JP6261504B2 - Gas barrier laminate, gas barrier composite having the same, and package containing them - Google Patents

Gas barrier laminate, gas barrier composite having the same, and package containing them Download PDF

Info

Publication number
JP6261504B2
JP6261504B2 JP2014533004A JP2014533004A JP6261504B2 JP 6261504 B2 JP6261504 B2 JP 6261504B2 JP 2014533004 A JP2014533004 A JP 2014533004A JP 2014533004 A JP2014533004 A JP 2014533004A JP 6261504 B2 JP6261504 B2 JP 6261504B2
Authority
JP
Japan
Prior art keywords
gas barrier
layer
paint
metal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014533004A
Other languages
Japanese (ja)
Other versions
JPWO2014034627A1 (en
Inventor
貴史 岡部
貴史 岡部
憲司 湊
憲司 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JPWO2014034627A1 publication Critical patent/JPWO2014034627A1/en
Application granted granted Critical
Publication of JP6261504B2 publication Critical patent/JP6261504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable

Landscapes

  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Packages (AREA)

Description

本発明は、揮発性物質を含む内容物を充填する包装体として使用した場合にレトルト殺菌処理を施しても外観不良を発生せず、優れたガスバリア性を有するガスバリア性積層体およびガスバリア性複合体に関する。   The present invention relates to a gas barrier laminate and a gas barrier composite having an excellent gas barrier property that does not cause poor appearance even when subjected to a retort sterilization treatment when used as a package filled with a content containing a volatile substance. About.

従来から、ポリアミドフィルム、ポリエステルフィルム等の熱可塑性樹脂フィルムは、強度、透明性、成形性に優れているため、包装体の材料に幅広く用いられている。しかし、この熱可塑性樹脂フィルムは酸素等のガス透過性が大きい。このため、一般食品、レトルト処理食品、化粧品、医療用品、農薬等の内容物を、熱可塑性樹脂フィルムで包装した包装体を長期間保存すると、熱可塑性樹脂フィルムを透過した酸素等のガスにより、食品等の内容物が変質する可能性がある。   Conventionally, thermoplastic resin films such as polyamide films and polyester films have been widely used as packaging materials because they are excellent in strength, transparency and moldability. However, this thermoplastic resin film has a large gas permeability such as oxygen. For this reason, when storing the package of general foods, retort-treated foods, cosmetics, medical supplies, agricultural chemicals, etc. packaged with a thermoplastic resin film for a long period of time, with a gas such as oxygen permeated through the thermoplastic resin film, Contents such as food may be altered.

そこで、食品等の内容物の変質を防ぐため、熱可塑性樹脂フィルムの表面をガスバリア性の高いポリ塩化ビニリデン(以下、「PVDC」と略記する。)で被覆する方法が採用されていた。しかし、PVDCは焼却時に酸性ガス等の有機物質を発生し、環境負荷が大きいため、PVDCに代わる材料が検討されている。   Therefore, in order to prevent alteration of contents such as food, a method of coating the surface of the thermoplastic resin film with polyvinylidene chloride (hereinafter abbreviated as “PVDC”) having a high gas barrier property has been adopted. However, since PVDC generates an organic substance such as acid gas at the time of incineration and has a large environmental load, a material that replaces PVDC has been studied.

PVDCに代わる材料として、有毒ガスを発生しないポリビニルアルコール(以下、「PVA」と略記する。)を用いることが考えられる。しかし、PVAでは、湿度が高くなるとガスバリア性が急激に低下する傾向があり、水分を含む食品等の包装に用いることは困難である。   As an alternative to PVDC, it is conceivable to use polyvinyl alcohol (hereinafter abbreviated as “PVA”) that does not generate toxic gas. However, in PVA, when the humidity increases, the gas barrier property tends to rapidly decrease, and it is difficult to use it for packaging of foods containing moisture.

そこで、PVAの高湿度下でのガスバリア性を改善する方法が検討されている。例えば、特許文献1では、高湿度の環境下で長時間保存した場合でも、優れたガスバリア層を有する積層フィルムを、温和な条件で工業的に効率良く作製することが可能な方法が提案されている。具体的には、プラスチック基材層の一方の表面に、PVAを含む特定の樹脂組成の塗料を塗布した後、加熱してガスバリア層を形成する。得られたガスバリア層の基材層と接する面と反対側の表面に、特定の金属化合物を含む塗料を塗布した後、加熱してオーバーコート層を形成する。さらに、オーバーコート層のガスバリア層と接する面と反対側の表面に、オーバーコート層を保護するためのトップコート層を形成する。   Therefore, methods for improving the gas barrier properties of PVA under high humidity have been studied. For example, Patent Document 1 proposes a method capable of industrially efficiently producing a laminated film having an excellent gas barrier layer under mild conditions even when stored for a long time in a high humidity environment. Yes. Specifically, after a paint having a specific resin composition containing PVA is applied to one surface of the plastic substrate layer, the gas barrier layer is formed by heating. A coating containing a specific metal compound is applied to the surface of the obtained gas barrier layer opposite to the surface in contact with the base material layer, and then heated to form an overcoat layer. Furthermore, a topcoat layer for protecting the overcoat layer is formed on the surface of the overcoat layer opposite to the surface in contact with the gas barrier layer.

特開2007−112115号公報JP 2007-112115 A

しかし、特許文献1記載の積層フィルムを、アルコールや一部の酸等の揮発性物質を含む食品等の内容物を充填する包装体に用いると、当該内容物を含む包装体を熱殺菌処理した際に包装体の外観不良が発生する場合がある。包装体の外観不良としては、例えば、包装体を構成する透明な積層フィルムの一部が白化したり、積層フィルムの表面に水泡状の突起を生じたりすることが挙げられる。熱殺菌処理法として、ホットパック法、ボイル殺菌法、およびレトルト殺菌法が挙げられる。それらの中でも、揮発性物質の蒸気圧が最も高くなるレトルト殺菌法を用いる場合、特に包装体の外観不良が発生し易い。   However, when the laminated film described in Patent Document 1 is used for a packaging body that is filled with contents such as food containing volatile substances such as alcohol and some acids, the packaging body containing the contents is subjected to a heat sterilization treatment. In some cases, poor appearance of the package may occur. Examples of the poor appearance of the package include, for example, whitening of a part of the transparent laminated film constituting the package or generation of water bubble-like protrusions on the surface of the laminated film. Examples of the heat sterilization method include a hot pack method, a boil sterilization method, and a retort sterilization method. Among them, when using the retort sterilization method in which the vapor pressure of the volatile substance is the highest, poor appearance of the package is likely to occur.

そこで、本発明は、高湿度の環境下において優れたガスバリア性を有するとともに、揮発性物質を含む内容物を充填する包装体として用いる場合における熱殺菌処理時の外観不良の発生が抑制されるガスバリア性積層体、それを有するガスバリア性複合体、およびそれらを含む包装体を提供することを目的とする。   Accordingly, the present invention provides a gas barrier that has excellent gas barrier properties in a high-humidity environment, and that suppresses the occurrence of poor appearance during heat sterilization when used as a package that is filled with contents containing volatile substances. It is an object of the present invention to provide a porous laminate, a gas barrier composite having the same, and a package including them.

本発明のガスバリア性積層体は、
プラスチック基材層(I)と;
基材層(I)の一方の表面に、直にまたはアンカーコート層を介して、ポリアルコール系ポリマー(A)およびポリカルボン酸系ポリマー(B)のエステル化により形成される架橋構造、ならびにポリアルコール系ポリマー(A)またはポリカルボン酸系ポリマー(B)と、金属またはそれを含む化合物との反応により形成される架橋構造を含むガスバリア層(II)と;
ガスバリア層(II)の基材層(I)に接する面と反対側の表面に、樹脂(C)を含み、かつ金属(D)またはそれを含む化合物を含む、または含まない塗料(P2)を用いて形成された第1ガスバリア調整層(III)と;
第1ガスバリア調整層(III)のガスバリア層(II)に接する面と反対側の表面に、樹脂(E)を含み、かつ金属(F)またはそれを含む化合物を含む塗料(P3)を用いて形成された第2ガスバリア調整層(IV)と;
を有し、
塗料(P2)中における、樹脂(C)の固形分(ただし、塗料(P2)が架橋剤を含む場合、樹脂(C)と架橋剤とを合計した固形分)100質量部あたりの金属(D)またはそれを含む化合物の含有量M1(質量部)と、塗料(P3)中における、樹脂(E)の固形分(ただし、塗料(P3)が架橋剤を含む場合、樹脂(E)と架橋剤とを合計した固形分)100質量部あたりの金属(F)またはそれを含む化合物の含有量M2(質量部)とが、関係式:
0≦M1≦5、5≦M2≦100、5≦M1+M
満たし、
第1ガスバリア調整層(III)の厚みが、0.5〜3μmであり、
積層体を120℃で30分間加熱処理した場合における、積層体の温度20℃および相対湿度90%の環境下での酸素ガス透過度が4〜25ml/m・d・MPaであることを特徴とする。
The gas barrier laminate of the present invention is
A plastic substrate layer (I);
A crosslinked structure formed by esterification of the polyalcohol-based polymer (A) and the polycarboxylic acid-based polymer (B) directly or via an anchor coat layer on one surface of the base material layer (I), and A gas barrier layer (II) including a crosslinked structure formed by a reaction between the alcohol-based polymer (A) or the polycarboxylic acid-based polymer (B) and a metal or a compound containing the same;
The paint (P2) containing the resin (C) and containing or not containing the metal (D) or a compound containing it on the surface opposite to the surface in contact with the base material layer (I) of the gas barrier layer (II) A first gas barrier adjusting layer (III) formed using;
On the opposite surface of the surface in contact with the gas barrier layer of the first gas barrier adjustment layer (III) (II), wherein the resin (E), and metal (F) or including paint a compound comprising the same (P3) A second gas barrier adjustment layer (IV) formed using;
Have
Solids of resin (C) in paint (P2) (however, when paint (P2) contains a cross-linking agent, the solid content of resin (C) and cross-linking agent) metal per 100 parts by mass (D ) Or the content M1 (part by mass) of the compound containing the same and the solid content of the resin (E) in the paint (P3) (however, when the paint (P3) contains a cross-linking agent, the resin (E) is cross-linked. The content of the metal (F) per 100 parts by mass of the agent and the content M2 (parts by mass) of the compound containing the metal per 100 parts by mass is a relational formula:
0 ≦ M1 ≦ 5, 5 ≦ M2 ≦ 100, 5 ≦ M1 + M 2
The meet,
The thickness of the first gas barrier adjustment layer (III) is 0.5 to 3 μm,
When the laminate is heat-treated at 120 ° C. for 30 minutes, the oxygen gas permeability in the environment of the laminate at a temperature of 20 ° C. and a relative humidity of 90% is 4 to 25 ml / m 2 · d · MPa. And

また、本発明のガスバリア性複合体は、上記のガスバリア性積層体と、接着剤層(VI)と、ヒートシール層(VII)とを有し、
接着剤層(VI)が、基材層(I)のガスバリア層(II)もしくはアンカーコート層に接する面と反対側の表面に、直にもしくは印刷層を介して、形成され、かつヒートシール層(VII)が、接着剤層(VI)の基材層(I)もしくは印刷層に接する面と反対側の表面に形成されるか、または
接着剤層(VI)が、第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)に接する面と反対側の表面に、直にもしくは印刷層を介して、形成され、かつヒートシール層(VII)が、接着剤層(VI)の第2ガスバリア調整層(IV)もしくは印刷層に接する面と反対側の表面に形成されることを特徴とする。
Moreover, the gas barrier composite of the present invention comprises the above gas barrier laminate, an adhesive layer (VI), and a heat seal layer (VII).
The adhesive layer (VI) is formed on the surface of the base material layer (I) opposite to the surface in contact with the gas barrier layer (II) or the anchor coat layer, directly or via a printed layer, and the heat seal layer (VII) is formed on the surface of the adhesive layer (VI) opposite to the surface in contact with the substrate layer (I) or the printed layer, or the adhesive layer (VI) is formed on the second gas barrier adjusting layer ( IV) is formed on the surface opposite to the surface in contact with the first gas barrier adjustment layer (III) directly or via a printed layer, and a heat seal layer (VII) is formed on the first layer of the adhesive layer (VI). It is formed on the surface opposite to the surface in contact with the two-gas barrier adjusting layer (IV) or the printing layer.

また、本発明は、上記のガスバリア性積層体またはガスバリア性複合体を含む包装体に関する。   Moreover, this invention relates to the package containing said gas-barrier laminated body or gas-barrier composite.

本発明によれば、高湿度の環境下において優れたガスバリア性を有するとともに、揮発性物質を含む内容物を充填する包装体として用いる場合における熱殺菌処理時の外観不良の発生が抑制されるガスバリア性積層体、それを有するガスバリア複合体、およびそれらを含む包装体を提供する。包装体を構成する積層体に2つのガスバリア調整層を設けることで、包装体として必要な外観を損なうことなく、ガスバリア性を調整することができる。   According to the present invention, a gas barrier that has excellent gas barrier properties in a high-humidity environment and that suppresses the occurrence of poor appearance during heat sterilization when used as a package that is filled with contents containing a volatile substance. The present invention provides a porous laminate, a gas barrier composite having the same, and a package including them. By providing two gas barrier adjustment layers on the laminate constituting the package, the gas barrier property can be adjusted without impairing the appearance required for the package.

本発明は、プラスチック基材層(I)と、基材層(I)の一方の表面に、直にまたはアンカーコート層を介して、ポリアルコール系ポリマー(A)およびポリカルボン酸系ポリマー(B)のエステル化により形成される架橋構造(以下、単に、架橋X)、ならびにポリアルコール系ポリマー(A)またはポリカルボン酸系ポリマー(B)と、金属またはそれを含む化合物との反応により形成される架橋構造(以下、単に、架橋Y)を含むガスバリア層(II)と、を含むガスバリア性積層体に関する。   In the present invention, the polyalcohol polymer (A) and the polycarboxylic acid polymer (B) are directly or via an anchor coat layer on one surface of the plastic substrate layer (I) and the substrate layer (I). ) Formed by the reaction of a cross-linked structure (hereinafter simply referred to as cross-linked X) and a polyalcohol polymer (A) or polycarboxylic acid polymer (B) with a metal or a compound containing the same. And a gas barrier layer (II) containing a crosslinked structure (hereinafter simply referred to as crosslinked Y).

架橋Xおよび架橋Yが混在する緻密な架橋構造を有するガスバリア層を有することで、高湿度の環境下にて長期間保存した場合でも優れたガスバリア性が得られる。架橋Yを形成する化学結合は、例えば、共有結合(配位結合含む)またはイオン結合である。架橋Xの密度は、ポリマー(A)とポリマー(B)との配合比等を変えることで、精度よく調整することができる。   By having a gas barrier layer having a dense cross-linked structure in which cross-linked X and cross-linked Y are mixed, excellent gas barrier properties can be obtained even when stored for a long time in a high humidity environment. The chemical bond forming the bridge Y is, for example, a covalent bond (including a coordination bond) or an ionic bond. The density of the cross-link X can be accurately adjusted by changing the blending ratio of the polymer (A) and the polymer (B).

従来では、ガスバリア層中のポリマー(A)またはポリマー(B)が、ガスバリア層(II)の基材層(I)に接する面と反対側の表面に形成された1つのオーバーコート層中の金属またはそれを含む化合物(以下、単に、金属等)と反応して、架橋Yが形成されていた。この反応は、オーバーコート層中の金属等の一部がガスバリア層へ移動することで起こる。架橋Yの密度を調整するには、例えば、オーバーコート層の形成に用いる塗料中の金属等の含有量を変えることが考えられる。   Conventionally, the metal in one overcoat layer in which the polymer (A) or the polymer (B) in the gas barrier layer is formed on the surface opposite to the surface in contact with the base material layer (I) of the gas barrier layer (II) Alternatively, the cross-linking Y was formed by reacting with a compound containing the compound (hereinafter simply referred to as a metal or the like). This reaction occurs when a part of the metal or the like in the overcoat layer moves to the gas barrier layer. In order to adjust the density of the crosslinking Y, for example, it is conceivable to change the content of a metal or the like in the paint used for forming the overcoat layer.

しかし、ガスバリア性を高めようとして、塗料中の金属等の含有量を増やすと、ガスバリア性が急激に高くなり、積層体を、揮発性物質を含む内容物を充填する包装体として用いる場合に、当該内容物が充填された包装体を熱殺菌処理すると外観不良が発生するという不具合を生じてしまう。このように、従来では、上記の外観不良の発生を抑制することができる程度に、ガスバリア性(架橋Yの密度)を適度に調整することは困難であった。   However, increasing the content of metals and the like in the paint in an attempt to increase the gas barrier properties, the gas barrier properties increase rapidly, and when the laminate is used as a package filled with contents containing volatile substances, If the package filled with the contents is subjected to a heat sterilization treatment, a defect that an appearance defect occurs is caused. As described above, conventionally, it has been difficult to appropriately adjust the gas barrier property (the density of the cross-linking Y) to such an extent that the occurrence of the above-described poor appearance can be suppressed.

本発明者らは、上記の問題を解消すべく鋭意検討した。その結果、以下の条件(i)〜(iv)を満たす場合に、優れたガスバリア性が得られると同時に、揮発性物質の内容物を充填する包装体として用いる場合における、当該内容物を含む包装体を熱殺菌処理する際の包装体の外観不良の発生が抑制されることを見出した。   The present inventors diligently studied to solve the above problems. As a result, when the following conditions (i) to (iv) are satisfied, excellent gas barrier properties can be obtained, and at the same time, the packaging containing the contents when used as a packaging body filled with the contents of a volatile substance. It has been found that the appearance defects of the package during the heat sterilization treatment of the body are suppressed.

(i)ガスバリア性積層体が、ガスバリア層(II)の基材層(I)に接する面と反対側の表面に、樹脂(C)を含み、かつ金属(D)またはそれを含む化合物を含む、または含まない塗料(P2)を用いて形成された第1ガスバリア調整層(III)と;第1ガスバリア調整層(III)のガスバリア層(II)に接する面と反対側の表面に、樹脂(E)を含み、かつ金属(F)またはそれを含む化合物を含む塗料(P3)を用いて形成された第2ガスバリア調整層(IV)と;を有する。   (I) The gas barrier laminate includes a resin (C) and a metal (D) or a compound containing the same on the surface of the gas barrier layer (II) opposite to the surface in contact with the base material layer (I). A first gas barrier adjustment layer (III) formed using the paint (P2) not containing, or a resin (on the surface opposite to the surface in contact with the gas barrier layer (II) of the first gas barrier adjustment layer (III) And a second gas barrier adjusting layer (IV) formed using a paint (P3) containing the metal (F) or a compound containing the metal (F).

(ii)塗料(P2)中における金属(D)またはそれを含む化合物(以下、単に、金属(D)等)の含有量M1と、塗料(P3)中における金属(F)またはそれを含む化合物(以下、単に、金属(F)等)の含有量M2とが、下記の関係式(1)を満たす。   (Ii) Content M1 of metal (D) or a compound containing the metal (D) in the paint (P2) (hereinafter simply referred to as metal (D), etc.) and metal (F) in the paint (P3) or a compound containing the same The content M2 (hereinafter simply referred to as metal (F) or the like) satisfies the following relational expression (1).

0≦M1≦5、0<M2、かつ5≦M1+M2、または
5≦M1<10、かつM2=0 (1)
(iii)第1ガスバリア調整層(III)の厚みが、0.5〜3μmである。
0 ≦ M1 ≦ 5, 0 <M2, and 5 ≦ M1 + M2, or 5 ≦ M1 <10, and M2 = 0 (1)
(Iii) The thickness of the first gas barrier adjustment layer (III) is 0.5 to 3 μm.

(iv)積層体を120℃で30分間加熱処理した場合における積層体の温度20℃および相対湿度90%の環境下での酸素ガス透過度(以下、単に、酸素ガス透過度)が4〜25ml/m・d・MPaである。(Iv) When the laminate is heat-treated at 120 ° C. for 30 minutes, the oxygen gas permeability (hereinafter simply referred to as oxygen gas permeability) in the environment of the laminate at a temperature of 20 ° C. and a relative humidity of 90% is 4 to 25 ml. / M 2 · d · MPa.

上記の条件(ii)における、塗料(P2)中の金属(D)等の含有量M1は、塗料(P2)が架橋剤を含まない場合、樹脂(C)の固形分100質量部あたりの量(質量部)であり、塗料(P2)が架橋剤を含む場合、樹脂(C)と架橋剤とを合計した固形分100質量部あたりの量(質量部)である。   In the above condition (ii), the content M1 of the metal (D) or the like in the paint (P2) is the amount per 100 parts by mass of the solid content of the resin (C) when the paint (P2) does not contain a crosslinking agent. In the case where the coating material (P2) contains a crosslinking agent, the amount (mass part) per 100 parts by mass of the solid content of the resin (C) and the crosslinking agent.

塗料(P3)中の金属(F)等の含有量M2は、塗料(P3)が架橋剤を含まない場合、樹脂(E)の固形分100質量部あたりの量(質量部)であり、塗料(P3)が架橋剤を含む場合、樹脂(E)と架橋剤とを合計した固形分100質量部あたりの量(質量部)である。   The content M2 of the metal (F) or the like in the paint (P3) is an amount (part by mass) per 100 parts by mass of the solid content of the resin (E) when the paint (P3) does not contain a crosslinking agent. When (P3) contains a crosslinking agent, it is the amount (parts by mass) per 100 parts by mass of the total solid content of the resin (E) and the crosslinking agent.

ガスバリア性積層体を作製する過程において、塗料(P3)が金属(F)等を含む場合、金属(F)等の一部は第1ガスバリア調整層(III)を通過してガスバリア層(II)へ移動する。塗料(P2)が金属(D)等を含む場合、金属(D)等の一部は第1ガスバリア調整層(III)内からガスバリア層(II)へ移動する。このような移動は、例えば、ガスバリア性積層体を作製する過程において、塗料中に含まれる水によりイオン化した金属等が、水とともに移動することで起こる。   In the process of producing the gas barrier laminate, when the coating material (P3) contains a metal (F) or the like, a part of the metal (F) or the like passes through the first gas barrier adjustment layer (III) to form the gas barrier layer (II). Move to. When the paint (P2) contains metal (D) or the like, a part of the metal (D) or the like moves from the first gas barrier adjustment layer (III) to the gas barrier layer (II). Such movement occurs, for example, when a metal ionized by water contained in the paint moves with water in the process of producing the gas barrier laminate.

架橋Yは、上記のような、金属(D)等および金属(F)等の少なくとも一方のガスバリア層(II)への移動により形成される。よって、架橋Yを形成するためには、第1ガスバリア調整層(III)が、ガスバリア層(II)の表面に直に形成され、第2ガスバリア調整層(IV)が、第1ガスバリア調整層(III)の表面に直に形成されていることが重要である。   The bridge | crosslinking Y is formed by the movement to at least one gas barrier layer (II), such as a metal (D) etc. and a metal (F), as mentioned above. Therefore, in order to form the bridge Y, the first gas barrier adjustment layer (III) is formed directly on the surface of the gas barrier layer (II), and the second gas barrier adjustment layer (IV) is formed on the first gas barrier adjustment layer ( It is important that it is formed directly on the surface of III).

条件(i)〜(iii)を満たす場合に、酸素ガス透過度は条件(iv)に示す範囲内に調整され、適度なガスバリア性が得られる。その詳細な理由は不明であるが、2つのガスバリア調整層(III)および(IV)を配置することで、金属等のガスバリア層(II)への移動が適度に行われ、ガスバリア層(II)内で架橋Yが形成される速度が程度に調整されるためであると考えられる。   When the conditions (i) to (iii) are satisfied, the oxygen gas permeability is adjusted within the range indicated by the condition (iv), and an appropriate gas barrier property is obtained. Although the detailed reason is unknown, by arrange | positioning two gas barrier adjustment layers (III) and (IV), the movement to gas barrier layers (II), such as a metal, is performed moderately, and gas barrier layer (II) It is considered that this is because the rate at which the cross-linking Y is formed is adjusted to the extent.

酸素ガス透過度が条件(iv)に示す範囲内であると、積層体は、高湿度の環境下において優れたガスバリア性を有するとともに、積層体を、揮発性物質を含む内容物を充填する包装体として用いる場合における熱殺菌処理時の外観不良の発生が抑制される。従来のオーバーコート層を用いた積層体では、架橋Yが過度に形成されるため、酸素ガス透過度が条件(iv)に示す範囲よりも低くなる。   When the oxygen gas permeability is within the range shown in the condition (iv), the laminate has an excellent gas barrier property in a high humidity environment, and the laminate is filled with a content containing a volatile substance. Occurrence of poor appearance during heat sterilization treatment when used as a body is suppressed. In the laminated body using the conventional overcoat layer, since the bridge | crosslinking Y is formed too much, oxygen gas permeability becomes lower than the range shown in condition (iv).

塗料(P3)中の金属(F)の含有量M2が0質量部超である場合に、塗料(P2)中の金属(D)等の含有量M1が5質量部超であると、酸素ガス透過度が4ml/m・d・MPa未満となり、ガスバリア性が過度に高くなる。その結果、積層体を、揮発性物質を含む内容物を充填する包装体に用いる場合における熱殺菌処理時の外観不良が起こり易くなる。When the content M2 of the metal (F) in the paint (P3) is more than 0 parts by mass and the content M1 of the metal (D) in the paint (P2) is more than 5 parts by mass, oxygen gas The permeability becomes less than 4 ml / m 2 · d · MPa, and the gas barrier property becomes excessively high. As a result, the appearance defect at the time of the heat sterilization process in the case where the laminate is used for a package that is filled with contents containing a volatile substance is likely to occur.

塗料(P3)中の金属(F)の含有量M2が0質量部超である場合に、塗料(P2)中の金属(D)等の含有量M1および塗料(P3)中の金属(F)の含有量M2の合計が5質量部未満であると、酸素ガス透過度が25ml/m・d・MPa超となり、ガスバリア性が不十分となる。その結果、積層体を包装体に用いる場合、包装体内に充填された食品等の内容物が酸素と接触して変質し易くなる。When the content M2 of the metal (F) in the paint (P3) is more than 0 parts by mass, the content M1 of the metal (D) and the like in the paint (P2) and the metal (F) in the paint (P3) If the total content M2 is less than 5 parts by mass, the oxygen gas permeability exceeds 25 ml / m 2 · d · MPa, and the gas barrier properties become insufficient. As a result, when the laminate is used for a package, the contents such as food filled in the package are easily changed in quality by contacting with oxygen.

塗料(P3)中の金属(F)の含有量M2が0質量部である場合に、塗料(P2)中の金属(D)等の含有量M1が10質量部以上であると、酸素ガス透過度が4ml/m・d・MPa未満となり、ガスバリア性が過度に高くなる。その結果、積層体を、揮発性物質を含む内容物を充填する包装体に用いる場合における熱殺菌処理時の外観不良が起こり易くなる。When the content M2 of the metal (F) in the paint (P3) is 0 parts by mass, and the content M1 of the metal (D) in the paint (P2) is 10 parts by mass or more, oxygen gas permeation The degree becomes less than 4 ml / m 2 · d · MPa, and the gas barrier property becomes excessively high. As a result, the appearance defect at the time of the heat sterilization process in the case where the laminate is used for a package that is filled with contents containing a volatile substance is likely to occur.

