JP6265070B2 - Metal element concentration analysis method using inductively coupled plasma emission spectrometer - Google Patents

Metal element concentration analysis method using inductively coupled plasma emission spectrometer Download PDF

Info

Publication number
JP6265070B2
JP6265070B2 JP2014140551A JP2014140551A JP6265070B2 JP 6265070 B2 JP6265070 B2 JP 6265070B2 JP 2014140551 A JP2014140551 A JP 2014140551A JP 2014140551 A JP2014140551 A JP 2014140551A JP 6265070 B2 JP6265070 B2 JP 6265070B2
Authority
JP
Japan
Prior art keywords
internal standard
lithium
concentration
metal element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014140551A
Other languages
Japanese (ja)
Other versions
JP2016017836A (en
Inventor
高橋 聡
聡 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014140551A priority Critical patent/JP6265070B2/en
Publication of JP2016017836A publication Critical patent/JP2016017836A/en
Application granted granted Critical
Publication of JP6265070B2 publication Critical patent/JP6265070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、誘導結合プラズマ発光分光分析装置を用いた金属元素の濃度分析方法に関し、特にリチウム二次電池用正極材料に含まれるリチウム等の金属元素の濃度を所望の精度で分析することが可能な誘導結合プラズマ発光分光分析装置を用いた金属元素の濃度分析方法に関する。   The present invention relates to a metal element concentration analysis method using an inductively coupled plasma emission spectrometer, and in particular, it is possible to analyze the concentration of a metal element such as lithium contained in a positive electrode material for a lithium secondary battery with a desired accuracy. The present invention relates to a concentration analysis method for metal elements using a novel inductively coupled plasma emission spectrometer.

リチウム二次電池は、軽量性や充放電サイクル特性に優れることから、ノート型パソコン、ビデオカメラ、携帯電話等の携帯型電子機器に搭載されている。最近では、世界的な環境問題や資源枯渇問題を背景に自動車分野でもリチウム二次電池が注目されており、燃料電池自動車やハイブリッド自動車への搭載が鋭意検討されている。   Lithium secondary batteries are mounted on portable electronic devices such as notebook computers, video cameras, and mobile phones because of their excellent light weight and charge / discharge cycle characteristics. Recently, lithium secondary batteries have been attracting attention in the automobile field against the background of global environmental problems and resource depletion problems, and their installation in fuel cell vehicles and hybrid vehicles has been studied earnestly.

一般的に、リチウム二次電池は、金属酸化物等からなる正極、炭素からなる負極、有機溶媒にリチウム塩を溶解した電解液、及びセパレータで構成されている。正極材料としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等の含リチウム遷移金属酸化物が一般的であるが、これら化合物を構成する元素の組成を管理する技術は、容量密度、充放電サイクル寿命、安全性、経済性等の特性を左右するため極めて重要である。   Generally, a lithium secondary battery includes a positive electrode made of a metal oxide, a negative electrode made of carbon, an electrolytic solution in which a lithium salt is dissolved in an organic solvent, and a separator. As the positive electrode material, lithium-containing transition metal oxides such as lithium cobaltate, lithium manganate, and lithium nickelate are common, but the technology for managing the composition of elements constituting these compounds is capacity density, charge / discharge This is extremely important because it affects characteristics such as cycle life, safety, and economy.

かかる組成管理の対象には、正極材料の主成分となる元素の濃度の他、リチウムに対する他の金属成分元素の総量のモル濃度比(以降、単にリチウム/メタル比と略記する)、ナトリウムや塩素等の不純物元素濃度等があるが、特にリチウム/メタル比は極めて重要な管理項目であるため、より安定した精度で分析ができることが要求されている。   In addition to the concentration of the main component of the positive electrode material, the composition management targets include the molar concentration ratio of the total amount of other metal component elements to lithium (hereinafter simply referred to as lithium / metal ratio), sodium and chlorine. However, since the lithium / metal ratio is an extremely important management item, it is required that analysis can be performed with more stable accuracy.

従来、リチウム二次電池の正極材料を構成するリチウム等の金属元素の濃度測定には、試料を酸やアルカリ等を用いて分解し、得られた試料溶液中の測定対象元素を誘導結合プラズマ発光分光分析法(ICP−AES)やフレーム原子吸光法、炎光法によって測定する方法が適用されている。これらの分析方法は金属元素の検出手段として一般的であるが、共存元素の影響やプラズマあるいはフレームのゆらぎの影響を受け易く、十分な分析精度が得られないことがあった。   Conventionally, to measure the concentration of a metal element such as lithium constituting the positive electrode material of a lithium secondary battery, the sample is decomposed with acid, alkali, etc., and the element to be measured in the obtained sample solution is inductively coupled plasma emission A method of measuring by spectroscopic analysis (ICP-AES), flame atomic absorption method or flame light method is applied. These analysis methods are generally used as metal element detection means, but are easily affected by coexisting elements and plasma or flame fluctuations, and sufficient analysis accuracy may not be obtained.

そのため、元素によっては、より高い分析精度が期待できる滴定法や重量法を適用する場合がある。しかしながら、例えばニッケルでは、共存元素の影響を防止するためにジメチルグリオキシムを用いた沈殿分離を行う必要があり、そのような前処理操作が分析精度を低下させる要因となっている。また、リチウムのようなアルカリ金属では、その性質上滴定法や重量法の適用が困難である。   Therefore, depending on the element, a titration method or a gravimetric method that can be expected to have higher analytical accuracy may be applied. However, in nickel, for example, in order to prevent the influence of coexisting elements, it is necessary to perform precipitation separation using dimethylglyoxime, and such a pretreatment operation is a factor that reduces analytical accuracy. In addition, with alkali metals such as lithium, it is difficult to apply a titration method or a gravimetric method due to their properties.

その結果、上記分析方法における各元素の繰返し測定精度は、相対標準偏差(以後、RSDと略記する)で1%以上であり、特にリチウム/メタル比は、誤差の加法性によって更に精度が低下するという問題を有していた。このような正極材料の構成元素の大きな分析誤差は、現状の電池開発あるいは電池製造分野において容認されるものではなく、より高い分析精度が求められている。   As a result, the repeated measurement accuracy of each element in the above analysis method is 1% or more in terms of relative standard deviation (hereinafter abbreviated as RSD), and in particular, the accuracy of the lithium / metal ratio is further reduced due to the error additivity. Had the problem. Such a large analysis error of constituent elements of the positive electrode material is not accepted in the current battery development or battery manufacturing field, and higher analysis accuracy is required.

このような現状の下、特許文献1には上記リチウム二次電池の正極材料中のリチウム、ニッケル、コバルト、アルミニウムまたはマンガンの測定に内標準元素を重量基準で調製し、誘導結合プラズマ発光分光分析法に用いるプラズマの励起温度を4900K以上とした誘導結合プラズマ発光分光分析法を適用する方法が記載されている。この誘導結合プラズマ発光分光分析法によれば、1元素あたりの測定精度をRSDで0.2%以下にすることが期待できると記載されている。   Under such circumstances, Patent Document 1 discloses that an internal standard element is prepared on a weight basis for measurement of lithium, nickel, cobalt, aluminum, or manganese in the positive electrode material of the lithium secondary battery, and inductively coupled plasma emission spectroscopic analysis is performed. Describes a method of applying an inductively coupled plasma emission spectroscopic analysis method in which the excitation temperature of the plasma used in the method is 4900K or higher. According to this inductively coupled plasma emission spectroscopy, it is described that the measurement accuracy per element can be expected to be 0.2% or less in RSD.

特開2010―078381号公報JP 2010-078381 A

上記した特許文献1の技術によって誘導結合プラズマ発光分光分析法の分析精度をある程度向上させることが可能になるが、近年ますます高性能、高品質のリチウム二次電池が求められる傾向にあり、これに伴ってより一層高い精度で安定的に分析できる方法が望まれている。このような状況の下、本発明者は誘導結合プラズマ発光分光分析装置を用いた金属元素の濃度分析方法について鋭意研究をすすめたところ、誘導結合プラズマ発光分光分析法の分析精度が、誘導結合プラズマ発光分光分析装置の検出部を冷却する冷媒の温度制御の影響を大きく受けていることを見出した。   Although the above-mentioned technique of Patent Document 1 can improve the analysis accuracy of inductively coupled plasma optical emission spectrometry to some extent, in recent years, there has been a trend toward demand for high-performance, high-quality lithium secondary batteries. Accordingly, a method capable of stably analyzing with higher accuracy is desired. Under such circumstances, the present inventor has intensively studied a concentration analysis method for metal elements using an inductively coupled plasma emission spectrometer, and the analysis accuracy of the inductively coupled plasma emission spectrometry is inductively coupled plasma. The present inventors have found that the temperature control of the refrigerant that cools the detection unit of the emission spectroscopic analyzer is greatly affected.

