JP6261365B2 - Piping bending strain estimation method and piping safety factor evaluation method using the method - Google Patents

Piping bending strain estimation method and piping safety factor evaluation method using the method Download PDF

Info

Publication number
JP6261365B2
JP6261365B2 JP2014025896A JP2014025896A JP6261365B2 JP 6261365 B2 JP6261365 B2 JP 6261365B2 JP 2014025896 A JP2014025896 A JP 2014025896A JP 2014025896 A JP2014025896 A JP 2014025896A JP 6261365 B2 JP6261365 B2 JP 6261365B2
Authority
JP
Japan
Prior art keywords
pipe
distance
base
measurement
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014025896A
Other languages
Japanese (ja)
Other versions
JP2015152403A (en
Inventor
栄征 毛利
栄征 毛利
充 有吉
充 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2014025896A priority Critical patent/JP6261365B2/en
Publication of JP2015152403A publication Critical patent/JP2015152403A/en
Application granted granted Critical
Publication of JP6261365B2 publication Critical patent/JP6261365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、配管の曲げひずみ推定方法およびその方法を用いた配管の安全率評価方法に関する。   The present invention relates to a pipe bending strain estimation method and a pipe safety factor evaluation method using the method.

一般に、地中に埋設された埋設管の保全管理に当たっては、埋設管の鉛直たわみ率と水平たわみ率を計測し、その値に基づいて安全性を評価している(図10参照)。例えば、たわみ率Rは、たわみ率R=(たわみ量V)/(管の直径D)で表される。しかしながら、埋設管の変形状態により破壊時のたわみ率は異なるため、たわみ率により精度良く安全性を評価することは困難である。従来、埋設配管である被測定用配管に隣接する地盤に、光ファイバひずみセンサを装着したダミー配管を埋設し、この光ファイバひずみセンサに光信号を入射するとともに光ファイバひずみセンサ内の各位置から反射されてくるひずみ情報をもつ後方散乱光を受信することにより、ダミー配管の長手方向に沿ったひずみ分布を求めた後、このダミー配管のひずみ分布から被測定用配管に発生する応力分布を推定し、この被測定用配管の沈下状態を管理する埋設管の管理方法が提案されている(例えば、特許文献1参照)。   In general, in the maintenance management of buried pipes buried in the ground, the vertical deflection rate and the horizontal deflection rate of the buried pipe are measured, and the safety is evaluated based on the measured values (see FIG. 10). For example, the deflection rate R is represented by the deflection rate R = (flexure amount V) / (tube diameter D). However, since the deflection rate at the time of destruction differs depending on the deformation state of the buried pipe, it is difficult to accurately evaluate the safety based on the deflection rate. Conventionally, a dummy pipe equipped with an optical fiber strain sensor is buried in the ground adjacent to the pipe to be measured, which is an embedded pipe, and an optical signal is incident on this optical fiber strain sensor and from each position in the optical fiber strain sensor. By receiving backscattered light with reflected strain information, the strain distribution along the longitudinal direction of the dummy pipe is obtained, and then the stress distribution generated in the pipe to be measured is estimated from the strain distribution of the dummy pipe. And the management method of the buried pipe which manages the subsidence state of this pipe for measurement is proposed (for example, refer to patent documents 1).

特公平7−6883号公報Japanese Patent Publication No. 7-6883

しかしながら、上述のように、埋設管の変形状態により破壊時のたわみ率は異なるため、たわみ率により精度良く安全性を評価することは難しいという問題がある。特許文献1に記載の発明では、埋設管が全て同一の種類であれば、その埋設管の破断ひずみまたは降伏ひずみと比較して管理を行うことができるものの、埋設管の多くは同一の材料が用いられていない。また、センサを装着したダミー配管を被測定用配管に沿って埋設しなければならず、コストがかかるという問題がある。   However, as described above, there is a problem in that it is difficult to accurately evaluate the safety with the deflection rate because the deflection rate at the time of destruction differs depending on the deformation state of the buried pipe. In the invention described in Patent Document 1, if all the buried pipes are of the same type, management can be performed in comparison with the breaking strain or yield strain of the buried pipe, but most of the buried pipes are made of the same material. Not used. In addition, there is a problem in that the dummy pipe with the sensor must be embedded along the pipe to be measured, which increases costs.