塗料(P3)中の金属(F)の含有量M2が0質量部である場合に、塗料(P2)中の金属(D)等の含有量M1が5質量部未満であると、酸素ガス透過度が25ml/m・d・MPa超となり、ガスバリア性が不十分となる。
塗料(P2)中における金属(D)等の含有量M1(質量部)と、塗料(P3)中における金属(F)等の含有量M2(質量部)とが、下記の関係式(2)を満たすのが好ましい。
When the content M2 of the metal (F) in the paint (P3) is 0 parts by mass and the content M1 of the metal (D) in the paint (P2) is less than 5 parts by mass, oxygen gas permeation The degree is over 25 ml / m 2 · d · MPa, and the gas barrier properties are insufficient.
The content M1 (part by mass) of the metal (D) and the like in the paint (P2) and the content M2 (part by mass) of the metal (F) and the like in the paint (P3) are expressed by the following relational expression (2). It is preferable to satisfy.

M2≦−19M1+100 (2)
含有量M1および含有量M2をバランスよく調整することで、優れたガスバリア性が得られるとともに、積層体を、揮発性物質を含む内容物を充填する包装体に用いた場合における熱殺菌処理時の外観不良の発生を大幅に抑制することができる。
M2 ≦ −19M1 + 100 (2)
By adjusting the content M1 and the content M2 in a well-balanced manner, an excellent gas barrier property can be obtained, and at the time of the heat sterilization treatment in the case where the laminate is used for a packaging body filled with contents containing a volatile substance. The occurrence of appearance defects can be greatly suppressed.

作業性の観点から、塗料(P3)が金属(F)等を含む場合、塗料(P2)は金属(D)等を含まないことが好ましく、含有量M1=0および含有量M2=5〜100がより好ましい。金属等の量の調整を塗料(P3)だけで行えばよく、第2ガスバリア調整層(IV)内の金属(F)等が第1ガスバリア調整層(III)内を通過する量や距離を変えることでガスバリア性を調整し易い。   From the viewpoint of workability, when the paint (P3) contains metal (F) or the like, the paint (P2) preferably contains no metal (D) or the like, and the content M1 = 0 and the content M2 = 5 to 100. Is more preferable. The amount of metal or the like may be adjusted only by the paint (P3), and the amount or distance that the metal (F) or the like in the second gas barrier adjustment layer (IV) passes through the first gas barrier adjustment layer (III) is changed. Therefore, it is easy to adjust the gas barrier property.

第1ガスバリア調整層(III)の厚みが0.5μm未満であると、条件(i)および(ii)を満たす場合でも、酸素ガス透過度が4ml/m・d・MPa未満となり、ガスバリア性が過度に高くなる。その結果、積層体を、揮発性物質を含む内容物を充填する包装体に用いる場合における熱殺菌処理時の外観不良が起こり易くなる。一方、第1ガスバリア調整層(III)の厚みが3μmを超えると、条件(i)および(ii)を満たす場合でも、酸素ガス透過度が25ml/m・d・MPa超となり、ガスバリア性が不十分となる。その結果、積層体を包装体に用いる場合、包装体内に充填された食品等の内容物が酸素と接触して変質し易くなる。When the thickness of the first gas barrier adjustment layer (III) is less than 0.5 μm, even when the conditions (i) and (ii) are satisfied, the oxygen gas permeability is less than 4 ml / m 2 · d · MPa, and the gas barrier property Becomes excessively high. As a result, the appearance defect at the time of the heat sterilization process in the case where the laminate is used for a package that is filled with contents containing a volatile substance is likely to occur. On the other hand, when the thickness of the first gas barrier adjustment layer (III) exceeds 3 μm, even when the conditions (i) and (ii) are satisfied, the oxygen gas permeability is over 25 ml / m 2 · d · MPa, and the gas barrier property is It becomes insufficient. As a result, when the laminate is used for a package, the contents such as food filled in the package are easily changed in quality by contacting with oxygen.

第1ガスバリア調整層(III)の厚みは、好ましくは0.5〜2μm、より好ましくは0.5〜1.5μmである。第1ガスバリア調整層(III)の厚みは、第1ガスバリア調整層(III)の形成に用いられる塗料(P2)中の固形分の濃度を変えることで調整することができる。   The thickness of the first gas barrier adjustment layer (III) is preferably 0.5 to 2 μm, more preferably 0.5 to 1.5 μm. The thickness of the first gas barrier adjustment layer (III) can be adjusted by changing the concentration of the solid content in the paint (P2) used for forming the first gas barrier adjustment layer (III).

酸素ガス透過度が4ml/m・d・MPa未満であると、積層体のガスバリア性が過度に高くなる。その結果、積層体を、揮発性物質を含む内容物を充填する包装体に用いる場合における熱殺菌処理時の外観不良が起こり易くなる。酸素ガス透過度が25ml/m・d・MPa超であると、積層体のガスバリア性が過度に低くなる。その結果、積層体を包装体に使用した場合、包装体内に充填された食品等の内容物が酸素と接触して変質し易くなる。好ましくは、酸素ガス透過度は7〜20ml/m・d・MPaである。
<プラスチック基材層(I)>
基材層(I)は、熱可塑性樹脂のフィルムからなるのが好ましい。基材層(I)は、例えば、押出成形、射出成形、ブロー成形、延伸ブロー成形、または絞り成形等の方法により、熱可塑性樹脂をフィルム状に成形することにより得られる。基材層(I)は、例えば、ボトル、カップ、トレイ等の各種容器の形状を呈する。基材層(I)は、単一の層で構成してもよく、例えば同時に溶融押出する等の方法により形成される複数の層で構成してもよい。
When the oxygen gas permeability is less than 4 ml / m 2 · d · MPa, the gas barrier property of the laminate is excessively increased. As a result, the appearance defect at the time of the heat sterilization process in the case where the laminate is used for a package that is filled with contents containing a volatile substance is likely to occur. When the oxygen gas permeability is more than 25 ml / m 2 · d · MPa, the gas barrier property of the laminate is excessively lowered. As a result, when the laminate is used for a package, the contents such as food filled in the package easily come into contact with oxygen and deteriorate. Preferably, the oxygen gas permeability is 7 to 20 ml / m 2 · d · MPa.
<Plastic substrate layer (I)>
The substrate layer (I) is preferably made of a thermoplastic resin film. The base material layer (I) can be obtained, for example, by molding a thermoplastic resin into a film by a method such as extrusion molding, injection molding, blow molding, stretch blow molding, or draw molding. Base material layer (I) exhibits the shape of various containers, such as a bottle, a cup, a tray, for example. The base material layer (I) may be composed of a single layer, or may be composed of a plurality of layers formed by a method such as simultaneous melt extrusion.

基材層(I)が延伸フィルムである場合、延伸フィルムの表面に後述する塗料(P1)を塗布してもよく、延伸する前のフィルムの表面に後述する塗料(P1)を塗布した後、そのフィルムを延伸してもよい。   When the base material layer (I) is a stretched film, the paint (P1) described later may be applied to the surface of the stretched film, and after the paint (P1) described later is applied to the surface of the film before stretching, The film may be stretched.

基材層(I)に用いられる熱可塑性樹脂としては、例えば、オレフィン系共重合体、ポリエステル、ポリアミド、スチレン系共重合体、塩化ビニル系共重合体、アクリル系共重合体、ポリカーボネートが挙げられる。これらのなかでも、オレフィン系共重合体、ポリエステル、ポリアミドが好ましい。   Examples of the thermoplastic resin used for the base material layer (I) include olefin copolymers, polyesters, polyamides, styrene copolymers, vinyl chloride copolymers, acrylic copolymers, and polycarbonates. . Of these, olefin copolymers, polyesters, and polyamides are preferable.

オレフィン系共重合体としては、例えば、低−、中−もしくは高−密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、アイオノマー、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体が挙げられる。   Examples of the olefin copolymer include low-, medium- or high-density polyethylene, linear low-density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, ionomer, and ethylene-vinyl acetate copolymer. Examples thereof include a polymer and an ethylene-vinyl alcohol copolymer.

ポリエステルとしては、例えば、ポリ乳酸、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンテレフタレート/イソフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートが挙げられる。   Examples of the polyester include polylactic acid, polyethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate / isophthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.

ポリアミドとしては、例えば、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン4,6、メタキシリレンアジパミドが挙げられる。   Examples of the polyamide include nylon 6, nylon 6,6, nylon 6,10, nylon 4,6, and metaxylylene adipamide.

スチレン系共重合体としては、例えば、ポリスチレン、スチレン−ブタジエンブロック共重合体、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン−アクリロニトリル共重合体(ABS樹脂)が挙げられる。   Examples of the styrene copolymer include polystyrene, styrene-butadiene block copolymer, styrene-acrylonitrile copolymer, and styrene-butadiene-acrylonitrile copolymer (ABS resin).

塩化ビニル系共重合体としては、例えば、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体が挙げられる。   Examples of the vinyl chloride copolymer include polyvinyl chloride and vinyl chloride-vinyl acetate copolymer.

アクリル系共重合体としては、例えば、ポリメチルメタクリレート、メチルメタクリレート・エチルアクリレート共重合体が挙げられる。   Examples of the acrylic copolymer include polymethyl methacrylate and methyl methacrylate / ethyl acrylate copolymer.

これらを、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   These may be used alone or in combination of two or more.

耐熱性および強度の観点から、熱可塑性樹脂は、ナイロン6、ナイロン66、ナイロン46等のポリアミド樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等の芳香族ポリエステル樹脂;ポリ乳酸等の脂肪族ポリエステル樹脂;ポリプロピレン、ポリエチレン等のポリオレフィン樹脂が好ましい。   From the viewpoint of heat resistance and strength, the thermoplastic resin is a polyamide resin such as nylon 6, nylon 66, nylon 46; aromatics such as polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate. Polyester resins; aliphatic polyester resins such as polylactic acid; and polyolefin resins such as polypropylene and polyethylene are preferred.

必要に応じて、熱可塑性樹脂に、顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、滑剤、防腐剤等の添加剤を添加してもよい。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。添加剤の添加量は、熱可塑性樹脂100質量部あたり0.001〜5.0質量部が好ましい。なお、上記の添加量は、添加剤を2種以上組み合わせて用いた場合、それらの添加量を合計した量である。   If necessary, additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, lubricants and preservatives may be added to the thermoplastic resin. These may be used alone or in combination of two or more. The addition amount of the additive is preferably 0.001 to 5.0 parts by mass per 100 parts by mass of the thermoplastic resin. In addition, said addition amount is the quantity which totaled those addition amounts, when using 2 or more types of additives in combination.

ガスバリア性積層体を包装体に用いる場合、包装体として必要な強度を確保するために、熱可塑性樹脂に補強材を添加してもよい。補強材としては、例えば、ガラス繊維、芳香族ポリアミド繊維、カーボン繊維、パルプ、コットン・リンター等の繊維補強材;カーボンブラック、ホワイトカーボン等の粉末補強材;またはガラスフレーク、アルミフレーク等のフレーク状補強材が挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。補強材の添加量は、熱可塑性樹脂100質量部あたり2〜150質量部が好ましい。なお、補強材の添加量は、補強材を2種以上組み合わせ用いた場合、それらの添加量を合計した量である。   When the gas barrier laminate is used for a package, a reinforcing material may be added to the thermoplastic resin in order to ensure the strength required for the package. Examples of the reinforcing material include fiber reinforcing materials such as glass fibers, aromatic polyamide fibers, carbon fibers, pulp and cotton linters; powder reinforcing materials such as carbon black and white carbon; or flakes such as glass flakes and aluminum flakes A reinforcing material is mentioned. These may be used alone or in combination of two or more. The amount of the reinforcing material added is preferably 2 to 150 parts by mass per 100 parts by mass of the thermoplastic resin. In addition, the addition amount of a reinforcing material is the amount which added those additional amounts, when using 2 or more types of reinforcing materials in combination.

増量の目的で、重質ないし軟質の炭酸カルシウム、または雲母、滑石、カオリン、石膏、クレイ、硫酸バリウム、アルミナ粉、シリカ粉、もしくは炭酸マグネシウム等の増量剤を、熱可塑性樹脂に添加してもよい。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。増量剤の添加量は、熱可塑性樹脂100質量部あたり5〜100質量部が好ましい。なお、増量剤の添加量は、増量剤を2種以上組み合わせて用いた場合、それらの添加量を合計した量である。   For the purpose of increasing the weight, a heavy or soft calcium carbonate or an extender such as mica, talc, kaolin, gypsum, clay, barium sulfate, alumina powder, silica powder, or magnesium carbonate may be added to the thermoplastic resin. Good. These may be used alone or in combination of two or more. The addition amount of the extender is preferably 5 to 100 parts by mass per 100 parts by mass of the thermoplastic resin. In addition, the addition amount of an extender is the amount which added those addition amounts, when using 2 or more types of extenders in combination.

さらに、ガスバリア性を高めるために、水膨潤性雲母、クレイ等の鱗片状の無機材料を、熱可塑性樹脂100質量部あたり5〜100質量部添加してもよい。
<ガスバリア層(II)>
ポリマー(A)は、分子内に2個以上の水酸基を有するアルコール系重合体である。ポリマー(A)としては、例えば、ポリビニルアルコール(PVA)、エチレンとビニルアルコールとの共重合体、糖類が挙げられる。
Furthermore, in order to improve gas barrier property, you may add 5-100 mass parts of scale-like inorganic materials, such as water-swellable mica and a clay, per 100 mass parts of thermoplastic resins.
<Gas barrier layer (II)>
The polymer (A) is an alcohol polymer having two or more hydroxyl groups in the molecule. Examples of the polymer (A) include polyvinyl alcohol (PVA), a copolymer of ethylene and vinyl alcohol, and saccharides.

ガスバリア層(II)のガスバリア性の観点から、ポリビニルアルコール、およびエチレンとビニルアルコールとの共重合体のケン化度は、好ましくは95モル%以上、より好ましくは98モル%以上である。   From the viewpoint of gas barrier properties of the gas barrier layer (II), the saponification degree of polyvinyl alcohol and a copolymer of ethylene and vinyl alcohol is preferably 95 mol% or more, more preferably 98 mol% or more.

ガスバリア層(II)のガスバリア性の観点から、ポリビニルアルコール、およびエチレンとビニルアルコールとの共重合体の平均重合度は、好ましくは50〜4000、より好ましくは200〜3000である。   From the viewpoint of gas barrier properties of the gas barrier layer (II), the average degree of polymerization of polyvinyl alcohol and a copolymer of ethylene and vinyl alcohol is preferably 50 to 4000, more preferably 200 to 3000.

糖類としては、例えば、単糖類、オリゴ糖類、および多糖類が挙げられる。これらの糖類には、糖アルコール、各種置換体や誘導体、サイクロデキストリンのような環状オリゴ糖も含まれる。これらの糖類は、水溶性であるのが好ましい。   Examples of the saccharide include monosaccharides, oligosaccharides, and polysaccharides. These saccharides include sugar alcohols, various substitutes and derivatives, and cyclic oligosaccharides such as cyclodextrins. These saccharides are preferably water-soluble.

多糖類としては、例えば、澱粉類が挙げられる。澱粉類としては、例えば、小麦澱粉、トウモロコシ澱粉、モチトウモロコシ澱粉、馬鈴薯澱粉、タピオカ澱粉、米澱粉、甘藷澱粉、もしくはサゴ澱粉等の生澱粉(未変性澱粉)、または各種の加工澱粉が挙げられる。
加工澱粉としては、例えば、物理的変性澱粉、酵素変性澱粉、化学分解変性澱粉、化学変性澱粉、または澱粉類にモノマーをグラフト重合したグラフト澱粉等が挙げられる。
Examples of polysaccharides include starches. Examples of starches include raw starch (unmodified starch) such as wheat starch, corn starch, waxy corn starch, potato starch, tapioca starch, rice starch, sweet potato starch, or sago starch, or various processed starches. .
Examples of the modified starch include physically modified starch, enzyme-modified starch, chemically decomposed modified starch, chemically modified starch, and grafted starch obtained by graft polymerization of monomers on starch.

澱粉類の中でも、焙焼デキストリンやそれらの還元性末端をアルコール化した還元澱粉糖化物のような水溶性の加工澱粉が好ましい。澱粉類は、含水物でもよい。これらの澱粉類を、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Among the starches, water-soluble processed starch such as roasted dextrin and reduced starch saccharified product obtained by alcoholating the reducing terminal thereof is preferable. The starch may be hydrated. These starches may be used alone or in combination of two or more.

上記のポリマー(A)については、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   About said polymer (A), 1 type may be used independently and 2 or more types may be used in combination.

ポリマー(B)は、分子内にカルボキシル基または酸無水物基を2個以上有するポリマー(BP)である。ポリマー(B)としては、例えば、カルボキシル基または酸無水物基と、エチレン性不飽和二重結合とを有するモノマー(BM)の重合体が挙げられる。   The polymer (B) is a polymer (BP) having two or more carboxyl groups or acid anhydride groups in the molecule. Examples of the polymer (B) include a polymer of a monomer (BM) having a carboxyl group or an acid anhydride group and an ethylenically unsaturated double bond.

モノマー(BM)は、分子内にエチレン性不飽和二重結合としてアクリロイル基またはメタクリロイル基(以下、両者を合わせて(メタ)アクリロイル基という。)を有することが好ましい。例えば、(メタ)アクリル酸、2−カルボキシエチル(メタ)アクリレート、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、マレイン酸、無水マレイン酸、フマル酸、無水フマル酸、シトラコン酸、無水シトラコン酸、イタコン酸、無水イタコン酸が挙げられる。これらのなかでも、(メタ)アクリル酸、マレイン酸、無水マレイン酸、イタコン酸、および無水イタコン酸が好ましい。   The monomer (BM) preferably has an acryloyl group or a methacryloyl group (hereinafter referred to as a (meth) acryloyl group together) as an ethylenically unsaturated double bond in the molecule. For example, (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone mono (meth) acrylate, maleic acid, maleic anhydride, fumaric acid, fumaric anhydride, citraconic acid, citraconic anhydride, Itaconic acid and itaconic anhydride can be mentioned. Of these, (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid, and itaconic anhydride are preferred.

これらのモノマー(BM)を、単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記モノマー(BM)と、上記モノマー(BM)以外のモノマーとを組み合わせて用いてもよい。すなわち、ポリマー(BP)としては、一種のモノマー(BM)を重合してなるホモポリマー(BP1)、複数種のモノマー(BM)を共重合してなるコポリマー(BP2)、モノマー(BM)と、モノマー(BM)以外のモノマーとを共重合してなるコポリマー(BP3)が挙げられる。   These monomers (BM) may be used independently and may be used in combination of 2 or more type. A combination of the monomer (BM) and a monomer other than the monomer (BM) may be used. That is, as the polymer (BP), a homopolymer (BP1) obtained by polymerizing one kind of monomer (BM), a copolymer (BP2) obtained by copolymerizing a plurality of kinds of monomers (BM), a monomer (BM), Examples thereof include a copolymer (BP3) obtained by copolymerizing a monomer other than the monomer (BM).

上記のモノマー(BM)以外のモノマーとしては、カルボキシル基、水酸基を有しないモノマーであって、モノマー(BM)と共重合し得るモノマーを適宜用いればよい。例えば、クロトン酸、(メタ)アクリル酸等の不飽和モノカルボン酸のエステル化物であって、水酸基やカルボキシル基を有しないモノマーが挙げられる。より具体的には、(メタ)アクリルアミド、(メタ)アクリロニトリル、スチレン、スチレンスルホン酸、ビニルトルエン、エチレン等の炭素数2〜30のα−オレフィン類、アルキルビニルエーテル類、ビニルピロリドンが挙げられる。これらのモノマー(BM)以外のモノマーを、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the monomer other than the above monomer (BM), a monomer that does not have a carboxyl group or a hydroxyl group and can be copolymerized with the monomer (BM) may be appropriately used. For example, an esterified product of an unsaturated monocarboxylic acid such as crotonic acid or (meth) acrylic acid, and a monomer having no hydroxyl group or carboxyl group can be used. More specifically, (meth) acrylamide, (meth) acrylonitrile, styrene, styrenesulfonic acid, vinyltoluene, ethylene and other α-olefins having 2 to 30 carbons, alkyl vinyl ethers, and vinyl pyrrolidone can be mentioned. Monomers other than these monomers (BM) may be used alone or in combination of two or more.

ホモポリマー(BP1)、コポリマー(BP2)、コポリマー(BP3)は、それぞれ1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、2種以上のホモポリマー(BP1)、2種以上のコポリマー(BP2)、または2種以上のコポリマー(BP3)を用いてもよい。   As the homopolymer (BP1), the copolymer (BP2), and the copolymer (BP3), one type may be used alone, or two or more types may be used in combination. For example, two or more homopolymers (BP1), two or more copolymers (BP2), or two or more copolymers (BP3) may be used.

また、ホモポリマー(BP1)、コポリマー(BP2)、およびコポリマー(BP3)からなる群より選択される少なくとも1種を用いればよい。例えば、ホモポリマー(BP1)とコポリマー(BP2)、ホモポリマー(BP1)とコポリマー(BP3)、コポリマー(BP2)とコポリマー(BP3)、ホモポリマー(BP1)とコポリマー(BP2)とコポリマー(BP3)のように組み合わせ用いてもよい。   Further, at least one selected from the group consisting of a homopolymer (BP1), a copolymer (BP2), and a copolymer (BP3) may be used. For example, homopolymer (BP1) and copolymer (BP2), homopolymer (BP1) and copolymer (BP3), copolymer (BP2) and copolymer (BP3), homopolymer (BP1), copolymer (BP2) and copolymer (BP3) Combinations may be used as described above.

ポリマー(BP)は、オレフィン−マレイン酸共重合体が好ましく、エチレン−マレイン酸共重合体(以下、「EMA」と略記する。)がより好ましい。EMAは、無水マレイン酸とエチレンとを溶液中でラジカル重合させる等のように公知の方法により共重合させることにより得られる。   The polymer (BP) is preferably an olefin-maleic acid copolymer, more preferably an ethylene-maleic acid copolymer (hereinafter abbreviated as “EMA”). EMA can be obtained by copolymerizing maleic anhydride and ethylene by a known method such as radical polymerization in solution.

EMA中のマレイン酸単位は、湿潤状態または水溶液中では、分子内に2つのカルボキシル基を有するマレイン酸構造を形成するが、乾燥状態では、分子内の2つのカルボキシル基が脱水反応により環化した無水マレイン酸構造を形成する。したがって、特記しない限り、マレイン酸単位と無水マレイン単位とを総称してマレイン酸単位という。   The maleic acid unit in EMA forms a maleic acid structure having two carboxyl groups in the molecule in a wet state or in an aqueous solution, but in the dry state, two carboxyl groups in the molecule are cyclized by a dehydration reaction. Forms a maleic anhydride structure. Therefore, unless otherwise specified, maleic acid units and maleic anhydride units are collectively referred to as maleic acid units.

EMA中のマレイン酸単位の割合は、5モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましく、35モル%以上が特に好ましい。   The proportion of maleic acid units in EMA is preferably 5 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, and particularly preferably 35 mol% or more.

EMAの重量平均分子量は、1000〜1000000が好ましく、3000〜500000がより好ましく、7000〜300000がさらに好ましく、10000〜200000が特に好ましい。   1000-1 million are preferable, as for the weight average molecular weight of EMA, 3000-500000 are more preferable, 7000-300000 are more preferable, 10000-200000 are especially preferable.

上記のポリマー(B)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Said polymer (B) may be used individually by 1 type, and may be used in combination of 2 or more type.

ポリマー(A)とポリマー(B)とを、OH基とCOOH基とのモル比(OH基/COOH基)が0.01〜20となるように配合するのが好ましい。上記のモル比(OH基/COOH基)は、より好ましくは0.01〜10、さらに好ましくは0.02〜5、特に好ましくは0.04〜2である。   The polymer (A) and the polymer (B) are preferably blended so that the molar ratio of OH group to COOH group (OH group / COOH group) is 0.01-20. The molar ratio (OH group / COOH group) is more preferably 0.01 to 10, more preferably 0.02 to 5, particularly preferably 0.04 to 2.

モル比(OH/COOH基)が上記範囲内となるように、ポリマー(A)とポリマー(B)とを配合する場合、基材層(I)の表面において、高湿度の環境下で優れたガスバリア性を有するガスバリア層(II)が確実に得られる。モル比(OH基/COOH基)が0.01以上であると、OH基の割合を充分に多くすることができ、被膜形成能が充分に得られる。モル比(OH基/COOH基)が20以下であると、COOH基の割合を充分に多くすることができ、ポリマー(A)とポリマー(B)との間でエステル結合による架橋を充分に形成することができる。   When blending the polymer (A) and the polymer (B) so that the molar ratio (OH / COOH group) is within the above range, the surface of the base material layer (I) was excellent in a high humidity environment. A gas barrier layer (II) having gas barrier properties can be obtained reliably. When the molar ratio (OH group / COOH group) is 0.01 or more, the proportion of OH groups can be sufficiently increased, and the film forming ability can be sufficiently obtained. When the molar ratio (OH group / COOH group) is 20 or less, the ratio of COOH groups can be sufficiently increased, and sufficient crosslinking is formed by ester bonds between the polymer (A) and the polymer (B). can do.

ガスバリア性を損なわない限りにおいて、ガスバリア層(II)は、さらに、熱安定剤、酸化防止剤、強化材、顔料、劣化防止剤、耐候剤、難燃剤、可塑剤、離型剤、滑剤等の添加剤を含んでもよい。   As long as the gas barrier property is not impaired, the gas barrier layer (II) further includes a heat stabilizer, an antioxidant, a reinforcing material, a pigment, a deterioration preventing agent, a weathering agent, a flame retardant, a plasticizer, a release agent, a lubricant and the like. An additive may be included.

熱安定剤、酸化防止剤、および劣化防止剤としては、例えば、ヒンダートフェノール類、リン化合物、ヒンダートアミン類、イオウ化合物、銅化合物、もしくはアルカリ金属のハロゲン化物、またはこれらの混合物が挙げられる。   Examples of heat stabilizers, antioxidants, and deterioration inhibitors include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, or alkali metal halides, or mixtures thereof. .

強化材としては、例えば、クレー、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、珪酸カルシウム、アルミン酸ナトリウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボンブラック、酸化亜鉛、ゼオライト、ハイドロタルサイト、金属繊維、金属ウィスカー、セラミックウィスカー、チタン酸カリウムウィスカー、窒化ホウ素、グラファイト、ガラス繊維、炭素繊維が挙げられる。   Examples of the reinforcing material include clay, talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, carbon black, and zinc oxide. , Zeolite, hydrotalcite, metal fiber, metal whisker, ceramic whisker, potassium titanate whisker, boron nitride, graphite, glass fiber, and carbon fiber.

ガスバリア性をより高めるために、ガスバリア層(II)は、さらに無機層状化合物を含んでもよい。ここで無機層状化合物とは、複数の単位結晶層が積み重なった層状の分子構造を有する無機化合物のことをいう。例えば、燐酸ジルコニウム(燐酸塩系誘導体型化合物)、カルコゲン化物、リチウムアルミニウム複合水酸化物、グラファイト、粘土鉱物が挙げられる。特に、溶媒中で、膨潤したり劈開したりするものが好ましい。   In order to further improve the gas barrier property, the gas barrier layer (II) may further contain an inorganic layered compound. Here, the inorganic layered compound refers to an inorganic compound having a layered molecular structure in which a plurality of unit crystal layers are stacked. For example, zirconium phosphate (phosphate-based derivative type compound), chalcogenide, lithium aluminum composite hydroxide, graphite, and clay mineral can be mentioned. Particularly preferred are those that swell or cleave in a solvent.