この検出部には、特開2007−3320号公報に記載のように、分析対象となる元素の発光スペクトルの検出を行う検出器の他に、検出器の冷却を行う例えばペルチェ素子などの冷却機構が必要に応じて設けられている。従来、上記検出部を冷却する冷媒の温度制御については重要視されていなかったが、より分析精度を向上させるにはこの冷媒の温度制御幅をより一層小さくすることが有効であることがわかった。   As described in Japanese Patent Application Laid-Open No. 2007-3320, the detection unit includes a cooling mechanism such as a Peltier element that cools the detector in addition to the detector that detects the emission spectrum of the element to be analyzed. Is provided as necessary. Conventionally, the temperature control of the refrigerant for cooling the detection unit has not been regarded as important, but it has been found that it is effective to further reduce the temperature control range of the refrigerant in order to further improve the analysis accuracy. .

一方で冷媒の温度制御幅を小さくするには、その供給源であるチラーを高性能にする必要があるため設備コストがかかり、場合によってはチラーを大型化したり騒音が大きなタイプを採用したりする必要があった。本発明はこのような現状に鑑みてなされたものであり、誘導結合プラズマ発光分光分析装置を用いてリチウム二次電池正極材料等の試料中の各金属元素の濃度やリチウム/メタル比を測定するに際して、必要以上にコストをかけることなく所望の精度で安定的且つ低環境負荷で測定できる分析方法を提供することを目的とする。   On the other hand, in order to reduce the temperature control range of the refrigerant, it is necessary to improve the performance of the chiller that is the supply source, which increases the equipment cost. In some cases, the size of the chiller is increased or a type with high noise is adopted. There was a need. The present invention has been made in view of such a current situation, and measures the concentration of each metal element and the lithium / metal ratio in a sample such as a lithium secondary battery positive electrode material using an inductively coupled plasma emission spectrometer. At this time, it is an object to provide an analysis method capable of measuring with a desired accuracy stably and with a low environmental load without costing more than necessary.

上記目的を達成するため、本発明が提供する金属元素の濃度分析方法は、イットリウム又は銅を内標準元素とする内標準補正法を適用し、4900K以上のプラズマの励起温度を用いる誘導結合プラズマ発光分光分析装置を用いて試料溶液中の金属元素の濃度を分析する方法であって、該分析装置を用いた測定によってリチウム/メタル比の測定精度と該分析装置の検出部用の冷媒の温度制御幅との関係式を複数の温度制御幅から求め、この関係式に基づいて、要求されるリチウム/メタル比の分析精度を満たすために必要な冷媒の温度制御幅を定め、この温度制御幅で検出部用の冷媒を温度制御することを特徴としている。 In order to achieve the above object, the metal element concentration analysis method provided by the present invention applies an internal standard correction method using yttrium or copper as an internal standard element, and uses inductively coupled plasma emission using an excitation temperature of plasma of 4900K or higher. A method for analyzing the concentration of a metal element in a sample solution using a spectroscopic analyzer, wherein the measurement accuracy of the lithium / metal ratio and the temperature control of the refrigerant for the detector of the analyzer are measured by using the analyzer A relational expression with the width is obtained from a plurality of temperature control widths , and based on this relational expression, the temperature control width of the refrigerant necessary to satisfy the required analysis accuracy of the lithium / metal ratio is determined. The temperature of the refrigerant for the detection unit is controlled.

本発明によれば、誘導結合プラズマ発光分光分析装置を用いた金属元素の濃度分析に際して必要以上にコストをかけることなく所望の精度で安定的且つ低環境負荷で分析を行うことが可能になる。特に、リチウム二次電池正極材料の管理項目として極めて重要なリチウム/メタル比を測定する際に極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to perform analysis with a desired precision stably and with low environmental load, without costing more than necessary at the time of the concentration analysis of the metallic element using an inductively coupled plasma emission spectroscopic analyzer. In particular, it is extremely useful when measuring a lithium / metal ratio, which is extremely important as a management item for a lithium secondary battery positive electrode material.

本発明に係る金属元素の高精度分析方法に好適に使用される誘導結合プラズマ発光分光分析装置の一具体例の構成図である。1 is a configuration diagram of a specific example of an inductively coupled plasma optical emission spectrometer that is preferably used in a high-precision analysis method for metal elements according to the present invention. FIG. 実施例の誘導結合プラズマ発光分光分析装置における試料の測定順序を示す工程図である。It is process drawing which shows the measurement order of the sample in the inductively coupled plasma emission spectroscopic analyzer of an Example. 実施例1における冷媒の設定温度に対する正負温度変動幅と測定精度との関係を示すグラフである。It is a graph which shows the relationship between the positive / negative temperature fluctuation width with respect to the preset temperature of the refrigerant | coolant in Example 1, and a measurement precision. 実施例2における冷媒の設定温度に対する正負温度変動幅と測定精度との関係を示すグラフである。It is a graph which shows the relationship between the positive / negative temperature fluctuation width with respect to the preset temperature of the refrigerant | coolant in Example 2, and a measurement precision.

先ず、本発明による誘導結合プラズマ発光分光分析法による金属元素の分析方法において好適に使用される誘導結合プラズマ発光分光分析装置の一実施形態について説明する。この一実施形態の誘導結合プラズマ発光分光分析装置は、図1に示すようにプラズマを形成させるプラズマトーチ部1、該プラズマの発光から目的とする波長の光を分光する分光器2、該分光された光を検出する検出部3、プラズマトーチ部1内に電磁場を生成する高周波電源4、及びこれらハードウエアを制御するCPUやデータ処理用のCPUを有する制御部5で主に構成されている。   First, an embodiment of an inductively coupled plasma emission spectroscopic apparatus suitably used in a method for analyzing a metal element by inductively coupled plasma emission spectrometry according to the present invention will be described. As shown in FIG. 1, the inductively coupled plasma optical emission spectrometer of this embodiment includes a plasma torch unit 1 that forms plasma, a spectroscope 2 that splits light of a target wavelength from the light emission of the plasma, The control unit 5 mainly includes a detection unit 3 for detecting light, a high-frequency power source 4 for generating an electromagnetic field in the plasma torch unit 1, and a CPU for controlling these hardware and a CPU for data processing.

具体的に説明すると、プラズマトーチ部1の外部には図示しないワークコイルが巻きつけられており、ここに高周波電源4で作られる高周波数の交流電流が流れる。これにより図示しないアルゴンガス供給系から供給されるアルゴンガスが電離してアルゴンイオンと電子とからなるプラズマが生成される。このワークコイルの熱膨張などによる破損を防ぐため、所定の温度に冷却された冷却水などの冷媒でワークコイルの冷却が行われている。   More specifically, a work coil (not shown) is wound around the outside of the plasma torch unit 1, and a high-frequency alternating current produced by the high-frequency power source 4 flows therethrough. As a result, argon gas supplied from an argon gas supply system (not shown) is ionized to generate plasma composed of argon ions and electrons. In order to prevent the work coil from being damaged due to thermal expansion or the like, the work coil is cooled with a coolant such as cooling water cooled to a predetermined temperature.

試料溶液は図示しない試料供給系のネブライザーによりミスト化された後、キャリアガスであるアルゴンガスと共に上記プラズマ内に導入される。プラズマ内に導入された試料に含まれる各元素は、プラズマによって熱的に励起された後、固有の波長で発光する。このプラズマの発光は図示しない入射レンズ系によって集光されて分光器2に導入される。   The sample solution is misted by a nebulizer of a sample supply system (not shown) and then introduced into the plasma together with argon gas as a carrier gas. Each element contained in the sample introduced into the plasma emits light at a specific wavelength after being thermally excited by the plasma. The emitted light of the plasma is collected by an incident lens system (not shown) and introduced into the spectrometer 2.

試料溶液中には種々の元素が含まれており、これら元素はそれぞれ異なる波長で発光するため、プリズムや回折格子等で構成される分光器2で目的とする波長の光が分別される。なお、200nm未満の波長の光は酸素(O)に吸収されやすいため、200nm未満の波長の測定が必要な場合は分光器内を真空にするか、アルゴンや窒素で置換しておくのが好ましい。図1には真空ポンプ6で分光器2内を真空にする場合が例示されている。 Since various elements are contained in the sample solution, and these elements emit light at different wavelengths, light having a target wavelength is separated by the spectroscope 2 including a prism, a diffraction grating, and the like. Note that light with a wavelength of less than 200 nm is easily absorbed by oxygen (O 2 ). Therefore, when measurement of a wavelength of less than 200 nm is required, the spectroscope is evacuated or replaced with argon or nitrogen. preferable. FIG. 1 illustrates a case where the inside of the spectrometer 2 is evacuated by the vacuum pump 6.

