して造粒物を得た。得られた造粒物を送風乾燥機に投入し、温度120℃で60分間乾燥させポリオレフィン樹脂を硬化させて複合粒子を得た。得られた複合粒子を振動ふるいを用いて分級し、体積平均粒径32.5μmの複合粒子を得た。
得られた複合粒子の特性を実施例1と同様にして測定した。結果を表2にまとめて示す。また、図5及び図6に、実施例3の複合粒子のSEM写真及び断面SEM写真をそれぞれ示す。
Example 3
As starting materials, 1000 g of ferrite powder (composition: Mn 0.86 Fe 2.14 O 4 , average particle size: 2.9 μm) and 316 g of polyolefin resin (resin concentration 22 wt%) were added to 225 g of pure water. To obtain a mixed slurry having a concentration of 68.9 wt% and a viscosity of 1234 cp. This mixed slurry was sprayed into hot air at about 150 ° C. with a spray dryer to obtain a granulated product. The obtained granulated material was put into a blower dryer and dried at a temperature of 120 ° C. for 60 minutes to cure the polyolefin resin to obtain composite particles. The obtained composite particles were classified using a vibration sieve to obtain composite particles having a volume average particle diameter of 32.5 μm.
The properties of the obtained composite particles were measured in the same manner as in Example 1. The results are summarized in Table 2. 5 and 6 show an SEM photograph and a cross-sectional SEM photograph of the composite particles of Example 3, respectively.

比較例1
出発原料として、700gのフェライト粉(組成:Mn0.86Fe2.14,平均粒径:2.9μm)と、96gのアクリル樹脂(樹脂濃度50wt%)とを、476gの純水中に分散し、濃度63.9wt%で粘度1122cpの混合スラリーを得た。この混合スラリーをスプレードライヤーにて約150℃の熱風中に噴霧して造粒物を得た。得られた造粒物を送風乾燥機に投入し、温度180℃で60分間乾燥させアクリル樹脂を硬化させて複合粒子を得た。得られた複合粒子を振動ふるいを用いて分級し、体積平均粒径30.6μmの複合粒子を得た。
得られた複合粒子の特性を実施例1と同様にして測定した。結果を表2にまとめて示す。また、図7及び図8に、比較例1の複合粒子のSEM写真及び断面SEM写真をそれぞれ示す。
Comparative Example 1
As starting materials, 700 g of ferrite powder (composition: Mn 0.86 Fe 2.14 O 4 , average particle size: 2.9 μm) and 96 g of acrylic resin (resin concentration 50 wt%) were added to 476 g of pure water. A mixed slurry having a concentration of 63.9 wt% and a viscosity of 1122 cp was obtained. This mixed slurry was sprayed into hot air at about 150 ° C. with a spray dryer to obtain a granulated product. The obtained granulated material was put into a blower dryer and dried at a temperature of 180 ° C. for 60 minutes to cure the acrylic resin to obtain composite particles. The obtained composite particles were classified using a vibration sieve to obtain composite particles having a volume average particle diameter of 30.6 μm.
The properties of the obtained composite particles were measured in the same manner as in Example 1. The results are summarized in Table 2. 7 and 8 show an SEM photograph and a cross-sectional SEM photograph of the composite particles of Comparative Example 1, respectively.

表2から明らかなように、実施例1〜3の複合粒子は、見掛け密度が1.04g/cm以下と小さく、しかも粒子強度は高かった。これに対し、比較例1の複合粒子は、粒子内における磁性粉の分散が不十分で、粒子強度が低く割れや欠けが発生した。見掛け密度が高い程、強度は向上されると思われたが、比較例1においては強度不足であった。これは磁性粉の面積割合の標準偏差(%)が10を超えたためである。 As is clear from Table 2, the composite particles of Examples 1 to 3 had a small apparent density of 1.04 g / cm 3 or less and a high particle strength. On the other hand, the composite particles of Comparative Example 1 had insufficient dispersion of the magnetic powder in the particles, the particle strength was low, and cracks and chips were generated. The higher the apparent density, the higher the strength. However, in Comparative Example 1, the strength was insufficient. This is because the standard deviation (%) of the area ratio of the magnetic powder exceeded 10.

標準偏差の影響を確認するため、実施例1における磁性粉を平均粒径5.0μmのものとし、面積割合30%とした以外は、同様に実施例1の製法で確認試験をした。結果、磁性粉の面積割合の標準偏差(%)が10を超え、強度が不足していた。複合粒子内の均質性が強度に影響を与えることを確認した。   In order to confirm the influence of the standard deviation, a confirmation test was similarly conducted by the production method of Example 1 except that the magnetic powder in Example 1 had an average particle diameter of 5.0 μm and an area ratio of 30%. As a result, the standard deviation (%) of the area ratio of the magnetic powder exceeded 10, and the strength was insufficient. It was confirmed that the homogeneity within the composite particles affects the strength.