粘土鉱物としては、例えば、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、ソーコナイト、バーミキュライト、フッ素雲母、白雲母、パラゴナイト、金雲母、黒雲母、レピドライト、マーガライト、クリントナイト、アナンダイト、緑泥石、ドンバサイト、スドーアイト、クッケアイト、クリノクロア、シャモサイト、ニマイト、テトラシリリックマイカ、タルク、パイロフィライト、ナクライト、カオリナイト、ハロイサイト、クリソタイル、ナトリウムテニオライト、ザンソフィライト、アンチゴライト、ディッカイト、ハイドロタルサイトが挙げられる。これらのなかでも、膨潤性フッ素雲母、またはモンモリロナイトが好ましい。   As clay minerals, for example, montmorillonite, beidellite, saponite, hectorite, saconite, vermiculite, fluoromica, muscovite, paragonite, phlogopite, biotite, lepidrite, margarite, clintonite, anandite, chlorite, donbasite, Examples include Sudowite, Kukkeite, Clinochlore, Chamosite, Nimite, Tetrasilic Mica, Talc, Pyrophyllite, Nacrite, Kaolinite, Halloysite, Chrysotile, Sodium Teniolite, Xanthophyllite, Antigolite, Dickite, Hydrotalcite It is done. Among these, swellable fluorine mica or montmorillonite is preferable.

粘土鉱物は、天然に産するものでもよく、人工的に合成または変性されたものでもよく、それらをオニウム塩等の有機物で処理したものでもよい。   Clay minerals may be naturally occurring, artificially synthesized or modified, and those treated with an organic substance such as an onium salt.

上記粘土鉱物のなかでも、白色度の点から、膨潤性フッ素雲母が最も好ましい。
膨潤性フッ素雲母は、次式(E1)で表され、容易に得られる。
Among the clay minerals, swellable fluoromica is most preferable from the viewpoint of whiteness.
The swellable fluorine mica is represented by the following formula (E1) and can be easily obtained.

α(MF)・β(aMgF・bMgO)・γSiO (E1)
式(E1)中、Mは、ナトリウムまたはリチウムであり、α、β、γ、a、およびbは、0.1≦α≦2、2≦β≦3.5、3≦γ≦4、0≦a≦1、0≦b≦1、およびa+b=1を満たす。
α (MF) · β (aMgF 2 · bMgO) · γSiO 2 (E1)
In the formula (E1), M is sodium or lithium, and α, β, γ, a, and b are 0.1 ≦ α ≦ 2, 2 ≦ β ≦ 3.5, 3 ≦ γ ≦ 4, 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, and a + b = 1 are satisfied.

膨潤性フッ素雲母の製造法としては、例えば、酸化珪素と、酸化マグネシウムと、フッ化物とを混合し、その混合物を電気炉またはガス炉中にて1400〜1500℃で完全に溶融させた後、冷却し、その冷却過程で反応容器内にてフッ素雲母を結晶成長させる方法(溶融法)が挙げられる。   As a method for producing the swellable fluorine mica, for example, silicon oxide, magnesium oxide, and fluoride are mixed, and the mixture is completely melted at 1400 to 1500 ° C. in an electric furnace or a gas furnace. A method (melting method) of cooling and crystal growth of fluorine mica in the reaction vessel in the cooling process can be mentioned.

また、別の製造法として、出発物質としてのタルクにアルカリ金属イオンをインターカレーションして、膨潤性フッ素雲母を得る方法が挙げられる(例えば、特開平2−149415号公報参照)。より具体的には、タルクと、珪フッ化アルカリまたはフッ化アルカリとを混合し、その混合物を磁性ルツボ内にて約700〜1200℃で短時間加熱して、膨潤性フッ素雲母を得る。   As another production method, there is a method of obtaining swellable fluorine mica by intercalating alkali metal ions into talc as a starting material (see, for example, JP-A-2-149415). More specifically, talc and alkali silicofluoride or alkali fluoride are mixed, and the mixture is heated in a magnetic crucible for a short time at about 700 to 1200 ° C. to obtain a swellable fluoromica.

膨潤性フッ素雲母の生成収率の観点から、タルクと、珪フッ化アルカリまたはフッ化アルカリとの混合物中における珪フッ化アルカリまたはフッ化アルカリの含有量は、10〜35質量%が好ましい。   From the viewpoint of the yield of the swellable fluorinated mica, the content of alkali silicate or alkali fluoride in the mixture of talc and alkali silicate or alkali fluoride is preferably 10 to 35% by mass.

膨潤性フッ素雲母を得るためには、珪フッ化アルカリまたはフッ化アルカリのアルカリ金属がナトリウムまたはリチウムであることが必要である。これらのアルカリ金属は単独で用いてもよく、併用してもよい。アルカリ金属がカリウムの場合、膨潤性フッ素雲は得られないが、カリウムをナトリウムまたはリチウムとともに用い、かつカリウム量が限定されるのであれば、膨潤性を調節する目的でカリウムを用いてもよい。   In order to obtain the swellable fluorine mica, it is necessary that the alkali metal fluorosilicate or alkali metal of the alkali fluoride is sodium or lithium. These alkali metals may be used alone or in combination. When the alkali metal is potassium, a swellable fluorine cloud cannot be obtained, but potassium may be used for the purpose of adjusting the swellability if potassium is used together with sodium or lithium and the amount of potassium is limited.

また、膨潤性フッ素雲母を製造する工程において、各種原料にアルミナを添加して、得られるフッ素雲母の膨潤性を調整してもよい。   Further, in the step of producing the swellable fluorinated mica, alumina may be added to various raw materials to adjust the swellability of the obtained fluorinated mica.

モンモリロナイトは、式(E2)で表され、天然に産出するものを精製することにより得られる。   Montmorillonite is represented by the formula (E2), and can be obtained by purifying what is naturally produced.

Si(Al2−aMg)O10(OH)・nHO (E2)
式(E2)中、MはNaであり、aは0.25〜0.60である。nは層間のイオン交換性カチオンと結合する水分子の数を表す。nは、カチオン種や湿度等の条件に応じて変化し得る値である。
M a Si 4 (Al 2−a Mg a ) O 10 (OH) 2 .nH 2 O (E2)
In formula (E2), M is Na and a is 0.25 to 0.60. n represents the number of water molecules bonded to the ion-exchange cation between layers. n is a value that can vary depending on conditions such as the cation species and humidity.

モンモリロナイトには、式(E3)で表されるマグネシアンモンモリロナイト、式(E4)で表される鉄モンモリロナイト、式(E5)で表される鉄マグネシアンモンモリロナイトのような同型イオン置換体も存在し、これらを用いてもよい。   In montmorillonite, there are also isomorphous ion substitution products such as magnesia montmorillonite represented by formula (E3), iron montmorillonite represented by formula (E4), iron magnesia montmorillonite represented by formula (E5), These may be used.

Si(Al1.67−aMg0.5+a)O10(OH)・nHO (E3)
Si(Fe2−a 3+Mg)O10(OH)・nHO (E4)
Si(Fe1.67−a 3+Mg0.5+a)O10(OH)・nHO (E5)
式(E3)〜(E5)中、MはNaであり、aは0.25〜0.60である。
M a Si 4 (Al 1.67-a Mg 0.5 + a ) O 10 (OH) 2 .nH 2 O (E3)
M a Si 4 (Fe 2−a 3+ Mg a ) O 10 (OH) 2 .nH 2 O (E4)
M a Si 4 (Fe 1.67-a 3+ Mg 0.5 + a ) O 10 (OH) 2 .nH 2 O (E5)
In formulas (E3) to (E5), M is Na and a is 0.25 to 0.60.

通常、モンモリロナイトは、その層間にナトリウムやカルシウム等のイオン交換性カチオンを有するが、その含有比率は産地によって異なる。   Usually, montmorillonite has an ion exchange cation such as sodium or calcium between its layers, but the content ratio varies depending on the production area.

本発明では、イオン交換処理等により層間に存在するイオン交換性カチオンがナトリウムに置換されたものを用いることが好ましい。さらに、水処理により精製したモンモリロナイトを用いることが好ましい。
ガスバリア層(II)の厚みは、良好なガスバリア性が得られる範囲内で、ガスバリア層(II)の形成条件に応じて適宜決めればよい。
In the present invention, it is preferable to use an ion exchange cation or the like in which an ion exchange cation existing between layers is replaced with sodium. Furthermore, it is preferable to use montmorillonite purified by water treatment.
The thickness of the gas barrier layer (II) may be appropriately determined according to the formation conditions of the gas barrier layer (II) within a range in which good gas barrier properties can be obtained.

ガスバリア層(II)の厚みは、0.05〜3μmが好ましく、0.05〜2μmがより好ましく、0.08〜1μmがさらに好ましい。ガスバリア層(II)の厚みが0.05μm以上であると、優れたガスバリア性を有する均一な層を形成することができる。ガスバリア層(II)の厚みが3μm以下であると、ガスバリア層(II)の作製時における加熱時間を短くすることができ、生産性を充分に高めることができる。また、第1ガスバリア調整層(III)からガスバリア層(II)の内部へ金属が充分に入り込むことができ、ガスバリア層(II)内にて架橋Xだけでなく架橋Yも充分に形成することができる。
<第1ガスバリア調整層(III)>
ガスバリア層(III)は、ガスバリア層(II)の基材層(I)に接する面と反対側の表面に、樹脂(C)を含み、かつ金属(D)またはそれを含む化合物を含む、または含まない塗料(P2)を用いて形成される樹脂層からなる。
The thickness of the gas barrier layer (II) is preferably 0.05 to 3 μm, more preferably 0.05 to 2 μm, and further preferably 0.08 to 1 μm. When the thickness of the gas barrier layer (II) is 0.05 μm or more, a uniform layer having excellent gas barrier properties can be formed. When the thickness of the gas barrier layer (II) is 3 μm or less, the heating time at the production of the gas barrier layer (II) can be shortened, and the productivity can be sufficiently increased. Further, the metal can sufficiently enter the gas barrier layer (II) from the first gas barrier adjustment layer (III), and not only the bridge X but also the bridge Y can be sufficiently formed in the gas barrier layer (II). it can.
<First gas barrier adjustment layer (III)>
The gas barrier layer (III) contains a resin (C) and a metal (D) or a compound containing the same on the surface of the gas barrier layer (II) opposite to the surface in contact with the base material layer (I), or It consists of a resin layer formed using the paint (P2) which does not contain.

塗料(P2)中の金属(D)としては、例えば、Li、Na、K、Rb、Seのような金属イオンの価数が1である金属が挙げられる。これらのなかでも、Li、Na、Kが好ましく、Liがより好ましい。   Examples of the metal (D) in the paint (P2) include metals having a metal ion valence of 1, such as Li, Na, K, Rb, and Se. Among these, Li, Na, and K are preferable, and Li is more preferable.

金属イオンの価数が1である金属を含む化合物としては、例えば、酸化物、水酸化物、ハロゲン化物、炭酸塩、もしくは硫酸塩等の無機塩、またはカルボン酸塩、もしくはスルホン酸等の有機酸塩が挙げられる。これらのなかでも、水酸化物、炭酸塩が好ましい。   Examples of the compound containing a metal having a metal ion valence of 1 include inorganic salts such as oxides, hydroxides, halides, carbonates or sulfates, or organic salts such as carboxylates or sulfonic acids. Acid salts. Of these, hydroxides and carbonates are preferable.

また、塗料(P2)中の金属(D)としては、例えば、Mg、Ca、Zn、Cu、Co、Fe、Ni、Al、Zrのような金属イオンの価数が2以上である金属元素が挙げられる。これらのなかでも、Mg、Ca、Znが好ましく、Mg、Caがより好ましい。   In addition, as the metal (D) in the paint (P2), for example, a metal element such as Mg, Ca, Zn, Cu, Co, Fe, Ni, Al, and Zr whose metal ion has a valence of 2 or more is used. Can be mentioned. Among these, Mg, Ca, and Zn are preferable, and Mg and Ca are more preferable.

金属イオンの価数が2以上である金属を含む化合物としては、例えば、酸化物、水酸化物、ハロゲン化物、炭酸塩、もしくは硫酸塩等の無機塩、またはカルボン酸塩、もしくはスルホン酸等の有機酸塩が挙げられる。これらのなかでも、酸化物、水酸化物、炭酸塩が好ましい。   Examples of the compound containing a metal having a metal ion valence of 2 or more include inorganic salts such as oxides, hydroxides, halides, carbonates, and sulfates, carboxylates, and sulfonic acids. Organic acid salts are mentioned. Of these, oxides, hydroxides, and carbonates are preferable.

第1ガスバリア調整層(III)を構成する樹脂層は、例えば、第1ガスバリア調整層(III)を形成するための塗料(P2)中の樹脂(C)で構成してもよく、さらに樹脂(C)以外の樹脂成分を含んでいてもよい。また、樹脂(C)と他の材料(例えば、架橋剤)との反応生成物で樹脂層を構成してもよい。   The resin layer constituting the first gas barrier adjustment layer (III) may be constituted by, for example, the resin (C) in the paint (P2) for forming the first gas barrier adjustment layer (III). Resin components other than C) may be included. Moreover, you may comprise a resin layer with the reaction product of resin (C) and another material (for example, crosslinking agent).

第1ガスバリア調整層(III)を構成する樹脂としては、公知のウレタン樹脂、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、アルキド樹脂、メラミン樹脂、アミノ樹脂等種々の樹脂が挙げられる。これらのうち耐水性、耐溶剤性、耐熱性、硬化温度の観点からウレタン樹脂、ポリエステル樹脂、アクリル樹脂が好ましく、ウレタン樹脂が特に好ましい。   Examples of the resin constituting the first gas barrier adjustment layer (III) include various resins such as a known urethane resin, polyester resin, acrylic resin, epoxy resin, alkyd resin, melamine resin, and amino resin. Among these, urethane resin, polyester resin, and acrylic resin are preferable from the viewpoint of water resistance, solvent resistance, heat resistance, and curing temperature, and urethane resin is particularly preferable.

ウレタン樹脂は、例えば、多官能イソシアネートと水酸基含有化合物との反応により得られるポリマーである。   A urethane resin is a polymer obtained by reaction of polyfunctional isocyanate and a hydroxyl-containing compound, for example.

多官能イソシアネートとしては、例えば、トリレンジイソイアネート、ジフェニルメタンイソシアネート、もしくはポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネート、またはヘキサメチレンジイソシアネート、もしくはキシレンイソシアネート等の脂肪族ポリイソシアネートが挙げられる。これらを、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the polyfunctional isocyanate include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane isocyanate, or polymethylene polyphenylene polyisocyanate, and aliphatic polyisocyanates such as hexamethylene diisocyanate or xylene isocyanate. These may be used alone or in combination of two or more.

水酸基含有化合物としては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリアクリレートポリオール、ポリカーボネートポリオールが挙げられる。これらを、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the hydroxyl group-containing compound include polyether polyol, polyester polyol, polyacrylate polyol, and polycarbonate polyol. These may be used alone or in combination of two or more.

ポリエステル樹脂としては、ポリエステルポリオールが好ましい。ポリエステルポリオールは、例えば、多価カルボン酸またはそれらのジアルキルエステルと、グリコール類との反応により得られる。   As the polyester resin, a polyester polyol is preferable. The polyester polyol is obtained, for example, by reacting a polyvalent carboxylic acid or a dialkyl ester thereof with glycols.

多価カルボン酸としては、例えば、イソフタル酸、テレフタル酸、もしくはナフタレンジカルボン酸等の芳香族多価カルボン酸、またはアジピン酸、アゼライン酸、セバシン酸,もしくはシクロヘキサンジカルボン酸等の脂肪族多価カルボン酸が挙げられる。   Examples of the polyvalent carboxylic acid include aromatic polyvalent carboxylic acids such as isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid, or aliphatic polyvalent carboxylic acids such as adipic acid, azelaic acid, sebacic acid, and cyclohexanedicarboxylic acid. Is mentioned.

グリコール類としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、ネオペンチルグリコール、1,6−ヘキサンジオールが挙げられる。   Examples of glycols include ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, neopentyl glycol, and 1,6-hexanediol.

ポリエステルポリオールのガラス転移温度(以下、「Tg」という。)は、120℃以下が好ましく、100℃以下がより好ましく、80℃以下さらに好ましく、70℃以下が特に好ましい。   The glass transition temperature (hereinafter referred to as “Tg”) of the polyester polyol is preferably 120 ° C. or less, more preferably 100 ° C. or less, still more preferably 80 ° C. or less, and particularly preferably 70 ° C. or less.

ポリエステルポリオールの数平均分子量は、1000〜10万が好ましく、2000〜5万がより好ましく、3000〜4万がさらに好ましい。   The number average molecular weight of the polyester polyol is preferably 1000 to 100,000, more preferably 2000 to 50,000, and still more preferably 3000 to 40,000.

第1ガスバリア調整層(III)は、ガスバリア層(II)で用いられる添加剤を含んでいてもよい。
<第2ガスバリア調整層(IV)>
第2ガスバリア調整層(IV)は、第1ガスバリア調整層(III)のガスバリア層(II)に接する面と反対側の表面に、樹脂(E)を含み、かつ金属(F)またはそれを含む化合物を含む、または含まない塗料(P3)を用いて形成された樹脂層からなる。
The first gas barrier adjustment layer (III) may contain an additive used in the gas barrier layer (II).
<Second gas barrier adjustment layer (IV)>
The second gas barrier adjustment layer (IV) includes the resin (E) on the surface opposite to the surface in contact with the gas barrier layer (II) of the first gas barrier adjustment layer (III), and includes the metal (F) or the same. It consists of a resin layer formed using a paint (P3) containing or not containing a compound.

第1ガスバリア調整層(III)と第2ガスバリア調整層(IV)との密着性の観点から、第1ガスバリア調整層(III)および第2ガスバリア調整層(IV)は、互いに同種の樹脂層で構成されるのが好ましい。   From the viewpoint of adhesion between the first gas barrier adjustment layer (III) and the second gas barrier adjustment layer (IV), the first gas barrier adjustment layer (III) and the second gas barrier adjustment layer (IV) are the same kind of resin layers. Preferably it is configured.

第2ガスバリア調整層(IV)は、ガスバリア層(II)で用いられる添加剤を含んでいてもよい。   The second gas barrier adjustment layer (IV) may contain an additive used in the gas barrier layer (II).

第1ガスバリア調整層(III)の表面に形成する第2ガスバリア調整層(IV)の厚みは、ガスバリア層(II)の厚みに応じて適宜決めればよい。   The thickness of the second gas barrier adjustment layer (IV) formed on the surface of the first gas barrier adjustment layer (III) may be appropriately determined according to the thickness of the gas barrier layer (II).

第2ガスバリア調整層(IV)の厚みは、0.1〜3μmが好ましく、0.1〜2μmがより好ましく、0.15〜1.5μmがさらに好ましい。第2ガスバリア調整層(IV)の厚みが0.1μm以上であると、第2ガスバリア調整層(IV)からガスバリア層(II)へ移動する金属(F)等を充分に確保することができる。その結果、金属(F)等とガスバリア層(II)中のポリマー(A)またはポリマー(B)との反応を充分に進行させることができ、優れたガスバリア性を確実に得ることができる。第2ガスバリア調整層(IV)の厚みが3μm以下であると、生産性を充分に高めることができる。また、コスト面でも有利である。   The thickness of the second gas barrier adjustment layer (IV) is preferably 0.1 to 3 μm, more preferably 0.1 to 2 μm, and further preferably 0.15 to 1.5 μm. When the thickness of the second gas barrier adjustment layer (IV) is 0.1 μm or more, it is possible to sufficiently ensure the metal (F) and the like moving from the second gas barrier adjustment layer (IV) to the gas barrier layer (II). As a result, the reaction between the metal (F) or the like and the polymer (A) or the polymer (B) in the gas barrier layer (II) can be sufficiently advanced, and excellent gas barrier properties can be reliably obtained. Productivity can fully be improved as the thickness of 2nd gas barrier adjustment layer (IV) is 3 micrometers or less. Moreover, it is advantageous also in terms of cost.

第2ガスバリア調整層(IV)中に含ませ得る金属(F)等の量と、金属(F)等の一部が第1ガスバリア調整層(III)を通過する距離とのバランスの観点から、第1ガスバリア調整層(III)の厚みT1と、第2ガスバリア調整層(IV)の厚みT2との比:(T1/T2)は、1/6〜30であるのが好ましい。
<トップコート層(V)>
ガスバリア性積層体は、さらに、第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)に接する面と反対側の表面に形成され、第2ガスバリア調整層(IV)を保護するためのトップコート層(V)を有するのが好ましい。トップコート層(V)は、樹脂層(G)からなる。樹脂層(G)には、樹脂層(C)で用いられる樹脂材料を用いればよい。トップコート層(V)は、さらにガスバリア層(II)で用いられる添加剤を含んでもよい。
From the viewpoint of the balance between the amount of metal (F) and the like that can be included in the second gas barrier adjustment layer (IV) and the distance that a part of the metal (F) passes through the first gas barrier adjustment layer (III), The ratio (T1 / T2) between the thickness T1 of the first gas barrier adjustment layer (III) and the thickness T2 of the second gas barrier adjustment layer (IV) is preferably 1/6 to 30.
<Topcoat layer (V)>
The gas barrier laminate is further formed on the surface of the second gas barrier adjustment layer (IV) opposite to the surface in contact with the first gas barrier adjustment layer (III) to protect the second gas barrier adjustment layer (IV). It is preferable to have a topcoat layer (V). A topcoat layer (V) consists of a resin layer (G). The resin material used in the resin layer (C) may be used for the resin layer (G). The topcoat layer (V) may further contain an additive used in the gas barrier layer (II).

塗布条件によりガスバリア性が異なるので一概には言えないが、トップコート層(V)を形成することにより、積層体の酸素ガス透過度を、トップコート層(V)を形成しない場合の1/2〜1/4程度にまで低減し、積層体のガスバリア性を大幅に高めることができる。これは、トップコート層(V)の形成時における加熱工程(後述の工程(4b−2))にて、ガスバリア層(II)内にて、金属等と、ポリマー(A)またはポリマー(B)との反応による架橋形成がさらに促進されるためである。   Although the gas barrier property varies depending on the coating conditions, it cannot be generally stated, but by forming the topcoat layer (V), the oxygen gas permeability of the laminate can be reduced to half that when the topcoat layer (V) is not formed. The gas barrier property of the laminate can be greatly enhanced by reducing the level to about ¼. This is because, in the gas barrier layer (II) in the heating step (step (4b-2) described later) during the formation of the topcoat layer (V), the metal, etc., and the polymer (A) or polymer (B) This is because the formation of a cross-linkage due to the reaction with is further accelerated.

例えば、温度20℃および相対湿度85%RHの環境下で測定した積層体の酸素ガス透過度は、トップコート層(V)無しの場合、102〜110ml/m・d・MPa程度であるのに対して、トップコート層(V)有りの場合、50ml/m・d・MPa程度にまで低減することができ、さらに、条件によっては4〜25ml/m・d・MPa程度にまで低減することができる。For example, the oxygen gas permeability of the laminate measured in an environment of a temperature of 20 ° C. and a relative humidity of 85% RH is about 102 to 110 ml / m 2 · d · MPa without the topcoat layer (V). relative reduction case with top coat layer (V), can be reduced to about 50ml / m 2 · d · MPa , furthermore, depending on the conditions to about 4~25ml / m 2 · d · MPa can do.

トップコート層(V)の厚みは、0.1〜3μmが好ましく、0.1〜2μmがより好ましく、0.15〜1.5μmがさらに好ましい。トップコート層(V)の厚みが0.1μm以上であると、第2ガスバリア調整層(IV)を充分に保護することができる。トップコート層(V)の厚みが3μm以下であると、コストを充分に低減することができるとともに、生産性を充分に高めることができる。
<アンカーコート層>
ガスバリア層(II)の基材層(I)への密着性を高めるために、必要に応じて、基材層(I)とガスバリア層(II)との間に、アンカーコート層を配置してもよい。
The thickness of the top coat layer (V) is preferably 0.1 to 3 μm, more preferably 0.1 to 2 μm, and further preferably 0.15 to 1.5 μm. When the thickness of the topcoat layer (V) is 0.1 μm or more, the second gas barrier adjustment layer (IV) can be sufficiently protected. When the thickness of the topcoat layer (V) is 3 μm or less, the cost can be sufficiently reduced and the productivity can be sufficiently increased.
<Anchor coat layer>
In order to improve the adhesion of the gas barrier layer (II) to the base material layer (I), an anchor coat layer is disposed between the base material layer (I) and the gas barrier layer (II) as necessary. Also good.

アンカーコート層の形成に使用される塗料としては、公知のものが用いられる。例えば、イソシアネート系、ポリウレタン系、ポリエステル系、ポリエチレンイミン系、ポリブタジエン系、ポリオレフィン系、アルキルチタネート系の樹脂材料が挙げられる。密着性、耐熱性、耐水性の観点から、これらのなかでも、イソシアネート系、ポリウレタン系、およびポリエステル系の樹脂材料が好ましい。   A well-known thing is used as a coating material used for formation of an anchor coat layer. Examples of the resin material include isocyanate, polyurethane, polyester, polyethyleneimine, polybutadiene, polyolefin, and alkyl titanate. Of these, isocyanate-based, polyurethane-based, and polyester-based resin materials are preferable from the viewpoints of adhesion, heat resistance, and water resistance.

より具体的には、樹脂材料は、イソシアネート化合物、ポリウレタン、もしくはウレタンプレポリマー、またはそれらの混合物が好ましい。また、ポリエステル、ポリオール、およびポリエーテルからなる群より選択される少なくとも1種と、イソシアネートとの混合物であるのが好ましい。   More specifically, the resin material is preferably an isocyanate compound, polyurethane, or urethane prepolymer, or a mixture thereof. Moreover, it is preferable that it is a mixture of at least 1 sort (s) selected from the group which consists of polyester, a polyol, and polyether, and an isocyanate.

塗布性の観点から、塗料は、上記材料の溶液または分散液であることが好ましい。   From the viewpoint of applicability, the paint is preferably a solution or dispersion of the above material.

アンカーコート層は、上記材料の1種で構成されてもよく、上記材料の2種以上を組み合わせた混合物またはその反応生成物で構成されてもよい。   The anchor coat layer may be composed of one of the above materials, a mixture of two or more of the above materials, or a reaction product thereof.

アンカーコート層形成用塗料の塗布方法には、後述するガスバリア層(II)の形成に用いられる塗料(P1)の場合と同様の方法を用いればよい。   As a method for applying the anchor coat layer-forming coating material, the same method as that for the coating material (P1) used for forming the gas barrier layer (II) described later may be used.

基材層(I)とガスバリア層(II)との間にアンカーコート層を配置する方法は、例えば、基材層(I)の表面にアンカーコート層形成用塗料を塗布した後、加熱して、アンカーコート層を形成する工程と、アンカーコート層の表面に塗料(P1)を塗布した後、加熱して、ガスバリア層(II)を形成する工程とを含む。   The method of disposing an anchor coat layer between the base material layer (I) and the gas barrier layer (II) is, for example, by applying an anchor coat layer forming coating on the surface of the base material layer (I) and then heating it. The step of forming the anchor coat layer and the step of applying the paint (P1) to the surface of the anchor coat layer and then heating to form the gas barrier layer (II) are included.

以下、本発明のガスバリア性積層体の製造方法について説明する。   Hereinafter, the manufacturing method of the gas-barrier laminated body of this invention is demonstrated.