検出部3では、分光器2で分別された特定の波長の光の強さが測定される。光の強さは濃度と比例するため、この測定された濃度未知の溶液の光の強さを濃度既知の溶液の光の強さと比較することで当該濃度未知の溶液の元素濃度を推定することができる。検出部3の主要な構成部材である検出器自体は一般に光電子倍増管(フォトマルチプライヤ)やCCD(またはCID)などが用いられるが、本実施形態の分析装置ではCCD検出器を使用している。   In the detection unit 3, the intensity of light of a specific wavelength separated by the spectroscope 2 is measured. Since the light intensity is proportional to the concentration, the measured light intensity of the solution of unknown concentration is compared with the light intensity of the solution of unknown concentration to estimate the element concentration of the solution of unknown concentration. Can do. As the detector itself, which is a main component of the detection unit 3, a photomultiplier tube (photomultiplier), a CCD (or CID), or the like is generally used, but the analysis device of this embodiment uses a CCD detector. .

CCD検出器は、光の入射がない状態でもCCD検出器自身の温度に由来する信号を出力するため、これが光の強さを検出する際の誤差となる。本発明の一実施形態の分析装置では、前述したプラズマトーチ部1の冷却に用いる冷媒と検出部3の冷却に用いる冷媒とはそれぞれの冷却機能が達成できれば同一系統であっても別系統であっても特に制限されることはない。ただし、検出部3に供給される冷媒を別系統にすることによって、1つの冷媒循環系でワークコイル、検出部の順に直列に冷媒を流す場合と違って、検出部の冷却に際してワークコイルを冷却した後の冷却水の温度変動の影響を受けないようにすることができるので、冷却機能は向上する。   Since the CCD detector outputs a signal derived from the temperature of the CCD detector itself even when no light is incident, this is an error in detecting the light intensity. In the analyzer according to the embodiment of the present invention, the refrigerant used for cooling the plasma torch unit 1 and the refrigerant used for cooling the detection unit 3 described above are different systems even if they are the same system as long as their respective cooling functions can be achieved. However, there is no particular limitation. However, by cooling the work coil when cooling the detection unit, the refrigerant supplied to the detection unit 3 is made a separate system, unlike the case where the refrigerant flows in series in the order of the work coil and the detection unit in one refrigerant circulation system. The cooling function is improved because it is possible to avoid the influence of the temperature fluctuation of the cooling water after the cooling.

次に、上記した誘導結合プラズマ発光分光分析装置を用いた誘導結合プラズマ発光分光分析法による金属元素の分析方法について説明する。例えば分析対象となる試料としてリチウム二次電池用正極材料を対象とする場合は、先ず試料溶液を調製すべく試料をビーカー等に量り採った後、硝酸及び過酸化水素水等を添加し、ホットプレート等の加熱機器を利用して加熱することにより試料を溶解する。その際、内標準元素を含む化合物の固体あるいは溶液の一定量を、試料の溶解前に添加するか、あるいは試料を溶解して室温まで冷却した後直ちに添加する。   Next, a method for analyzing a metal element by inductively coupled plasma emission spectroscopy using the above inductively coupled plasma emission spectrometer will be described. For example, when a positive electrode material for a lithium secondary battery is targeted as a sample to be analyzed, first, a sample is weighed in a beaker or the like to prepare a sample solution, and then nitric acid and hydrogen peroxide water are added. The sample is dissolved by heating using a heating device such as a plate. At that time, a certain amount of the solid or solution of the compound containing the internal standard element is added before the sample is dissolved, or is added immediately after the sample is dissolved and cooled to room temperature.

測定対象元素がリチウム、アルミニウム、ニッケル、コバルト、又はマンガンの場合は、内標準元素として、イットリウムまたは銅を使用することが好ましい。これらの内標準元素は、上記した試料の溶解処理に使用する酸により分解あるいは損失しないため、ビーカーに試料を量り取る際に上記内標準元素を含む化合物も同時に量り取ることができる。   When the element to be measured is lithium, aluminum, nickel, cobalt, or manganese, it is preferable to use yttrium or copper as the internal standard element. Since these internal standard elements are not decomposed or lost by the acid used for the dissolution treatment of the sample, the compound containing the internal standard element can be simultaneously measured when the sample is measured in a beaker.

上記内標準元素として用いるイットリウムや銅を含む化合物には特に制約は無いが、吸湿や自己分解等によって含有量が変化せず、更に試料の溶解工程の際に容易に溶解あるいは分解してイットリウム及び銅を形成するものが好ましく、一般的には金属の固体又はその溶液が用いられる。   The compound containing yttrium and copper used as the internal standard element is not particularly limited, but the content does not change due to moisture absorption or self-decomposition, and it is easily dissolved or decomposed during the sample dissolution process. Those that form copper are preferred, and generally a solid metal or a solution thereof is used.

上記試料溶液の調製において、内標準元素を含む化合物の固体あるいは溶液の一定量を量り取る際には、いずれの場合でも質量で一定量を量り取って添加することが好ましい。検量線に用いる標準試料の調製においても同様である。これにより、容量誤差に起因する誤差をなくすことができる。即ち、質量で量り取ることによって、全量ピペット等で一定量を採取する際に懸念されるような人為的な誤差の発生を防ぐことができる。   In the preparation of the sample solution, when a certain amount of the solid or solution of the compound containing the internal standard element is weighed, in any case, it is preferable to weigh and add a constant amount. The same applies to the preparation of the standard sample used for the calibration curve. As a result, errors due to capacitance errors can be eliminated. That is, by measuring by mass, it is possible to prevent the occurrence of an artificial error that may be a concern when a constant amount is collected with a pipette or the like.

次に、一例を挙げて検量線用標準溶液及び試料溶液の調製方法を具体的に説明する。まず、内標準元素を含む化合物の一定量を分解あるいは溶解し、室温まで冷却後、水を加えて一定質量にして質量濃度Ni(g/kg)で現される内標準溶液を調製する。次に、測定対象元素を含む化合物の一定量を分解あるいは溶解し、室温まで冷却後、水を加えて一定質量にして質量濃度Ns(g/kg)で現される検量線用標準原液を調製する。   Next, an example is given and the preparation method of the standard solution for calibration curves and a sample solution is demonstrated concretely. First, a certain amount of a compound containing an internal standard element is decomposed or dissolved, and after cooling to room temperature, an internal standard solution expressed by mass concentration Ni (g / kg) is prepared by adding water to a constant mass. Next, a certain amount of the compound containing the element to be measured is decomposed or dissolved, cooled to room temperature, added with water to a constant mass, and a standard stock solution for a calibration curve expressed in mass concentration Ns (g / kg) is prepared. To do.

調製した検量線用標準原液を2水準以上の質量で別々の容器に量り取り、これらの容器に、上記内標準溶液の一定量をそれぞれ量り取る。更に、これらの容器に水及び酸を一定量加えてよく攪拌し、検量線用標準溶液とする。ここで、検量線用標準溶液調製の際に量り取った検量線用標準原液の質量に上記の質量濃度Nsを乗じたものをAs(g)とし、同じく内標準溶液の質量に上記の質量濃度Niを乗じたものをAi(g)とし、これらの比As/Aiを求める。   The prepared standard stock solution for calibration curve is weighed into separate containers with a mass of two or more levels, and a certain amount of the above internal standard solution is weighed into these containers. Furthermore, a certain amount of water and acid are added to these containers and stirred well to obtain a standard solution for a calibration curve. Here, As (g) is obtained by multiplying the mass of the standard stock solution for calibration curve measured at the time of preparation of the standard solution for calibration curve by the mass concentration Ns, and the mass concentration of the internal standard solution is also represented by the mass concentration described above. The product of Ni is Ai (g), and the ratio As / Ai is obtained.

試料溶液の調製は次の通りである。試料の一定量を分解容器に量り取った後、この分解容器に上記内標準溶液の一定量を添加する。この時、量り取った試料の質量をWs(g)とし、添加した内標準溶液の質量に前述の質量濃度Niを乗じたものをWi(g)とする。尚、内標準溶液の添加量は、後述する希釈操作における希釈倍率を考慮して適宜調整するのが好ましい。具体的には、上記検量線用標準溶液と試料溶液中の内標準元素の量がほぼ同等になるよう調整することが好ましい。この状態で試料を分解あるいは溶解した後、水を一定量加えてよく攪拌する。希釈が必要な場合は適宜希釈操作を行い、これを試料溶液とする。   The sample solution is prepared as follows. After weighing a certain amount of the sample into the decomposition container, a certain amount of the internal standard solution is added to the decomposition container. At this time, the weight of the weighed sample is Ws (g), and the weight of the added internal standard solution is multiplied by the aforementioned mass concentration Ni is Wi (g). In addition, it is preferable to adjust the addition amount of an internal standard solution suitably considering the dilution rate in the dilution operation mentioned later. Specifically, it is preferable to adjust so that the amount of the internal standard element in the standard solution for the calibration curve and the sample solution are substantially equal. After decomposing or dissolving the sample in this state, add a certain amount of water and stir well. When dilution is necessary, a dilution operation is appropriately performed, and this is used as a sample solution.