Claims (5)

結着樹脂中に磁性粉が分散した複合粒子であって、
見掛け密度が1.1g/cm以下であり、
真密度が3.8g/cm 〜4.5g/cm の範囲であり、
粒子断面における磁性粉の占める面積割合が30%〜50%であり、前記粒子断面を複数の領域に区分して求めた前記面積割合の標準偏差σが7.0%以下である
ことを特徴とする複合粒子。
Composite particles in which magnetic powder is dispersed in a binder resin,
The apparent density is 1.1 g / cm 3 or less,
The true density is in the range of 3.8 g / cm 3 to 4.5 g / cm 3 ;
The area ratio of the magnetic powder in the particle cross section is 30% to 50%, and the standard deviation σ of the area ratio obtained by dividing the particle cross section into a plurality of regions is 7.0% or less. Composite particles.
結着樹脂中に磁性粉が分散した複合粒子であって、
見掛け密度が1.1g/cm以下であり、
粒子断面における磁性粉の占める面積割合が30%〜50%であり、前記粒子断面を複数の領域に区分して求めた前記面積割合の標準偏差σが7.0%以下であり、
前記結着樹脂がポリウレタン及びポリオレフィンの少なくとも一方を含む
ことを特徴とする複合粒子。
Composite particles in which magnetic powder is dispersed in a binder resin,
The apparent density is 1.1 g / cm 3 or less,
Area ratio of the magnetic powder in the particle cross section is 30% to 50% state, and are the standard deviation σ is 7.0% or less of the area ratio obtained by dividing the particle cross sections into a plurality of regions,
The composite particle, wherein the binder resin contains at least one of polyurethane and polyolefin .
体積平均粒径が20μm〜50μmの範囲である請求項1又は2記載の複合粒子。   The composite particles according to claim 1 or 2, wherein the volume average particle diameter is in the range of 20 µm to 50 µm. 請求項1〜のいずれかに記載の複合粒子の表面を樹脂で被覆したことを特徴とする電子写真現像用キャリア。 Electrophotographic development carrier, characterized in that the surface of the composite particles according to any one of claims 1 to 3 is coated with a resin. 請求項記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤。 An electrophotographic developer comprising the electrophotographic developer carrier according to claim 4 and a toner.
JP2014002753A 2014-01-09 2014-01-09 COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME Active JP6267965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002753A JP6267965B2 (en) 2014-01-09 2014-01-09 COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002753A JP6267965B2 (en) 2014-01-09 2014-01-09 COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME

Publications (2)

Publication Number Publication Date
JP2015132656A JP2015132656A (en) 2015-07-23
JP6267965B2 true JP6267965B2 (en) 2018-01-24

Family

ID=53899914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002753A Active JP6267965B2 (en) 2014-01-09 2014-01-09 COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME

Country Status (1)

Country Link
JP (1) JP6267965B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282563A (en) * 1988-05-10 1989-11-14 Fuji Xerox Co Ltd Developer
JPH05197211A (en) * 1991-09-30 1993-08-06 Dainippon Ink & Chem Inc Electrophotographic magnetic carrier and manufacture thereof
JP2872480B2 (en) * 1992-03-04 1999-03-17 キヤノン株式会社 Magnetic dispersion carrier, two-component developer for electrostatic image development, method for producing magnetic dispersion carrier, and image forming method
JPH06295103A (en) * 1993-04-09 1994-10-21 Dainippon Ink & Chem Inc Electrophotographic magnetic carrier and its production
JPH07219279A (en) * 1994-01-31 1995-08-18 Konica Corp Electrostatic charge image developer
JPH086306A (en) * 1994-06-15 1996-01-12 Dainippon Ink & Chem Inc Elecrophotographic magnetic carrier and manufacture thereof
JPH08286423A (en) * 1995-04-11 1996-11-01 Minolta Co Ltd Magnetic developer
JPH1010790A (en) * 1996-06-27 1998-01-16 Fuji Xerox Co Ltd Magnetic material dispersion type carrier, its production, electrostatic charge image developer and image forming method
JP4036779B2 (en) * 2003-03-19 2008-01-23 株式会社リコー Electrophotographic carrier, developer, and image forming apparatus
JP4109576B2 (en) * 2003-06-04 2008-07-02 三井金属鉱業株式会社 Carrier for electrophotographic developer, developer using the same, and image forming method

Also Published As

Publication number Publication date
JP2015132656A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5825670B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
KR101766667B1 (en) Ferrite particles, carrier for electrophotographic development using same, and developer for electrophotography
KR101940594B1 (en) Ferrite particles and electrophotographic developer carrier using same, electrophotographic developer, and method for producing ferrite particles
JP5567396B2 (en) Ferrite particles for charging a magnetic brush and method for producing the same
JP5843378B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5735877B2 (en) Method for producing ferrite particles
JP2013035737A (en) Method for manufacturing ferrite particle
JP5620699B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5822377B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP6267965B2 (en) COMPOSITE PARTICLES AND ELECTROPHOTOGRAPHIC DEVELOPMENT CARRIER AND ELECTROPHOTOGRAPHIC DEVELOPER USING THE SAME
JP5761921B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP5111062B2 (en) Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer
JP5478322B2 (en) Ferrite particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing ferrite particles
JP2012076959A (en) Ferrite particles, and carrier for electrophotographic development and electrophotographic developer using ferrite particles
JP2010085762A (en) Carrier core material and method for manufacturing the same, and magnetic carrier for electrophotographic developer
JP5822378B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5892689B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP6121675B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP5943465B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5735779B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP6494272B2 (en) Ferrite particles, electrophotographic developer carrier and electrophotographic developer using the same
JP5924814B2 (en) Method for producing ferrite particles
JP5920973B2 (en) Sintered particles, electrophotographic developer carrier, electrophotographic developer using the same, and method for producing sintered particles
JP6061423B2 (en) Carrier core material, carrier for electrophotographic development using the same and developer for electrophotography
JPH086303A (en) Electrophotographic magnetic carrier and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

R150 Certificate of patent or registration of utility model

Ref document number: 6267965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250