ガスバリア性積層体の製造方法は、例えば、以下の工程(1)〜(3)を含む。
工程(1):ポリマー(A)およびポリマー(B)を含む塗料(P1)を用いて、プラスチック基材層(I)の一方の表面に、直にまたはアンカーコート層を介して、ガスバリア層(II)を形成する。
工程(2):樹脂(C)を含有し、かつ金属(D)またはそれを含む化合物を含む、または含まない塗料(P2)を用いて、ガスバリア層(II)の基材層(I)と接する面と反対側の表面に、厚み0.5〜3μmの第1ガスバリア調整層(III)を形成する。
工程(3):樹脂(E)を含有し、かつ金属(F)またはそれを含む化合物を含む、または含まない塗料(P3)を用いて、第1ガスバリア調整層(III)のガスバリア層(II)と接する面と反対側の表面に、第2ガスバリア調整層(IV)を形成する。
The manufacturing method of the gas barrier laminate includes, for example, the following steps (1) to (3).
Step (1): A gas barrier layer (directly or via an anchor coat layer) is formed on one surface of the plastic substrate layer (I) using the paint (P1) containing the polymer (A) and the polymer (B). II).
Step (2): Using the coating material (P2) containing the resin (C) and containing or not containing the metal (D) or a compound containing it, the base layer (I) of the gas barrier layer (II) and A first gas barrier adjustment layer (III) having a thickness of 0.5 to 3 μm is formed on the surface opposite to the contacting surface.
Step (3): Gas barrier layer (II) of first gas barrier adjustment layer (III) using paint (P3) containing resin (E) and containing or not containing metal (F) or a compound containing it. The second gas barrier adjustment layer (IV) is formed on the surface opposite to the surface in contact with ().

上記製法において、塗料(P2)中における金属(D)等の含有量M1(質量部)と、塗料(P3)中における金属(F)等の含有量M2(質量部)とが、下記の関係式(1)を満たす場合、酸素ガス透過度が4〜25ml/m・d・MPaのガスバリア性積層体を得ることができる。In the said manufacturing method, content M1 (mass part), such as a metal (D) in a coating material (P2), and content M2 (mass part), such as a metal (F), in a coating material (P3) have the following relationship. When the formula (1) is satisfied, a gas barrier laminate having an oxygen gas permeability of 4 to 25 ml / m 2 · d · MPa can be obtained.

0≦M1≦5、0<M2、かつ5≦M1+M2、または
5≦M1<10、かつM2=0 (1)
[ガスバリア層(II)の形成工程(1)]
より具体的には、工程(1)は、以下の工程(1a)および(1b)を含む。
工程(1a):基材層(I)の一方の表面に、ポリマー(A)およびポリマー(B)を含む塗料(P1)を塗布する。
工程(1b):基材層(I)の一方の表面に付着した塗料(P1)の塗膜を加熱する。
[工程(1a)]
塗料(P1)は、作業性の面から、ポリマー(A)およびポリマー(B)の水溶液または水分散液であることが好ましく、ポリマー(A)およびポリマー(B)の水溶液であることがより好ましい。よって、ポリマー(A)およびポリマー(B)の両方が水溶性であることが好ましい。
0 ≦ M1 ≦ 5, 0 <M2, and 5 ≦ M1 + M2, or 5 ≦ M1 <10, and M2 = 0 (1)
[Formation Step (1) of Gas Barrier Layer (II)]
More specifically, the step (1) includes the following steps (1a) and (1b).
Step (1a): The paint (P1) containing the polymer (A) and the polymer (B) is applied to one surface of the base material layer (I).
Process (1b): The coating film of the coating material (P1) adhering to one surface of the base material layer (I) is heated.
[Step (1a)]
The paint (P1) is preferably an aqueous solution or aqueous dispersion of the polymer (A) and the polymer (B) from the viewpoint of workability, and more preferably an aqueous solution of the polymer (A) and the polymer (B). . Therefore, it is preferable that both the polymer (A) and the polymer (B) are water-soluble.

塗料(P1)を、ポリマー(A)およびポリマー(B)の水溶液として用いる場合、ポリマー(B)のカルボキシル基に対して0.1〜20当量%のアルカリ化合物を塗料(P1)に加えることが好ましい。   When the paint (P1) is used as an aqueous solution of the polymer (A) and the polymer (B), 0.1 to 20 equivalent% of an alkali compound relative to the carboxyl group of the polymer (B) may be added to the paint (P1). preferable.

ポリマー(B)は、分子内にカルボン酸単位を多く含む場合、カルボキシル基自身の親水性が高いので、アルカリ化合物を添加しなくても水に溶け易いが、アルカリ化合物を適量添加することにより、得られるガスバリア層のガスバリア性を格段に高めることができる。   When the polymer (B) contains a large amount of carboxylic acid units in the molecule, the carboxyl group itself has high hydrophilicity, so it is easily soluble in water without adding an alkali compound, but by adding an appropriate amount of an alkali compound, The gas barrier property of the obtained gas barrier layer can be remarkably enhanced.

アルカリ化合物としては、ポリマー(B)中のカルボキシル基を中和できるものであればよい。アルカリ化合物としては、例えば、アルカリ金属もしくはアルカリ土類金属の水酸化物、水酸化アンモニウム、または有機水酸化アンモニウム化合物が挙げられる。これらのなかでも、アルカリ金属の水酸化物が好ましい。   Any alkali compound may be used as long as it can neutralize the carboxyl group in the polymer (B). Examples of the alkali compound include alkali metal or alkaline earth metal hydroxides, ammonium hydroxide, and organic ammonium hydroxide compounds. Of these, alkali metal hydroxides are preferred.

塗料(P1)を水溶液として調製する方法としては、撹拌機を備えた溶解釜等を用いて公知の方法で行えばよい。例えば、ポリマー(A)の水溶液とポリマー(B)の水溶液とを別々に調製し、両水溶液を混合する前に、ポリマー(B)の水溶液にアルカリ化合物を添加する方法が好ましい。ポリマー(B)の水溶液にアルカリ化合物を加えると、その水溶液の安定性が向上する。   As a method for preparing the paint (P1) as an aqueous solution, it may be performed by a known method using a dissolution vessel equipped with a stirrer. For example, a method in which an aqueous solution of the polymer (A) and an aqueous solution of the polymer (B) are separately prepared and an alkali compound is added to the aqueous solution of the polymer (B) before mixing both aqueous solutions is preferable. When an alkali compound is added to the aqueous solution of polymer (B), the stability of the aqueous solution is improved.

ポリマー(A)とポリマー(B)とを同時に溶解釜中の水に加える場合、両者を溶解釜中に投入する前に、アルカリ化合物を水に添加しておくことが好ましい。ポリマー(B)の溶解性を高めることができる。   When the polymer (A) and the polymer (B) are added to the water in the dissolution vessel at the same time, it is preferable to add the alkali compound to water before putting them into the dissolution vessel. The solubility of the polymer (B) can be increased.

ポリマー(B)の水に対する溶解性の改善、乾燥工程の短縮、水溶液の安定性の改善等の目的で、ポリマー(B)を溶かす水に、アルコールや有機溶媒を少量添加してもよい。   For the purpose of improving the solubility of the polymer (B) in water, shortening the drying step, improving the stability of the aqueous solution, etc., a small amount of alcohol or an organic solvent may be added to the water in which the polymer (B) is dissolved.

ポリマー(A)とポリマー(B)との架橋反応を促進させるために、さらに、塗料(P1)に架橋剤を添加してもよい。   In order to promote the cross-linking reaction between the polymer (A) and the polymer (B), a cross-linking agent may be further added to the paint (P1).

架橋剤の添加量は、ポリマー(A)およびポリマー(B)の合計100質量部あたり、好ましくは0.1〜30質量部、より好ましくは1〜20質量部である。架橋剤の添加量が0.1質量部以上であると、架橋剤の添加による効果が充分に得られる。架橋剤の添加量が30質量部以下であると、架橋剤がガスバリア性に悪影響を及ぼすことがない。   The addition amount of the crosslinking agent is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, per 100 parts by mass in total of the polymer (A) and the polymer (B). The effect by addition of a crosslinking agent is fully acquired as the addition amount of a crosslinking agent is 0.1 mass part or more. When the addition amount of the crosslinking agent is 30 parts by mass or less, the crosslinking agent does not adversely affect the gas barrier property.

架橋剤としては、例えば、自己架橋性を有する架橋剤、カルボキシル基および水酸基の少なくとも一方と反応する官能基を分子内に複数個有する化合物、または多数の配位座(配位子)を有する多価金属の錯体が挙げられる。   Examples of the crosslinking agent include a crosslinking agent having self-crosslinking property, a compound having a plurality of functional groups that react with at least one of a carboxyl group and a hydroxyl group in the molecule, or a compound having many coordination sites (ligands). A complex of a valent metal.

優れたガスバリア性が得られる点で、これらのなかでも、イソシアネート化合物、メラミン化合物、尿素化合物、エポキシ化合物、カルボジイミド化合物、ジルコニウム塩化合物が好ましい。これらの架橋剤を、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Among these, an isocyanate compound, a melamine compound, a urea compound, an epoxy compound, a carbodiimide compound, and a zirconium salt compound are preferable in that excellent gas barrier properties can be obtained. These crosslinking agents may be used alone or in combination of two or more.

また、ポリマー(A)とポリマー(B)との架橋反応を促進させるために、塗料(P1)に酸等の触媒を添加してもよい。   Further, in order to promote the crosslinking reaction between the polymer (A) and the polymer (B), a catalyst such as an acid may be added to the paint (P1).

塗料(P1)の濃度は、塗工装置や乾燥・加熱装置の仕様に応じて適宜決めればよい。ここでいう塗料(P1)の濃度とは、塗料(P1)のうち固形分が占める質量割合のことをいう。塗布性、生産性、信頼性の観点から、塗料(P1)の濃度は、5〜50質量%が好ましい。塗料(P1)の濃度が5質量%以上であると、充分な厚みのガスバリア層(II)を形成することができる。また、その後の加熱工程において塗料中の溶媒または分散媒を蒸発させる時間(塗膜の乾燥時間)を充分に短くすることができる。塗料(P1)の濃度が50質量%以下であると、優れた塗布性が得られ、均一な塗膜を容易に形成することができる。   The concentration of the paint (P1) may be appropriately determined according to the specifications of the coating apparatus and the drying / heating apparatus. The density | concentration of a coating material (P1) here means the mass ratio for which solid content accounts for a coating material (P1). From the viewpoint of applicability, productivity, and reliability, the concentration of the paint (P1) is preferably 5 to 50% by mass. When the concentration of the paint (P1) is 5% by mass or more, the gas barrier layer (II) having a sufficient thickness can be formed. In addition, the time for evaporating the solvent or the dispersion medium in the paint in the subsequent heating step (drying time of the coating film) can be sufficiently shortened. When the concentration of the paint (P1) is 50% by mass or less, excellent coating properties can be obtained, and a uniform coating film can be easily formed.

塗料(P1)の塗布方法は、特に限定されず、例えば、グラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、エアーナイフコーティング等の公知の方法を用いればよい。
[工程(1b)]
より具体的には、加熱工程(1b)は、以下の工程(1b−1)および(1b−2)を含む。
工程(1b−1):ポリマー(A)およびポリマー(B)を含む塗料(P1)の塗膜を乾燥させ、塗膜から溶媒または分散媒を除去する。
工程(1b−2):塗料(P1)の塗膜中のポリマー(A)とポリマー(B)とをエステル結合により架橋する反応を進行させる。
The coating method of the paint (P1) is not particularly limited, and for example, a known method such as gravure roll coating, reverse roll coating, wire bar coating, air knife coating, etc. may be used.
[Step (1b)]
More specifically, the heating step (1b) includes the following steps (1b-1) and (1b-2).
Step (1b-1): The coating film of the paint (P1) containing the polymer (A) and the polymer (B) is dried, and the solvent or the dispersion medium is removed from the coating film.
Process (1b-2): The reaction which bridge | crosslinks the polymer (A) and polymer (B) in the coating film of a coating material (P1) by an ester bond is advanced.

工程(1b−2)により、架橋Xを含むガスバリア層(II)が形成される。架橋Xの密度は、例えば、ポリマー(A)とポリマー(B)との配合比や、加熱条件等を変えることにより調整することができる。   By the step (1b-2), the gas barrier layer (II) including the cross-link X is formed. The density of the crosslinking X can be adjusted, for example, by changing the blending ratio of the polymer (A) and the polymer (B), heating conditions, and the like.

ガスバリア層(II)中の架橋Yは、工程(2)以降で形成される。   The bridge Y in the gas barrier layer (II) is formed after the step (2).

塗料(P2)の金属(D)等および塗料(P3)の金属(F)等の少なくとも一方が、ガスバリア層(II)中における架橋Yの形成に寄与する。すなわち、ガスバリア性積層体の作製過程で、第1ガスバリア調整層(III)および第2ガスバリア調整層(IV)の少なくとも一方からガスバリア層(II)へ移動してきた金属等が、ガスバリア層(II)中における架橋Yの形成に寄与する。   At least one of the metal (D) of the paint (P2) and the metal (F) of the paint (P3) contributes to the formation of the bridge Y in the gas barrier layer (II). That is, in the process of producing the gas barrier laminate, the metal or the like that has moved from at least one of the first gas barrier adjustment layer (III) and the second gas barrier adjustment layer (IV) to the gas barrier layer (II) is gas barrier layer (II). It contributes to the formation of the cross-linking Y inside.

塗料(P2)の金属(D)等の量、塗料(P3)の金属(F)等の量、第1ガスバリア調整層(III)の厚み、塗料(P2)等の塗膜の加熱条件等を変えることにより、架橋Yの密度を適度に調整することができる。   The amount of metal (D), etc. of the paint (P2), the amount of metal (F), etc. of the paint (P3), the thickness of the first gas barrier adjustment layer (III), the heating conditions of the paint film (P2), etc. By changing the density, the density of the crosslinking Y can be adjusted appropriately.

工程(1b)では、工程(1b−1)の後、工程(1b−2)を行ってもよく、工程(1b−1)と工程(1b−2)とを同時に行ってもよい。   In step (1b), step (1b-2) may be performed after step (1b-1), or step (1b-1) and step (1b-2) may be performed simultaneously.

ガスバリア層(II)の状態やガスバリア性等の物性に特に悪影響がない限り、工程の短縮等の生産性向上の観点から、工程(1a)の後、直ちに工程(1b−1)と工程(1b−2)とを同時に実施することが好ましい。   As long as there are no particular adverse effects on the state of the gas barrier layer (II) and physical properties such as gas barrier properties, from the viewpoint of productivity improvement such as shortening of the process, immediately after the process (1a), the process (1b-1) and the process (1b) -2) are preferably carried out simultaneously.

工程(1b−1)の加熱方法としては、例えば、ドライヤー等による熱風の吹き付けや赤外線照射が挙げられる。   Examples of the heating method in the step (1b-1) include hot air blowing using a dryer or infrared irradiation.

工程(1b−2)の加熱方法(工程(1b−1)と工程(1b−2)とを同時に行う場合を含む。)は、特に限定されないが、一般的には乾燥雰囲気下でオーブン等により加熱する方法が挙げられる。これ以外に、熱ロールと接触させて加熱してもよい。   The heating method of step (1b-2) (including the case where step (1b-1) and step (1b-2) are performed simultaneously) is not particularly limited, but is generally performed by an oven or the like in a dry atmosphere. The method of heating is mentioned. In addition, it may be heated by contacting with a hot roll.

塗料(P1)の塗膜が付着した基材層(I)を、例えば100℃以上で1分間以下加熱する。このとき、塗料(P1)の塗膜中のポリマー(A)とポリマー(B)とをエステル結合により架橋する反応が進行する。この加熱により、水に不溶な、架橋Xを含むガスバリア層(II)が形成される。   The base material layer (I) to which the coating film of the paint (P1) is attached is heated at, for example, 100 ° C. or more for 1 minute or less. At this time, the reaction of crosslinking the polymer (A) and the polymer (B) in the coating film of the paint (P1) by an ester bond proceeds. By this heating, a gas barrier layer (II) containing a cross-link X that is insoluble in water is formed.

工程(1b−2)の加熱条件(工程(1b−1)と工程(1b−2)とを同時に行う場合を含む。)は、ポリマー(A)とポリマー(B)との配合比、添加剤の有無、添加剤の種類や添加量等に応じて、適宜決めればよい。   The heating conditions of the step (1b-2) (including the case where the step (1b-1) and the step (1b-2) are performed simultaneously) are the mixing ratio of the polymer (A) and the polymer (B), and the additive It may be appropriately determined depending on the presence or absence, the kind of additive, the amount added, and the like.

工程(1b−2)の加熱温度は、100〜300℃が好ましく、120〜250℃がより好ましく、140〜240℃がさらに好ましく、160〜220℃が特に好ましい。加熱温度が100℃以上であると、上記の架橋反応を速やかに進行させることができる。加熱温度が300℃以下であると、基材層(I)に熱可塑性樹脂フィルムを用いた場合、そのフィルムが収縮して、しわが発生したり、ガスバリア層(II)が脆化したりするのを確実に防ぐことができる。   The heating temperature in the step (1b-2) is preferably 100 to 300 ° C, more preferably 120 to 250 ° C, further preferably 140 to 240 ° C, and particularly preferably 160 to 220 ° C. When the heating temperature is 100 ° C. or higher, the crosslinking reaction can be rapidly advanced. When the heating temperature is 300 ° C. or lower, when a thermoplastic resin film is used for the base material layer (I), the film shrinks and wrinkles occur or the gas barrier layer (II) becomes brittle. Can be surely prevented.

工程(1b−2)の加熱時間は、1秒間〜5分間が好ましく、3秒間〜2分間がより好ましく、5秒間〜1分間がさらに好ましい。比較的短時間での加熱により、ポリマー(A)とポリマー(B)とのエステル結合による架橋体を含むガスバリア層(II)を形成することができる。加熱時間が1秒以上であると、上記の架橋反応を十分に進行させることができる。加熱時間が5分間以下であると、生産性が向上する。
[第1ガスバリア調整層(III)の形成工程(2)]
より具体的には、工程(2)は、以下の工程(2a)および(2b)を含む。
工程(2a):ガスバリア層(II)の基材層(I)と接する面と反対側の表面に、樹脂(C)を含み、かつ金属(D)等を含む、または含まない塗料(P2)を塗布する。
工程(2b):ガスバリア層(II)の基材層(I)と接する面と反対側の表面に付着した塗料(P2)の塗膜を加熱する。
[工程(2a)]
塗料(P2)は、有機溶剤系塗料(溶液)、水溶液、水分散液のいずれでもよい。ここで、有機溶剤系塗料とは、塗料(溶液)中に含まれる溶媒全体のうち有機溶媒が占める割合が90質量%以上である塗料のことをいう。塗料(溶液)中に含まれる溶媒全体のうち有機溶媒が占める割合が95質量%以上であるのが好ましい。
The heating time in the step (1b-2) is preferably 1 second to 5 minutes, more preferably 3 seconds to 2 minutes, and further preferably 5 seconds to 1 minute. By heating in a relatively short time, the gas barrier layer (II) including a cross-linked product of the ester bond between the polymer (A) and the polymer (B) can be formed. When the heating time is 1 second or longer, the above crosslinking reaction can sufficiently proceed. Productivity improves that a heating time is 5 minutes or less.
[First Gas Barrier Adjustment Layer (III) Formation Step (2)]
More specifically, the step (2) includes the following steps (2a) and (2b).
Step (2a): Paint (P2) containing resin (C) and containing or not containing metal (D) on the surface of gas barrier layer (II) opposite to the surface in contact with base material layer (I) Apply.
Step (2b): The coating film of the paint (P2) adhering to the surface of the gas barrier layer (II) opposite to the surface in contact with the base material layer (I) is heated.
[Step (2a)]
The paint (P2) may be any of an organic solvent paint (solution), an aqueous solution, and an aqueous dispersion. Here, the organic solvent-based paint refers to a paint in which the proportion of the organic solvent in the entire solvent contained in the paint (solution) is 90% by mass or more. The proportion of the organic solvent in the entire solvent contained in the paint (solution) is preferably 95% by mass or more.

有機溶媒としては、公知のものを用いればよく、特に限定されない。有機溶媒としては、例えば、トルエン、メチルエチルケトン(MEK)、シクロヘキサノン、ソルベッソ、イソホロン、キシレン、メチルイソブチルケトン(MIBK)、酢酸エチル、酢酸プロピル、酢酸ブチル、イソプロピルアルコール(IPA)が挙げられる。これらを単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   Any known organic solvent may be used and is not particularly limited. Examples of the organic solvent include toluene, methyl ethyl ketone (MEK), cyclohexanone, sorbeso, isophorone, xylene, methyl isobutyl ketone (MIBK), ethyl acetate, propyl acetate, butyl acetate, and isopropyl alcohol (IPA). These may be used alone or in combination of two or more.

金属(D)等のイオン化の促進によりガスバリア層(II)の架橋密度を高める場合には、塗料(P2)は水溶液または水分散液であるのが好ましい。   When the crosslinking density of the gas barrier layer (II) is increased by promoting ionization of the metal (D) or the like, the paint (P2) is preferably an aqueous solution or an aqueous dispersion.

塗料(P2)が、水への溶解性が比較的高い金属(D)等を含む水溶液または水分散液である場合、第1ガスバリア調整層(III)の耐水性が低下する場合がある。また、塗料(P2)が、塩基性の金属(D)等を含む水溶液または水分散液であると、塗料(P2)の安定性やポットライフが低下する場合がある。よって、金属(D)等の水への溶解性が比較的高い場合、または金属(D)等が塩基性である場合、塗料(P2)は有機溶剤系塗料であるのが好ましい。   When the paint (P2) is an aqueous solution or water dispersion containing a metal (D) having a relatively high solubility in water, the water resistance of the first gas barrier adjustment layer (III) may be lowered. Further, when the paint (P2) is an aqueous solution or aqueous dispersion containing a basic metal (D) or the like, the stability and pot life of the paint (P2) may be lowered. Therefore, when the solubility of the metal (D) or the like in water is relatively high, or when the metal (D) or the like is basic, the paint (P2) is preferably an organic solvent-based paint.

塗料(P2)の塗膜が優れた透明性を有するためには、金属(D)等は、微粒子状であるのが好ましい。塗膜の透明性および塗膜中での分散性の観点から、金属(D)等の平均粒子径は、好ましくは10μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下である。   In order for the coating film of the paint (P2) to have excellent transparency, the metal (D) or the like is preferably in the form of fine particles. From the viewpoint of transparency of the coating film and dispersibility in the coating film, the average particle size of the metal (D) is preferably 10 μm or less, more preferably 3 μm or less, and even more preferably 1 μm or less.

塗料(P2)を、金属(D)等の微粒子を含む懸濁液として用いる場合、乾燥時に微粒子が凝集した状態で析出したり、それにより外観不良(透明性の低い部分)を生じたりすることを防ぐために、分散剤(H)を加えて微粒子を充分に分散させておくのが好ましい。   When the paint (P2) is used as a suspension containing fine particles of metal (D) or the like, the fine particles may precipitate when dried, resulting in poor appearance (low transparency). In order to prevent this, it is preferable to add a dispersant (H) to sufficiently disperse the fine particles.

金属(D)を含む化合物が、MgおよびCaの少なくとも一方を含む酸化物、水酸化物、または炭酸塩である場合、分散剤(H)を用いることにより、金属(D)を含む化合物を、樹脂(C)の固形分(さらに架橋剤を含む場合、樹脂(C)と架橋剤とを合計した固形分)100質量部あたり30質量部添加しても、塗料(P2)の塗布時に透明な塗膜を形成することができる。   When the compound containing the metal (D) is an oxide, hydroxide, or carbonate containing at least one of Mg and Ca, the compound containing the metal (D) is obtained by using the dispersant (H). Even if 30 parts by mass per 100 parts by mass of the solid content of the resin (C) (in the case of further containing a cross-linking agent, the total solid content of the resin (C) and the cross-linking agent) is transparent when the paint (P2) is applied. A coating film can be formed.

分散剤(H)としては、既知のものを用いればよい。例えば、以下の材料が挙げられる。   As the dispersant (H), a known one may be used. For example, the following materials are mentioned.

ビックケミー社製のDisperbykまたはDisperbyk-101、103、107、108、110、111、116、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、191、192、2000、2001;またはAnti-Terra-U、203、204;またはBYK-P104、P104S、220S;またはLactimon、Lactimon-WSまたはBykumon等;
アビシア社製のSOLSPERSE-3000、9000、13240、13650、13940、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32600、34750、36600、38500、41000、41090、43000、44000、53095等;
エフカケミカルズ社製のEFKA-46、47、48、452、LP4008、4009、LP4010、LP4050、LP4055、400、401、402、403、450、451、453、4540、4550、LP4560、120、150、1501、1502、1503等;
(ポリ)グリセリン脂肪酸エステル、有機酸モノグリセリド、ショ糖脂肪酸エステル、レシチン、大豆多糖類、カロボキシメチルセルロース、アルギン酸ソーダ、アルギン酸プロピレングリコールエステル、加工澱粉、グアーガム、ローストビーンガム、キサンタンガム、ペクチン、カラギーナン、ガティガム、カードラン、タマリンドシードガム、カラヤガム、タラガム、ジェランガム、トラガントガム、アラビアガム、アラビーノガラクタン、アルキルリン酸エステル、ポリカルボン酸塩等。
Disperbyk or Disperbyk-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166, 170, 171, 174, 180, 181 manufactured by Big Chemie 182, 183, 184, 185, 190, 191, 192, 2000, 2001; or Anti-Terra-U, 203, 204; or BYK-P104, P104S, 220S; or Lactimon, Lactimon-WS, Bykumon, etc .;
ALSIA-made SOLSPERSE-3000, 9000, 13240, 13650, 13940, 17000, 18000, 20000, 21000, 24000, 26000, 27000, 28000, 31845, 32000, 32500, 32600, 34750, 36600, 38500, 41000, 41090, 43000, 44000, 53095, etc .;
EFKA-46, 47, 48, 452, LP4008, 4009, LP4010, LP4050, LP4055, 400, 401, 402, 403, 450, 451, 453, 4540, 4550, LP4560, 120, 150, manufactured by Fuka Chemicals 1501, 1502, 1503, etc .;
(Poly) glycerin fatty acid ester, organic acid monoglyceride, sucrose fatty acid ester, lecithin, soybean polysaccharide, carboxymethyl cellulose, sodium alginate, propylene glycol ester alginate, modified starch, guar gum, roast bean gum, xanthan gum, pectin, carrageenan, Gati gum, curdlan, tamarind seed gum, karaya gum, tara gum, gellan gum, tragacanth gum, gum arabic, arabinogalactan, alkyl phosphate, polycarboxylate, etc.

これらのうち、衛生面、ならびに分散性およびガスバリア性の観点から、好ましくは(ポリ)グリセリン脂肪酸エステル、ショ糖脂肪酸エステルであり、より好ましくは(ポリ)グリセリン脂肪酸エステルである。   Of these, from the viewpoint of hygiene, dispersibility and gas barrier properties, (poly) glycerin fatty acid ester and sucrose fatty acid ester are preferred, and (poly) glycerin fatty acid ester is more preferred.

これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。   These may be used alone or in combination of two or more.

分散性の観点から、(ポリ)グリセリン脂肪酸エステルの重合度は、1〜20が好ましく、12以下がより好ましい。   From the viewpoint of dispersibility, the polymerization degree of the (poly) glycerin fatty acid ester is preferably 1 to 20, and more preferably 12 or less.

(ポリ)グリセリン脂肪酸エステルは、(ポリ)グリセリンと脂肪酸とがエステル結合することで得られる。脂肪酸は、炭素数10〜22の飽和または不飽和脂肪酸であるのが好ましい。例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、もしくはドコサン酸等の飽和脂肪酸、またはオレイン酸、リノール酸、リノレイン酸、エルカ酸、もしくはアラキドン酸等の不飽和脂肪酸が挙げられる。   (Poly) glycerin fatty acid ester is obtained by ester-bonding (poly) glycerin and a fatty acid. The fatty acid is preferably a saturated or unsaturated fatty acid having 10 to 22 carbon atoms. Examples include saturated fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, or docosanoic acid, or unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, erucic acid, or arachidonic acid.