以上の方法で得られた検量線用標準溶液と試料溶液について、誘導結合プラズマ発光分光分析法によって測定対象元素と内標準元素の発光強度を順次測定する。ここで、検量線用標準溶液中の測定対象元素の発光強度をBs、内標準元素の発光強度をBi、試料溶液中の測定対象元素の発光強度をCs、内標準元素の発光強度をCiとする。検量線用標準溶液について測定した発光強度から得られる発光強度比Bs/Biを縦軸とし、対応する検量線用標準溶液中の測定対象元素と内標準元素の質量比As/Aiを横軸としてプロットすることにより検量線を作成する。次に試料溶液について得られた測定対象元素と内標準元素の発光強度比からCs/Ciを求め、上記As/AiとBs/Biの検量線から試料溶液中の測定対象元素と内標準元素の質量比Ds/Diを求める。以上の操作で得られたデータを用い、次式から試料中の測定対象元素の含有量C(%)を算出する。   For the calibration curve standard solution and the sample solution obtained by the above method, the emission intensity of the measurement target element and the internal standard element is sequentially measured by inductively coupled plasma emission spectrometry. Here, the emission intensity of the measurement target element in the standard solution for the calibration curve is Bs, the emission intensity of the internal standard element is Bi, the emission intensity of the measurement target element in the sample solution is Cs, and the emission intensity of the internal standard element is Ci. To do. The luminescence intensity ratio Bs / Bi obtained from the luminescence intensity measured for the standard curve standard solution is taken as the vertical axis, and the mass ratio As / Ai of the measurement target element and the internal standard element in the corresponding standard curve standard solution is taken as the horizontal axis. Create a calibration curve by plotting. Next, Cs / Ci is obtained from the emission intensity ratio of the measurement target element and the internal standard element obtained for the sample solution, and the measurement target element and internal standard element in the sample solution are determined from the calibration curve of As / Ai and Bs / Bi. The mass ratio Ds / Di is obtained. Using the data obtained by the above operation, the content C (%) of the element to be measured in the sample is calculated from the following equation.

[数1]
C=(Ds/Di×Wi)/Ws×100
[Equation 1]
C = (Ds / Di × Wi) / Ws × 100

以上のように、試料の分解操作を含む分析前処理過程前から内標準元素を添加し、当該分析前処理過程後に測定対象元素と内標準元素の発光強度比を測定することにより測定対象元素濃度を求めるため、例えば分析前処理過程での希釈により誤差が生じても、計算式が希釈倍率を含まないために希釈の誤差の影響を受けない。なお、試料溶液中の測定対象元素濃度は、検量線の濃度範囲内にあるよう調製することが好ましい。   As described above, the concentration of the element to be measured is determined by adding the internal standard element before the analysis pretreatment process including the sample decomposition operation and measuring the emission intensity ratio between the measurement element and the internal standard element after the pretreatment process. Therefore, even if an error occurs due to dilution in the pre-analysis process, for example, the calculation formula does not include the dilution factor, so it is not affected by the dilution error. It should be noted that the concentration of the element to be measured in the sample solution is preferably adjusted so as to be within the concentration range of the calibration curve.

誘導結合プラズマ発光分光分析装置によって測定を行うにあたっては、プラズマの励起温度を一定以上に調整することが必要である。励起温度を測定する最も簡便な方法は二線発光法である。この方法は、鉄、チタン、又はマグネシウムなどを含む溶液を噴霧し、この一元素からの励起エネルギーの異なる2つの中性原子線の発光強度を同時に測定することによって、次式から励起温度を算出することができる。尚、鉄、チタン、又はマグネシウムなどに代えてアルゴンの2つの中性原子線を用いても良く、この場合は、プラズマがアルゴンで形成されているので、純水を噴霧することで発光強度を得ることができる。   In order to perform measurement with an inductively coupled plasma emission spectrometer, it is necessary to adjust the plasma excitation temperature to a certain level or more. The simplest method for measuring the excitation temperature is the two-wire emission method. In this method, a solution containing iron, titanium, magnesium, or the like is sprayed, and the excitation temperature is calculated from the following equation by simultaneously measuring the emission intensity of two neutral atomic beams with different excitation energies from this one element. can do. Note that two neutral atomic beams of argon may be used instead of iron, titanium, magnesium, etc. In this case, since the plasma is formed of argon, the emission intensity can be increased by spraying pure water. Can be obtained.

[数2]
T=5041×ΔE/〔log(g/g)−log(λ/λ)−log(I/I)〕
[Equation 2]
T = 5041 × ΔE / [log (g 1 A 1 / g 2 A 2 ) −log (λ 1 / λ 2 ) −log (I 1 / I 2 )]

[数3]
ΔE=E−E
[Equation 3]
ΔE = E 1 −E 2

ここで、式中E、Eは2つの波長の励起エネルギー(eV)、λ、λは2つの波長(nm)、I、Iは各波長の発光強度(任意単位)を示す。gAは、各励起状態の統計的重率に遷移確率を乗じたものであり、gA値として一般的に公開されている。 Here, E 1 and E 2 are excitation energy (eV) of two wavelengths, λ 1 and λ 2 are two wavelengths (nm), and I 1 and I 2 are emission intensity (arbitrary unit) of each wavelength. Show. gA is obtained by multiplying the statistical weight of each excited state by the transition probability, and is generally disclosed as a gA value.

選択する波長は、十分な発光強度を得ることができ、且つ正確な遷移確率が公開されているものであって、励起エネルギー範囲が大きく、波長が互いに近接しているものが好ましい。例えば、濃度1g/Lの鉄標準溶液を用いた場合は、波長302.403nmと303.015nmの組合せあるいは370.557nmと370.925nmの組合せで励起温度を算出することができる。   The wavelength to be selected is preferably one that can obtain a sufficient emission intensity, has an accurate transition probability disclosed, has a large excitation energy range, and has wavelengths close to each other. For example, when an iron standard solution having a concentration of 1 g / L is used, the excitation temperature can be calculated by a combination of wavelengths 302.403 nm and 303.015 nm, or a combination of 370.557 nm and 370.925 nm.

本発明の誘導結合プラズマ発光分光分析法による金属元素の測定方法では、上記した励起温度は4900K以上である。4900K未満では満足する測定精度が得られないからである。即ち、精度よく測定を行うには、誘導結合プラズマ発光分光分析装置で発生する種々の変動要因を、抑制あるいは補正する必要がある。このため、内標準補正法では、測定対象元素と内標準元素の挙動が、あらゆる装置変動要因に対して一致することが好ましく、具体的には測定対象元素と内標準元素の相関係数Rが1.0により近いことが望まれる。しかしながら、上記励起温度が4900K未満の場合、測定対象元素と内標準元素との相関係数が著しく低下するため、測定精度が低下することになるからである。   In the method for measuring a metal element by inductively coupled plasma optical emission spectrometry according to the present invention, the excitation temperature is 4900K or higher. This is because satisfactory measurement accuracy cannot be obtained at less than 4900K. That is, in order to perform measurement with high accuracy, it is necessary to suppress or correct various fluctuation factors generated in the inductively coupled plasma emission spectrometer. For this reason, in the internal standard correction method, it is preferable that the behaviors of the measurement target element and the internal standard element coincide with all the apparatus variation factors. Specifically, the correlation coefficient R between the measurement target element and the internal standard element is It is desirable to be closer to 1.0. However, when the excitation temperature is less than 4900K, the correlation coefficient between the element to be measured and the internal standard element is remarkably lowered, so that the measurement accuracy is lowered.

誘導結合プラズマ発光分光分析装置には、プラズマを形成する高周波電源周波数が40.68MHz仕様の装置と27.12MHz仕様の装置の2種が市販されている。使用する周波数に制約はないが、27.12MHz仕様の装置の方が高い励起温度を得られ易い。40.68MHz仕様の装置で測定を行う場合は、高周波出力とキャリアガス流量又は測光高さを調整して4900K以上のプラズマを形成し測定を行う。具体的には、高周波出力を上げると共にキャリアガス流量を下げると、励起温度は上昇傾向を示す。   Two types of inductively coupled plasma emission spectroscopic analyzers are commercially available: an apparatus with a high frequency power supply frequency of 40.68 MHz for generating plasma and an apparatus with a 27.12 MHz specification. Although there is no restriction on the frequency to be used, a device with a 27.12 MHz specification can easily obtain a higher excitation temperature. When measurement is performed with a 40.68 MHz specification apparatus, the high frequency output and the carrier gas flow rate or photometric height are adjusted to form plasma of 4900K or more and measurement is performed. Specifically, when the high frequency output is increased and the carrier gas flow rate is decreased, the excitation temperature tends to increase.

