JP6265673B2 - Method for producing inorganic particle material-containing composition - Google Patents

Method for producing inorganic particle material-containing composition Download PDF

Info

Publication number
JP6265673B2
JP6265673B2 JP2013209543A JP2013209543A JP6265673B2 JP 6265673 B2 JP6265673 B2 JP 6265673B2 JP 2013209543 A JP2013209543 A JP 2013209543A JP 2013209543 A JP2013209543 A JP 2013209543A JP 6265673 B2 JP6265673 B2 JP 6265673B2
Authority
JP
Japan
Prior art keywords
inorganic particle
organic solvent
classification
particle material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013209543A
Other languages
Japanese (ja)
Other versions
JP2015074662A (en
Inventor
加藤 義明
義明 加藤
武 楊原
武 楊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2013209543A priority Critical patent/JP6265673B2/en
Publication of JP2015074662A publication Critical patent/JP2015074662A/en
Application granted granted Critical
Publication of JP6265673B2 publication Critical patent/JP6265673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、無機物粒子材料含有組成物の製造方法に関する。 The present invention relates to a method for producing inorganic particulate material-containing composition.

従来、熱硬化性樹脂などの樹脂中にシリカやアルミナなどからなる無機物粒子材料をフィラーとして分散させた樹脂組成物及びその硬化物が知られている。樹脂中に無機物粒子材料を含有させることにより硬化物の耐熱性を向上したり、物理的強度を向上したりできる。(特許文献1など参照)。ここで、樹脂中にフィラーを混合する目的で有機溶媒中にフィラーを分散させた組成物がある。   Conventionally, a resin composition in which an inorganic particle material made of silica, alumina or the like is dispersed as a filler in a resin such as a thermosetting resin, and a cured product thereof are known. By including an inorganic particle material in the resin, the heat resistance of the cured product can be improved, or the physical strength can be improved. (Refer patent document 1 etc.). Here, there is a composition in which a filler is dispersed in an organic solvent for the purpose of mixing the filler in the resin.

特開2011−256243号公報JP 2011-256243 A

ところで樹脂組成物中に分散させるフィラーの粒径を精密に制御する必要がある用途が存在する。例えば粒径の制御の1つとして粗大な粒子の含有量を制限することが望まれる場合がある。粒径の制御は一般的に分級操作として実現される。分級操作としては乾式、湿式などの種類があるが、精密に分級を行うためには湿式にて行うことが望ましい。乾式では粒子が凝集して分級が困難であると共に、分級することも可能であっても、微小な粒子においては、その後に樹脂組成物を調製するまでの間に凝集などが進行して大きな粒子が再生されるおそれがあるためである。   There are applications in which the particle size of the filler dispersed in the resin composition needs to be precisely controlled. For example, it may be desirable to limit the content of coarse particles as one of the particle size controls. The control of the particle size is generally realized as a classification operation. There are various types of classification operations, such as dry and wet, but it is desirable to carry out classification in order to perform precise classification. In the dry method, particles are agglomerated and classification is difficult, and even if classification is possible, in the case of fine particles, agglomeration etc. progresses until the resin composition is prepared thereafter, resulting in large particles This is because there is a possibility of being regenerated.

分級操作としては所定の目開きが設定され原理的にそれ以上の大きさの粒子が通過できず粗粒の制限が原理的に精密に実行できる篩分けが望ましい。但し、湿式での篩分けは篩分けの対象物の粘度の大小により分級のし易さが大きく変化する。具体的には粘度が小さい方が分級を行いやすい。   As the classification operation, sieving is preferable in which a predetermined opening is set and particles larger than that in principle cannot pass through, and the restriction of coarse particles can be performed precisely in principle. However, wet sieving greatly changes the ease of classification depending on the viscosity of the sieving object. Specifically, classification is easier when the viscosity is smaller.

無機物粒子材料を湿式にて分級するために添加する有機溶媒は、最終的な用途(例えば樹脂組成物)において必須の成分であれば問題ないが、必須の成分で無いならば、分級した後に除去乃至減少させる必要がある。ここで、いったん含有させた溶媒を除去することは非常に困難である。例えば、含有する溶媒を減圧や加熱により蒸発・除去すると、除去の際に加えられる熱などの影響によって、分散されている無機物粒子材料が凝集して粒径が大きな粒子(粗粒)が生成することがある。また、含有する溶媒をすべて除去するのでは無く、制御された一定の割合の溶媒が残るように除去することを再現性良く行うことは困難である。従って、最初から含有させる溶媒の量を低下させることが望ましい。   The organic solvent added to classify the inorganic particulate material in a wet manner is not a problem if it is an essential component in the final application (for example, resin composition), but if it is not an essential component, it is removed after classification. It needs to be reduced. Here, it is very difficult to remove the solvent once contained. For example, when the solvent contained is evaporated / removed by decompression or heating, the dispersed inorganic particle material aggregates due to the influence of heat applied at the time of removal and particles having a large particle size (coarse particles) are generated. Sometimes. Also, it is difficult to remove with good reproducibility not to remove all the solvent contained but to leave a controlled and constant proportion of solvent. Therefore, it is desirable to reduce the amount of the solvent contained from the beginning.

本発明は上記事情に鑑みてなされたものであり、含有させる有機溶媒の量を減らすことも可能である無機物粒子材料含有組成物の製造方法を提供することを解決すべき課題とする。 This invention is made | formed in view of the said situation, and makes it the subject which should be solved to provide the manufacturing method of the inorganic particle material containing composition which can also reduce the quantity of the organic solvent to contain.