本発明は、上記課題を解決するためになされたもので、低コストかつ簡便な構成で、埋設管の曲げひずみを正確に推定し、安全率の評価を精度良く行うことができる埋設管の曲げひずみ推定方法およびその方法に用いられる測定装置ならびにその方法を用いた埋設管の安全率評価方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is capable of accurately estimating the bending strain of the buried pipe and accurately evaluating the safety factor with a low cost and simple configuration. It is an object of the present invention to provide a strain estimation method, a measuring apparatus used for the method, and a method for evaluating the safety factor of a buried pipe using the method.

本発明の請求項1に係る配管の曲げひずみ推定方法は、変形後の配管内の任意の位置に測定手段を導入し、測定手段と管内面との距離を計測し、計測された測定値から、変形前の配管の曲率半径に対する変形後の曲率半径を求める第1のステップと、第1のステップで求められた変形後の曲率半径に曲り梁の弾性論を適用して配管のひずみを推定する第2のステップとを有することを特徴としている。 In the pipe bending strain estimation method according to claim 1 of the present invention, the measuring means is introduced at an arbitrary position in the pipe after deformation , the distance between the measuring means and the inner surface of the pipe is measured, and the measured value is measured. The first step of obtaining the radius of curvature after deformation relative to the radius of curvature of the pipe before deformation, and estimating the strain of the pipe by applying the elasticity theory of the curved beam to the radius of curvature after deformation obtained in the first step And a second step.

本発明の請求項1に係る配管の曲げひずみ推定方法では、変形後の配管内の任意の位置に測定手段を導入し、測定手段と管内面との距離を計測し、計測された測定値から、変形前の配管の曲率半径に対する変形後の曲率半径を求める第1のステップと、第1のステップで求められた変形後の曲率半径に曲り梁の弾性論を適用して配管のひずみを推定する第2のステップとを有することにより、任意の位置で配管の曲げひずみを簡便にかつ迅速に推定することができ、保守管理が効率化されるとともに、局所的に変形した配管についても安全性を適切に評価することができる。 In the bending strain estimation method for piping according to claim 1 of the present invention, measuring means is introduced at an arbitrary position in the pipe after deformation , the distance between the measuring means and the inner surface of the pipe is measured, and the measured value is measured. The first step of obtaining the radius of curvature after deformation relative to the radius of curvature of the pipe before deformation, and estimating the strain of the pipe by applying the elasticity theory of the curved beam to the radius of curvature after deformation obtained in the first step The second step is to be able to easily and quickly estimate the bending strain of the pipe at an arbitrary position, improving the efficiency of maintenance management and ensuring safety for locally deformed pipes. Can be appropriately evaluated.

本発明の請求項2に係る配管の曲げひずみ推定方法は、第1のステップで変形前の配管を真円と仮定し、管厚と計測された測定値とに基づいて変形後の曲率半径を求めることを特徴としている。 In the pipe bending strain estimation method according to claim 2 of the present invention, the pipe before deformation in the first step is assumed to be a perfect circle, and the curvature radius after deformation is calculated based on the pipe thickness and the measured value. It is characterized by seeking.

本発明の請求項3に係る配管の曲げひずみ推定方法は、測定手段を、第1の距離測定器と配管内でこの第1の距離測定器を所定の位置に支持する脚とを備えた第1の測定装置により構成し、第1のステップで、配管内部に第1の測定装置を導入し、導入された第1の測定装置の第1の距離測定器と配管内面との距離を計測する際、配管内面側の測点を周方向に所定の間隔で複数設定し、複数の測点のデータを組み合わせて曲率半径を求めることを特徴としている。   According to a third aspect of the present invention, there is provided a pipe bending strain estimation method comprising: a first distance measuring instrument; and a leg that supports the first distance measuring instrument in a predetermined position in the pipe. In the first step, the first measuring device is introduced into the pipe, and the distance between the first distance measuring device of the introduced first measuring device and the inner surface of the pipe is measured. At this time, a plurality of measurement points on the inner surface side of the pipe are set at predetermined intervals in the circumferential direction, and the curvature radius is obtained by combining data of the plurality of measurement points.