キャリアガス流量の低下は、測定元素のプラズマ内での滞留時間を増加させる効果もあるが、同様の効果は、三重管構造からなるプラズマ点灯用トーチの中心径を太くすることでも実現できる。キャリアガス流路が太くなることで、ガスの線速度が低下するためである。なお、測光高さを下げることにより、より高温領域での測定が可能となるが、共存元素の様々な影響を受け易くもなるため、測光位置変更にあたっては十分な調査が必要である。また、発光強度測定方式には、軸測光方式と放射光測光方式があるが、本発明において特に制約はない。ただし、軸測光方式では共存元素の影響をより敏感に受ける可能性があるため注意が必要である。   Although the decrease in the carrier gas flow rate has the effect of increasing the residence time of the measurement element in the plasma, the same effect can also be realized by increasing the center diameter of the plasma lighting torch having a triple tube structure. This is because the linear velocity of the gas decreases due to the thicker carrier gas channel. It should be noted that, by lowering the photometric height, measurement in a higher temperature region is possible. However, since it becomes easy to be affected by various coexisting elements, a sufficient investigation is required when changing the photometric position. The emission intensity measurement method includes an axial photometry method and a synchrotron photometry method, but there is no particular limitation in the present invention. However, it should be noted that the axial photometry method may be more sensitive to coexisting elements.

内標準元素にはイットリウムや銅のほか、イッテルビウム、コバルト、スカンジウム、ベリリウム、タリウム等を用いてもよい。また、測定対象元素がリチウム、アルミニウム、ニッケル、コバルト、及びマンガンのうち少なくとも2種を含む場合は、内標準元素の最適化を行って分析精度のより一層の向上を実現すべく、内標準元素として、リチウム、アルミニウム又はマンガンに対してはイットリウムを使用し、ニッケル又はコバルトに対しては銅を使用するのが好ましい。このように各測定対象元素に最適な内標準元素を選択することにより、測定対象元素と内標準元素の相関係数Rを0.95以上にすることができる。   In addition to yttrium and copper, ytterbium, cobalt, scandium, beryllium, thallium and the like may be used as the internal standard element. In addition, when the element to be measured contains at least two of lithium, aluminum, nickel, cobalt, and manganese, the internal standard element is optimized in order to further improve the analysis accuracy by optimizing the internal standard element. As for, it is preferable to use yttrium for lithium, aluminum or manganese and to use copper for nickel or cobalt. Thus, by selecting the optimal internal standard element for each measurement target element, the correlation coefficient R between the measurement target element and the internal standard element can be set to 0.95 or more.

上記した最適な内標準元素の選定に当たっては、各元素の励起エネルギーあるいは励起エネルギーとイオン化エネルギーの総和を考慮することが好ましい。即ち、各測定対象元素と内標準元素の測定波長の組合せは、中性原子線同士あるいはイオン線同士とし、更に、中性原子線を選択する場合は、内標準元素の測定波長が有する上位準位の励起エネルギーが、測定対象元素の測定波長が有する上位準位の励起エネルギーに対して上下1.0eVの範囲内にあり、また、イオン線を選択する場合は、内標準元素の測定波長が有する上位準位の励起エネルギーとイオン化エネルギーの総和が、測定対象元素の測定波長が有する上位準位の励起エネルギーとイオン化エネルギーの総和に対して上下1.0eVの範囲内にあることが望ましい。   In selecting the optimum internal standard element, it is preferable to consider the excitation energy of each element or the sum of the excitation energy and ionization energy. That is, the combination of the measurement wavelength of each element to be measured and the internal standard element is between neutral atomic beams or ion beams, and when selecting a neutral atomic beam, the upper level of the measurement wavelength of the internal standard element is selected. The excitation energy at the position is within a range of 1.0 eV above and below the excitation energy at the upper level of the measurement wavelength of the element to be measured, and when the ion beam is selected, the measurement wavelength of the internal standard element is It is desirable that the sum of the excitation energy and ionization energy of the upper level to be within a range of 1.0 eV above and below the sum of the excitation energy and ionization energy of the upper level of the measurement wavelength of the measurement target element.

更に、例えばリチウム、ニッケル、コバルト及びアルミニウムからなるリチウム電池正極材料のリチウム/メタル比を測定する場合、その分析精度を向上させるため、試料溶液中に含まれるリチウム二次電池用正極材料を構成する主要な金属元素の全てを同時に測定するのが好ましい。これは、各元素を単独で測定すると誤差の加法性から分析精度は悪化する傾向を示すが、プラズマの励起温度が4900K以上の条件下でこれら元素を同時に測定すれば、装置変動によって生じるリチウムとメタル分となるニッケル、コバルト及びアルミニウム挙動が一致し、リチウム/メタル比をより精度よく測定できるからである。なお、同時測定を行う手段に特に制約は無いが、CCD検出器、CID検出器、又は複数の光電子増倍管を装備したポリクロメーター等の多元素同時検出器を用いるのが好ましい。   Furthermore, when measuring the lithium / metal ratio of a lithium battery positive electrode material made of, for example, lithium, nickel, cobalt, and aluminum, the positive electrode material for a lithium secondary battery contained in the sample solution is configured in order to improve the analysis accuracy. It is preferred to measure all major metal elements simultaneously. This shows that when each element is measured alone, the accuracy of analysis tends to deteriorate due to the additive nature of the error. However, if these elements are measured simultaneously under a condition where the plasma excitation temperature is 4900 K or higher, the lithium generated due to the fluctuation of the apparatus This is because the behaviors of nickel, cobalt, and aluminum corresponding to the metal are consistent, and the lithium / metal ratio can be measured more accurately. The means for performing simultaneous measurement is not particularly limited, but it is preferable to use a multi-element simultaneous detector such as a CCD detector, a CID detector, or a polychromator equipped with a plurality of photomultiplier tubes.

次に、上記した誘導結合プラズマ発光分光分析装置を用いた測定によって予め得たリチウム/メタル比の測定精度と該分析装置の検出部用の冷媒の温度制御幅との関係式に基づいて、要求されるリチウム/メタル比の分析精度を満たすために必要な冷媒の温度制御幅で検出部用の冷媒を温度制御する方法について具体的に説明する。先ず、冷媒の設定温度に対する温度制御能力の高いチラーユニットを用い、上記した誘導結合プラズマ発光分光分析法によってリチウム/メタル比を測定し、同時に冷媒の温度変動幅を温度記録計などを用いて記録しておく。このとき、誘導結合プラズマ発光分光分析法による測定は特許文献1に記載された検量線法を用い、1つの検量線で同一試料を複数回測定し、そのRSDを得る。   Next, based on the relational expression between the measurement accuracy of the lithium / metal ratio obtained in advance by the measurement using the inductively coupled plasma optical emission spectrometer and the temperature control width of the refrigerant for the detector of the analyzer, a request is made. A method for controlling the temperature of the refrigerant for the detection unit with the temperature control range of the refrigerant necessary for satisfying the analysis accuracy of the lithium / metal ratio will be specifically described. First, using a chiller unit with high temperature control capability with respect to the set temperature of the refrigerant, the lithium / metal ratio is measured by the inductively coupled plasma emission spectrometry described above, and at the same time, the temperature fluctuation range of the refrigerant is recorded using a temperature recorder or the like. Keep it. At this time, the measurement by the inductively coupled plasma emission spectroscopy is performed using the calibration curve method described in Patent Document 1, and the same sample is measured a plurality of times with one calibration curve to obtain the RSD.

次に、上記で使用したチラーユニットより冷媒の設定温度に対する温度制御能力の低いチラーユニットを用い、同様に誘導結合プラズマ発光分光分析法によってリチウム/メタル比を測定し、同時に冷媒の温度変動幅を温度記録計などを用いて記録しておく。このとき、誘導結合プラズマ発光分光分析法による測定は特許文献1に記載された検量線法を用い、1つの検量線で同一試料を複数回測定し、そのRSDを得る。   Next, using a chiller unit that has a lower temperature control capability with respect to the set temperature of the refrigerant than the chiller unit used above, the lithium / metal ratio is measured by inductively coupled plasma emission spectroscopy, and the temperature fluctuation range of the refrigerant is simultaneously measured. Record using a temperature recorder. At this time, the measurement by the inductively coupled plasma emission spectroscopy is performed using the calibration curve method described in Patent Document 1, and the same sample is measured a plurality of times with one calibration curve to obtain the RSD.

上記の2つのケースの測定によって得られたリチウム/メタル比のRSDとそれぞれの温度変動幅から、リチウム/メタル比のRSDと温度変動幅の関係式とを算出し、この関係式を用いて、要求するリチウム/メタル比の分析精度を満たすために必要なチラーの冷媒の温度制御能力を算出することができる。   From the RSD of the lithium / metal ratio obtained by the measurement of the above two cases and the respective temperature fluctuation ranges, a relational expression between the RSD of the lithium / metal ratio and the temperature fluctuation range is calculated, and using this relational expression, It is possible to calculate the temperature control ability of the chiller refrigerant required to satisfy the required analysis accuracy of the lithium / metal ratio.