(a)本発明者らは鋭意検討を行った結果、無機物粒子材料と有機溶媒との混合物に対し、樹脂材料を混合することにより、得られる混合物の粘度を大幅に低下させることができ、その状態で篩分けを行うことにより精密な分級が実現できることを見出した。本発明は上記知見に基づき完成したものである。 (A) As a result of intensive studies, the present inventors can greatly reduce the viscosity of the resulting mixture by mixing a resin material with a mixture of an inorganic particle material and an organic solvent, It was found that precise classification can be realized by sieving in the state. The present invention has been completed based on the above findings.

本発明の無機物粒子材料含有組成物の製造方法は、無機物粒子材料と、有機溶媒と、前記無機物粒子材料及び前記有機溶媒と混合可能な樹脂材料とを混合して混合物にする混合工程と、
前記混合物を分級する分級工程と、
を有する。
The method for producing an inorganic particle material-containing composition of the present invention includes a mixing step of mixing an inorganic particle material, an organic solvent, and a resin material that can be mixed with the inorganic particle material and the organic solvent into a mixture;
A classification step of classifying the mixture;
Have

上述の(a)の発明には以下の(b)及び/又は(c)の構成を加えることができる。   The following configuration (b) and / or (c) can be added to the invention (a).

(b)前記混合物における前記有機溶媒の含有量は、前記無機物粒子材料と前記有機溶媒とを前記樹脂材料を除き先に混合したものが前記分級工程で行う分級にて分級可能になる量よりも少ない量である。本構成を採用することにより有機溶媒の添加量を最小限に出来る。 (B) The content of the organic solvent in the mixture is more than the amount that can be classified in the classification performed in the classification step in which the inorganic particle material and the organic solvent are mixed except the resin material. Small amount. By adopting this configuration, the amount of organic solvent added can be minimized.

(c)前記分級工程にて行う分級は篩分けである。分級工程で採用しうる分級操作としては篩分け、粒子の沈降速度の差(粒径が大きいほど速く沈降する)を利用して行うもの(沈降は重力により進行させても良いし、遠心力により促進しても良い)が例示できるが、特に目開きの大きさを制御することで分級を高精度で行うことが可能である篩分けによる方法を採用することが望ましい。ここで、篩分けとは一定の目開きをもつ篩を通過するか否かにより分級を行う手段であり、篩としては目開きの大きさが制御されたものであれば充分であり、網、布、不織布、多孔質体、パンチングメタル、粒径を制御した粉粒体を充填したカラムなどが例示できる。 (C) Classification performed in the classification step is sieving. The classification operation that can be adopted in the classification process is performed by sieving and using the difference in the sedimentation speed of particles (the larger the particle size, the faster the sedimentation) (the sedimentation may be caused to proceed by gravity or by centrifugal force) However, it is desirable to employ a sieving method that enables classification with high accuracy by controlling the size of the openings. Here, sieving is a means for classification depending on whether or not it passes through a sieve having a certain mesh, and as the sieve, it is sufficient if the size of the mesh is controlled, Examples thereof include a cloth, a nonwoven fabric, a porous body, a punching metal, and a column filled with a granular material with a controlled particle size.

本発明無機物粒子材料含有組成物の製造方法は含有させる溶媒の量を減らすことも可能である。 In the method for producing the inorganic particle material-containing composition of the present invention, the amount of the solvent to be contained can be reduced.

本発明の無機物粒子材料含有組成物の製造方法について実施形態に基づき以下詳細に説明を行う。本実施形態の製造方法にて製造される無機物粒子材料含有組成物は含有する無機物粒子材料の粒径が適正に制御された状態で安定的に存在することができる。この無機物粒子材料含有組成物は樹脂材料などに混合することにより用いることが出来る。樹脂材料と混合して樹脂組成物にすると、半導体デバイスにおける半導体素子を封止する封止材や、半導体素子と基板との間に充填されるアンダーフィル材などに用いることが出来る。最終的に混合する樹脂材料と本実施形態の無機物粒子材料含有組成物が含有する樹脂材料とは同じ物であっても異なるものであっても良いが、親和性の高いものであることが望ましい。 The method for producing the inorganic particle material-containing composition of the present invention will be described in detail below based on the embodiment. The inorganic particle material-containing composition produced by the production method of the present embodiment can stably exist in a state where the particle size of the inorganic particle material contained is appropriately controlled. This inorganic particle material-containing composition can be used by mixing with a resin material or the like. When a resin composition is mixed with a resin material, it can be used as a sealing material for sealing a semiconductor element in a semiconductor device, an underfill material filled between a semiconductor element and a substrate, or the like. The resin material finally mixed and the resin material contained in the inorganic particle material-containing composition of the present embodiment may be the same or different, but it is desirable that the resin material has high affinity. .

〔無機物粒子材料含有組成物の製造方法〕
本実施形態の無機物粒子材料含有組成物の製造方法は(A)混合工程と(B)分級工程とその他必要な工程とを有する。混合工程で得られた混合物を分級工程にて分級し含有される粗粒の量を制御する。
[Method for producing inorganic particle material-containing composition]
The method for producing the inorganic particle material-containing composition of the present embodiment includes (A) a mixing step, (B) a classification step, and other necessary steps. The mixture obtained in the mixing step is classified in the classification step and the amount of coarse particles contained is controlled.

(A)混合工程
混合工程では無機物粒子材料と樹脂材料と有機溶媒とを必要な比率になるように混合する。樹脂材料を混合することにより 無機物粒子材料と有機溶媒との比率は維持したまま、混合物の粘度は低下できるため、混合物において同程度の粘度を実現するためには樹脂材料を添加したことにより有機溶媒の量を相対的に減らすことが出来る。
(A) Mixing step In the mixing step, the inorganic particle material, the resin material, and the organic solvent are mixed so as to have a required ratio. By mixing the resin material, the viscosity of the mixture can be reduced while maintaining the ratio between the inorganic particle material and the organic solvent. Therefore, in order to achieve the same level of viscosity in the mixture, the organic solvent can be obtained by adding the resin material. Can be relatively reduced.