本発明の請求項3に係る配管の曲げひずみ推定方法では、測定手段を、第1の距離測定器と配管内でこの第1の距離測定器を所定の位置に支持する脚とを備えた第1の測定装置により構成し、第1のステップで、配管内部に第1の測定装置を導入し、導入された第1の測定装置の第1の距離測定器と配管内面との距離を計測する際、配管内面側の測点を周方向に所定の間隔で複数設定し、複数の測点のデータを組み合わせて曲率半径を求めるようにしたことにより、測点間距離を小さくすることにより製造に伴う真円からの不均一性による精度低下を抑制し、適切な測定間距離を求めることができ、曲げひずみを精度よく求めることができる。   In the bending strain estimation method for piping according to claim 3 of the present invention, the measuring means includes a first distance measuring device and a leg that supports the first distance measuring device in a predetermined position in the piping. In the first step, the first measuring device is introduced into the pipe, and the distance between the first distance measuring device of the introduced first measuring device and the inner surface of the pipe is measured. At this time, a plurality of measuring points on the inner surface side of the pipe are set at predetermined intervals in the circumferential direction, and the radius of curvature is obtained by combining the data of a plurality of measuring points, thereby reducing the distance between the measuring points. It is possible to suppress a decrease in accuracy due to the nonuniformity from a perfect circle, to obtain an appropriate distance between measurements, and to obtain a bending strain with high accuracy.

本発明の請求項4に係る配管の曲げひずみ推定方法は、第1の距離測定器により計測された測定値について、スムージング処理により補正し、スムージング処理されて補正された測定値を用いて任意の三点の測点を選定し、曲率半径を求めることを特徴としている。   In the bending strain estimation method for piping according to claim 4 of the present invention, the measurement value measured by the first distance measuring device is corrected by the smoothing process, and the measurement value corrected by the smoothing process is used for any measurement value. It is characterized by selecting three measuring points and calculating the radius of curvature.

本発明の請求項4に係る配管の曲げひずみ推定方法では、第1の距離測定器により計測された測定値について、スムージング処理により補正し、スムージング処理されて補正された測定値を用いて任意の三点の測点を選定し、曲率半径を求めるようにしたことにより、製造に伴う真円からの不均一性が精度に与える影響を小さくし、曲げひずみを精度よく求めることができる。   In the bending strain estimation method for piping according to claim 4 of the present invention, the measurement value measured by the first distance measuring device is corrected by the smoothing process, and the measurement value corrected by the smoothing process is used for any measurement value. By selecting three measurement points and calculating the radius of curvature, the effect of non-uniformity from a perfect circle due to manufacturing on the accuracy can be reduced, and the bending strain can be determined accurately.

本発明の請求項5に係る配管の曲げひずみ推定方法は、測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースの中心に設けられ、ベースの中心の測定位置と配管内面との間の径方向距離を計測する第2の距離測定器とを備えた第2の測定装置により構成し、第1のステップで、この第2の測定装置を配管内部に導入し、第2の測定装置のベースを周方向に移動させては前記径方向距離を求めることを特徴としている。   A pipe bending strain estimation method according to claim 5 of the present invention is a base in which a measuring means is set to a desired length and introduced into the pipe, and both end sides are in contact with each other along the circumferential direction of the pipe inner surface. And a second distance measuring device provided at the center of the base and measuring a radial distance between the measurement position at the center of the base and the inner surface of the pipe. In this step, the second measuring device is introduced into the pipe, and the base of the second measuring device is moved in the circumferential direction to obtain the radial distance.