[実施例1]
リチウム、ニッケル、アルミニウム、及びコバルトを含むリチウム二次電池用正極材料の粉末試料を約1.0g正確に秤量し、清浄な300mLガラス製ビーカーに入れた。次に、濃度6g/kgのイットリウム内標準溶液及び銅内標準溶液をそれぞれ約10g正確に秤量して、上記ビーカーに投入した。更に、上記ビーカーに硝酸10mLと過酸化水素水2mLを除々に加え、約300℃のホットプレートで加熱して、粉末試料を溶解した。放冷後、更に過酸化水素水2mLを加え、上記と同様に加熱して溶解した。この操作を少なくとも2回繰り返すことで粉末試料を完全に溶解した。
[Example 1]
About 1.0 g of a powder sample of a positive electrode material for a lithium secondary battery containing lithium, nickel, aluminum, and cobalt was accurately weighed and placed in a clean 300 mL glass beaker. Next, about 10 g each of the yttrium internal standard solution and the copper internal standard solution having a concentration of 6 g / kg were accurately weighed and put into the beaker. Further, 10 mL of nitric acid and 2 mL of hydrogen peroxide were gradually added to the beaker and heated on a hot plate at about 300 ° C. to dissolve the powder sample. After standing to cool, 2 mL of hydrogen peroxide solution was further added and heated to dissolve as described above. This operation was repeated at least twice to completely dissolve the powder sample.

得られた溶液を室温まで冷却した後、容量100mLの全量フラスコに移し入れ、純水を加えて溶液量を100mLに合わせた。次いで、10mLの全量ピペットを用いて溶液の10mLを分取し、これを容量200mL全量フラスコに移し入れ、更に純水を加えて溶液量を200mLに定容とし、これを試料溶液とした。   After the obtained solution was cooled to room temperature, it was transferred to a 100-mL volumetric flask and pure water was added to adjust the solution volume to 100 mL. Next, 10 mL of the solution was collected using a 10 mL total volume pipette, transferred to a 200 mL volumetric flask, and further added with pure water to make the solution volume constant to 200 mL, which was used as a sample solution.

尚、上記内標準溶液は、次の通り調製した。イットリウム内標準溶液は、清浄な300mLガラス製ビーカーにイットリウム金属を6.0g秤量し、水10mL及び硝酸10mL、塩酸30mLを加えた後、ホットプレートで加熱して溶解した。得られた溶液を室温まで冷却した後、容量1000mLの容器に移し入れ、純水を加えて1kgに合わせた。銅内標溶液は、銅金属6.0gを水20mLと硝酸40mLを加えて溶解した以外は、イットリウム内標準溶液と同様の方法で調製した。   The internal standard solution was prepared as follows. The standard solution for yttrium was dissolved by weighing 6.0 g of yttrium metal in a clean 300 mL glass beaker, adding 10 mL of water, 10 mL of nitric acid and 30 mL of hydrochloric acid, and then heating on a hot plate. After cooling the obtained solution to room temperature, it was transferred to a 1000 mL capacity container, and pure water was added to make 1 kg. The copper internal standard solution was prepared in the same manner as the yttrium internal standard solution except that 6.0 g of copper metal was dissolved by adding 20 mL of water and 40 mL of nitric acid.

得られた試料溶液について、誘導結合プラズマ発光分光分析装置を用いて、リチウム、ニッケル、アルミニウム、及びコバルトの全元素同時測定を行った。誘導結合プラズマ発光分光分析装置には、プラズマ周波数が27.12MHzであり、検出部にCCD検出器を装備した放射光測光方式の島津製作所製のICPE9000を使用した。このCCD検出器を有する検出部の冷却用の冷媒には冷却水を使用し、その温度の変動幅が±0.1℃内に収まるように温度制御を行った。なお、プラズマ出力は1.2kW、キャリアガス流量は0.6L/min、測光高さは低とした。この時、1g/Lの鉄標準溶液を用い、波長302.403nmと303.015nmの発光強度比から求めたプラズマの励起温度は6220Kであった。   About the obtained sample solution, all the elements simultaneous measurement of lithium, nickel, aluminum, and cobalt was performed using the inductively coupled plasma emission spectroscopic analyzer. For the inductively coupled plasma emission spectroscopic analyzer, ICPE 9000 manufactured by Shimadzu Corp., using a synchrotron radiation photometry method, having a plasma frequency of 27.12 MHz and equipped with a CCD detector in the detection part was used. Cooling water was used as a coolant for cooling the detection unit having the CCD detector, and the temperature was controlled so that the temperature fluctuation range was within ± 0.1 ° C. The plasma output was 1.2 kW, the carrier gas flow rate was 0.6 L / min, and the photometric height was low. At this time, a 1 g / L iron standard solution was used, and the plasma excitation temperature determined from the emission intensity ratio between wavelengths 302.403 nm and 303.015 nm was 6220K.

各測定対象元素の測定波長は、リチウムが670.153nm、ニッケルが221.647nm、アルミニウムが396.153nm、コバルトが238.892nmとした。内標準元素の測定波長は、イットリウムが371.030nm、銅が324.754nmとした。また、リチウム、アルミニウムについてはイットリウムを内標準元素とし、ニッケル及びコバルトについては銅を内標準元素として、リチウム/イットリウム、アルミニウム/イットリウム、ニッケル/銅、及びコバルト/銅の発光強度比をそれぞれ測定した。   The measurement wavelength of each measurement target element was 670.153 nm for lithium, 221.647 nm for nickel, 396.153 nm for aluminum, and 238.892 nm for cobalt. The measurement wavelength of the internal standard element was 371.030 nm for yttrium and 324.754 nm for copper. Further, for lithium and aluminum, yttrium was used as an internal standard element, and for nickel and cobalt, copper was used as an internal standard element, and the emission intensity ratios of lithium / yttrium, aluminum / yttrium, nickel / copper, and cobalt / copper were measured. .

上記したリチウム二次電池用正極材料の粉末試料の溶液調製方法により試料1〜10の10種類の試料溶液を調製し、上記した誘導結合プラズマ発光分光分析装置で分析を行った。図2に示すように、各分析装置では先ず濃度既知の検量線用標準溶液のL(低濃度)及びH(高濃度)を測定して検量線(発光強度と濃度の比例式)を作成し、そのあとに上記した試料1〜10をこの番号順に測定した。この操作を8回繰り返し、各試料において得られた8個の分析値から相対標準偏差であるRSD%(n=8)を算出した。   Ten types of sample solutions of Samples 1 to 10 were prepared by the above-described method for preparing a powder sample of a positive electrode material for a lithium secondary battery, and analyzed using the above-described inductively coupled plasma emission spectrometer. As shown in FIG. 2, each analyzer first measures L (low concentration) and H (high concentration) of a standard solution for a calibration curve with a known concentration, and prepares a calibration curve (proportional expression of emission intensity and concentration). Thereafter, the above-described samples 1 to 10 were measured in the order of this number. This operation was repeated 8 times, and RSD% (n = 8), which is a relative standard deviation, was calculated from 8 analytical values obtained for each sample.

次に、検出部の冷却用の冷却水の温度の変動幅が±3℃内に収まるように温度制御を行う以外は上記と同様にして、上記と同様に調製した試料1〜10をこの番号順に測定する操作を8回繰り返し、各試料において得られた8個の分析値から相対標準偏差であるRSD%(n=8)を算出した。このようにして得た冷却水の温度の変動幅±0.1℃の場合と変動幅±3℃の場合の試料1〜10のリチウム/メタル比のRSD%(n=8)の結果を下記表1に示す。   Next, samples 1 to 10 were prepared in the same manner as described above except that the temperature control was performed so that the fluctuation range of the cooling water temperature for cooling the detection unit was within ± 3 ° C. The operation of measuring in order was repeated 8 times, and RSD% (n = 8), which is a relative standard deviation, was calculated from 8 analytical values obtained for each sample. The results of the RSD% (n = 8) of the lithium / metal ratio of samples 1 to 10 when the temperature fluctuation range of the cooling water thus obtained is ± 0.1 ° C. and the case of the fluctuation range ± 3 ° C. are shown below. Table 1 shows.

[表1]

Figure 0006265070
[Table 1]
Figure 0006265070

上記表1の結果から分かるように、検出部の冷却を±0.1℃の温度変動幅で温度制御を行った場合は、どの試料のどの元素もRSD%≦0.2%となった。一方、±3℃の温度変動幅で温度制御を行った場合は、どの試料のどの元素もRSD%が高めとなった。なお、一般に測定条件が安定して且つ高い精度で分析が行われている場合はRSD%<0.3%程度であるので、いずれの場合も金属元素濃度及びリチウム/メタル比を高精度で安定的に測定できることを示している。   As can be seen from the results in Table 1, when the temperature of the detection unit was controlled with a temperature fluctuation range of ± 0.1 ° C., any element of any sample had RSD% ≦ 0.2%. On the other hand, when temperature control was performed with a temperature fluctuation range of ± 3 ° C., the RSD% increased for any element of any sample. In general, when the measurement conditions are stable and the analysis is performed with high accuracy, the RSD% <0.3%. Therefore, in both cases, the metal element concentration and the lithium / metal ratio are stable with high accuracy. It can be measured automatically.