無機物粒子材料と有機溶媒と樹脂材料との混合の方法は特に限定しない。例えば、公知の撹拌機・混練機などにより混合分散することができる。また、混合の順序も特に限定されない。   The method for mixing the inorganic particle material, the organic solvent, and the resin material is not particularly limited. For example, it can be mixed and dispersed by a known stirrer / kneader. Further, the order of mixing is not particularly limited.

無機物粒子材料と有機溶媒と樹脂材料との混合量は特に限定しない。有機溶媒はできるだけ少ない方が望ましい。例えば無機物粒子材料は、無機物粒子材料と有機溶媒との混合物の総和を基準として65%以上、更には70%以上、75%以上や80%以上にすることができる。有機溶媒の量は無機物粒子材料と混合したときに後述する分級工程で分級が出来ないような量にすることが出来る。ここで、分級工程において分級できないとは、分級工程として篩分けを採用する場合にはその採用された篩を通過できない場合、沈降速度の差により分級を行う場合には現実的な時間内(例えば24時間以内)にて1回の分級操作が出来ない場合が例示できる。また、分級できない場合として、粘度が120mPa・s以上の場合を採用することも出来る。好ましい粘度の下限としては、150mPa・s、175mPa・s、200mPa・s、225mPa・s、250mPa・s、275mPa・s、300mPa・s、325mPa・sが例示できる。   The mixing amount of the inorganic particle material, the organic solvent, and the resin material is not particularly limited. It is desirable that the organic solvent is as small as possible. For example, the inorganic particle material can be 65% or more, further 70% or more, 75% or more, or 80% or more based on the total sum of the mixture of the inorganic particle material and the organic solvent. The amount of the organic solvent can be set such that it cannot be classified in the classification step described later when mixed with the inorganic particulate material. Here, when classification is not possible in the classification process, when sieving is adopted as the classification process, when it cannot pass through the adopted sieve, when classification is performed due to a difference in sedimentation speed, it is within a realistic time (for example, A case where a single classification operation cannot be performed within 24 hours) can be exemplified. Moreover, the case where a viscosity is 120 mPa * s or more can also be employ | adopted as a case where classification cannot be performed. As a preferable lower limit of the viscosity, 150 mPa · s, 175 mPa · s, 200 mPa · s, 225 mPa · s, 250 mPa · s, 275 mPa · s, 300 mPa · s, and 325 mPa · s can be exemplified.

ここで、本明細書において提示される粘度は、25℃にした試料に対して振動式粘度計 (ビスコメイトVM-1G、山一電機社製)にて測定した値である。   Here, the viscosity presented in the present specification is a value measured with a vibrating viscometer (Viscomate VM-1G, manufactured by Yamaichi Electronics Co., Ltd.) on a sample set at 25 ° C.

樹脂材料は混合物の粘度が低下する程度の量を添加することで充分である。ある程度以上の量の樹脂材料を添加してもそれ以上の粘度の低下が認められなくなるばかりか樹脂材料自身の粘度に近づくことになる。なお、樹脂材料の添加が増えるに従って粘度がいったん下がった後(粘度の極小値をもった後)、粘度が増加する傾向を示すことが多い。そのため樹脂材料の添加量としては粘度の極小値近傍になるようにすることが望ましい。   It is sufficient that the resin material is added in such an amount that the viscosity of the mixture is lowered. Even if a resin material of a certain amount or more is added, not only a further decrease in the viscosity is not observed, but also the viscosity of the resin material itself is approached. In many cases, the viscosity tends to increase after the viscosity once decreases (after having the minimum value of the viscosity) as the addition of the resin material increases. Therefore, it is desirable that the amount of the resin material added is close to the minimum value of the viscosity.

例えば、無機物粒子材料と有機溶媒と樹脂材料との混合物の総和を基準として、樹脂材料の添加量は1%〜30%程度を採用することが出来る。樹脂材料の添加量の下限としては2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%を例示でき、上限としては25%、22.5%、20%、18%、16%%が例示できる。   For example, the addition amount of the resin material can be about 1% to 30% based on the sum of the mixture of the inorganic particle material, the organic solvent, and the resin material. Examples of the lower limit of the amount of resin material added include 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, and 13%. Can be 25%, 22.5%, 20%, 18%, 16 %%.

・無機物粒子材料
無機物粒子材料は特に限定しない。例えばシリカ、アルミナ(Al)、酸化ジルコニウム(ZrO)、ゼオライト、酸化チタン(TiO)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)、窒化ケイ素(Si)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸カルシウム(CaTiO)、ほう酸アルミニウム、ボロンナイト、炭酸カルシウム、酸化鉛、酸化すず、酸化セリウム、酸化カルシウム、四酸化三マンガン、酸化マグネシウム、これらの酸化物の複合酸化物、セリウムジルコネイト、カルシウムシリケート、ジルコニウムシリケート、ITO、チタンシリケート、金属を単独又は組み合わせて採用することができる。特に無機物粒子材料は真球度が高いもの(例えば真球度が0.8以上、0.9以上、0.95以上のもの)を採用することが混合物の粘度低下の観点からは望ましい。真球度の測定は、SEMで写真を撮り、その観察される粒子の面積と周囲長から、(真球度)={4π×(面積)÷(周囲長)}で算出される値として算出する。1に近づくほど真球に近い。具体的には画像処理装置(シスメックス株式会社:FPIA−3000)を用い、無作為に抽出した100個の粒子について測定した平均値を採用する。
-Inorganic particle material The inorganic particle material is not particularly limited. For example, silica, alumina (Al 2 O 3 ), zirconium oxide (ZrO 2 ), zeolite, titanium oxide (TiO 2 ), aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si 3 N 4 ), titanic acid Barium (BaTiO 3 ), strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3 ), aluminum borate, boronite, calcium carbonate, lead oxide, tin oxide, cerium oxide, calcium oxide, trimanganese tetraoxide, magnesium oxide These oxide complex oxides, cerium zirconate, calcium silicate, zirconium silicate, ITO, titanium silicate, and metals can be used alone or in combination. In particular, it is desirable to employ an inorganic particle material having a high sphericity (for example, a sphericity of 0.8 or more, 0.9 or more, or 0.95 or more) from the viewpoint of reducing the viscosity of the mixture. The sphericity is measured by taking a photograph with an SEM, and calculating from (Sphericality) = {4π × (Area) ÷ (Ambient Length) 2 } from the area and circumference of the observed particle. calculate. The closer to 1, the closer to a true sphere. Specifically, an average value measured for 100 particles randomly extracted using an image processing apparatus (Sysmex Corporation: FPIA-3000) is employed.