(ポリ)グリセリン脂肪酸エステルを水に対して用いる場合、(ポリ)グリセリン脂肪酸エステルのHLBは、5以上が好ましく、より好ましくは7以上である。   When the (poly) glycerin fatty acid ester is used for water, the HLB of the (poly) glycerin fatty acid ester is preferably 5 or more, more preferably 7 or more.

(ポリ)グリセリン脂肪酸エステルを有機溶媒に対して用いる場合、(ポリ)グリセリン脂肪酸エステルのHLBは、2〜15が好ましく、4〜13がより好ましい。   When using (poly) glycerin fatty acid ester with respect to an organic solvent, 2-15 are preferable and, as for HLB of (poly) glycerin fatty acid ester, 4-13 are more preferable.

分散に用いる分散機は、特に限定されないが、例えば、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル、バスケットミル、ホモミキサー、ホモジナイザー(エム・テクニック社製「クレアミックス」等)、湿式ジェットミル(ジーナス社製「ジーナスPY」、ナノマイザー社製「ナノマイザー」等)が用いられる。コストや処理能力の観点から、これらのなかでも、メディア型分散機が好ましい。また、メディアとしては、ガラスビーズ、ジルコニアビーズ、アルミナビーズ、磁性ビーズ、ステンレスビーズ等が用いられる。   The disperser used for dispersion is not particularly limited. For example, a paint conditioner (manufactured by Red Devil), a ball mill, a sand mill (such as “Dynomill” manufactured by Shinmaru Enterprises), an attritor, a pearl mill (“DCP mill manufactured by Eirich”). Etc.), a coball mill, a basket mill, a homomixer, a homogenizer (such as “Clairemix” manufactured by M Technique), and a wet jet mill (such as “Genus PY” manufactured by Genus, “Nanomizer” manufactured by Nanomizer, etc.). Among these, the media type disperser is preferable from the viewpoint of cost and processing capability. Further, as the media, glass beads, zirconia beads, alumina beads, magnetic beads, stainless beads, etc. are used.

塗料(P2)中に金属(D)等を含ませる方法は、特に限定されない。   The method for including metal (D) or the like in the paint (P2) is not particularly limited.

樹脂(C)に金属(D)等を加えた後、それを上述した分散機を用いて分散させてもよい。分散機を用いて金属(D)等を分散させた後、金属(D)等と、樹脂(C)とを混合してもよい。   After adding metal (D) or the like to the resin (C), it may be dispersed using the disperser described above. After dispersing the metal (D) or the like using a disperser, the metal (D) or the like and the resin (C) may be mixed.

より具体的には、
(M1)有機溶媒等の溶媒中に樹脂(C)が溶解した樹脂(C)の溶液と、金属(D)等の溶液または分散液とを混合する方法;
(M2)樹脂(C)の分散液と、金属(D)等の粉末または溶液とを混合する方法;
(M3)加熱により可塑化した樹脂(C)(軟化した樹脂、または変形可能な状態の樹脂)と金属(D)等の粉末とを混合する方法;
(M4)樹脂(C)の溶液または分散液に金属(D)等の粉末を加え、分散機を用いて金属(D)等を分散させる方法;
(M5)分散機を用いて任意の分散媒中にて金属(D)等を分散させた後、その金属(D)等の分散液と、樹脂(C)の溶液または分散液とを混合する方法;
が挙げられる。
More specifically,
(M1) A method of mixing a solution of the resin (C) in which the resin (C) is dissolved in a solvent such as an organic solvent and a solution or dispersion of the metal (D) or the like;
(M2) A method of mixing a dispersion of resin (C) with a powder or solution of metal (D) or the like;
(M3) A method of mixing a resin (C) plasticized by heating (a softened resin or a resin in a deformable state) and a powder of metal (D) or the like;
(M4) A method of adding metal (D) or the like to a resin (C) solution or dispersion and dispersing the metal (D) or the like using a disperser;
(M5) After dispersing the metal (D) or the like in an arbitrary dispersion medium using a disperser, the dispersion liquid of the metal (D) and the solution or dispersion liquid of the resin (C) are mixed. Method;
Is mentioned.

金属(D)等の分散性の観点から、これらのなかでも、上記の(M2)および(M5)の方法が、好ましい。   Of these, the methods (M2) and (M5) are preferable from the viewpoint of dispersibility of the metal (D) and the like.

第1ガスバリア調整層(III)の耐水性、耐溶剤性等を高めるために、塗料(P2)に架橋剤を添加してもよい。架橋剤としては、自己架橋性を有する架橋剤、カルボキシル基および水酸基の少なくとも一方と反応する官能基を分子内に複数個有する化合物、または多数の配位座(配位子)を有する多価金属の錯体でもよい。自己架橋性を有する架橋剤を用いる場合、それ自体を樹脂(C)として用いてもよい。   In order to improve the water resistance, solvent resistance and the like of the first gas barrier adjustment layer (III), a crosslinking agent may be added to the paint (P2). As a crosslinking agent, a crosslinking agent having self-crosslinking properties, a compound having a plurality of functional groups that react with at least one of a carboxyl group and a hydroxyl group in the molecule, or a polyvalent metal having a number of coordination sites (ligands) A complex of When a crosslinking agent having self-crosslinking property is used, itself may be used as the resin (C).

架橋剤としては、イソシアネート化合物、メラミン化合物、尿素化合物、エポキシ化合物、カルボジイミド化合物が好ましい。これらのなかでも、イソシアネート化合物がより好ましい。   As a crosslinking agent, an isocyanate compound, a melamine compound, a urea compound, an epoxy compound, and a carbodiimide compound are preferable. Among these, an isocyanate compound is more preferable.

イソシアネート化合物としては、例えば、トリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシレンイソシアネート等の脂肪族ポリイソシアネート;上記ポリイソシアネート単量体から誘導されたイソシアヌレート、ビューレット、アロファネート等の多官能ポリイソシアネート化合物;またはトリメチロールプロパン、グリセリン等の官能基を3つ以上有するポリオール化合物の末端にイソシアネート基を導入した多官能ポリイソシアネート化合物が挙げられる。   Examples of isocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, phenylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, polymethylene polyphenylene polyisocyanate; tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexa Aliphatic polyisocyanates such as methylene diisocyanate, cyclohexylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylene isocyanate; polyfunctional polyisocyanates such as isocyanurates, burettes and allophanates derived from the above polyisocyanate monomers Object; or trimethylolpropane, multifunctional polyisocyanate compound obtained by introducing a terminal isocyanate groups of the polyol compound having three or more functional groups of glycerin.

架橋剤の添加量は、樹脂(C)の固形分100質量部あたり0.1〜300質量部が好ましく、1〜100質量部がより好ましく、3〜50質量部がさらに好ましい。架橋剤の添加量が0.1質量部以上であると、架橋剤を添加することによる架橋効果が充分に得られる。架橋剤の添加量が300質量部以下であると、架橋剤がガスバリア性に悪影響を及ぼすことがない。   0.1-300 mass parts is preferable per 100 mass parts of solid content of resin (C), and, as for the addition amount of a crosslinking agent, 1-100 mass parts is more preferable, and 3-50 mass parts is more preferable. When the addition amount of the crosslinking agent is 0.1 parts by mass or more, the crosslinking effect by adding the crosslinking agent is sufficiently obtained. When the added amount of the crosslinking agent is 300 parts by mass or less, the crosslinking agent does not adversely affect the gas barrier property.

塗料(P2)が、さらに架橋剤を含む場合、塗料(P2)中の金属(D)等の含有量M1は、樹脂(C)と架橋剤とを合計した固形分100質量部あたりの量である。   When the paint (P2) further contains a cross-linking agent, the content M1 of the metal (D) and the like in the paint (P2) is an amount per 100 parts by mass of the solid content of the resin (C) and the cross-linking agent. is there.

塗料(P2)の溶媒または分散媒には、水または有機溶剤が用いられる。上述したように、塗料(P2)は、塗料の安定性、ポットライフ、および耐水性の観点から、有機溶剤系塗料であることが好ましい。したがって、塗料(P2)に用いる樹脂(C)および架橋剤は、有機溶媒に可溶であることが好ましい。塗布性および生産性の観点から、塗料(P2)に用いられる樹脂(C)と架橋剤との組み合わせとしては、ガラス転移温度Tgが70℃以下のポリエステルポリオールと、ポリイソシアネートとの組み合わせが好ましい。   Water or an organic solvent is used for the solvent or dispersion medium of the paint (P2). As described above, the paint (P2) is preferably an organic solvent-based paint from the viewpoints of paint stability, pot life, and water resistance. Therefore, it is preferable that the resin (C) and the crosslinking agent used for the paint (P2) are soluble in an organic solvent. From the viewpoint of applicability and productivity, the combination of the resin (C) used in the paint (P2) and the crosslinking agent is preferably a combination of a polyester polyol having a glass transition temperature Tg of 70 ° C. or less and a polyisocyanate.

塗料(P2)の濃度は、塗工装置や乾燥・加熱装置の仕様に応じて適宜決めればよい。ここでいう、塗料(P2)の濃度とは、塗料(P2)のうち固形分が占める質量割合のことをいう。塗料(P2)の濃度は、5〜50質量%が好ましい。塗料(P2)の濃度が5質量%以上であると、充分な厚みの第1ガスバリア調整層(III)を形成することができる。また、乾燥時間を短くでき、生産性を高めることができる。塗料(P2)の濃度が50質量%以下であると、良好な塗布性を充分に確保することができ、均一な塗膜を容易に得ることができる。   The concentration of the paint (P2) may be appropriately determined according to the specifications of the coating apparatus and the drying / heating apparatus. The density | concentration of a coating material (P2) here means the mass ratio for which solid content accounts for a coating material (P2). The concentration of the paint (P2) is preferably 5 to 50% by mass. When the concentration of the paint (P2) is 5% by mass or more, the first gas barrier adjustment layer (III) having a sufficient thickness can be formed. Moreover, drying time can be shortened and productivity can be improved. When the concentration of the coating material (P2) is 50% by mass or less, good coating properties can be sufficiently secured, and a uniform coating film can be easily obtained.

塗料(P2)を塗布する方法は特に限定されず、グラビアロールコーティング、リバースロールコーティング、ワイヤーバーコーティング、エアーナイフコーティング等の公知の方法が用いられる。
[工程(2b)]
より具体的には、加熱工程(2b)は、以下の工程(2b−1)および(2b−2)を含む。
工程(2b−1):塗料(P2)の塗膜を乾燥させ、塗膜から溶媒または分散媒を除去する。
工程(2b−2):塗料(P2)が金属(D)等を含み、その一部がガスバリア層(II)へ移動する場合、金属(D)等の一部と、ガスバリア層(II)中のポリマー(A)またはポリマー(B)とを反応させる。
The method for applying the paint (P2) is not particularly limited, and known methods such as gravure roll coating, reverse roll coating, wire bar coating, and air knife coating are used.
[Step (2b)]
More specifically, the heating step (2b) includes the following steps (2b-1) and (2b-2).
Step (2b-1): The coating film of paint (P2) is dried, and the solvent or dispersion medium is removed from the coating film.
Step (2b-2): When the paint (P2) contains metal (D) and a part thereof moves to the gas barrier layer (II), part of the metal (D) and the like in the gas barrier layer (II) The polymer (A) or polymer (B) is reacted.

塗料(P2)がさらに架橋剤を含む場合は、工程(2b)は、さらに、塗膜中の樹脂(C)と架橋剤とを反応させる工程(2b−3)を含む。   When the paint (P2) further contains a crosslinking agent, the step (2b) further includes a step (2b-3) of reacting the resin (C) in the coating film with the crosslinking agent.

工程(2b)では、工程(2b−1)の後、工程(2b−2)を行ってもよく、工程(2b−1)と工程(2b−2)とを同時に行ってもよい。   In step (2b), step (2b-2) may be performed after step (2b-1), or step (2b-1) and step (2b-2) may be performed simultaneously.

ガスバリア層(II)および第1ガスバリア調整層(III)の状態やガスバリア性等の物性に特に悪影響がない限り、工程の短縮等の生産性向上の観点から、工程(2a)の後、直ちに工程(2b−1)と工程(2b−2)とを同時に実施することが好ましい。   As long as there is no particular adverse effect on the state of the gas barrier layer (II) and the first gas barrier adjustment layer (III) and physical properties such as gas barrier properties, from the viewpoint of productivity improvement such as shortening of the process, the process immediately after the step (2a) It is preferable to carry out (2b-1) and the step (2b-2) at the same time.

工程(2b−1)の加熱方法としては、例えば、ドライヤー等による熱風の吹き付けや赤外線照射が挙げられる。   Examples of the heating method in the step (2b-1) include hot air blowing using a dryer or infrared irradiation.

工程(2b−2)の加熱方法(工程(2b−1)と工程(2b−2)とを同時に行う場合を含む。)は、特に限定されないが、一般的には乾燥雰囲気下でオーブン等により加熱する方法が挙げられる。これ以外に、熱ロールと接触させて加熱してもよい。   The heating method of step (2b-2) (including the case where step (2b-1) and step (2b-2) are performed simultaneously) is not particularly limited, but is generally performed by an oven or the like in a dry atmosphere. The method of heating is mentioned. In addition, it may be heated by contacting with a hot roll.

工程(2b−2)の加熱条件(工程(2b−1)と工程(2b−2)とを同時に行う場合を含む。)は、樹脂(C)と金属(D)等との配合比、添加剤の有無、添加剤の種類およびその量等に応じて適宜決めればよい。   The heating conditions of the step (2b-2) (including the case where the step (2b-1) and the step (2b-2) are simultaneously performed) are the compounding ratio and addition of the resin (C) and the metal (D), etc. What is necessary is just to determine suitably according to the presence or absence of an agent, the kind of additive, its quantity, etc.

工程(2b−2)の加熱温度は、50〜300℃が好ましく、70〜250℃がより好ましく、100〜200℃がさらに好ましい。加熱温度が50℃以上であると、塗料(P2)が樹脂(C)および架橋剤を含む場合、樹脂(C)と架橋剤との反応を充分に進行させることができ、第1ガスバリア調整層(III)の密着性、耐水性、および耐熱性を充分に高めることができる。塗料(P2)が金属(D)等を含む場合、金属(D)等と、ポリマー(A)またはポリマー(B)との反応を充分に進行させることができ、ガスバリア性を充分に高めることができる。加熱温度が300℃以下であると、基材層(I)に熱可塑性樹脂フィルムを用いる場合、そのフィルムが収縮して、しわが発生したり、ガスバリア層(II)および第1ガスバリア調整層(III)が脆化したりするのを確実に抑制することができる。   50-300 degreeC is preferable, as for the heating temperature of a process (2b-2), 70-250 degreeC is more preferable, and 100-200 degreeC is further more preferable. When the coating temperature (P2) contains the resin (C) and the crosslinking agent when the heating temperature is 50 ° C. or higher, the reaction between the resin (C) and the crosslinking agent can sufficiently proceed, and the first gas barrier adjustment layer The adhesion, water resistance and heat resistance of (III) can be sufficiently enhanced. When the paint (P2) contains a metal (D) or the like, the reaction between the metal (D) or the like and the polymer (A) or the polymer (B) can sufficiently proceed, and the gas barrier property can be sufficiently enhanced. it can. When the thermoplastic resin film is used for the base material layer (I) when the heating temperature is 300 ° C. or less, the film shrinks and wrinkles occur, or the gas barrier layer (II) and the first gas barrier adjustment layer ( III) can be reliably prevented from becoming brittle.

工程(2b−2)の加熱時間は、1秒間〜5分間が好ましく、3秒間〜2分間がより好ましく、5秒間〜1分間がさらに好ましい。比較的短時間で加熱工程を実施することができる。   The heating time in the step (2b-2) is preferably 1 second to 5 minutes, more preferably 3 seconds to 2 minutes, and further preferably 5 seconds to 1 minute. The heating step can be performed in a relatively short time.

加熱時間が1秒間以上であると、塗料(P2)が、樹脂(C)および架橋剤を含む場合、樹脂(C)と架橋剤との反応を充分に進行させることができ、第1ガスバリア調整層(III)の密着性、耐熱性、耐水性を充分に高めることができる。塗料(P2)が金属(D)等を含む場合、金属(D)等と、ポリマー(A)またはポリマー(B)との反応を充分に進行させることができ、ガスバリア性を充分に高めることができる。加熱時間が5分以下であると、生産性を充分に高めることができる。
[第2ガスバリア調整層の形成工程(3)]
より具体的には、工程(3)は、以下の工程(3a)および(3b)を含む。
工程(3a):第1ガスバリア調整層(III)のガスバリア層(II)と接する面と反対側の表面に、樹脂(E)を含み、かつ金属(F)等を含む、または含まない塗料(P3)を塗布する。
工程(3b):第1ガスバリア調整層(III)のガスバリア層(II)と接する面と反対側の表面に付着した塗料(P3)の塗膜を加熱する。
When the heating time is 1 second or longer, when the paint (P2) contains the resin (C) and the crosslinking agent, the reaction between the resin (C) and the crosslinking agent can be sufficiently advanced, and the first gas barrier adjustment The adhesion, heat resistance and water resistance of the layer (III) can be sufficiently enhanced. When the paint (P2) contains a metal (D) or the like, the reaction between the metal (D) or the like and the polymer (A) or the polymer (B) can sufficiently proceed, and the gas barrier property can be sufficiently enhanced. it can. Productivity can fully be improved as heating time is 5 minutes or less.
[Second Gas Barrier Adjustment Layer Formation Step (3)]
More specifically, step (3) includes the following steps (3a) and (3b).
Step (3a): a coating material containing resin (E) and containing or not containing metal (F) on the surface of the first gas barrier adjusting layer (III) opposite to the surface in contact with the gas barrier layer (II) ( P3) is applied.
Process (3b): The coating film of the coating material (P3) adhering to the surface on the opposite side to the surface which contact | connects gas barrier layer (II) of 1st gas barrier adjustment layer (III) is heated.

金属等を含む樹脂塗料(P3)では、金属等の水溶液を塗料に用いる場合と比べて、工業的に効率良く、かつ容易に、優れたガスバリア性および透明性を積層体に付与することができる。塗料(P2)が、金属等を含む場合でも、上記と同様の効果が得られる。
[工程(3a)]
生産性およびガスバリア性の制御の観点から、塗料(P3)中の金属(F)等は、塗料(P2)の金属(D)等と、同種であるのが好ましい。
In the resin paint (P3) containing metal or the like, it is possible to impart excellent gas barrier properties and transparency to the laminate more efficiently and easily than in the case of using an aqueous solution of metal or the like for the paint. . Even when the paint (P2) contains a metal or the like, the same effect as described above can be obtained.
[Step (3a)]
From the viewpoint of control of productivity and gas barrier properties, the metal (F) or the like in the paint (P3) is preferably the same type as the metal (D) or the like of the paint (P2).

塗料(P3)は、有機溶剤系塗料(溶液)、水溶液、水分散液のいずれでもよい。   The paint (P3) may be any of an organic solvent paint (solution), an aqueous solution, and an aqueous dispersion.

金属(F)等のイオン化の促進によりガスバリア層(II)の架橋密度を高める場合、塗料(P3)は水溶液または水分散液であるのが好ましい。   When the crosslinking density of the gas barrier layer (II) is increased by promoting ionization of the metal (F) or the like, the paint (P3) is preferably an aqueous solution or an aqueous dispersion.

塗料(P3)が、水への溶解性が比較的高い金属(F)等を含む水溶液または水分散液である場合、第2ガスバリア調整層(IV)の耐水性が低下する場合がある。また、塗料(P3)が、塩基性の金属(F)等を含む水溶液または水分散液であると、塗料(P3)の安定性やポットライフが低下する場合がある。よって、金属(F)等の水への溶解性が比較的高い場合、または金属(F)等が塩基性である場合、塗料(P3)は有機溶剤系塗料であるのが好ましい。   When the paint (P3) is an aqueous solution or water dispersion containing a metal (F) having a relatively high solubility in water, the water resistance of the second gas barrier adjustment layer (IV) may be lowered. Further, when the paint (P3) is an aqueous solution or aqueous dispersion containing a basic metal (F) or the like, the stability and pot life of the paint (P3) may be lowered. Therefore, when the solubility of the metal (F) or the like in water is relatively high, or when the metal (F) or the like is basic, the paint (P3) is preferably an organic solvent-based paint.

塗料(P3)が優れた透明性を有するためには、金属(F)等は、微粒子状であるのが好ましい。塗膜の透明性および塗膜中での分散性の観点から、金属(F)等の平均粒子径は、10μm以下が好ましく、3μm以下がより好ましく、1μm以下がさらに好ましい。   In order for the paint (P3) to have excellent transparency, the metal (F) or the like is preferably in the form of fine particles. From the viewpoint of transparency of the coating film and dispersibility in the coating film, the average particle diameter of the metal (F) is preferably 10 μm or less, more preferably 3 μm or less, and even more preferably 1 μm or less.

塗料(P3)を、金属(F)等の微粒子を含む懸濁液として用いる場合、乾燥時に微粒子が凝集した状態で析出したり、それにより外観不良(透明性の低い部分)を生じたりすることを防ぐために、分散剤(H)を加えて微粒子を充分に分散させた塗料(P3)を用いることが好ましい。   When the paint (P3) is used as a suspension containing fine particles of metal (F) or the like, the fine particles may precipitate when dried, resulting in poor appearance (parts with low transparency). In order to prevent this, it is preferable to use a paint (P3) in which a dispersant (H) is added and fine particles are sufficiently dispersed.

金属(F)を含む化合物が、MgおよびCaの少なくとも一方を含む酸化物、水酸化物、または炭酸塩である場合、上記の分散剤(H)を用いることにより、金属(F)を含む化合物を、樹脂(E)の固形分(さらに架橋剤を含む場合、樹脂(E)と架橋剤とを合計した固形分)100質量部あたり65質量部添加しても、塗料(P3)の塗布時に透明な塗膜を形成することができる。   When the compound containing metal (F) is an oxide, hydroxide, or carbonate containing at least one of Mg and Ca, the compound containing metal (F) is obtained by using the dispersant (H). Even when 65 parts by mass of 100 parts by mass of the solid content of the resin (E) (in the case of further containing a crosslinking agent, the total solid content of the resin (E) and the crosslinking agent) is applied at the time of application of the paint (P3) A transparent coating film can be formed.

金属(F)等を塗料(P3)に含ませる方法には、金属(D)等を塗料(P2)に含ませる場合に用いられる方法を用いればよい。   As a method of including the metal (F) or the like in the paint (P3), a method used when the metal (D) or the like is included in the paint (P2) may be used.

樹脂(E)には、樹脂(C)で用いられる樹脂材料を用いればよい。   For the resin (E), a resin material used for the resin (C) may be used.

第1ガスバリア調整層(III)と第2ガスバリア調整層(IV)との間の密着性の観点から、樹脂(E)は、樹脂(C)と、同種の樹脂材料であるのが好ましい。   From the viewpoint of adhesion between the first gas barrier adjustment layer (III) and the second gas barrier adjustment layer (IV), the resin (E) is preferably the same type of resin material as the resin (C).

第2ガスバリア調整層(IV)の耐水性、耐溶剤性等を高めるために、塗料(P3)に架橋剤を添加してもよい。架橋剤としては、塗料(P2)の架橋剤に用いられる材料を用いればよい。   In order to improve the water resistance, solvent resistance, etc. of the second gas barrier adjustment layer (IV), a crosslinking agent may be added to the paint (P3). What is necessary is just to use the material used for the crosslinking agent of a coating material (P2) as a crosslinking agent.

架橋剤の添加量は、樹脂(E)の固形分100質量部あたり0.1〜300質量部が好ましく、1〜100質量部がより好ましく、3〜50質量部がさらに好ましい。架橋剤の添加量が0.1質量部以上であると、架橋剤の添加による効果が充分に得られる。架橋剤の添加量が300質量部以下であると、架橋剤がガスバリア性に悪影響を及ぼすことがない。   0.1-300 mass parts is preferable per 100 mass parts of solid content of resin (E), and, as for the addition amount of a crosslinking agent, 1-100 mass parts is more preferable, and 3-50 mass parts is more preferable. The effect by addition of a crosslinking agent is fully acquired as the addition amount of a crosslinking agent is 0.1 mass part or more. When the added amount of the crosslinking agent is 300 parts by mass or less, the crosslinking agent does not adversely affect the gas barrier property.

塗料(P3)が、さらに架橋剤を含む場合、塗料(P3)中の金属(F)等の含有量M2は、樹脂(E)と架橋剤とを合計した固形分100質量部あたりの量である。   When the coating material (P3) further contains a crosslinking agent, the content M2 of the metal (F) and the like in the coating material (P3) is an amount per 100 parts by mass of the solid content obtained by adding the resin (E) and the crosslinking agent. is there.

塗料(P3)は、溶媒または分散媒として水または有機溶剤を含む。   The paint (P3) contains water or an organic solvent as a solvent or a dispersion medium.

塗料(P3)は、塗膜の安定性、ポットライフ、および耐水性の観点から、有機溶剤系塗料(溶液)であることが好ましい。したがって、塗料(P3)に用いられる樹脂(E)および架橋剤は、有機溶媒に可溶であることが好ましい。塗布性および生産性の観点から、塗料(P3)に用いられる樹脂(E)と架橋剤との組み合わせとしては、ガラス転移温度Tgが70℃以下のポリエステルポリオールと、ポリイソシアネートとの組み合わせが好ましい。   The paint (P3) is preferably an organic solvent-based paint (solution) from the viewpoints of coating film stability, pot life, and water resistance. Therefore, it is preferable that the resin (E) and the crosslinking agent used for the paint (P3) are soluble in an organic solvent. From the viewpoint of applicability and productivity, the combination of the resin (E) used in the coating material (P3) and the crosslinking agent is preferably a combination of a polyester polyol having a glass transition temperature Tg of 70 ° C. or less and a polyisocyanate.

塗料(P3)の濃度は、塗工装置や乾燥・加熱装置の仕様に応じて適宜決めればよい。ここでいう、塗料(P3)の濃度とは、塗料(P3)のうち固形分が占める質量割合のことをいう。塗料(P3)の濃度は、5〜50質量%が好ましい。塗料(P3)の濃度が5質量%以上であると、充分な厚みの第2ガスバリア調整層(IV)を形成することができる。また、乾燥時間を短くすることができ、生産性を高めることができる。塗料(P3)
の濃度が50質量%以下であると、良好な塗布性を充分に確保することができ、均一な塗膜を容易に得ることができる。
The concentration of the paint (P3) may be appropriately determined according to the specifications of the coating apparatus and the drying / heating apparatus. The density | concentration of a coating material (P3) here means the mass ratio for which solid content accounts for a coating material (P3). The concentration of the paint (P3) is preferably 5 to 50% by mass. When the concentration of the paint (P3) is 5% by mass or more, the second gas barrier adjustment layer (IV) having a sufficient thickness can be formed. Moreover, drying time can be shortened and productivity can be improved. Paint (P3)
When the concentration is 50% by mass or less, satisfactory coating properties can be sufficiently ensured, and a uniform coating film can be easily obtained.