このように、検出部へ供給する冷媒の温度が変動すると定量元素と内標準元素の光の強さが異なる割合で変動し、結果的に定量元素/内標準元素が一定ではなくなるため、金属元素濃度やリチウム/メタル比の測定精度は、誘導結合プラズマ発光分光分析装置の検出部の冷媒の温度制御幅の影響を強く受けることが分かる。すなわち、検出部を冷却する冷媒の設定温度からの変動が小さければ小さいほど得られるリチウム/メタル比のばらつきは小さくなる。   As described above, when the temperature of the refrigerant supplied to the detection unit fluctuates, the light intensity of the quantitative element and the internal standard element varies at a different rate. As a result, the quantitative element / internal standard element is not constant. It can be seen that the measurement accuracy of the concentration and the lithium / metal ratio is strongly influenced by the temperature control width of the refrigerant in the detection unit of the inductively coupled plasma emission spectrometer. That is, the smaller the variation from the set temperature of the refrigerant that cools the detection unit, the smaller the variation in the obtained lithium / metal ratio.

次にこの表1の結果から、それぞれ最も大きいRSD%を選び出し、これらを図3に示すように横軸を検出部冷却用の温度制御幅にとったグラフにプロットした。そして、グラフ内に示すように、プロットした2点からRSD%と検出部冷却用の温度制御幅の関係式を求めた。この関係式から必要とされる分析精度を満たす温度制御幅が定まり、その温度制御幅以内で制御可能なチラーユニットを選定することで、所望の精度の分析を必要以上にコストをかけることなく安定的且つ低環境負荷で行うことができる。   Next, the largest RSD% was selected from the results in Table 1, and these were plotted in a graph in which the horizontal axis represents the temperature control width for cooling the detection unit as shown in FIG. Then, as shown in the graph, a relational expression between RSD% and the temperature control width for cooling the detection unit was obtained from the two plotted points. From this relational expression, the temperature control range that satisfies the required analysis accuracy is determined, and by selecting a chiller unit that can be controlled within that temperature control range, the analysis with the desired accuracy can be performed stably without costing more than necessary. And low environmental load.

[実施例2]
リチウム、ニッケル、マンガン、及びコバルトを含むリチウム二次電池用正極材料の粉末試料を分析対象とした以外は上記の実施例1と同様にして誘導結合プラズマ発光分光分析装置を用いて、これら全元素の同時測定を行った。その際、実施例1と同様に検出部の冷却用の冷却水の温度の変動幅が±0.1℃内に収まるように温度制御を行った場合と、変動幅が±3℃内に収まるように温度制御を行った場合の2回の測定を行った。
[Example 2]
All these elements were measured using an inductively coupled plasma emission spectrometer in the same manner as in Example 1 except that a powder sample of a positive electrode material for a lithium secondary battery containing lithium, nickel, manganese, and cobalt was used as an analysis target. Simultaneous measurement was performed. At that time, similarly to the first embodiment, when the temperature control is performed so that the fluctuation range of the temperature of the cooling water for cooling of the detection unit is within ± 0.1 ° C., the fluctuation range is within ± 3 ° C. Thus, the measurement was performed twice when the temperature control was performed.

なお、マンガンについては測定波長を279.827nmとし、イットリウムをマンガンの内標準元素としてマンガン/イットリウムを測定した。測定に際し、実施例1と同様に調製した試料1〜10をこの番号順に測定する操作を8回繰り返し、各試料において得られた8個の分析値から相対標準偏差であるRSD%(n=8)を算出した。このようにして得た冷却水の温度の変動幅±0.1℃の場合と変動幅±3℃の場合の試料1〜10のリチウム/メタル比のRSD%(n=8)の結果を下記表2に示す。   For manganese, the measurement wavelength was 279.827 nm, and manganese / yttrium was measured using yttrium as an internal standard element of manganese. In measurement, the operation of measuring samples 1 to 10 prepared in the same manner as in Example 1 in the order of this number was repeated 8 times, and RSD% (n = 8) which is a relative standard deviation from the 8 analytical values obtained in each sample. ) Was calculated. The results of the RSD% (n = 8) of the lithium / metal ratio of samples 1 to 10 when the temperature fluctuation range of the cooling water thus obtained is ± 0.1 ° C. and the case of the fluctuation range ± 3 ° C. are shown below. It shows in Table 2.

[表2]

Figure 0006265070
[Table 2]
Figure 0006265070

上記表2の結果から分かるように、検出部の冷却を±0.1℃の温度変動幅で温度制御を行った場合は、どの試料のどの元素もRSD%≦0.2%となった。一方、±3℃の温度変動幅で温度制御を行った場合は、どの試料のどの元素もRSD%が高めとなった。一般に測定条件が安定して且つ高い精度で分析が行われている場合はRSD%<0.3%程度であるので、冷却水の温度の変動幅が±0.1℃内に収まるように温度制御を行った場合は金属元素濃度及びリチウム/メタル比を高精度で安定的に測定できることを示している。   As can be seen from the results of Table 2 above, when the temperature of the detection unit was controlled with a temperature fluctuation range of ± 0.1 ° C., any element of any sample had RSD% ≦ 0.2%. On the other hand, when temperature control was performed with a temperature fluctuation range of ± 3 ° C., the RSD% increased for any element of any sample. In general, when the measurement conditions are stable and analysis is performed with high accuracy, RSD% <0.3%, so that the temperature fluctuation range is within ± 0.1 ° C. When the control is performed, the metal element concentration and the lithium / metal ratio can be stably measured with high accuracy.

次にこの表2の結果から、それぞれ最も大きいRSD%を選び出し、これらを図4に示すように横軸を検出部冷却用の温度制御幅にとったグラフにプロットした。そして、グラフ内に示すように、プロットした2点からRSD%と検出部冷却用の温度制御幅の関係式を求めた。この関係式から必要とされる分析精度を満たす温度制御幅が定まり、その温度制御幅以内で制御可能なチラーユニットを選定することで、所望の精度の分析を必要以上にコストをかけることなく安定的且つ低環境負荷で行うことができる。   Next, from the results in Table 2, the largest RSD% was selected, and these were plotted in a graph in which the horizontal axis represents the temperature control width for cooling the detector as shown in FIG. Then, as shown in the graph, a relational expression between RSD% and the temperature control width for cooling the detection unit was obtained from the two plotted points. From this relational expression, the temperature control range that satisfies the required analysis accuracy is determined, and by selecting a chiller unit that can be controlled within that temperature control range, the analysis with the desired accuracy can be performed stably without costing more than necessary. And low environmental load.

1 プラズマトーチ部
2 分光器
3 検出部
4 高周波電源
5 制御部
6 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Plasma torch part 2 Spectrometer 3 Detection part 4 High frequency power supply 5 Control part 6 Vacuum pump

Claims (6)