粘度が低下すれば更にたくさんの無機物粒子材料を含有させることが出来る。無機物粒子材料の粒径は特に限定しないが体積平均粒径が0.1μm〜30μm程度にすることができる。更に望ましい粒径としては上限が20μm、15μm、10μm、5μm、3μm、2μmが例示でき、下限としては0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、1.0μmが挙げられる。更に、混合工程に供する前に分級を行い粗粒をできるだけ除去しておくことが望ましい。   If the viscosity decreases, a larger amount of inorganic particle material can be contained. The particle size of the inorganic particle material is not particularly limited, but the volume average particle size can be about 0.1 μm to 30 μm. Further, as the desirable particle size, the upper limit is 20 μm, 15 μm, 10 μm, 5 μm, 3 μm, 2 μm, and the lower limit is 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μm, 0.6 μm, 0.7 μm, Examples thereof include 0.8 μm and 1.0 μm. Furthermore, it is desirable to classify and remove coarse particles as much as possible before subjecting to the mixing step.

無機物粒子材料は何らかの表面処理が為されていても良い。表面処理を行うことにより後に樹脂材料に混合する際における樹脂材料との親和性を調節したり有機溶媒への分散性を調節したりである。表面処理としては、例えばシランカップリング剤、オルガノシラザンにより表面処理されていることができる。シランカップリング剤やオルガノシラザンは炭化水素基(アルキル基、アルケニル基、ビニル基、フェニル基など)、OH基、アミノ基、有機酸基(カルボキシ基など)、エポキシ基、グリシドキシ基、アクリロキシ基、メタクリロキシ基、スチリル基、アルコキシ基、ウレイド基、イソシアネート基、スルフィド基、メルカプト基などの官能基を有することが出来る。   The inorganic particle material may be subjected to some surface treatment. By performing the surface treatment, the affinity with the resin material when mixed with the resin material later is adjusted, or the dispersibility in the organic solvent is adjusted. As the surface treatment, for example, the surface treatment can be performed with a silane coupling agent or an organosilazane. Silane coupling agents and organosilazanes are hydrocarbon groups (alkyl groups, alkenyl groups, vinyl groups, phenyl groups, etc.), OH groups, amino groups, organic acid groups (carboxy groups, etc.), epoxy groups, glycidoxy groups, acryloxy groups, It can have a functional group such as a methacryloxy group, a styryl group, an alkoxy group, a ureido group, an isocyanate group, a sulfide group, a mercapto group.

・有機溶媒
有機溶媒としては特に限定しない。メチルエチルケトン、アルコール(メタノール、エタノール、プロパノールなど)、アセトン、アセトニトリル、ヘキサン、キシレン、トルエン、エーテル(ジエチルエーテル、テトラヒドロフランなど)、有機酸(酢酸、ギ酸など)、カーボネート、酢酸アルキル(酢酸メチル、酢酸エチルなど)、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。
-Organic solvent It does not specifically limit as an organic solvent. Methyl ethyl ketone, alcohol (methanol, ethanol, propanol, etc.), acetone, acetonitrile, hexane, xylene, toluene, ether (diethyl ether, tetrahydrofuran, etc.), organic acid (acetic acid, formic acid, etc.), carbonate, alkyl acetate (methyl acetate, ethyl acetate) Etc.), dimethylformamide, dimethyl sulfoxide and the like.

・樹脂材料
樹脂材料としては前述の有機溶媒に溶解乃至混合できるものであれば良い。つまり、混合物を形成したときに流動性をもつものであればよい。例えば、最初から液状の樹脂材料や溶解により流動性をもつようになる材料が採用できる。具体的には熱可塑性樹脂や、後に行われる硬化反応により硬化する前の材料であっても良い。
-Resin material Any resin material that can be dissolved or mixed in the organic solvent described above may be used. That is, any material having fluidity when the mixture is formed may be used. For example, a liquid resin material from the beginning or a material that becomes fluid when dissolved can be employed. Specifically, it may be a thermoplastic resin or a material before being cured by a curing reaction performed later.

樹脂材料としては使用温度において流動性をもつものであればよい。樹脂材料として自身が流動性をもつものとしては、例えば熱可塑性樹脂を採用し、その熱可塑性樹脂の融点以上の温度での使用を考える場合や、後に行われる硬化反応により硬化する材料が挙げられる。   Any resin material may be used as long as it has fluidity at the operating temperature. Examples of the resin material that has fluidity include, for example, a thermoplastic resin that can be used at a temperature equal to or higher than the melting point of the thermoplastic resin, or a material that cures by a subsequent curing reaction. .