塗料(P3)を塗布する方法としては、塗料(P2)を塗布する場合に用いられる方法を用いればよい。
[工程(3b)]
より具体的には、加熱工程(3b)は、以下の工程(3b−1)および(3b−2)を含む。
工程(3b−1):塗料(P3)の塗膜を乾燥させ、塗膜から溶媒または分散媒を除去する。
工程(3b−2):塗料(P3)が金属(F)等を含み、その一部がガスバリア層(II)へ移動する場合、金属(F)等の一部と、ガスバリア層(II)中のポリマー(A)またはポリマー(B)とを反応させる。
As a method for applying the paint (P3), a method used when applying the paint (P2) may be used.
[Step (3b)]
More specifically, the heating step (3b) includes the following steps (3b-1) and (3b-2).
Step (3b-1): The coating film of the paint (P3) is dried, and the solvent or the dispersion medium is removed from the coating film.
Step (3b-2): When the paint (P3) contains metal (F) and a part thereof moves to the gas barrier layer (II), part of the metal (F) and the like in the gas barrier layer (II) The polymer (A) or polymer (B) is reacted.

工程(3b−2)により、ガスバリア層(II)内において架橋Yが形成される。   By the step (3b-2), a bridge Y is formed in the gas barrier layer (II).

工程(3b)は、金属(D)等とポリマー(A)またはポリマー(B)とを反応させる工程を含んでいてもよい。   Step (3b) may include a step of reacting metal (D) or the like with polymer (A) or polymer (B).

塗料(P3)が、さらに架橋剤を含む場合、工程(3b)は、さらに樹脂(E)と架橋剤とを反応させる工程(3b−3)を含む。   When the paint (P3) further contains a crosslinking agent, the step (3b) further includes a step (3b-3) of reacting the resin (E) with the crosslinking agent.

工程(3b)では、工程(3b−1)の後、工程(3b−2)を行ってもよく、工程(3b−1)と工程(3b−2)とを同時に行ってもよい。   In step (3b), step (3b-2) may be performed after step (3b-1), or step (3b-1) and step (3b-2) may be performed simultaneously.

ガスバリア層(II)、第1ガスバリア調整層(III)、および第2ガスバリア調整層(IV)の状態やガスバリア性等の物性に特に悪影響がない限り、工程の短縮等の生産性向上の観点から、工程(3a)の後、直ちに工程(3b−1)と工程(3b−2)とを同時に実施することが好ましい。   From the viewpoint of improving productivity, such as shortening the process, as long as there is no particular adverse effect on physical properties such as the gas barrier layer (II), the first gas barrier adjustment layer (III), and the second gas barrier adjustment layer (IV) and gas barrier properties. It is preferable that the step (3b-1) and the step (3b-2) are performed at the same time immediately after the step (3a).

工程(3b−1)の加熱方法としては、例えば、ドライヤー等による熱風の吹き付けや赤外線照射が挙げられる。   Examples of the heating method in the step (3b-1) include hot air blowing using a dryer or infrared irradiation.

工程(3b−2)の加熱方法(工程(3b−1)と工程(3b−2)とを同時に行う場合を含む。)は、特に限定されないが、一般的には乾燥雰囲気下でオーブン等により加熱する方法が挙げられる。これ以外に、熱ロールと接触させて加熱してもよい。   The heating method of step (3b-2) (including the case where step (3b-1) and step (3b-2) are performed simultaneously) is not particularly limited, but is generally performed by an oven or the like in a dry atmosphere. The method of heating is mentioned. In addition, it may be heated by contacting with a hot roll.

工程(3b−2)の加熱条件(工程(3b−1)と工程(3b−2)とを同時に行う場合を含む。)は、樹脂(E)と金属(F)等との配合比、添加剤の有無、添加剤の種類およびその量等に応じて適宜決めればよい。   The heating conditions of the step (3b-2) (including the case where the step (3b-1) and the step (3b-2) are simultaneously performed) are the compounding ratio of the resin (E) and the metal (F), and the addition What is necessary is just to determine suitably according to the presence or absence of an agent, the kind of additive, its quantity, etc.

工程(3b−2)の加熱温度は、50〜300℃が好ましく、70〜250℃がより好ましく、100〜200℃がさらに好ましい。加熱温度が50℃以上であると、金属(F)等と、ガスバリア層(II)のポリマー(A)またはポリマー(B)との反応を充分に進行させることができ、ガスバリア性を充分に高めることができる。また、塗料(P3)が樹脂(E)および架橋剤を含む場合、塗料(P3)中の樹脂(E)と架橋剤との架橋反応を充分に進行させることができ、第2ガスバリア調整層(IV)の密着性、耐水性、および耐熱性を充分に高めることができる。加熱温度が300℃以下であると、基材層(I)に熱可塑性樹脂フィルムを用いる場合、そのフィルムが収縮して、しわが発生したり、ガスバリア層(II)、第1ガスバリア調整層(III)、および第2ガスバリア調整層(IV)が脆化したりするのを確実に抑制することができる。   50-300 degreeC is preferable, as for the heating temperature of a process (3b-2), 70-250 degreeC is more preferable, and 100-200 degreeC is further more preferable. When the heating temperature is 50 ° C. or higher, the reaction between the metal (F) or the like and the polymer (A) or polymer (B) of the gas barrier layer (II) can be sufficiently advanced, and the gas barrier property is sufficiently enhanced. be able to. Further, when the paint (P3) contains the resin (E) and a cross-linking agent, the cross-linking reaction between the resin (E) and the cross-linking agent in the paint (P3) can sufficiently proceed, and the second gas barrier adjusting layer ( The adhesion, water resistance, and heat resistance of IV) can be sufficiently enhanced. When the thermoplastic resin film is used for the base material layer (I) when the heating temperature is 300 ° C. or less, the film shrinks and wrinkles occur, or the gas barrier layer (II), the first gas barrier adjustment layer ( III) and the second gas barrier adjustment layer (IV) can be reliably prevented from becoming brittle.

工程(3b−2)の加熱時間は、好ましくは1秒間〜5分間、より好ましくは3秒間〜2分間、さらに好ましくは5秒間〜1分間である。比較的短時間で加熱工程を実施することができる。   The heating time in the step (3b-2) is preferably 1 second to 5 minutes, more preferably 3 seconds to 2 minutes, and further preferably 5 seconds to 1 minute. The heating step can be performed in a relatively short time.

加熱時間が1秒間以上であると、金属(F)等と、ガスバリア層(II)のポリマー(A)またはポリマー(B)との反応を充分に進行させることができ、ガスバリア性を充分に高めることができる。また、塗料(P3)が樹脂(E)および架橋剤を含む場合、樹脂(E)と架橋剤との架橋反応を充分に進行させることができ、第2ガスバリア調整層(IV)の密着性、耐水性、耐熱性を充分に高めることができる。加熱時間が5分間以下であると、生産性を充分に高めることができる。
[トップコート層(V)の形成工程(4)]
さらにトップコート層(V)を形成する場合、ガスバリア性積層体の製造方法は、例えば、第2ガスバリア調整層(IV)のガスバリア調整層と接する面と反対側の表面に、樹脂(G)を含む塗料(P4)を用いて、トップコート層を形成する工程(4)を含む。
When the heating time is 1 second or longer, the reaction between the metal (F) or the like and the polymer (A) or polymer (B) of the gas barrier layer (II) can be sufficiently advanced, and the gas barrier property is sufficiently enhanced. be able to. Further, when the paint (P3) contains the resin (E) and a crosslinking agent, the crosslinking reaction between the resin (E) and the crosslinking agent can sufficiently proceed, and the adhesion of the second gas barrier adjustment layer (IV), Water resistance and heat resistance can be sufficiently enhanced. If the heating time is 5 minutes or less, the productivity can be sufficiently increased.
[Formation process (4) of topcoat layer (V)]
Furthermore, when forming a topcoat layer (V), the manufacturing method of a gas-barrier laminated body is resin (G) on the surface on the opposite side to the surface which contact | connects the gas barrier adjustment layer of 2nd gas barrier adjustment layer (IV), for example. A step (4) of forming a topcoat layer using the coating material (P4) is included.

具体的には、工程(4)は、以下の工程(4a)および工程(4b)を含む。
工程(4a):第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)と接する面と反対側の表面に、塗料(P4)を塗布する。
工程(4b):第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)と接する面と反対側の表面に付着した塗料(P4)の塗膜を加熱する。
[工程(4a)]
塗料(P4)中の樹脂(G)としては、塗料(P2)中の樹脂(C)に用いられる材料を用いればよい。
Specifically, the step (4) includes the following step (4a) and step (4b).
Step (4a): The paint (P4) is applied to the surface of the second gas barrier adjustment layer (IV) opposite to the surface in contact with the first gas barrier adjustment layer (III).
Process (4b): The coating film of the coating material (P4) adhering to the surface on the opposite side to the surface which contact | connects the 1st gas barrier adjustment layer (III) of 2nd gas barrier adjustment layer (IV) is heated.
[Step (4a)]
As the resin (G) in the paint (P4), a material used for the resin (C) in the paint (P2) may be used.

塗料(P4)は、有機溶剤系塗料(溶液)、水溶液、水分散液のいずれでもよい。第1ガスバリア調整層(III)中の金属(D)等および第2ガスバリア調整層(IV)中の金属(F)等をイオン化させて、それらとガスバリア層(II)中のポリマー(A)またはポリマー(B)とを反応させ、ガスバリア層(II)内にて金属架橋を形成するためには、塗料(P4)は、水溶液または水分散液であることが好ましい。   The paint (P4) may be an organic solvent-based paint (solution), an aqueous solution, or an aqueous dispersion. The metal (D) or the like in the first gas barrier adjustment layer (III) and the metal (F) or the like in the second gas barrier adjustment layer (IV) are ionized, and the polymer (A) or the gas in the gas barrier layer (II) or In order to react with the polymer (B) and form a metal bridge in the gas barrier layer (II), the paint (P4) is preferably an aqueous solution or an aqueous dispersion.

トップコート層(V)の耐水性、耐溶剤性等を高めるために、塗料(P4)に架橋剤を添加してもよい。架橋剤には、塗料(P2)の架橋剤に用いられる材料を用いればよい。架橋剤の添加量は、樹脂(G)の固形分100質量部あたり0.1〜300質量部が好ましく、1〜100質量部がより好ましく、3〜50質量部がさらに好ましい。   In order to improve the water resistance, solvent resistance, etc. of the topcoat layer (V), a cross-linking agent may be added to the paint (P4). What is necessary is just to use the material used for the crosslinking agent of a coating material (P2) for a crosslinking agent. 0.1-300 mass parts is preferable per 100 mass parts of solid content of resin (G), and, as for the addition amount of a crosslinking agent, 1-100 mass parts is more preferable, and 3-50 mass parts is more preferable.

塗料(P4)の濃度は、塗工装置、乾燥・加熱装置の仕様に応じて適宜決めればよい。ここでいう塗料(P4)の濃度とは、塗料(P)のうち固形分が占める質量割合のことをいう。塗布性および生産性の観点から、塗料(P4)の濃度は、5〜50質量%が好ましい。   The concentration of the paint (P4) may be appropriately determined according to the specifications of the coating device and the drying / heating device. The density | concentration of a coating material (P4) here means the mass ratio for which solid content accounts for a coating material (P). From the viewpoint of applicability and productivity, the concentration of the paint (P4) is preferably 5 to 50% by mass.

塗料(P4)を塗布する方法としては、塗料(P2)を塗布する場合に用いられる方法を用いればよい。
[工程(4b)]
具体的には、工程(4b)は、以下の工程(4b−1)および工程(4b−2)を含む。
工程(4b−1):塗膜を乾燥させ、塗膜から溶媒または分散媒を除去する。
工程(4b−2):塗料(P4)が水系の塗料である場合、金属(D)等および金属(F)等の少なくとも一方とポリマー(A)またはポリマー(B)との反応をさらに促進させる。
As a method of applying the paint (P4), a method used when applying the paint (P2) may be used.
[Step (4b)]
Specifically, the step (4b) includes the following step (4b-1) and step (4b-2).
Step (4b-1): The coating film is dried, and the solvent or dispersion medium is removed from the coating film.
Step (4b-2): When the paint (P4) is a water-based paint, the reaction between at least one of the metal (D) and the metal (F) and the polymer (A) or the polymer (B) is further promoted. .

塗料(P4)が、さらに架橋剤を含む場合、工程(4b)は、さらに樹脂(G)と架橋剤とを反応させる工程(4b−3)を含む。   When the paint (P4) further contains a crosslinking agent, the step (4b) further includes a step (4b-3) of reacting the resin (G) with the crosslinking agent.

生産性の観点から、工程(4a)の後、直ちに工程(4b)を実施するのが好ましい。工程(4b)では、工程(4b−1)の後、工程(4b−2)を行ってもよく、工程(4b−1)と工程(4b−2)とを同時に行ってもよい。   From the viewpoint of productivity, it is preferable to perform the step (4b) immediately after the step (4a). In step (4b), step (4b-2) may be performed after step (4b-1), or step (4b-1) and step (4b-2) may be performed simultaneously.

ガスバリア層(II)、第1ガスバリア調整層(III)、第2ガスバリア調整層(IV)、およびトップコート層(V)の状態やガスバリア性等の物性に特に悪影響がない限り、工程の短縮等の生産性向上の観点から、工程(4a)の後、直ちに工程(4b−1)と工程(4b−2)とを同時に実施することが好ましい。   Unless the gas barrier layer (II), the first gas barrier adjustment layer (III), the second gas barrier adjustment layer (IV), and the top coat layer (V) have a particularly adverse effect on the physical properties such as the gas barrier properties, etc. From the viewpoint of improving productivity, it is preferable that the step (4b-1) and the step (4b-2) are performed at the same time immediately after the step (4a).

工程(4b−1)の加熱方法としては、例えば、ドライヤー等による熱風の吹き付けや赤外線照射が挙げられる。   Examples of the heating method in the step (4b-1) include hot air blowing using a dryer or infrared irradiation.

工程(4b−2)の加熱方法(工程(4b−1)と工程(4b−2)とを同時に行う場合を含む。)は、特に限定されないが、一般的には乾燥雰囲気下でオーブン等により加熱する方法が挙げられる。これ以外に、熱ロールと接触させて加熱してもよい。   The heating method of step (4b-2) (including the case where step (4b-1) and step (4b-2) are performed simultaneously) is not particularly limited, but is generally performed by an oven or the like in a dry atmosphere. The method of heating is mentioned. In addition, it may be heated by contacting with a hot roll.

また、生産性の観点から、以下の方法により、第2ガスバリア調整層(IV)およびトップコート層(V)を同時に形成するのが好ましい。第1ガスバリア調整層(III)の表面に塗料(P3)を塗布した後、乾燥して塗料(P3)の乾燥被膜を形成する。塗料(P3)の乾燥被膜の表面に塗料(P4)を塗布した後、乾燥して塗料(P4)の乾燥被膜を形成する。その後、両乾燥被膜を同時に加熱し、工程(3b−2)および工程(4b−2)を同時に実施する。   From the viewpoint of productivity, it is preferable to form the second gas barrier adjustment layer (IV) and the topcoat layer (V) simultaneously by the following method. The coating material (P3) is applied to the surface of the first gas barrier adjustment layer (III) and then dried to form a dry film of the coating material (P3). The coating material (P4) is applied to the surface of the dried coating film of the coating material (P3), and then dried to form a dried coating film of the coating material (P4). Then, both dry films are heated simultaneously, and the step (3b-2) and the step (4b-2) are performed simultaneously.

工程(4b−2)の加熱温度は、50〜300℃が好ましく、70〜250℃がより好ましく、100〜200℃がさらに好ましい。加熱温度が50℃以上であると、工程(3b−2)の反応をさらに促進させることを充分に行うことができる。また、塗料(P4)が樹脂(G)および架橋剤を含む場合、樹脂(G)と架橋剤との架橋反応を充分に進行させることができる。その結果、トップコート層の密着性、耐水性、および耐熱性を充分に高めることができる。加熱温度が300℃以下であると、基材層(I)に熱可塑性樹脂フィルムを用いる場合、そのフィルムが収縮して、しわが発生したり、ガスバリア層(II)、第1ガスバリア調整層(III)、第2ガスバリア調整層(IV)、およびトップコート層(V)が脆化したりするのを確実に抑制することができる。   50-300 degreeC is preferable, as for the heating temperature of a process (4b-2), 70-250 degreeC is more preferable, and 100-200 degreeC is further more preferable. When the heating temperature is 50 ° C. or higher, it is possible to sufficiently promote the reaction in the step (3b-2). Moreover, when the coating material (P4) contains resin (G) and a crosslinking agent, the crosslinking reaction of resin (G) and a crosslinking agent can fully be advanced. As a result, the adhesion, water resistance, and heat resistance of the topcoat layer can be sufficiently enhanced. When the thermoplastic resin film is used for the base material layer (I) when the heating temperature is 300 ° C. or less, the film shrinks and wrinkles occur, or the gas barrier layer (II), the first gas barrier adjustment layer ( III), the second gas barrier adjustment layer (IV), and the topcoat layer (V) can be reliably prevented from becoming brittle.

工程(4b−2)の加熱時間は、1秒間〜5分間が好ましく、3秒間〜2分間がより好ましく、5秒間〜1分間がさらに好ましい。加熱時間が1秒間以上であると、工程(3b−2)の反応をさらに促進させることを充分に行うことができる。また、塗料(P4)が樹脂(G)および架橋剤を含む場合、樹脂(G)と架橋剤との反応を充分に進行させることができ、トップコート層の密着性、耐熱性、および耐水性を充分に高めることができる。加熱時間が5分間以下であると、生産性を充分に高めることができる。
<ガスバリア性複合体>
本発明のガスバリア性複合体は、基材層(I)、ガスバリア層(II)、第1ガスバリア調整層(III)、第2ガスバリア調整層(IV)、トップコート層(V)の順で積み重ねられたガスバリア性積層体と、接着剤層(VI)と、ヒートシール層(VII)とを有する。
The heating time in the step (4b-2) is preferably 1 second to 5 minutes, more preferably 3 seconds to 2 minutes, and further preferably 5 seconds to 1 minute. When the heating time is 1 second or longer, the reaction in the step (3b-2) can be further promoted sufficiently. Further, when the paint (P4) contains a resin (G) and a crosslinking agent, the reaction between the resin (G) and the crosslinking agent can sufficiently proceed, and the adhesion, heat resistance, and water resistance of the topcoat layer can be increased. Can be sufficiently increased. If the heating time is 5 minutes or less, the productivity can be sufficiently increased.
<Gas barrier composite>
In the gas barrier composite of the present invention, the base layer (I), the gas barrier layer (II), the first gas barrier adjustment layer (III), the second gas barrier adjustment layer (IV), and the topcoat layer (V) are stacked in this order. The obtained gas barrier laminate, the adhesive layer (VI), and the heat seal layer (VII) are included.

本発明のガスバリア性複合体の第1の好ましい態様としては、ガスバリア性積層体と、トップコート層(V)の第2層ガスバリア調整層と接する面と反対側の面に形成された接着剤層(VI)と、接着剤層(VI)のトップコート層(V)と接する面と反対側の面に形成されたにヒートシール層(VII)とを有する。すなわち、(I)、(II)、(III)、(IV)、(V)、(VI)、および(VII)の順に積層される。   As a first preferred embodiment of the gas barrier composite of the present invention, a gas barrier laminate and an adhesive layer formed on the surface of the topcoat layer (V) opposite to the surface in contact with the second gas barrier adjustment layer (VI) and a heat seal layer (VII) formed on the surface of the adhesive layer (VI) opposite to the surface in contact with the topcoat layer (V). That is, (I), (II), (III), (IV), (V), (VI), and (VII) are laminated in this order.

この場合、トップコート層(V)と接着剤層(VI)との間に、さらに印刷層、プライマー層、または帯電防止層を配置してもよい。
トップコート層(V)と接着剤層(VI)との間の密着性を高めるために、接着剤層(VI)を形成する前に、トップコート層(V)の接着剤層(VI)と接する面に、コロナ処理、オゾン処理等の表面処理を施してもよい。
In this case, a printing layer, a primer layer, or an antistatic layer may be further disposed between the topcoat layer (V) and the adhesive layer (VI).
In order to improve the adhesion between the topcoat layer (V) and the adhesive layer (VI), before forming the adhesive layer (VI), the adhesive layer (VI) of the topcoat layer (V) You may perform surface treatments, such as a corona treatment and an ozone treatment, to the surface to contact | connect.

本発明のガスバリア性複合体の第2の好ましい態様としては、ガスバリア性積層体と、基材層(I)のガスバリア層と接する面と反対側の面に形成された接着層(VI)と、接着剤層(VI)の基材層(I)と接する面と反対側の面に形成されたヒートシール層(VII)とを有する。すなわち、(VII)、(VI)、(I)、(II)、(III)、(IV)、および(V)の順に積層される。この場合、接着剤層(VI)と、基材層(I)との間に、さらに印刷層、プライマー層、または帯電防止層を配置してもよい。   As a second preferred embodiment of the gas barrier composite of the present invention, a gas barrier laminate, and an adhesive layer (VI) formed on the surface of the base material layer (I) opposite to the surface in contact with the gas barrier layer, It has the heat seal layer (VII) formed in the surface on the opposite side to the surface which contact | connects the base material layer (I) of adhesive bond layer (VI). That is, (VII), (VI), (I), (II), (III), (IV), and (V) are laminated in this order. In this case, you may arrange | position a printing layer, a primer layer, or an antistatic layer further between adhesive layer (VI) and base material layer (I).

基材層(I)と接着剤層(VI)との間の密着性を高めるために、接着剤層(VI)を形成する前に、基材層(I)の接着剤層(VI)と接する面に、コロナ処理、オゾン処理などの表面処理を施してもよい。   In order to increase the adhesion between the base material layer (I) and the adhesive layer (VI), before forming the adhesive layer (VI), the adhesive layer (VI) of the base material layer (I) A surface treatment such as corona treatment or ozone treatment may be applied to the contact surface.

積層体は、擦傷性および磨耗性の観点から、第1の好ましい態様がより好ましい。   The laminated body is more preferably the first preferred embodiment from the viewpoints of scratching and abrasion.

上記ガスバリア性積層体がトップコート層(V)を有しない場合は、第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)と接する面と反対側の面に、接着剤層(VI)を形成し、さらに接着剤層(VI)の上に、オーバーコート層(VII)を形成すればよい。すなわち、(I)、(II)、(III)、(IV)、(VI)、および(VII)の順に積層すればよい。
<印刷層>
印刷層は、インクにより文字、絵柄等が印刷された層である。インクは、例えば、バインダー樹脂および添加剤を含む。バインダー樹脂には、例えば、ウレタン系、アクリル系、ニトロセルロース系、ゴム系、塩化ビニル系等の樹脂材料が用いられる。添加剤には、例えば、各種顔料、可塑剤、乾燥剤、安定剤が用いられる。
When the gas barrier laminate does not have a topcoat layer (V), an adhesive layer (VI) is formed on the surface of the second gas barrier adjustment layer (IV) opposite to the surface in contact with the first gas barrier adjustment layer (III). And an overcoat layer (VII) may be formed on the adhesive layer (VI). That is, (I), (II), (III), (IV), (VI), and (VII) may be laminated in this order.
<Print layer>
The print layer is a layer on which characters, designs, etc. are printed with ink. The ink includes, for example, a binder resin and an additive. As the binder resin, for example, resin materials such as urethane, acrylic, nitrocellulose, rubber, and vinyl chloride are used. As the additive, for example, various pigments, plasticizers, drying agents, and stabilizers are used.

印刷層の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、シルクスクリーン印刷法等の周知の印刷方式や、ロールコート、ナイフエッジコート、グラビアーコート等の周知の塗布方式が用いられる。
<接着剤層(VI)>
接着剤層(VI)は、ヒートシール層(VII)のガスバリア性積層体への密着性を高めるために形成される。
As a method for forming the printing layer, for example, a known printing method such as an offset printing method, a gravure printing method, a silk screen printing method, or a known coating method such as roll coating, knife edge coating, or gravure coating is used.
<Adhesive layer (VI)>
The adhesive layer (VI) is formed in order to improve the adhesion of the heat seal layer (VII) to the gas barrier laminate.

接着剤層(VI)の形成に使用される塗料(P5)の材料としては、公知のものが用いられる。例えば、イソシアネート系、ポリウレタン系、ポリエステル系、ポリエチレンイミン系、ポリブタジエン系、ポリオレフィン系、アルキルチタネート系の樹脂材料が挙げられる。密着性、耐熱性、耐水性の観点から、これらのなかでも、イソシアネート系、ポリウレタン系、およびポリエステル系の樹脂材料が好ましい。   As the material of the paint (P5) used for forming the adhesive layer (VI), known materials are used. Examples of the resin material include isocyanate, polyurethane, polyester, polyethyleneimine, polybutadiene, polyolefin, and alkyl titanate. Of these, isocyanate-based, polyurethane-based, and polyester-based resin materials are preferable from the viewpoints of adhesion, heat resistance, and water resistance.

より具体的には、塗料(P5)の材料は、イソシアネート化合物、ポリウレタン、もしくはウレタンプレポリマー、またはそれらの混合物が好ましい。また、ポリエステル、ポリオール、およびポリエーテルからなる群より選択される少なくとも1種と、イソシアネートとの混合物であるのが好ましい。   More specifically, the material of the paint (P5) is preferably an isocyanate compound, polyurethane, or urethane prepolymer, or a mixture thereof. Moreover, it is preferable that it is a mixture of at least 1 sort (s) selected from the group which consists of polyester, a polyol, and polyether, and an isocyanate.

塗布性の観点から、塗料(P5)は、上記材料の溶液または分散液であることが好ましい。   From the viewpoint of applicability, the paint (P5) is preferably a solution or dispersion of the above material.

接着剤層(VI)は、上記材料の1種で構成されてもよく、上記材料の2種以上を組み合わせた混合物またはその反応生成物で構成されてもよい。   The adhesive layer (VI) may be composed of one of the above materials, a mixture of two or more of the above materials, or a reaction product thereof.

接着剤層(VI)の厚みは、0.1〜10μmであるのが好ましい。接着剤層(VI)の厚みが0.1μm以上であると、ヒートシール層(VII)の密着性を充分に高めることができる。接着剤層(VI)の厚みが10μm以下であると、生産性を充分に高めることができ、かつコスト面で有利である。   The thickness of the adhesive layer (VI) is preferably 0.1 to 10 μm. When the thickness of the adhesive layer (VI) is 0.1 μm or more, the adhesion of the heat seal layer (VII) can be sufficiently enhanced. When the thickness of the adhesive layer (VI) is 10 μm or less, the productivity can be sufficiently increased and the cost is advantageous.

接着剤層(VI)を形成する手法としては、公知の方法を用いればよい。例えば、ドライラミネーション法、ウエットラミネーション法、無溶剤ドライラミネーション法、押し出しラミネーション法等のラミネーション法;二つ以上の樹脂層を同時に押出して積層する共押し出し法;コーター等にて膜を生成するコーティング法が挙げられる。得られる層(VI)および(VII)の密着性、耐熱性、耐水性の観点から、ドライラミネーション法が好ましい。
<ヒートシール層(VII)>
ヒートシール層(VII)は、ガスバリア性積層体を用いて包装体を得る際、ガスバリア性積層体を重ね合わせ、所定箇所(周縁部等)を熱により接着するために、ガスバリア性積層体に設けられる。
A known method may be used as a method for forming the adhesive layer (VI). For example, lamination methods such as dry lamination method, wet lamination method, solvent-free dry lamination method, extrusion lamination method, etc .; co-extrusion method in which two or more resin layers are simultaneously extruded and laminated; coating method in which a film is formed with a coater Is mentioned. From the viewpoint of adhesion, heat resistance and water resistance of the obtained layers (VI) and (VII), a dry lamination method is preferred.
<Heat seal layer (VII)>
The heat seal layer (VII) is provided on the gas barrier laminate so that when the package is obtained using the gas barrier laminate, the gas barrier laminate is overlapped and a predetermined portion (peripheral portion, etc.) is adhered by heat. It is done.