本発明の請求項5に係る配管の曲げひずみ推定方法では、測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースの中心に設けられ、ベースの中心の測定位置と配管内面との間の径方向距離を計測する第2の距離測定器とを備えた第2の測定装置により構成し、第1のステップで、この第2の測定装置を配管内部に導入し、第2の測定装置のベースを周方向に移動させては前記径方向距離を求めるようにしたことにより、計測作業が迅速化され精度の高い曲げひずみを求めることができる。   In the bending strain estimation method for piping according to claim 5 of the present invention, the measuring means is set to a desired length and introduced into the pipe, and both ends are contacted along the circumferential direction of the pipe inner surface. And a second distance measuring device provided at the center of the base and measuring a radial distance between the measurement position at the center of the base and the inner surface of the pipe. In this step, the second measuring device is introduced into the pipe, and the base of the second measuring device is moved in the circumferential direction to obtain the radial distance, thereby speeding up the measuring work. A highly accurate bending strain can be obtained.

本発明の請求項6に係る配管の曲げひずみ推定方法は、測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースに長手方向に摺動可能に設けられ、ベースの変位可能な測定位置とこの測定位置から垂直に下がる配管内面の測点との間の距離を計測する第3の距離測定器とを備えた第3の測定装置により構成し、第1のステップで、この第3の測定装置を配管内部に導入し、ベースを任意の最初の周方向計測位置に保持し、第3の距離測定器をベースに沿って移動させては摺動範囲でベースの複数の測定位置とこれら測定位置から垂下された配管内面の測点との間の距離を求め、ベースの前記周方向計測位置における距離の計測が終了すると、ベースを周方向に移動させては第3の距離測定器による測定を繰り返すことを特徴としている。   A pipe bending strain estimation method according to claim 6 of the present invention is a base in which a measuring means is set to a desired length and is introduced into the pipe, and both end sides abut along the circumferential direction of the pipe inner surface. And a third distance measuring device which is provided on the base so as to be slidable in the longitudinal direction, and which measures a distance between a measurement position where the base is displaceable and a measurement point on the inner surface of the pipe which vertically falls from the measurement position. In the first step, the third measuring device is introduced into the pipe, the base is held at an arbitrary first circumferential measuring position, and a third distance measurement is performed. When the vessel is moved along the base, the distance between the plurality of measurement positions of the base within the sliding range and the measurement points on the inner surface of the pipe suspended from these measurement positions is obtained, and the distance at the circumferential measurement position of the base When the measurement is finished, move the base in the circumferential direction. Te is characterized by repeating the measurements by the third distance measuring instrument.

本発明の請求項6に係る配管の曲げひずみ推定方法は、測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースに長手方向に摺動可能に設けられ、ベースの変位可能な測定位置とこの測定位置から垂直に下がる配管内面の測点との間の距離を計測する第3の距離測定器とを備えた第3の測定装置により構成し、第1のステップで、この第3の測定装置を配管内部に導入し、ベースを任意の最初の周方向計測位置に保持し、第3の距離測定器をベースに沿って移動させては摺動範囲でベースの複数の測定位置とこれら測定位置から垂下された配管内面の測点との間の距離を求め、ベースの前記周方向計測位置における距離の計測が終了すると、ベースを周方向に移動させては第3の距離測定器による測定を繰り返すようにしたことにより、測定範囲が均一に変形しているか否かを評価することができると同時に計測に用いるベースの長さが適切か否かも評価することができる。   A pipe bending strain estimation method according to claim 6 of the present invention is a base in which a measuring means is set to a desired length and is introduced into the pipe, and both end sides abut along the circumferential direction of the pipe inner surface. And a third distance measuring device which is provided on the base so as to be slidable in the longitudinal direction, and which measures a distance between a measurement position where the base is displaceable and a measurement point on the inner surface of the pipe which vertically falls from the measurement position. In the first step, the third measuring device is introduced into the pipe, the base is held at an arbitrary first circumferential measuring position, and a third distance measurement is performed. When the vessel is moved along the base, the distance between the plurality of measurement positions of the base within the sliding range and the measurement points on the inner surface of the pipe suspended from these measurement positions is obtained, and the distance at the circumferential measurement position of the base When the measurement is finished, move the base in the circumferential direction. In addition, it is possible to evaluate whether or not the measurement range is uniformly deformed by repeating the measurement by the third distance measuring device, and at the same time evaluate whether or not the length of the base used for measurement is appropriate can do.