具体的には高分子材料及び/又は高分子材料の前駆体とを有する。高分子材料前駆体は高分子又は低分子の材料であり、更に反応が進行することにより分子量が増大したり、架橋が進行したりして硬化物を形成できる材料である。高分子材料、並びに、高分子材料前駆体により形成される硬化物は熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂などの一般的な樹脂材料が例示できる。高分子材料前駆体は、エポキシ基、オキセタン基、水酸基、ブロックされたイソシアネート基、アミノ基、ハーフエステル基、アミック基、カルボキシ基、及び炭素-炭素二重結合基を化学構造中に有することが望ましい。これらの官能基は好適な反応条件を設定することで互いに結合可能な官能基(重合性官能基)であり、混合材料の分子量を向上できる。好適な反応条件としては単純に加熱や光照射を行ったり、熱や光照射によりラジカルやイオン(アニオン、カチオン)などの反応性種を生成したり、それらの官能基間を結合する反応開始剤(重合開始剤)を添加して加熱や光照射を行うことなどである。重合反応に際して必要な化合物を硬化剤として添加したり、その反応に対する触媒を添加することもできる。   Specifically, it has a polymer material and / or a precursor of the polymer material. The polymer material precursor is a polymer or a low-molecular material, and is a material that can form a cured product by further increasing the molecular weight or proceeding cross-linking as the reaction proceeds. Examples of the cured material formed from the polymer material and the polymer material precursor may include general resin materials such as a thermoplastic resin, a thermosetting resin, and a photocurable resin. The polymer material precursor may have an epoxy group, an oxetane group, a hydroxyl group, a blocked isocyanate group, an amino group, a half ester group, an amic group, a carboxy group, and a carbon-carbon double bond group in the chemical structure. desirable. These functional groups are functional groups (polymerizable functional groups) that can be bonded to each other by setting suitable reaction conditions, and the molecular weight of the mixed material can be improved. Suitable reaction conditions include simple heating and light irradiation, generation of reactive species such as radicals and ions (anions and cations) by heat and light irradiation, and a reaction initiator that binds between these functional groups. (Polymerization initiator) is added and heating or light irradiation is performed. A compound necessary for the polymerization reaction can be added as a curing agent, or a catalyst for the reaction can be added.

高分子材料前駆体としては重合により高分子材料を形成する単量体や、上述したような重合性官能基により修飾した高分子材料が好ましいものとして挙げられる。例えば、硬化前の、エポキシ樹脂、アクリル樹脂、ウレタン樹脂などのプレポリマーが好適である。   Preferred examples of the polymer material precursor include a monomer that forms a polymer material by polymerization and a polymer material modified with a polymerizable functional group as described above. For example, a prepolymer such as an epoxy resin, an acrylic resin, or a urethane resin before curing is suitable.

無機物粒子材料の表面処理を行うシランカップリング剤やオルガノシラザンとしては樹脂材料として選択した材料に応じて選択されることが望ましい。例えば、その樹脂材料に親和性をもつ官能基を無機物粒子材料の表面に付与することができる。   The silane coupling agent or organosilazane that performs the surface treatment of the inorganic particle material is preferably selected according to the material selected as the resin material. For example, a functional group having an affinity for the resin material can be imparted to the surface of the inorganic particle material.

(B)分級工程
分級工程は混合工程で得られた混合物を分級する工程で有り、分級操作については特に限定しない。分級操作としては篩分け、沈降速度の違いを利用する方法などが挙げられる。篩分けを採用した場合には混合物を篩に通過させる工程になる。篩としては除去したい粒径をもつ粒子(粗粒)が除去できるように目開きが設定される。例えば5μm以上の粒径をもつ粒子を粗粒とすると粗粒が通過できない目開き(篩の種類や精度により異なる)をもつ篩を用いる。篩を通過させる回数は任意である。また、目開きの大きい篩を通過させた後、それよりも目開きの小さい篩を用いて通過させることにより、より確実に粗粒を除去することが出来る。篩の形態としては網目状のもの、板に孔を形成したもの、繊維を集積した不織布のようなものが例示できる。
(B) Classification step The classification step is a step of classifying the mixture obtained in the mixing step, and the classification operation is not particularly limited. Examples of the classification operation include sieving and a method using a difference in sedimentation speed. When sieving is employed, the mixture is passed through the sieve. As the sieve, the opening is set so that particles (coarse particles) having a particle diameter to be removed can be removed. For example, when particles having a particle diameter of 5 μm or more are coarse particles, a sieve having an opening (which varies depending on the type and accuracy of the sieve) through which the coarse particles cannot pass is used. The number of times of passing through the sieve is arbitrary. Moreover, coarse particles can be more reliably removed by passing through a sieve having a larger opening and then passing through a sieve having a smaller opening. Examples of the form of the sieve include a mesh-like one, a plate formed with holes, and a nonwoven fabric in which fibers are accumulated.

沈降速度の違いを利用する方法としては混合物を調製後、静置して重力により沈降させる方法、回転させて遠心力により沈降速度を向上する方法などがある。粒径が大きな粒子ほど速く沈降するため、目的の粒径以上の粒子(粗粒)が一定以上沈降するまで沈降を行ってその後、粗粒が含まれなくなった領域を分取することにより分級を行う。   As a method using the difference in sedimentation speed, there are a method of preparing a mixture and then allowing it to stand and sedimenting by gravity, a method of rotating and improving a sedimentation speed by centrifugal force, and the like. Since particles with larger particle sizes settle faster, classification is performed by separating the regions where coarse particles are no longer included after sedimentation until particles larger than the target particle size (coarse particles) settle more than a certain amount. Do.

これらの分級操作を何回か繰り返すことにより、より精密な分級が実現できる。   By repeating these classification operations several times, more precise classification can be realized.