ヒートシール層(VII)には、熱シール、高周波シールなどに使用可能な材料を用いればよい。例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、ポリプロピレン、エチレン−アクリル酸共重合体、エチレン−アクリル酸塩共重合体、エチレン−アクリレート共重合体が挙げられる。   For the heat seal layer (VII), a material that can be used for heat seal, high frequency seal, and the like may be used. For example, low density polyethylene, linear low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, ethylene-acrylic acid copolymer, ethylene-acrylate copolymer, ethylene-acrylate copolymer Is mentioned.

ヒートシール層(VII)の厚みは、目的に応じて適宜決めればよいが、一般的に15〜200μmである。   The thickness of the heat seal layer (VII) may be appropriately determined according to the purpose, but is generally 15 to 200 μm.

ヒートシール層(VII)を形成する手法としては、接着剤層(VI)の形成で用いられる手法を用いればよい。   As a method for forming the heat seal layer (VII), a method used for forming the adhesive layer (VI) may be used.

ガスバリア性積層体またはガスバリア性複合体(以下、単に、積層体等)のガスバリア性をさらに高める目的で、積層体等を加湿処理してもよい。これにより、金属等と、ガスバリア層(II)中のポリマー(A)またはポリマー(B)との反応をさらに促進させることができる。加湿処理としては、例えば、高温および高湿度の環境下で積層体等を放置することや、積層体等を高温の水に接触させることが挙げられる。加湿処理の条件は目的により異なるが、高温および高湿度の環境下で積層体等を放置する場合は、温度30〜130℃および相対湿度50〜100%が好ましい。積層体等を高温の水に接触させる場合も、温度30〜130℃程度(100℃以上は加圧下)が好ましい。環境温度が30℃以上であると、加湿処理を充分に行うことができる。環境温度が130℃以下であると、プラスチック基材層が熱的なダメージを受けるのを確実に防ぐことができる。加湿処理の時間は、例えば、数秒から数百時間までの範囲である。   For the purpose of further enhancing the gas barrier properties of the gas barrier laminate or gas barrier composite (hereinafter simply referred to as laminate), the laminate may be humidified. Thereby, reaction with a metal etc. and the polymer (A) or polymer (B) in gas barrier layer (II) can further be accelerated | stimulated. Examples of the humidification treatment include leaving the laminated body or the like under a high temperature and high humidity environment, or bringing the laminated body or the like into contact with high temperature water. The conditions of the humidification treatment vary depending on the purpose, but when a laminate or the like is left in an environment of high temperature and high humidity, a temperature of 30 to 130 ° C. and a relative humidity of 50 to 100% are preferable. Also when a laminated body etc. are made to contact high temperature water, the temperature of about 30-130 degreeC (100 degreeC or more is under pressure) is preferable. When the environmental temperature is 30 ° C. or higher, the humidification treatment can be sufficiently performed. It can prevent reliably that a plastic base material layer receives a thermal damage as environmental temperature is 130 degrees C or less. The time for the humidification treatment is, for example, in the range from several seconds to several hundred hours.

本発明の積層体等は、揮発性の高い内容物を含む包装体を熱殺菌処理する場合に包装体の外観を重視する必要がある様々な分野に適用することができ、特に食品を包装するための包装体を用いる分野に好適に用いられる。揮発性の成分としては、酢酸、プロピオン酸、酪酸、イソ吉草酸などの酸や、エタノール、イソブタノール、n−プロパノールなどのアルコールが挙げられる。本発明の積層体は、なかでも、揮発性の成分として、酢酸またはエタノールを含む内容物の包装体として特に効果的である。   The laminate and the like of the present invention can be applied to various fields in which the appearance of the package needs to be emphasized when a package containing a highly volatile content is subjected to a heat sterilization treatment. Therefore, it is suitably used in the field of using a package for the purpose. Examples of the volatile component include acids such as acetic acid, propionic acid, butyric acid, and isovaleric acid, and alcohols such as ethanol, isobutanol, and n-propanol. The laminate of the present invention is particularly effective as a package for contents containing acetic acid or ethanol as a volatile component.

以下、本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
[評価]
(1)積層体の酸素ガス透過度の測定
得られた積層体(積層フィルム)を120℃で30分間加熱処理した。酸素バリア測定器(モコン社製、OX−TRAN 2/20)を用いて、加熱処理後の積層体における温度20℃および相対湿度90%の環境下での酸素ガス透過度を測定した。なお、120℃で30分間の加熱処理は、レトルト殺菌処理の条件に相当するものである。
(2)包装体の外観の評価
得られた包装体内にエタノールまたは酢酸を含む水を充填し、それを120℃で30分間レトルト殺菌処理した。レトルト殺菌処理した後の包装体の外観を目視により評価した。無色透明で外観不良が無い場合を○、白化もしくは水泡状の突起物が発生し、外観不良が有る場合を×とした。
<製造例1>
PVA(クラレ(株)製、ポバール105(ポリビニルケン化度98〜99%、平均重合度約500))を熱水に溶解した後、室温に冷却し、固形分15質量%のPVA水溶液を得た。
<製造例2>
EMA(重量平均分子量60000、マレイン酸単位45〜50%)および水酸化ナトリウムを熱水に溶解した後、室温に冷却し、カルボキシル基の10モル%を水酸化ナトリウムにより中和した、固形分15質量%のEMA水溶液を調製した。
<製造例3>
ポリアクリル酸水溶液(東亞合成(株)製、A10H(ポリアクリル酸の数平均分子量200000、濃度25質量%))に水酸化ナトリウムを加え、カルボキシル基の10モル%を水酸化ナトリウムにより中和した、固形分15質量%のポリアクリル酸(以下、PAAと略する)水溶液を得た。
<製造例4>
プルラン((株)林原製、PF−20)を水に溶解し、固形分15質量%のプルラン水溶液を得た。
<製造例5>
ポリエステル(東洋紡(株)製、バイロンGK130(皮膜伸度1000%、Tg15℃、数平均分子量7000))を、トルエンと酢酸エチルとMEKとの混合溶媒(質量比3/2/1)に溶解し、固形分15質量%のバイロンGK130ポリエステル溶液を得た。
<製造例6>
ポリエステル(東洋紡(株)製、バイロン226(皮膜伸度は低すぎて測定不能、Tg65℃、数平均分子量8000))を、酢酸エチルとMEKとの混合溶媒(質量比2/1)に溶解し、固形分15質量%のバイロン226ポリエステル溶液を得た。
<製造例7>
酸化マグネシウム粉末(平均粒子径3.5μm、結晶子径0.01μm、BET比表面積145m/g)の懸濁トルエン溶液に、分散剤(デカグリセリンオレイン酸エステル、HLB=7)を酸化マグネシウム100質量部に対して25質量部加え、撹拌機で撹拌した後、ビーズミルを用いて分散させ、固形分20質量%の酸化マグネシウム分散液(1)を得た。
<製造例8>
酸化マグネシウム粉末(平均粒子径3.5μm、結晶子径0.01μm、BET比表面積145m/g)の懸濁水溶液に、分散剤(ポリアクリル酸ナトリウム中和物、サンノプコ(株)製、ノプコスパース44C)を酸化マグネシウム100質量部に対して35質量部加え、撹拌機で撹拌した後、ビーズミルを用いて分散させ、固形分20質量%の酸化マグネシウム分散液(2)を得た。
<実施例1>
製造例1のPVA水溶液と製造例2のEMA水溶液とを、PVA/EMAの質量比(固形分)が30/70になるように混合し、固形分6質量%の混合液(ガスバリア層形成用塗料(P1))を得た。プラスチック基材層(I)の一方の表面に、上記混合液をバーコーターNo.4を用いて塗布した後、電気オーブンにて80℃で2分間加熱し、乾燥塗膜を得た。その後、乾燥塗膜を、電気オーブンにて180℃で2分間加熱した。この加熱により、PVAとEMAとがエステル結合により架橋された。このようにして、厚み0.3μmのガスバリア層(II)を形成した。基材層(I)には、厚み15μmの2軸延伸ナイロンフィルムを用いた。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
[Evaluation]
(1) Measurement of oxygen gas permeability of laminated body The obtained laminated body (laminated film) was heat-treated at 120 ° C for 30 minutes. Using an oxygen barrier measuring device (manufactured by Mocon, OX-TRAN 2/20), the oxygen gas permeability in the environment of a temperature of 20 ° C. and a relative humidity of 90% in the laminate after the heat treatment was measured. In addition, the heat processing for 30 minutes at 120 degreeC are equivalent to the conditions of a retort sterilization process.
(2) Evaluation of appearance of package body The obtained package body was filled with water containing ethanol or acetic acid, and subjected to retort sterilization treatment at 120 ° C for 30 minutes. The appearance of the package after retort sterilization was visually evaluated. The case where it was colorless and transparent and there was no appearance defect was marked with ◯, and the case where a whitening or water bubble-like projection occurred and there was an appearance defect was marked with x.
<Production Example 1>
PVA (manufactured by Kuraray Co., Ltd., POVAL 105 (polyvinyl saponification degree 98 to 99%, average polymerization degree about 500)) was dissolved in hot water and then cooled to room temperature to obtain a PVA aqueous solution having a solid content of 15% by mass. It was.
<Production Example 2>
EMA (weight average molecular weight 60000, maleic acid unit 45-50%) and sodium hydroxide were dissolved in hot water, cooled to room temperature, and 10 mol% of carboxyl groups were neutralized with sodium hydroxide, solid content 15 A mass% EMA aqueous solution was prepared.
<Production Example 3>
Sodium hydroxide was added to a polyacrylic acid aqueous solution (manufactured by Toagosei Co., Ltd., A10H (number average molecular weight of polyacrylic acid 200000, concentration 25% by mass)), and 10 mol% of carboxyl groups were neutralized with sodium hydroxide. A polyacrylic acid (hereinafter abbreviated as PAA) aqueous solution having a solid content of 15% by mass was obtained.
<Production Example 4>
Pullulan (manufactured by Hayashibara Co., Ltd., PF-20) was dissolved in water to obtain a pullulan aqueous solution having a solid content of 15% by mass.
<Production Example 5>
Polyester (Toyobo Co., Ltd., Byron GK130 (film elongation 1000%, Tg 15 ° C., number average molecular weight 7000)) was dissolved in a mixed solvent of toluene, ethyl acetate, and MEK (mass ratio 3/2/1). Byron GK130 polyester solution having a solid content of 15% by mass was obtained.
<Production Example 6>
Polyester (manufactured by Toyobo Co., Ltd., Byron 226 (film elongation is too low to be measured, Tg 65 ° C., number average molecular weight 8000)) is dissolved in a mixed solvent (mass ratio 2/1) of ethyl acetate and MEK. Byron 226 polyester solution having a solid content of 15% by mass was obtained.
<Production Example 7>
To a suspended toluene solution of magnesium oxide powder (average particle size 3.5 μm, crystallite size 0.01 μm, BET specific surface area 145 m 2 / g), a dispersant (decaglycerin oleate, HLB = 7) is added with magnesium oxide 100. After adding 25 parts by mass with respect to parts by mass and stirring with a stirrer, the mixture was dispersed using a bead mill to obtain a magnesium oxide dispersion (1) having a solid content of 20% by mass.
<Production Example 8>
In a suspension solution of magnesium oxide powder (average particle size 3.5 μm, crystallite size 0.01 μm, BET specific surface area 145 m 2 / g), a dispersant (neutralized sodium polyacrylate, manufactured by San Nopco Co., Ltd., Nop Cosperth) 44C) was added in an amount of 35 parts by mass with respect to 100 parts by mass of magnesium oxide and stirred with a stirrer.
<Example 1>
The PVA aqueous solution of Production Example 1 and the EMA aqueous solution of Production Example 2 are mixed so that the mass ratio (solid content) of PVA / EMA is 30/70, and a mixed liquid (for gas barrier layer formation) having a solid content of 6% by mass. A paint (P1)) was obtained. On one surface of the plastic substrate layer (I), the above mixed solution was applied to a bar coater No. 4 was applied and then heated in an electric oven at 80 ° C. for 2 minutes to obtain a dried coating film. Thereafter, the dried coating film was heated at 180 ° C. for 2 minutes in an electric oven. By this heating, PVA and EMA were cross-linked by an ester bond. In this way, a gas barrier layer (II) having a thickness of 0.3 μm was formed. For the base material layer (I), a biaxially stretched nylon film having a thickness of 15 μm was used.

製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インク製造(株)製、BX4773)とを、ポリエステル/ポリイソシアネートの質量比が83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液(塗料(P2))を得た。   Byron GK130 polyester solution of Production Example 5 and a polyisocyanate compound (manufactured by Toyo Ink Manufacturing Co., Ltd., BX4773) were added so that the mass ratio of polyester / polyisocyanate was 83.3 / 16.7, and a catalyst was further added. Dioctyltin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) 1% by mass of ethyl acetate solution and toluene were mixed to obtain a mixed solution (paint (P2)) having a solid content of 10% by mass. .

ガスバリア層(II)の基材層(I)と接する面と反対側の面に、塗料(P2)をバーコーターNo.4で塗布し、電気オーブンにて80℃で30秒間加熱した。この加熱により、塗料(P2)の塗膜を乾燥させること、および塗料(P2)の塗膜中のポリエステルとポリイソシアネートとの反応を進行させることを同時に行った。   On the surface of the gas barrier layer (II) opposite to the surface in contact with the base material layer (I), paint (P2) is applied to the bar coater no. 4 and heated in an electric oven at 80 ° C. for 30 seconds. By this heating, the coating film (P2) was dried and the reaction between the polyester and the polyisocyanate in the coating film (P2) was simultaneously performed.

このようにして、厚み0.5μmの第1ガスバリア調整層(III)を形成した。   In this way, a first gas barrier adjustment layer (III) having a thickness of 0.5 μm was formed.

製造例7の酸化マグネシウムの分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インキ製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が30/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液(塗料(P3))を得た。   The magnesium oxide dispersion (1) of Production Example 7, the Byron GK130 polyester solution of Production Example 5 and the polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773) are added to the mass of magnesium oxide / polyester / polyisocyanate. In addition to a ratio of 30 / 83.3 / 16.7, dioctyltin laurate (manufactured by Sansha Gosei Co., Ltd., STANN SNT-1F) 1% by mass ethyl acetate solution and toluene are mixed as a catalyst As a result, a mixed liquid (paint (P3)) having a solid content of 10% by mass was obtained.

第1ガスバリア調整層(III)のガスバリア層と接する面と反対側の面に、塗料(P3)をバーコーターNo.2で塗布し、電気オーブンにて80℃で30秒間加熱した。この加熱により、塗料(P3)の塗膜を乾燥させること、および塗料(P3)中のポリエステルとポリイソシアネートとの反応を進行させること、を同時に行った。   On the surface of the first gas barrier adjustment layer (III) opposite to the surface in contact with the gas barrier layer, paint (P3) is applied to the bar coater no. 2 and heated in an electric oven at 80 ° C. for 30 seconds. By this heating, the coating film of the paint (P3) was dried and the reaction between the polyester and the polyisocyanate in the paint (P3) was simultaneously performed.

このようにして、厚み0.3μmの第2ガスバリア調整層(IV)を形成した。   In this way, a second gas barrier adjustment layer (IV) having a thickness of 0.3 μm was formed.

水性ポリウレタン(三井武田ケミカル(株)製、WS5100、30質量%水溶液)を調製し、固形分7.5質量%の混合液(塗料(P4))を得た。   Aqueous polyurethane (manufactured by Mitsui Takeda Chemical Co., Ltd., WS5100, 30% by mass aqueous solution) was prepared to obtain a mixed liquid (paint (P4)) having a solid content of 7.5% by mass.

第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)と接する面と反対側の面に、塗料(P4)をバーコーターNo.4で塗布し、電気オーブンにて100℃で2分間加熱した。塗料(P4)の塗布により、塗料(P4)中に含まれる水によりイオン化したマグネシウムがガスバリア層(II)へ移動した。この加熱により、塗料(P4)の塗膜を乾燥させること、塗料(P3)の塗膜からガスバリア層(II)へ移動したマグネシウムと、ガスバリア層(II)のPVAまたはEMAとの反応を進行させること、および塗料(P4)中のポリウレタンの架橋反応を進行させること、を同時に行った。   A coating material (P4) is applied to the surface of the second gas barrier adjustment layer (IV) opposite to the surface in contact with the first gas barrier adjustment layer (III). 4 and heated in an electric oven at 100 ° C. for 2 minutes. By application of the paint (P4), magnesium ionized by water contained in the paint (P4) moved to the gas barrier layer (II). By this heating, the coating film of the paint (P4) is dried, and the reaction between magnesium transferred from the coating film of the paint (P3) to the gas barrier layer (II) and PVA or EMA of the gas barrier layer (II) is advanced. And advancing the cross-linking reaction of the polyurethane in the paint (P4).

このようにして、厚み0.4μmのトップコート層(V)を形成した。   In this way, a topcoat layer (V) having a thickness of 0.4 μm was formed.

その後、40℃で2日間エージング処理を行い、(I)、(II)、(III)、(IV)、および(V)の順に積層するフィルム(ガスバリア性積層体)を得た。   Thereafter, an aging treatment was performed at 40 ° C. for 2 days to obtain a film (gas barrier laminate) laminated in the order of (I), (II), (III), (IV), and (V).

ガスバリア性積層体におけるトップコート層(V)の第2ガスバリア調整層と接する面と反対側の面に、DIC(株)製のLX−500/KR−90Sをドライラミネーターにより塗布し、厚み2.5μmの接着剤層(VI)を形成した。   On the surface opposite to the surface in contact with the second gas barrier adjusting layer of the top coat layer (V) in the gas barrier laminate, LX-500 / KR-90S manufactured by DIC Corporation was applied with a dry laminator, and the thickness was 2. A 5 μm adhesive layer (VI) was formed.

接着剤層(VI)にヒートシール層(VII)(東セロ(株)製、CPP、RXC−22、厚み50μm)を貼り合わせた後、40℃で2日間静置し、接着剤層(VI)を硬化させた。このようにして、(I)、(II)、(III)、(IV)、(V)、(VI)、および(VII)の順に積層するフィルム(ガスバリア性複合体)を得た。
<実施例2>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを1.0μmに変更した。これ以外は、実施例1と同様の方法により、積層フィルムを作製した。
<実施例3>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを1.5μmに変更した。これ以外は、実施例1と同様の方法により、積層フィルムを作製した。
<実施例4>
塗料(P3)の作製時において、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を40/83.3/16.7とした以外は、実施例2と同様の方法により、積層フィルムを作製した。
<実施例5>
製造例7の酸化マグネシウム分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インク製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が2/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を得た。
A heat seal layer (VII) (manufactured by Tosero Co., Ltd., CPP, RXC-22, thickness 50 μm) was bonded to the adhesive layer (VI), and then allowed to stand at 40 ° C. for 2 days to form an adhesive layer (VI). Was cured. In this way, a film (gas barrier composite) was laminated in the order of (I), (II), (III), (IV), (V), (VI), and (VII).
<Example 2>
The thickness of the first gas barrier adjustment layer (III) was changed to 1.0 μm by adjusting the solid content in the paint (P2). A laminated film was produced in the same manner as in Example 1 except for this.
<Example 3>
The thickness of the first gas barrier adjustment layer (III) was changed to 1.5 μm by adjusting the solid content in the paint (P2). A laminated film was produced in the same manner as in Example 1 except for this.
<Example 4>
A laminated film was produced in the same manner as in Example 2 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was changed to 40 / 83.3 / 16.7 when the paint (P3) was produced.
<Example 5>
Magnesium oxide dispersion (1) of Production Example 7, Byron GK130 polyester solution of Production Example 5 and polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773), magnesium oxide / polyester / polyisocyanate mass ratio 2 / 83.3 / 16.7, and dioctyltin laurate (manufactured by Sansha Kikai Co., Ltd., STANN SNT-1F) 1% by mass ethyl acetate solution and toluene were further mixed as a catalyst. A mixed liquid having a solid content of 10% by mass was obtained.

上記で得られた混合液を塗料(P2)として用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例6>
塗料(P3)の作製時において、酸化マグネシウム分散液(1)の代わりに酸化マグネシウム粉末を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例7>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを1.5μmに変更した。これ以外は、実施例6と同様の方法により、積層フィルムを作製した。
<実施例8>
炭酸リチウムと、水性ポリウレタン(第一工業製薬(株)製、スーパーフレックス460)と、ポリイソシアネート化合物(BASF社製、HW−100)とを、炭酸リチウム/ポリウレタン/ポリイソシアネートの質量比が15/70/30となるように混合し、樹脂固形分10質量%の混合液を得た。
A laminated film was produced in the same manner as in Example 1 except that the mixed liquid obtained above was used as the paint (P2).
<Example 6>
A laminated film was produced in the same manner as in Example 1 except that magnesium oxide powder was used in place of the magnesium oxide dispersion (1) when the paint (P3) was produced.
<Example 7>
The thickness of the first gas barrier adjustment layer (III) was changed to 1.5 μm by adjusting the solid content in the paint (P2). A laminated film was produced in the same manner as in Example 6 except for this.
<Example 8>
Lithium carbonate, aqueous polyurethane (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Superflex 460) and polyisocyanate compound (BASF, HW-100) are mixed at a mass ratio of lithium carbonate / polyurethane / polyisocyanate of 15 / It mixed so that it might become 70/30, and the liquid mixture with a resin solid content of 10 mass% was obtained.

上記で得られた混合液を塗料(P3)として用いた以外、実施例2と同様の方法により、積層フィルムを作製した。
<実施例9>
製造例8の酸化マグネシウム分散液(2)と、炭酸リチウムと、水性ポリウレタン(第一工業製薬(株)製、スーパーフレックス460)と、ポリイソシアネート化合物(BASF社製、HW−100)とを、酸化マグネシウム/炭酸リチウム/ポリウレタン/ポリイソシアネートの質量比が15/5/70/30になるように混合し、樹脂固形分10質量%の混合液を得た。
A laminated film was produced in the same manner as in Example 2 except that the mixed liquid obtained above was used as the paint (P3).
<Example 9>
Magnesium oxide dispersion (2) of Production Example 8, lithium carbonate, aqueous polyurethane (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 460), and polyisocyanate compound (BASF, HW-100) The mixture was mixed so that the mass ratio of magnesium oxide / lithium carbonate / polyurethane / polyisocyanate was 15/5/70/30 to obtain a mixed liquid having a resin solid content of 10% by mass.

上記で得られた混合液を塗料(P3)として用いた以外、実施例3と同様の方法により、積層フィルムを作製した。
<実施例10>
酸化マグネシウム分散液(1)の代わりに炭酸カルシウム分散液(竹原化学工業(株)製、カルミンML)を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例11>
炭酸リチウムと、水性ポリウレタン(第一工業製薬(株)製、スーパーフレックス460)と、ポリイソシアネート化合物(BASF社製、HW−100)とを、炭酸リチウム/ポリウレタン/ポリイソシアネートの質量比が1/70/30となるように混合し、樹脂固形分10質量%の混合液(塗料(P2))を作製した。
A laminated film was produced in the same manner as in Example 3 except that the mixed liquid obtained above was used as the paint (P3).
<Example 10>
A laminated film was produced in the same manner as in Example 1 except that a calcium carbonate dispersion (Takehara Chemical Co., Ltd., Carmine ML) was used instead of the magnesium oxide dispersion (1).
<Example 11>
Lithium carbonate, aqueous polyurethane (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Superflex 460) and polyisocyanate compound (BASF, HW-100) are mixed at a mass ratio of lithium carbonate / polyurethane / polyisocyanate of 1 / It mixed so that it might become 70/30, and the liquid mixture (paint (P2)) of resin solid content 10 mass% was produced.

酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を20/83.3/16.7とした以外、実施例1と同様の方法により塗料(P3)を作製した。   A paint (P3) was produced in the same manner as in Example 1 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was 20 / 83.3 / 16.7.

上記の塗料(P2)および塗料(P3)を用い、バーコーターNo.を調整することで、ガスバリア調整層(II)の厚みを1.0μmに変更した以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例12>
製造例8の酸化マグネシウム分散液(2)と、炭酸リチウムと、水性ポリウレタン(第一工業製薬(株)製、スーパーフレックス460)と、ポリイソシアネート化合物(BASF社製、HW−100)とを、酸化マグネシウム/炭酸リチウム/ポリウレタン/ポリイソシアネートの質量比が0.5/0.5/70/30となるように混合し、樹脂固形分10質量%の混合液(塗料(P2))を作製した。
Using the paint (P2) and paint (P3), the bar coater No. A laminated film was produced by the same method as in Example 1 except that the thickness of the gas barrier adjustment layer (II) was changed to 1.0 μm.
<Example 12>
Magnesium oxide dispersion (2) of Production Example 8, lithium carbonate, aqueous polyurethane (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 460), and polyisocyanate compound (BASF, HW-100) The mixture was mixed so that the mass ratio of magnesium oxide / lithium carbonate / polyurethane / polyisocyanate was 0.5 / 0.5 / 70/30 to prepare a mixed liquid (paint (P2)) having a resin solid content of 10% by mass. .

酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を20/83.3/16.7に変更した以外、実施例1と同様の方法により塗料(P3)を作製した。   A paint (P3) was produced in the same manner as in Example 1 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was changed to 20 / 83.3 / 16.7.

上記の塗料(P2)および塗料(P3)を用い、バーコーダーNo.を調整することで、ガスバリア調整層の厚みを1.0μmに変更した以外は、実施例1と同様の方法により積層フィルムを作製した。
<実施例13>
塗料(P2)および塗料(P3)の作製において、ポリエステルの代わりに製造例6のバイロン226ポリエステル溶液を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例14>
製造例7の酸化マグネシウム分散体溶液(1)と、製造例6のバイロンGK226ポリエステル溶液と、ポリイソシアネート化合物(東洋インク製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が1/83.3/16.7となるように混合し、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)の1質量%酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P2)として作製した。
Using the above paint (P2) and paint (P3), bar coder No. A laminated film was produced by the same method as in Example 1 except that the thickness of the gas barrier adjustment layer was changed to 1.0 μm by adjusting the thickness.
<Example 13>
A laminate film was produced in the same manner as in Example 1 except that the Byron 226 polyester solution of Production Example 6 was used instead of polyester in the production of the paint (P2) and paint (P3).
<Example 14>
Magnesium oxide / polyester / polyisocyanate mass of the magnesium oxide dispersion solution (1) of Production Example 7, the Byron GK226 polyester solution of Production Example 6 and a polyisocyanate compound (manufactured by Toyo Ink Co., Ltd., BX4773). The mixture was mixed so that the ratio would be 1 / 83.3 / 16.7, and a 1% by mass ethyl acetate solution of dioctyltin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) as a catalyst, and toluene By mixing, a mixed liquid having a solid content of 10% by mass was prepared as a paint (P2).

ポリエステルの代わりに製造例6のバイロン226ポリエステル溶液を用いた以外、実施例1と同様の方法により塗料P3を作製した。   A paint P3 was prepared in the same manner as in Example 1 except that the Byron 226 polyester solution of Production Example 6 was used instead of polyester.