イットリウム又は銅を内標準元素とする内標準補正法を適用し、4900K以上のプラズマの励起温度を用いる誘導結合プラズマ発光分光分析装置を用いて試料溶液中の金属元素の濃度を分析する方法であって、該分析装置を用いた測定によってリチウム/メタル比の測定精度と該分析装置の検出部用の冷媒の温度制御幅との関係式を複数の温度制御幅から求め、該関係式に基づいて、要求されるリチウム/メタル比の分析精度を満たすために必要な冷媒の温度制御幅を定め、この温度制御幅で検出部用の冷媒を温度制御することを特徴とする金属元素の濃度分析方法。 An internal standard correction method using yttrium or copper as an internal standard element is applied, and the concentration of a metal element in a sample solution is analyzed using an inductively coupled plasma emission spectrometer using a plasma excitation temperature of 4900K or higher. Then, a relational expression between the measurement accuracy of the lithium / metal ratio and the temperature control width of the refrigerant for the detection unit of the analytical apparatus is obtained from a plurality of temperature control widths by measurement using the analytical apparatus, and based on the relational expression A method for analyzing the concentration of a metal element, characterized in that a temperature control range of a refrigerant necessary to satisfy the required analysis accuracy of a lithium / metal ratio is determined, and the temperature of the refrigerant for the detection unit is controlled by the temperature control range . 前記複数の温度制御幅が、±0.1℃と±3.0℃との範囲内にあることを特徴とする、請求項1に記載の金属元素の濃度分析方法。The metal element concentration analysis method according to claim 1, wherein the plurality of temperature control ranges are within a range of ± 0.1 ° C. and ± 3.0 ° C. 2. 前記試料溶液が、リチウム二次電池用正極材料を分解して溶液としたものであることを特徴とする、請求項1又は2に記載の金属元素の濃度分析方法。 The metal element concentration analysis method according to claim 1 or 2 , wherein the sample solution is a solution obtained by decomposing a positive electrode material for a lithium secondary battery. 前記試料溶液が測定対象元素としてリチウム、アルミニウム、ニッケル、コバルト、及びマンガンのうちの少なくとも2種を含み、リチウム、アルミニウム、又はマンガンに対しては内標準元素としてイットリウムを使用し、ニッケル又はコバルトに対しては内標準元素として銅を使用することを特徴とする、請求項1〜3のいずれか1項に記載の金属元素の濃度分析方法。 The sample solution contains at least two of lithium, aluminum, nickel, cobalt, and manganese as elements to be measured. For lithium, aluminum, or manganese, yttrium is used as an internal standard element, and nickel or cobalt is used. 4. The metal element concentration analysis method according to claim 1, wherein copper is used as an internal standard element. 5. 前記誘導結合プラズマ発光分光分析装置は多元素同時検出器を装備しており、該多元素同時検出器を用いて前記試料溶液中に含まれるリチウム二次電池用正極材料を構成する主要な金属元素の全てを同時に測定し、これにより構成金属元素のモル濃度比を測定することを特徴とする、請求項に記載の金属元素の濃度分析方法。 The inductively coupled plasma optical emission spectrometer is equipped with a multi-element simultaneous detector, and the multi-element simultaneous detector is used as a main metal element constituting the positive electrode material for a lithium secondary battery contained in the sample solution. The method for analyzing the concentration of a metal element according to claim 3 , wherein all of the above are measured simultaneously, whereby the molar concentration ratio of the constituent metal elements is measured. 前記内標準補正法において内標準元素を含む内標準溶液を試料溶液及び検量線用標準溶液に添加する際は、質量基準で濃度調整された内標準溶液を使用し、この内標準溶液を質量で量り取って添加することを特徴とする、請求項1〜のいずれかに記載の金属元素の濃度分析方法。 When the internal standard solution containing the internal standard element is added to the sample solution and the calibration curve standard solution in the internal standard correction method, an internal standard solution whose concentration is adjusted on a mass basis is used. The method for analyzing the concentration of a metal element according to any one of claims 1 to 5 , wherein the metal element is added by weighing.
JP2014140551A 2014-07-08 2014-07-08 Metal element concentration analysis method using inductively coupled plasma emission spectrometer Active JP6265070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014140551A JP6265070B2 (en) 2014-07-08 2014-07-08 Metal element concentration analysis method using inductively coupled plasma emission spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014140551A JP6265070B2 (en) 2014-07-08 2014-07-08 Metal element concentration analysis method using inductively coupled plasma emission spectrometer

Publications (2)

Publication Number Publication Date
JP2016017836A JP2016017836A (en) 2016-02-01
JP6265070B2 true JP6265070B2 (en) 2018-01-24

Family

ID=55233149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014140551A Active JP6265070B2 (en) 2014-07-08 2014-07-08 Metal element concentration analysis method using inductively coupled plasma emission spectrometer

Country Status (1)

Country Link
JP (1) JP6265070B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702816B (en) * 2017-10-27 2023-09-26 大连理工大学 Method for measuring surface temperature of wall material in situ online real-time non-contact manner
KR102145105B1 (en) * 2018-04-19 2020-08-14 주식회사 엘지화학 Analysis method for percent of active material
CN108827885B (en) * 2018-04-20 2020-10-27 宁夏建筑科学研究院股份有限公司 Lithium internal standard solution of flame photometer and preparation method thereof
CN112051257A (en) * 2019-06-06 2020-12-08 天津市茂联科技有限公司 Method for rapidly detecting impurities in cobalt chloride
CN112000028B (en) * 2020-07-13 2021-08-10 界首市南都华宇电源有限公司 Lead powder processing system for lead storage battery positive grid production workshop
CN114076793B (en) * 2020-08-13 2023-06-09 深圳市疾病预防控制中心(深圳市卫生检验中心、深圳市预防医学研究所) Method for measuring iodine content in food based on inductively coupled plasma mass spectrometry
CN112629968A (en) * 2020-12-09 2021-04-09 中国第一汽车股份有限公司 Method for measuring cations in electrophoresis tank liquid
CN113063773A (en) * 2021-03-12 2021-07-02 中航金属材料理化检测科技有限公司 Method for measuring contents of chromium, tungsten and phosphorus in 1Cr11Ni2W2MoV
CN113390860A (en) * 2021-06-29 2021-09-14 洛阳金鹭硬质合金工具有限公司 Detection method for simultaneously detecting sixteen trace impurity elements in chromium carbide
CN113324979A (en) * 2021-07-20 2021-08-31 中国科学院金属研究所 Quantitative analysis and determination method of aluminum-niobium alloy
CN114047175A (en) * 2021-09-28 2022-02-15 重庆市食品药品检验检测研究院 Method for detecting contents of metal elements and non-metal elements in medicinal rubber plug
CN114018902A (en) * 2021-10-20 2022-02-08 上海市园林科学规划研究院 Method for measuring total phosphorus, total potassium and total sodium of kitchen waste leachate
CN114184445B (en) * 2021-12-09 2023-09-08 四川阿格瑞新材料有限公司 Method for measuring content of residual metal element in OLED material
CN114323844A (en) * 2021-12-16 2022-04-12 红宝丽集团股份有限公司 Method for measuring metal elements in organic matters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331548A (en) * 1993-05-22 1994-12-02 Horiba Ltd Icp emission analytical apparatus
US5663564A (en) * 1996-03-20 1997-09-02 Santa Barbara Research Center Photovoltaic detector with integrated dark current offset correction
JP3768442B2 (en) * 2001-12-28 2006-04-19 オルガノ株式会社 Analytical sample preparation method and element quantification method
JP4626572B2 (en) * 2006-06-14 2011-02-09 株式会社島津製作所 Optical emission spectrometer
JP5169678B2 (en) * 2008-09-24 2013-03-27 住友金属鉱山株式会社 High precision analysis of metal elements by inductively coupled plasma optical emission spectrometry
KR102020753B1 (en) * 2010-10-29 2019-09-11 미쯔비시 케미컬 주식회사 Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2016017836A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6265070B2 (en) Metal element concentration analysis method using inductively coupled plasma emission spectrometer
JP5169678B2 (en) High precision analysis of metal elements by inductively coupled plasma optical emission spectrometry
Hattendorf et al. Strategies for method development for an inductively coupled plasma mass spectrometer with bandpass reaction cell. Approaches with different reaction gases for the determination of selenium
Sullivan et al. Trapping molecular ions formed via photo-associative ionization of ultracold atoms
CN107271429B (en) Quantitative analysis method for elements in unknown sample by combining spectrum with mass spectrum
Thaler et al. Preliminary survey of matrix effects in the Microwave-sustained, Inductively Coupled Atmospheric-pressure Plasma (MICAP)
Ullmann et al. An improved value for the hyperfine splitting of hydrogen-like 209Bi82+
Hou et al. Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm
Weiss Emission yields and the standard model in glow discharge optical emission spectroscopy: links to the underlying physics and analytical interpretation of the experimental data
Harilal et al. Spatio-temporal evolution of uranium emission in laser-produced plasmas
Grotti et al. Effect of operating conditions on excitation temperature and electron number density in axially-viewed ICP-OES with introduction of vapours or aerosols
Verreycken et al. Time-resolved absolute OH density of a nanosecond pulsed discharge in atmospheric pressure He–H2O: absolute calibration, collisional quenching and the importance of charged species in OH production
Cremona et al. Deuterium retention and erosion in liquid Sn samples exposed to D2 and Ar plasmas in GyM device
Scheffler et al. Advantages, drawbacks and applications of mixed Ar–N 2 sources in inductively coupled plasma-based techniques: an overview
Simeonsson et al. Characterization of laser induced breakdown plasmas used for measurements of arsenic, antimony and selenium hydrides
Olesik ICP-OES capabilities, developments, limitations, and any potential challengers?
Fatima et al. Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma
Kautz et al. Oxidation in laser-generated metal plumes
Weiss et al. Transition rates and transition rate diagrams in atomic emission spectroscopy: A review
Konegger-Kappel et al. Liquid sampling-atmospheric pressure glow discharge excitation of atomic and ionic species
Bai et al. One-point calibration laser-induced breakdown spectroscopy for the quantitative analysis of EAST-like plasma-facing materials
Pohl et al. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer
Arai et al. Emission spectrometric analysis using an okamoto-cavity microwave-induced plasma with nitrogen-oxygen mixed gas
Ng Two-color photoionization and photoelectron studies by combining infrared and vacuum ultraviolet
Diaz et al. Chemical Characterization Using Laser-Induced Breakdown Spectroscopy of Products Released from Lithium-Ion Battery Cells at Thermal Runaway Conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6265070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150