〔無機物粒子材料含有組成物〕
・その1
本実施形態の無機物粒子材料含有組成物は、上述した無機物粒子材料含有組成物の製造方法にて製造されうる無機物粒子材料含有組成物である。そして、有機溶媒の含有量は、無機物粒子材料と有機溶媒とを樹脂材料を除き先に混合した混合物に加えたときに、所定の大きさの目開きをもつ篩にて分級可能になる量よりも少ない量である。更に、所定粒径以上の粒子である粗粒を実質的に含有しない。
[Inorganic particle material-containing composition]
・ Part 1
The inorganic particle material-containing composition of the present embodiment is an inorganic particle material-containing composition that can be produced by the above-described method for producing an inorganic particle material-containing composition. The content of the organic solvent is more than the amount that can be classified with a sieve having an opening of a predetermined size when the inorganic particle material and the organic solvent are added to the mixture previously mixed with the resin material removed. Is a small amount. Furthermore, the coarse particle which is a particle | grain more than predetermined particle size is not included substantially.

有機溶媒の量を上述の範囲(樹脂材料を混合しない場合に所定の粒径以上の目開きをもつ篩を用いた分級が出来る量よりも少ない量)を超える量にした状態で分級を行い、その分級後に有機溶媒を除去する方法を採用している場合には分級により除去された粗粒が再生されてしまう。そのため、有機溶媒の量について上述の範囲に制限した状態で粗粒を実質的に含まない組成物は今まで存在しないものであった。ここで粗粒を実質的に含まないとは無機物粒子材料の質量を基準として5ppm以下、望ましくは3ppm以下、更には1ppm以下、特に望ましくは検出限界以下であることを意味する(以下同じ)。   Classification is performed in a state where the amount of the organic solvent exceeds the above-mentioned range (the amount that is smaller than the amount that can be classified using a sieve having an opening larger than a predetermined particle size when the resin material is not mixed), When the method of removing the organic solvent is employed after the classification, the coarse particles removed by the classification are regenerated. Therefore, there has never been a composition that does not substantially contain coarse particles in a state where the amount of the organic solvent is limited to the above range. Here, “substantially free of coarse particles” means 5 ppm or less, preferably 3 ppm or less, more preferably 1 ppm or less, and particularly preferably less than the detection limit based on the mass of the inorganic particle material (hereinafter the same).

本実施形態の無機物粒子材料含有組成物が含む無機物粒子材料、有機物、樹脂材料の形態、種類、含有量については上述した製造方法において説明したものがそのまま採用可能であるため更なる説明は省略する。   The form, type, and content of the inorganic particle material, organic matter, and resin material included in the inorganic particle material-containing composition of the present embodiment can be used as they are in the above-described manufacturing method, and further explanation is omitted. .

・その2
本実施形態の無機物粒子材料含有組成物は無機物粒子材料と樹脂材料と有機溶媒とを含有する。無機物粒子材料、樹脂材料、有機溶媒の種類や形態については上述の製造方法にて説明したものがそのまま採用可能であるため更なる説明は省略する。
・ Part 2
The inorganic particle material-containing composition of the present embodiment contains an inorganic particle material, a resin material, and an organic solvent. As the types and forms of the inorganic particle material, the resin material, and the organic solvent, those described in the above manufacturing method can be employed as they are, and further description thereof is omitted.

有機溶媒の量は、樹脂材料を含有させずに無機物粒子材料と有機溶媒とを混合したときに、所定の大きさの目開きをもつ篩にて分級可能になる有機溶媒の量よりも少ない量にする。その上で、その所定の大きさ以上の粒子である粗粒を実質的に含有しない。   The amount of the organic solvent is less than the amount of the organic solvent that can be classified with a sieve having a predetermined size when the inorganic particle material and the organic solvent are mixed without containing the resin material. To. In addition, coarse particles that are particles having a predetermined size or larger are not substantially contained.

その1においても説明したが、有機溶媒の量を上述の範囲(樹脂材料を混合しない場合に所定の粒径以上の目開きをもつ篩を用いた分級が出来る量よりも少ない量)を超える量にした状態で分級を行い、その分級後に有機溶媒を除去する方法を採用している場合には分級により除去された粗粒が再生されてしまう。そのため、有機溶媒の量について上述の範囲に制限した状態で粗粒を実質的に含まない組成物は今まで存在しえないものであった。   As described in Part 1, the amount of the organic solvent exceeds the above range (the amount that is smaller than the amount that can be classified using a sieve having an opening larger than a predetermined particle size when the resin material is not mixed). In the case of adopting a method in which classification is performed in the state of removing the organic solvent after the classification, coarse particles removed by the classification are regenerated. Therefore, a composition that does not substantially contain coarse particles in a state where the amount of the organic solvent is limited to the above-described range cannot exist so far.

以下、本発明の無機物粒子材料含有組成物について実施例に基づき詳細に説明する。   Hereinafter, the inorganic particle material-containing composition of the present invention will be described in detail based on examples.