本発明の請求項7に係る配管の曲げひずみ推定方法は、測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースの長手方向に所望の間隔を隔てて複数設けられ、ベースに沿った複数の測定位置とこれらベースの複数の測定位置からそれぞれ垂直に下がる配管内面の測点との間の距離を計測する第4の距離測定器とを備えた第4の測定装置により構成し、第1のステップで、この第4の測定装置を配管内部に導入し、ベースを任意の最初の周方向計測位置に保持し、第4の距離測定器によりベースの複数の測定位置とこれら測定位置から垂下された配管内面の測点との間の距離を求め、ベースの最初の周方向計測位置における距離の計測が終了すると、ベースを周方向に移動させては第4の距離測定器による測定を繰り返すことを特徴としている。   A pipe bending strain estimation method according to claim 7 of the present invention is a base in which a measuring means is set to a desired length and is introduced into the pipe, and both end sides abut along the circumferential direction of the pipe inner surface. A plurality of measurement positions along the base in the longitudinal direction of the base, and a distance between a plurality of measurement positions along the base and the measurement points on the inner surface of the pipe vertically lowered from the plurality of measurement positions of the base. It comprises a fourth measuring device having a fourth distance measuring device to measure, and in the first step, the fourth measuring device is introduced into the pipe, and the base is set to an arbitrary first circumferential measuring position. The distance between the plurality of measurement positions of the base and the measurement points on the inner surface of the pipe suspended from these measurement positions is obtained by a fourth distance measuring device, and the distance at the first circumferential measurement position of the base is measured. When finished, turn the base around So moved is characterized by repeating the measurement by the fourth distance measuring instrument.

本発明の請求項7に係る配管の曲げひずみ推定方法では、測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースの長手方向に所望の間隔を隔てて複数設けられ、ベースに沿った複数の測定位置とこれらベースの複数の測定位置からそれぞれ垂直に下がる配管内面の測点との間の距離を計測する第4の距離測定器とを備えた第4の測定装置により構成し、第1のステップで、この第4の測定装置を配管内部に導入し、ベースを任意の最初の周方向計測位置に保持し、第4の距離測定器によりベースの複数の測定位置とこれら測定位置から垂下された配管内面の測点との間の距離を求め、ベースの最初の周方向計測位置における距離の計測が終了すると、ベースを周方向に移動させては第4の距離測定器による測定を繰り返すようにしたことにより、計測作業が迅速化され精度の高い曲げひずみを求めることができる。   In the bending strain estimation method for piping according to claim 7 of the present invention, the measuring means is set to a desired length and introduced into the pipe, and both ends are contacted along the circumferential direction of the pipe inner surface. A plurality of measurement positions along the base in the longitudinal direction of the base, and a distance between a plurality of measurement positions along the base and the measurement points on the inner surface of the pipe vertically lowered from the plurality of measurement positions of the base. It comprises a fourth measuring device having a fourth distance measuring device to measure, and in the first step, the fourth measuring device is introduced into the pipe, and the base is set to an arbitrary first circumferential measuring position. The distance between the plurality of measurement positions of the base and the measurement points on the inner surface of the pipe suspended from these measurement positions is obtained by a fourth distance measuring device, and the distance at the first circumferential measurement position of the base is measured. When finished, go around the base Is moved by it has to repeat the measurement by the fourth distance measuring instrument, the measuring operation can be obtained bending strain highly expedited precision.

本発明の請求項8に係る配管の曲げひずみ推定方法は、配管は地中に埋設された埋設管であることを特徴としている。   The pipe bending strain estimation method according to claim 8 of the present invention is characterized in that the pipe is a buried pipe buried in the ground.

本発明の請求項9に係る配管の安全率評価方法は、配管毎に予め破断ひずみまたは降伏ひずみのうち少なくともいずれか1のひずみを求め、請求項1ないし8のうちいずれか1の方法により推定された配管の曲げひずみと前記予め求められたひずみとの比較に基づいて、当該評価対象の配管の定量的な安全率を評価するようにしたことを特徴としている。   The pipe safety factor evaluation method according to claim 9 of the present invention obtains at least any one strain of fracture strain or yield strain in advance for each pipe, and estimates by the method of any one of claims 1 to 8. The quantitative safety factor of the pipe to be evaluated is evaluated based on a comparison between the bending strain of the pipe and the previously obtained strain.