上記で得られた塗料(P2)および塗料(P3)を用い、バーコーターNo.を調整することで、第1ガスバリア調整層(III)の厚みを1.0μmに変更した以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例15>
塗料(P1)の作製において、製造例1のPVA水溶液の代わりに製造例4のプルラン水溶液を用い、製造例2のEMA水溶液の代わりに製造例3のPAA水溶液を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例16>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを1.0μmに変更した以外、実施例15と同様の方法により、積層フィルムを作製した。
<実施例17>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを1.5μmに変更した以外、実施例15と同様の方法により、積層フィルムを作製した。
<実施例18>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを1.5μmに変更した。
Using the paint (P2) and paint (P3) obtained above, a bar coater No. A laminated film was produced by the same method as in Example 1 except that the thickness of the first gas barrier adjustment layer (III) was changed to 1.0 μm.
<Example 15>
In the preparation of the paint (P1), Example 1 was used except that the pullulan aqueous solution of Production Example 4 was used instead of the PVA aqueous solution of Production Example 1, and the PAA aqueous solution of Production Example 3 was used instead of the EMA aqueous solution of Production Example 2. A laminated film was produced by the same method.
<Example 16>
A laminated film was produced in the same manner as in Example 15 except that the thickness of the first gas barrier adjustment layer (III) was changed to 1.0 μm by adjusting the solid content in the paint (P2). .
<Example 17>
A laminated film was produced in the same manner as in Example 15 except that the thickness of the first gas barrier adjustment layer (III) was changed to 1.5 μm by adjusting the solid content in the paint (P2). .
<Example 18>
The thickness of the first gas barrier adjustment layer (III) was changed to 1.5 μm by adjusting the solid content in the paint (P2).

塗料(P3)中の固形分の含有量を調整することで、第2ガスバリア調整層(IV)の厚みを0.6μmに変更した。   The thickness of the second gas barrier adjustment layer (IV) was changed to 0.6 μm by adjusting the solid content in the paint (P3).

上記以外は、実施例1と同様の方法により、積層フィルムを作製した。
<実施例19>
塗料(P4)の固形分の含有量を調整することで、トップコート層(V)の厚みを0.7μmに変更した以外、実施例18と同様の方法により、積層フィルムを作製した。
<実施例21
製造例1のPVA水溶液の代わりに製造例4のプルラン水溶液を用い、製造例2のEMA水溶液の代わりに製造例3のPAA水溶液を用いた以外、実施例1と同様の方法により、塗料(P1)を作製した。
A laminated film was produced in the same manner as in Example 1 except for the above.
<Example 19>
A laminated film was produced in the same manner as in Example 18 except that the thickness of the topcoat layer (V) was changed to 0.7 μm by adjusting the solid content of the paint (P4).
<Example 21 >
A paint (P1) was prepared in the same manner as in Example 1, except that the pullulan aqueous solution of Production Example 4 was used instead of the PVA aqueous solution of Production Example 1, and the PAA aqueous solution of Production Example 3 was used instead of the EMA aqueous solution of Production Example 2. ) Was produced.

製造例7の酸化マグネシウム分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インク製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が5/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P2)として作製した。   Magnesium oxide dispersion (1) of Production Example 7, Byron GK130 polyester solution of Production Example 5 and polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773), magnesium oxide / polyester / polyisocyanate mass ratio 5 / 83.3 / 16.7, and dioctyltin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) 1% by mass of ethyl acetate solution and toluene were mixed as a catalyst. A mixed liquid having a solid content of 10% by mass was prepared as a paint (P2).

造例7の酸化マグネシウムの分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インキ製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が5/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P3)として作製した。 Dispersion of magnesium oxide manufactured Zorei 7 (1), and Byron GK130 polyester solution of the production example 5, the polyisocyanate compound (manufactured by Toyo Ink Mfg Co., BX4773) with a magnesium oxide / polyester / polyisocyanate In addition to a mass ratio of 5 / 83.3 / 16.7, a dioctyltin laurate (manufactured by Sansha Gosei Co., Ltd., STANN SNT-1F) 1 mass% ethyl acetate solution and toluene as a catalyst The mixture was mixed to prepare a mixed liquid having a solid content of 10% by mass as a paint (P3).

上記で得られた塗料(P1)〜(P3)を用いた以外、実施例と同様の方法により、積層フィルムを作製した。
<実施例22>
製造例7の酸化マグネシウムの分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インキ製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が5/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P3)として作製した。
A laminated film was produced in the same manner as in Example 1 except that the paints (P1) to (P3) obtained above were used.
<Example 22>
The magnesium oxide dispersion (1) of Production Example 7, the Byron GK130 polyester solution of Production Example 5 and the polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773) are added to the mass of magnesium oxide / polyester / polyisocyanate. In addition to a ratio of 5 / 83.3 / 16.7, dioctyltin laurate (manufactured by Sankyo Gosei Co., Ltd., STANN SNT-1F) as a catalyst was mixed with ethyl acetate solution and toluene. Then, a mixed liquid having a solid content of 10% by mass was prepared as a paint (P3).

上記で得られた塗料(P3)を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<実施例23>
製造例7の酸化マグネシウムの分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インキ製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が100/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P3)として作製した。
A laminated film was produced in the same manner as in Example 1 except that the paint (P3) obtained above was used.
<Example 23>
The magnesium oxide dispersion (1) of Production Example 7, the Byron GK130 polyester solution of Production Example 5 and the polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773) are added to the mass of magnesium oxide / polyester / polyisocyanate. In addition to a ratio of 100 / 83.3 / 16.7, dioctyltin laurate (manufactured by Sansha Kikai Co., Ltd., STANN SNT-1F) 1% by mass ethyl acetate solution and toluene were mixed as a catalyst. Then, a mixed liquid having a solid content of 10% by mass was prepared as a paint (P3).

上記で得られた塗料(P3)を用いた以外、実施例3と同様の方法により、積層フィルムを作製した。
<実施例24>
製造例7の酸化マグネシウム分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インク製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が0.5/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P2)として作製した。
A laminated film was produced in the same manner as in Example 3 except that the paint (P3) obtained above was used.
<Example 24>
Magnesium oxide dispersion (1) of Production Example 7, Byron GK130 polyester solution of Production Example 5 and polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773), magnesium oxide / polyester / polyisocyanate mass ratio In addition to dioctyltin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) as a catalyst, an ethyl acetate solution, and toluene. By mixing, a mixed liquid having a solid content of 10% by mass was prepared as a paint (P2).

上記で得られた塗料(P2)と、実施例21で作製した塗料(P3)とを用い、塗料(P2)中の固形分の含有量を調整することにより第1ガスバリア調整層(III)の厚みを3.0μmに変更した以外、実施例1と同様の方法により、積層フィルムを作製した。
<比較例1>
第1ガスバリア調整層(III)を形成しない以外、実施例1と同様の方法により、(I)、(II)、(IV)、(V)、(VI)、および(VII)の順に積層する積層フィルムを作製した。
<比較例2>
塗料(P3)の作製時において、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を20/83.3/16.7に変更した以外、比較例1と同様の方法により、積層フィルムを作製した。
<比較例3>
塗料(P3)の作製時において、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を10/83.3/16.7に変更した以外、比較例1と同様の方法により、積層フィルムを作製した。
<比較例4>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを0.3μmに変更した以外、実施例1と同様の方法により、積層フィルムを作製した。
<比較例5>
塗料(P2)中の固形分の含有量を調整することで、第1ガスバリア調整層(III)の厚みを4.0μmに変更した以外、実施例1と同様の方法により、積層フィルムを作製した。
<比較例6>
酸化マグネシウム分散液(1)と、バイロンGK130ポリエステル溶液と、ポリイソシアネート化合物とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が10/83.3/16.7となるように混合し、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)の1質量%酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P2)として作製した。
Using the coating material (P2) obtained above and the coating material (P3) produced in Example 21, the solid content in the coating material (P2) was adjusted to adjust the first gas barrier adjustment layer (III). A laminated film was produced in the same manner as in Example 1 except that the thickness was changed to 3.0 μm.
<Comparative Example 1>
Except not forming 1st gas barrier adjustment layer (III), it laminates in order of (I), (II), (IV), (V), (VI), and (VII) by the method similar to Example 1. A laminated film was produced.
<Comparative example 2>
A laminated film was produced in the same manner as in Comparative Example 1 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was changed to 20 / 83.3 / 16.7 during the production of the paint (P3).
<Comparative Example 3>
A laminated film was produced in the same manner as in Comparative Example 1 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was changed to 10 / 83.3 / 16.7 when the paint (P3) was produced.
<Comparative Example 4>
A laminated film was produced in the same manner as in Example 1 except that the thickness of the first gas barrier adjustment layer (III) was changed to 0.3 μm by adjusting the solid content in the paint (P2). .
<Comparative Example 5>
A laminated film was produced in the same manner as in Example 1 except that the thickness of the first gas barrier adjustment layer (III) was changed to 4.0 μm by adjusting the solid content in the paint (P2). .
<Comparative Example 6>
The magnesium oxide dispersion (1), the Byron GK130 polyester solution, and the polyisocyanate compound are mixed so that the mass ratio of magnesium oxide / polyester / polyisocyanate is 10 / 83.3 / 16.7, and further the catalyst A 1% by mass ethyl acetate solution of dioctyl tin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) and toluene were mixed to prepare a mixed solution having a solid content of 10% by mass as a paint (P2).

酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を10/83.3/16.7に変更した以外、実施例1と同様の方法により塗料(P3)を作製した。   A paint (P3) was produced in the same manner as in Example 1 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was changed to 10 / 83.3 / 16.7.

上記で得られた塗料(P2)および塗料(P3)を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<比較例7>
酸化マグネシウム分散液(1)と、バイロンGK130ポリエステル溶液と、ポリイソシアネート化合物とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が10/83.3/16.7となるように混合し、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)の1質量%酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P2)として作製した。
A laminated film was produced in the same manner as in Example 1 except that the paint (P2) and paint (P3) obtained above were used.
<Comparative Example 7>
The magnesium oxide dispersion (1), the Byron GK130 polyester solution, and the polyisocyanate compound are mixed so that the mass ratio of magnesium oxide / polyester / polyisocyanate is 10 / 83.3 / 16.7, and further the catalyst A 1% by mass ethyl acetate solution of dioctyl tin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) and toluene were mixed to prepare a mixed solution having a solid content of 10% by mass as a paint (P2).

酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比を5/83.3/16.7に変更した以外、実施例1と同様の方法により塗料(P3)を作製した。   A paint (P3) was produced in the same manner as in Example 1 except that the mass ratio of magnesium oxide / polyester / polyisocyanate was changed to 5 / 83.3 / 16.7.

上記で得られた塗料(P2)および塗料(P3)を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。
<比較例8>
製造例7の酸化マグネシウム分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インク製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が1/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P2)として作製した。
A laminated film was produced in the same manner as in Example 1 except that the paint (P2) and paint (P3) obtained above were used.
<Comparative Example 8>
Magnesium oxide dispersion (1) of Production Example 7, Byron GK130 polyester solution of Production Example 5 and polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773), magnesium oxide / polyester / polyisocyanate mass ratio 1 / 83.3 / 16.7, dioctyltin laurate (manufactured by Sansha Kikai Co., Ltd., STANN SNT-1F) 1% by mass ethyl acetate solution and toluene A mixed liquid having a solid content of 10% by mass was prepared as a paint (P2).

製造例7の酸化マグネシウムの分散液(1)と、製造例5のバイロンGK130ポリエステル溶液と、ポリイソシアネート化合物(東洋インキ製造(株)製、BX4773)とを、酸化マグネシウム/ポリエステル/ポリイソシアネートの質量比が2/83.3/16.7になるように加え、さらに触媒としてジオクチル錫ラウレート(三共有機合成(株)製、STANN SNT−1F)1質量%の酢酸エチル溶液、およびトルエンを混合し、固形分10質量%の混合液を塗料(P3)として作製した。   The magnesium oxide dispersion (1) of Production Example 7, the Byron GK130 polyester solution of Production Example 5 and the polyisocyanate compound (manufactured by Toyo Ink Mfg. Co., Ltd., BX4773) are added to the mass of magnesium oxide / polyester / polyisocyanate. In addition to a ratio of 2 / 83.3 / 16.7, dioctyltin laurate (manufactured by Sansha Co., Ltd., STANN SNT-1F) 1% by mass ethyl acetate solution and toluene were mixed as a catalyst. Then, a mixed liquid having a solid content of 10% by mass was prepared as a paint (P3).

上記で得られた塗料(P2)および塗料(P3)を用いた以外、実施例1と同様の方法により、積層フィルムを作製した。   A laminated film was produced in the same manner as in Example 1 except that the paint (P2) and paint (P3) obtained above were used.

上記で得られた実施例および比較例の積層フィルムを用いて、上記(1)の酸素ガス透過度の測定を行った。   Using the laminated films of Examples and Comparative Examples obtained above, the oxygen gas permeability of (1) was measured.

また、上記の実施例および比較例の積層フィルムを用いて、それぞれ以下の手順で包装体を作製した。   Moreover, the packaging body was produced in the following procedures, respectively using the laminated film of said Example and a comparative example.

積層フィルム(サイズ210mm×297mm)を、ヒートシール層が向かい合うように2つに折り曲げた後、折り目と垂直な方向に延びる周縁部同士を熱溶着した。このようにして、一部が開口した包装体を得た。包装体の開口よりエタノールまたは酢酸の水溶液を充填した。エタノールまたは酢酸の水溶液の濃度は、1wt%、2wt%、3wt%、4wt%、または5wt%とした。その後、残りの周縁部同士(開口する部分)を熱溶着して包装体を密封した。密封した包装体を120℃で30分間レトルト殺菌処理した。   The laminated film (size 210 mm × 297 mm) was folded in two so that the heat seal layers face each other, and then the peripheral edges extending in the direction perpendicular to the folds were thermally welded. In this way, a package having a part opened was obtained. An aqueous solution of ethanol or acetic acid was filled from the opening of the package. The concentration of the ethanol or acetic acid aqueous solution was 1 wt%, 2 wt%, 3 wt%, 4 wt%, or 5 wt%. Thereafter, the remaining peripheral edge portions (opening portions) were thermally welded to seal the package. The sealed package was retort sterilized at 120 ° C. for 30 minutes.

包装体をレトルト殺菌処理した後、すぐに包装体を開封し、包装体内部よりエタノール水溶液または酢酸水溶液を排出し、包装体を充分に乾燥した。   After the package was subjected to retort sterilization treatment, the package was immediately opened, and an aqueous ethanol solution or an acetic acid solution was discharged from the inside of the package to sufficiently dry the package.

上記で得られた実施例および比較例の包装体を用いて、上記(2)の外観評価を行った。   The appearance evaluation of the above (2) was performed using the packaging bodies of Examples and Comparative Examples obtained above.

評価結果を表1および2に示す。   The evaluation results are shown in Tables 1 and 2.

Figure 0006261504
Figure 0006261504

Figure 0006261504
Figure 0006261504

実施例1〜19、21〜24では、積層体を、揮発性物質を含む内容物を充填する包装体に使用した場合、当該内容物を含む包装体に熱殺菌処理を施しても包装体は良好な外観を維持し、かつ優れたガスバリア性が得られた。
In Examples 1 to 19 , 21 to 24, when the laminate is used for a package that is filled with a content containing a volatile substance, the package is subjected to a heat sterilization treatment even if the package containing the content is subjected to a heat sterilization treatment. A good appearance was maintained and excellent gas barrier properties were obtained.

これに対し、比較例1〜4、6、および7では、熱殺菌処理により包装体において外観不良が発生した。比較例5および8では、充分なガスバリア性が得られなかった。このように、比較例1〜8では、包装体において良好な外観と優れたガスバリア性とを両立できなかった。   On the other hand, in Comparative Examples 1-4, 6, and 7, the appearance defect occurred in the package by the heat sterilization treatment. In Comparative Examples 5 and 8, sufficient gas barrier properties were not obtained. As described above, in Comparative Examples 1 to 8, it was impossible to achieve both good appearance and excellent gas barrier properties in the package.

Claims (11)

ガスバリア性を有する積層体であって、
プラスチック基材層(I)と;
基材層(I)の一方の表面に、直にまたはアンカーコート層を介して、ポリアルコール系ポリマー(A)およびポリカルボン酸系ポリマー(B)のエステル化により形成される架橋構造、ならびにポリアルコール系ポリマー(A)またはポリカルボン酸系ポリマー(B)と、金属またはそれを含む化合物との反応により形成される架橋構造を含むガスバリア層(II)と;
ガスバリア層(II)の基材層(I)に接する面と反対側の表面に、樹脂(C)を含み、かつ金属(D)またはそれを含む化合物を含む、または含まない塗料(P2)を用いて形成された第1ガスバリア調整層(III)と;
第1ガスバリア調整層(III)のガスバリア層(II)に接する面と反対側の表面に、樹脂(E)を含み、かつ金属(F)またはそれを含む化合物とを含む塗料(P3)を用いて形成された第2ガスバリア調整層(IV)と;
を有し、
塗料(P2)中における、樹脂(C)の固形分(ただし、塗料(P2)が架橋剤を含む場合、樹脂(C)と架橋剤とを合計した固形分)100質量部あたりの金属(D)またはそれを含む化合物の含有量M1(質量部)と、塗料(P3)中における、樹脂(E)の固形分(ただし、塗料(P3)が架橋剤を含む場合、樹脂(E)と架橋剤とを合計した固形分)100質量部あたりの金属(F)またはそれを含む化合物の含有量M2(質量部)とが、関係式:
0≦M1≦5、5≦M2≦100、5≦M1+M
満たし、
第1ガスバリア調整層(III)の厚みが、0.5〜3μmであり、
積層体を120℃で30分間加熱処理した場合における、積層体の温度20℃および相対湿度90%の環境下での酸素ガス透過度が4〜25ml/m・d・MPaである
ことを特徴とするガスバリア性積層体。
A laminate having gas barrier properties,
A plastic substrate layer (I);
A crosslinked structure formed by esterification of the polyalcohol-based polymer (A) and the polycarboxylic acid-based polymer (B) directly or via an anchor coat layer on one surface of the base material layer (I), and A gas barrier layer (II) including a crosslinked structure formed by a reaction between the alcohol-based polymer (A) or the polycarboxylic acid-based polymer (B) and a metal or a compound containing the same;
The paint (P2) containing the resin (C) and containing or not containing the metal (D) or a compound containing it on the surface opposite to the surface in contact with the base material layer (I) of the gas barrier layer (II) A first gas barrier adjusting layer (III) formed using;
On the opposite surface of the surface in contact with the gas barrier layer of the first gas barrier adjustment layer (III) (II), the resin (E) comprises, and metal (F) or including paint and a compound containing it (P3) A second gas barrier adjustment layer (IV) formed using
Have
Solids of resin (C) in paint (P2) (however, when paint (P2) contains a cross-linking agent, the solid content of resin (C) and cross-linking agent) metal per 100 parts by mass (D ) Or the content M1 (part by mass) of the compound containing the same and the solid content of the resin (E) in the paint (P3) (however, when the paint (P3) contains a cross-linking agent, the resin (E) is cross-linked. The content of the metal (F) per 100 parts by mass of the agent and the content M2 (parts by mass) of the compound containing the metal per 100 parts by mass is a relational formula:
0 ≦ M1 ≦ 5, 5 ≦ M2 ≦ 100, 5 ≦ M1 + M 2
The meet,
The thickness of the first gas barrier adjustment layer (III) is 0.5 to 3 μm,
When the laminate is heat-treated at 120 ° C. for 30 minutes, the oxygen gas permeability in the environment of the laminate at a temperature of 20 ° C. and a relative humidity of 90% is 4 to 25 ml / m 2 · d · MPa. A gas barrier laminate.
ポリアルコール系ポリマー(A)が、ポリビニルアルコール、エチレンとビニルアルコールとの共重合体、および糖類からなる群より選ばれる少なくとも一種を含む請求項1記載のガスバリア性積層体。   The gas barrier laminate according to claim 1, wherein the polyalcohol polymer (A) contains at least one selected from the group consisting of polyvinyl alcohol, a copolymer of ethylene and vinyl alcohol, and sugars. ポリカルボン酸系ポリマー(B)が、オレフィン−マレイン酸共重合体およびポリ(メタ)アクリル酸の少なくとも一方を含む請求項1または2記載のガスバリア性積層体。   The gas barrier laminate according to claim 1 or 2, wherein the polycarboxylic acid polymer (B) contains at least one of an olefin-maleic acid copolymer and poly (meth) acrylic acid. 第1ガスバリア調整層(III)および第2ガスバリア調整層(IV)が、それぞれガラス転移温度が70℃以下のポリエステルポリオールと、ポリイソシアネートとの反応生成物を含む請求項1〜3のいずれか1項に記載のガスバリア性積層体。   The first gas barrier adjustment layer (III) and the second gas barrier adjustment layer (IV) each contain a reaction product of a polyester polyol having a glass transition temperature of 70 ° C. or less and a polyisocyanate. The gas barrier laminate according to Item. 金属(D)を含む化合物および金属(F)を含む化合物が、それぞれMgおよびCaの少なくとも一方を含む、水酸化物、酸化物、および炭酸塩からなる群より選ばれる少なくとも一種を含む請求項1〜4のいずれか1項に記載のガスバリア性積層体。   The compound containing a metal (D) and the compound containing a metal (F) each contain at least one selected from the group consisting of a hydroxide, an oxide, and a carbonate containing at least one of Mg and Ca. The gas-barrier laminated body of any one of -4. さらに、第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)に接する面と反対側の表面に形成され、第2ガスバリア調整層(IV)を保護するためのトップコート層(V)を有する請求項1〜5のいずれか1項に記載のガスバリア性積層体。   Furthermore, a top coat layer (V) is formed on the surface of the second gas barrier adjustment layer (IV) opposite to the surface in contact with the first gas barrier adjustment layer (III) and protects the second gas barrier adjustment layer (IV). The gas barrier laminate according to any one of claims 1 to 5, which has 請求項1〜5のいずれか1項に記載のガスバリア性積層体と、
接着剤層(VI)と、
ヒートシール層(VII)とを有し、
接着剤層(VI)が、基材層(I)のガスバリア層(II)もしくはアンカーコート層に接する面と反対側の表面に、直にもしくは印刷層を介して、形成され、かつヒートシール層(VII)が、接着剤層(VI)の基材層(I)もしくは印刷層に接する面と反対側の表面に形成されるか、または
接着剤層(VI)が、第2ガスバリア調整層(IV)の第1ガスバリア調整層(III)に接する面と反対側の表面に、直にもしくは印刷層を介して、形成され、かつヒートシール層(VII)が、接着剤層(VI)の第2ガスバリア調整層(IV)もしくは印刷層に接する面と反対側の表面に形成されることを特徴とするガスバリア性複合体。
The gas barrier laminate according to any one of claims 1 to 5,
An adhesive layer (VI);
A heat seal layer (VII),
The adhesive layer (VI) is formed on the surface of the base material layer (I) opposite to the surface in contact with the gas barrier layer (II) or the anchor coat layer, directly or via a printed layer, and the heat seal layer (VII) is formed on the surface of the adhesive layer (VI) opposite to the surface in contact with the substrate layer (I) or the printed layer, or the adhesive layer (VI) is formed on the second gas barrier adjusting layer ( IV) is formed on the surface opposite to the surface in contact with the first gas barrier adjustment layer (III) directly or via a printed layer, and a heat seal layer (VII) is formed on the first layer of the adhesive layer (VI). 2. A gas barrier composite comprising a gas barrier adjusting layer (IV) or a surface opposite to the surface in contact with the printed layer.
請求項6記載のガスバリア性積層体と、
接着剤層(VI)と、
ヒートシール層(VII)とを有し、
接着剤層(VI)が、トップコート層(V)の第2ガスバリア調整層(IV)に接する面と反対側の表面に、直にまたは印刷層を介して、形成され、
ヒートシール層(VII)が、接着剤層(VI)のトップコート層(V)または印刷層に接する面と反対側の表面に形成されていることを特徴とするガスバリア性複合体。
A gas barrier laminate according to claim 6;
An adhesive layer (VI);
A heat seal layer (VII),
An adhesive layer (VI) is formed on the surface of the topcoat layer (V) opposite to the surface in contact with the second gas barrier adjustment layer (IV), either directly or via a printing layer,
A gas barrier composite, wherein the heat seal layer (VII) is formed on the surface of the adhesive layer (VI) opposite to the surface in contact with the topcoat layer (V) or the print layer.
請求項1〜6のいずれか1項に記載のガスバリア性積層体、または請求項7もしくは8記載のガスバリア性複合体を含む包装体。   A package comprising the gas barrier laminate according to any one of claims 1 to 6, or the gas barrier composite according to claim 7 or 8. 揮発性物質を含む内容物を充填するために用いられる請求項9記載の包装体。   The package of Claim 9 used in order to fill the content containing a volatile substance. 揮発性物質が、酢酸またはエタノールである請求項10記載の包装体。   The package according to claim 10, wherein the volatile substance is acetic acid or ethanol.
JP2014533004A 2012-08-28 2013-08-27 Gas barrier laminate, gas barrier composite having the same, and package containing them Active JP6261504B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012187101 2012-08-28
JP2012187101 2012-08-28
PCT/JP2013/072794 WO2014034627A1 (en) 2012-08-28 2013-08-27 Gas barrier laminate, gas barrier complex involving said laminate, and packaging material comprising said laminate or said complex

Publications (2)

Publication Number Publication Date
JPWO2014034627A1 JPWO2014034627A1 (en) 2016-08-08
JP6261504B2 true JP6261504B2 (en) 2018-01-17

Family

ID=50183439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014533004A Active JP6261504B2 (en) 2012-08-28 2013-08-27 Gas barrier laminate, gas barrier composite having the same, and package containing them

Country Status (3)

Country Link
JP (1) JP6261504B2 (en)
TW (1) TW201418013A (en)
WO (1) WO2014034627A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006125A1 (en) * 2014-07-11 2016-01-14 Dic株式会社 Laminated body with sealant film
CN113646387A (en) * 2019-04-01 2021-11-12 Dic株式会社 Gas barrier composition, coating agent, and laminate
JP2021079640A (en) * 2019-11-20 2021-05-27 凸版印刷株式会社 Laminate film and packaging bag
JPWO2022075030A1 (en) * 2020-10-08 2022-04-14

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203287B2 (en) * 1994-01-26 2001-08-27 呉羽化学工業株式会社 Gas barrier laminate and method for producing the same
JP4154069B2 (en) * 1998-04-15 2008-09-24 株式会社クレハ Gas barrier film
JP2004238604A (en) * 2002-12-09 2004-08-26 Toyo Ink Mfg Co Ltd Coating for forming gas barrier layer and gas barrier laminated material formed by using the coating
JP2005270907A (en) * 2004-03-26 2005-10-06 Toyo Ink Mfg Co Ltd Production method of gas-barrier laminate
JP5081417B2 (en) * 2005-09-26 2012-11-28 ユニチカ株式会社 Gas barrier laminate and laminate
JP5081415B2 (en) * 2005-09-26 2012-11-28 ユニチカ株式会社 Gas barrier laminate
JP5081416B2 (en) * 2005-09-26 2012-11-28 ユニチカ株式会社 Gas barrier laminate
JP5176365B2 (en) * 2007-03-30 2013-04-03 凸版印刷株式会社 Gas barrier layer forming coating liquid and method for producing gas barrier laminate
JP5619499B2 (en) * 2010-07-09 2014-11-05 ユニチカ株式会社 Gas barrier biaxially stretched polyamide resin film with excellent light shielding properties

Also Published As

Publication number Publication date
WO2014034627A1 (en) 2014-03-06
TW201418013A (en) 2014-05-16
JPWO2014034627A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5081417B2 (en) Gas barrier laminate and laminate
JP5081416B2 (en) Gas barrier laminate
EP1930153B1 (en) Gas barrier laminate
CN101272904B (en) Gas barrier multilayer body and article
CN101490191B (en) Coating material for forming gas-batter layer and gas-barrier multilayer body
JP5619499B2 (en) Gas barrier biaxially stretched polyamide resin film with excellent light shielding properties
JP6261504B2 (en) Gas barrier laminate, gas barrier composite having the same, and package containing them
JP5258351B2 (en) Gas barrier biaxially oriented polyamide resin film
JP2004307731A (en) Gas barrier coating
JP2015168164A (en) gas barrier laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6261504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150