無機物粒子材料としての球状シリカ(アドマファインSO−C4、粒径1.0μm)、有機溶媒としてのメチルエチルケトン、樹脂材料としてのエポキシ樹脂〔ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との混合物(混合比約1:1);東都化成社製;品名エポトートZX1059;液状)を混合して混合物を得た(混合工程)。混合割合としては、無機物粒子材料が100質量部、有機溶媒が28.5質量部に対して、樹脂材料の量を変化させた。具体的な樹脂材料の混合量としては試験例1が0質量部、試験例2が14.3質量部、試験例3が28.6質量部、試験例4が42.9質量部とした。なお、今回添加した樹脂材料は最終的な使用形態(アンダーフィルとしての利用を想定)における添加量の上限を想定している。無機物粒子材料は、無機物粒子材料及び有機溶媒の総和を基準として77%強の含有量とした。   Spherical silica as inorganic particle material (Admafine SO-C4, particle size 1.0 μm), methyl ethyl ketone as organic solvent, epoxy resin as resin material [mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (mixing Ratio about 1: 1); manufactured by Tohto Kasei Co., Ltd .; product name Epototo ZX1059; liquid) was mixed to obtain a mixture (mixing step). As the mixing ratio, the amount of the resin material was changed with respect to 100 parts by mass of the inorganic particle material and 28.5 parts by mass of the organic solvent. The specific mixing amount of the resin material was 0 part by mass in Test Example 1, 14.3 parts by mass in Test Example 2, 28.6 parts by mass in Test Example 3, and 42.9 parts by mass in Test Example 4. In addition, the resin material added this time assumes the upper limit of the addition amount in the final usage pattern (assumed to be used as an underfill). The inorganic particulate material had a content of slightly over 77% based on the sum of the inorganic particulate material and the organic solvent.

その後、分級工程として目開きが5μmの篩を通過させることを想定した。今回の篩の目開きにおいては速やかに篩が通過できる混合物の粘度としては120mPa・s以下であることが望ましいことを本発明者らは知見として得ている。   Thereafter, it was assumed that the sieve was passed through a sieve having an opening of 5 μm as a classification step. The present inventors have found that the viscosity of the mixture that can pass through the sieve quickly is desirably 120 mPa · s or less in the opening of the sieve this time.

そこで各試験例の混合物について分級工程を行う前に粘度を測定した。結果、試験例1が304mPa・s、試験例2が102mPa・s、試験例3が164mPa・s、試験例4が363mPa・sであった。   Therefore, the viscosity of the mixture of each test example was measured before performing the classification process. As a result, Test Example 1 was 304 mPa · s, Test Example 2 was 102 mPa · s, Test Example 3 was 164 mPa · s, and Test Example 4 was 363 mPa · s.

従って、分級工程に供するのに望ましいのは試験例2であり、試験例3は少し粘度が高いため時間は係るものの分級は可能であることが分かった。分級時間の長短は実際の工程を実現する際には重要である。なお、この範囲は篩の目開きの大きさにより変化する値である。   Therefore, it is desirable to use Test Example 2 for use in the classification step, and Test Example 3 has a slightly high viscosity, so that it is possible to classify it although it takes time. The length of the classification time is important when realizing the actual process. This range is a value that varies depending on the size of the sieve mesh.

更に試験例1〜4について篩分けを行ったところ、試験例2が速やかに篩分けされ、試験例3が遅いながらも篩分けの進行が確認された。他の試験例の試料については過大な時間が篩分けに必要であった。篩分けが完了できた試験例2、3の試料については粗粒の存在が1ppm以下であった。有機溶媒を大量に添加することで粘度を低下させた試料(有機溶媒を30%以上含有させることにより同じ条件で篩分けが可能になる)については有機溶媒の除去により無機物粒子材料の凝集が進行して粗粒が再生した。   Furthermore, when sieving was performed on Test Examples 1 to 4, Test Example 2 was quickly screened, and the progress of sieving was confirmed while Test Example 3 was slow. Excessive time was required for sieving for the samples of other test examples. In the samples of Test Examples 2 and 3 in which sieving could be completed, the presence of coarse particles was 1 ppm or less. For samples whose viscosity has been reduced by adding a large amount of organic solvent (by adding 30% or more of organic solvent, sieving can be performed under the same conditions), the aggregation of inorganic particles progresses by removing the organic solvent. Coarse grains were regenerated.

更に、混合することにより粘度が低下する樹脂材料と有機溶媒との組み合わせとしては、(1)有機溶媒としてのトルエンと樹脂材料としてのシリコーン樹脂(液状)、(2)有機溶媒としてのメチルエチルケトン、プロピレングリコールモノメチルエーテル(PGM)、及びメチルイソブチルケトン(MIBK)のうちの少なくと1つと、樹脂材料としてのアクリル樹脂(液状)及び/又はメタクリル樹脂(液状)、(3)有機溶媒としてのN-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)のうちの少なくと1つと、樹脂材料としてのポリイミド(液状)、(4)有機溶媒としてのMIBK及び/又はPGMと、樹脂材料としてのエポキシ樹脂(固形)、の組み合わせが例示できる。この組み合わせの樹脂材料を添加することにより無機物粒子材料と有機溶媒との混合物よりも粘度が低下する。   Furthermore, as a combination of a resin material whose viscosity is lowered by mixing and an organic solvent, (1) toluene as an organic solvent and silicone resin (liquid) as a resin material, (2) methyl ethyl ketone and propylene as an organic solvent At least one of glycol monomethyl ether (PGM) and methyl isobutyl ketone (MIBK), acrylic resin (liquid) and / or methacrylic resin (liquid) as resin material, (3) N-methyl as organic solvent -2-pyrrolidone (NMP), at least one of N, N-dimethylacetamide (DMAC), polyimide (resin) as resin material, (4) MIBK and / or PGM as organic solvent, resin material The combination of the epoxy resin (solid) as can be illustrated. By adding the resin material in this combination, the viscosity is lower than that of the mixture of the inorganic particle material and the organic solvent.