本発明の請求項9に係る配管の安全率評価方法では、配管毎に予め破断ひずみまたは降伏ひずみのうち少なくともいずれか1のひずみを求め、請求項1ないし8のうちいずれか1の方法により推定された配管の曲げひずみと前記予め求められたひずみとの比較に基づいて、当該評価対象の配管の定量的な安全率を評価するようにしたことにより、任意の位置で配管の曲げひずみを簡便にかつ迅速に推定することができ、局所的に変形した配管についても安全性を適切に評価することができる。   In the safety factor evaluation method for piping according to claim 9 of the present invention, at least any one strain of fracture strain or yield strain is obtained in advance for each piping, and estimated by the method according to any one of claims 1 to 8. Based on the comparison between the bending strain of the pipe and the strain obtained in advance, the quantitative safety factor of the pipe to be evaluated is evaluated, so that the bending strain of the pipe can be simplified at any position. Therefore, safety can be appropriately evaluated even for locally deformed piping.

本発明の請求項1に係る配管の曲げひずみ推定方法は、変形後の配管内の任意の位置に測定手段を導入し、測定手段と管内面との距離を計測し、計測された測定値から、変形前の配管の曲率半径に対する変形後の曲率半径を求める第1のステップと、第1のステップで求められた変形後の曲率半径に曲り梁の弾性論を適用して配管のひずみを推定する第2のステップとを有するようにしたので、任意の位置で配管の曲げひずみを簡便にかつ迅速に推定することができ、保守管理が効率化され、コストダウンを図ることができる。 In the pipe bending strain estimation method according to claim 1 of the present invention, the measuring means is introduced at an arbitrary position in the pipe after deformation , the distance between the measuring means and the inner surface of the pipe is measured, and the measured value is measured. The first step of obtaining the radius of curvature after deformation relative to the radius of curvature of the pipe before deformation, and estimating the strain of the pipe by applying the elasticity theory of the curved beam to the radius of curvature after deformation obtained in the first step Therefore, the bending strain of the pipe can be estimated easily and quickly at an arbitrary position, the maintenance management becomes efficient, and the cost can be reduced.

本発明の請求項9に係る配管の安全率評価方法は、配管毎に予め破断ひずみまたは降伏ひずみのうち少なくともいずれか1のひずみを求め、請求項1ないし8のうちいずれか1の方法により推定された配管の曲げひずみと前記予め求められたひずみとの比較に基づいて、当該評価対象の配管の定量的な安全率を評価するようにしたので、任意の位置で配管の曲げひずみを簡便にかつ迅速に推定することができ、保守管理が効率化されるとともに、局所的に変形した配管についても安全性を適切に評価することができる。   The pipe safety factor evaluation method according to claim 9 of the present invention obtains at least any one strain of fracture strain or yield strain in advance for each pipe, and estimates by the method of any one of claims 1 to 8. Since the quantitative safety factor of the pipe to be evaluated is evaluated based on the comparison between the bending strain of the pipe and the previously obtained strain, the bending strain of the pipe can be easily determined at an arbitrary position. In addition, it is possible to estimate quickly and to improve the efficiency of maintenance and management, and it is possible to appropriately evaluate the safety of a locally deformed pipe.