このような結果から、有機溶媒と樹脂材料との組み合わせのうち、樹脂材料が有機溶媒に溶解可能であるものであれば、本発明に使用できるものと考えられる。ここで、無機物粒子材料の表面について、採用した有機溶媒及び/又は樹脂材料の種類に応じて表面処理を行う(つまり親和性が向上するように、同種及び/又は反応する官能基を導入したり、同じような疎水性/親水性が実現できるような官能基を導入する)ことが望ましい。   From these results, it is considered that any combination of the organic solvent and the resin material can be used in the present invention if the resin material can be dissolved in the organic solvent. Here, the surface of the inorganic particle material is subjected to a surface treatment according to the type of the organic solvent and / or the resin material employed (that is, the same kind and / or a reactive functional group is introduced so as to improve the affinity) It is desirable to introduce a functional group capable of realizing the same hydrophobicity / hydrophilicity).

Claims (4)

無機物粒子材料と、有機溶媒と、前記有機溶媒と溶解乃至混合可能な樹脂材料と、を混合して混合物にする混合工程と、
前記混合物を分級する分級工程と、
を有し、
前記樹脂材料は、前記無機物粒子材料及び前記有機溶媒の質量の和を基準として、9%以上、22.5%以下である無機物粒子材料含有組成物の製造方法。
And inorganic particulate material, an organic solvent, a mixing step of prior Symbol mixture resin material which is soluble or mixed with an organic solvent, were mixed,
A classification step of classifying the mixture;
Have
The said resin material is a manufacturing method of the inorganic particle material containing composition which is 9% or more and 22.5% or less on the basis of the sum of the mass of the said inorganic particle material and the said organic solvent.
前記分級工程は、超音波照射を行いながら行うものを除く請求項1に記載の無機物粒子材料含有組成物の製造方法。  The said classification process is a manufacturing method of the inorganic particle material containing composition of Claim 1 except what performs while performing ultrasonic irradiation. 前記混合物における前記有機溶媒の含有量は、前記無機物粒子材料と前記有機溶媒とを前記樹脂材料を除き先に混合したものが前記分級工程で行う分級にて分級可能になる量よりも少ない量である請求項1又は2に記載の無機物粒子材料含有組成物の製造方法。 The content of the organic solvent in the mixture is smaller than the amount that can be classified in the classification performed in the classification step in which the inorganic particle material and the organic solvent are mixed first except for the resin material. A method for producing an inorganic particle material-containing composition according to claim 1 or 2 . 前記分級工程にて行う分級は篩分けである請求項1〜3のうちの何れか1項に記載の無機物粒子材料含有組成物の製造方法。 The method for producing an inorganic particle material-containing composition according to any one of claims 1 to 3, wherein classification performed in the classification step is sieving.
JP2013209543A 2013-10-04 2013-10-04 Method for producing inorganic particle material-containing composition Active JP6265673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209543A JP6265673B2 (en) 2013-10-04 2013-10-04 Method for producing inorganic particle material-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209543A JP6265673B2 (en) 2013-10-04 2013-10-04 Method for producing inorganic particle material-containing composition

Publications (2)

Publication Number Publication Date
JP2015074662A JP2015074662A (en) 2015-04-20
JP6265673B2 true JP6265673B2 (en) 2018-01-24

Family

ID=52999791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209543A Active JP6265673B2 (en) 2013-10-04 2013-10-04 Method for producing inorganic particle material-containing composition

Country Status (1)

Country Link
JP (1) JP6265673B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292267A (en) * 1976-01-30 1977-08-03 Shin Etsu Chem Co Ltd Silicone composition
JP2005206664A (en) * 2004-01-21 2005-08-04 Nitto Denko Corp Semiconductor sealing resin composition
JP5239165B2 (en) * 2006-02-13 2013-07-17 住友ベークライト株式会社 Method for producing slurry composition, slurry composition, resin composition
JP5272294B2 (en) * 2006-07-19 2013-08-28 住友ベークライト株式会社 Method for producing resin varnish and resin varnish
JP5493365B2 (en) * 2009-01-26 2014-05-14 住友ベークライト株式会社 Manufacturing method of substrate with resin

Also Published As

Publication number Publication date
JP2015074662A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6209032B2 (en) Classified particle material, method for producing the same, and resin composition
CN110498912B (en) Curable unsaturated crystalline polyester powder and process for preparing the same
CN110088039B (en) Aluminum nitride powder free of coarse particles
JP5390351B2 (en) Composite material
JP6099297B2 (en) Inorganic powder mixture and filler-containing composition
CN105478104A (en) Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
JP6265673B2 (en) Method for producing inorganic particle material-containing composition
JP6442281B2 (en) Silica-coated organic particles, method for producing the same, and resin composition
JP4516779B2 (en) Metal oxide surface-treated particles, method for producing the same, and method for producing a resin composition
JP6046903B2 (en) Filler-containing liquid composition and method for producing the same
JP6342637B2 (en) Method for producing inorganic particle material-containing composition
JP2013204029A (en) Optical resin composition
JP5894742B2 (en) Composition for surface coating and method for producing the same
TWI793287B (en) Powder composed of organic-inorganic composite particles
JP5961421B2 (en) Thermoplastic resin composition and method for producing the same
JP6347644B2 (en) Surface-modified silica powder and slurry composition
EP3991946A1 (en) Thermoplastic particulates coated with polymer nanoparticles and methods for production and use thereof
JP2016172689A (en) Silica particles and thermoplastic resin composition
JP2016079278A (en) Inorganic filler and method for producing the same, resin composition and molded article
JP6746025B1 (en) Surface modified particle material and slurry composition
JP5798896B2 (en) Method for producing spherical silica particles, method for producing filler-containing resin composition, and method for producing integrated circuit sealing material
JP2009073874A (en) Method for producing dispersion of inorganic particles, paste composition and hardened product
WO2022071137A1 (en) Spherical alumina powder, resin composition and heat dissiparion material
JP2017066298A (en) Methods for producing fine particles of organosilicon precursor polymer and fine particles of spherical silicon carbide
JP5013426B2 (en) Curable resin composition, method for producing the same, and cured resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6265673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250