図1は本発明の第1の実施例に係る配管の曲げひずみ推定方法に用いられる第1の測定装置を配管内に配置した状態を示す説明図である。(実施例1)FIG. 1 is an explanatory view showing a state in which a first measuring device used in a pipe bending strain estimation method according to a first embodiment of the present invention is arranged in a pipe. Example 1 図2は図1の配管における測点の位置を示す説明図である。FIG. 2 is an explanatory diagram showing the positions of the measurement points in the piping of FIG. 図3は図1の測定装置の距離測定器による配管の曲率の算定にあたりひずみと測点間距離との関係を示すグラフである。FIG. 3 is a graph showing the relationship between strain and distance between measuring points when calculating the curvature of piping by the distance measuring device of the measuring apparatus of FIG. 図4は配管の一部が曲げモーメントを受けた場合の、曲げひずみと曲率半径の変化とを示す説明図である。FIG. 4 is an explanatory diagram showing a bending strain and a change in the radius of curvature when a part of the pipe receives a bending moment. 図5の(A)、(B)はそれぞれ、スムージング処理前とスムージング処理後の測定位置と配管から距離測定器までの距離を示すグラフである。5A and 5B are graphs showing the measurement position before and after the smoothing process, and the distance from the pipe to the distance measuring device, respectively. 図6は限界ひずみの比較を示す表である。FIG. 6 is a table showing a comparison of critical strains. 図7は本発明の第2の実施例に係る配管の曲げひずみ推定方法に用いられる第2の測定装置を配管内に配置した状態を示す説明図である。(実施例2)FIG. 7 is an explanatory view showing a state in which the second measuring device used in the pipe bending strain estimation method according to the second embodiment of the present invention is arranged in the pipe. (Example 2) 図8は本発明の第3の実施例に係る配管の曲げひずみ推定方法に用いられる第3の測定装置を配管内に配置した状態を示す説明図である。(実施例3)FIG. 8 is an explanatory view showing a state in which the third measuring device used in the pipe bending strain estimation method according to the third embodiment of the present invention is arranged in the pipe. (Example 3) 図9は本発明の第4の実施例に係る配管の曲げひずみ推定方法に用いられる第4の測定装置を配管内に配置した状態を示す説明図である。(実施例4)FIG. 9 is an explanatory view showing a state in which the fourth measuring device used in the pipe bending strain estimation method according to the fourth embodiment of the present invention is arranged in the pipe. Example 4 図10はパイプのたわみ率を示す説明図である。FIG. 10 is an explanatory diagram showing the deflection rate of the pipe.

配管の曲げひずみを正確に推定し、安全率の評価を精度良く行うという目的を、第1のステップで、配管内に任意の位置で第1の測定装置を導入し、第1の測定装置の第1の距離測定器と管内面との距離を計測し、計測された測定値から変形後の曲率半径を求め、第2のステップで、第1のステップで求められた変形後の曲率半径に曲り梁の弾性論を適用して配管のひずみを推定するようにし、配管毎に予め破断ひずみまたは降伏ひずみのうち少なくともいずれか1のひずみを求め、第1のステップと第2のステップとにより推定された配管の曲げひずみと予め求められたひずみとの比較に基づいて、当該評価対象の配管の定量的な安全率を評価するようにしたことにより実現した。   In order to accurately estimate the bending strain of the pipe and accurately evaluate the safety factor, in the first step, the first measuring device is introduced at an arbitrary position in the pipe. The distance between the first distance measuring instrument and the pipe inner surface is measured, the radius of curvature after deformation is obtained from the measured value, and the radius of curvature after deformation obtained in the first step is obtained in the second step. The strain of the pipe is estimated by applying the elasticity theory of the bending beam, and at least one of the fracture strain and the yield strain is obtained in advance for each pipe, and is estimated by the first step and the second step. This was realized by evaluating the quantitative safety factor of the pipe to be evaluated based on the comparison between the bending strain of the pipe and the strain obtained in advance.

以下、図面に示す実施例により本発明を説明する。図1は、本発明の第1の実施例に係る配管の曲げひずみ推定方法に用いられる第1の測定装置を配管内に配置した状態を示す説明図である。本実施例に係る第1の測定装置(測定手段)2は、図1に示すように、地上から図示しない縦孔を介して埋設管(配管)3の内部に導入され、ひずみを求めたい位置に配置される。この測定装置(第1の測定装置)2は、距離測定器(第1の距離測定器)2Aとこの距離測定器2Aを埋設管3内で支持する支持脚2Bとを備えて構成される。距離測定器2Aは、例えば、レーザ距離計またはデジタルスキャナ等で、測定器側の計測基準点から被計測側の各測点の間の距離を計測するものである。距離測定器2Aは、埋設管3内に配置された距離測定器2Aと埋設管3内面のうち周方向の所望の範囲W1(W1=10°〜360°)における複数の測点P1〜Pn(nは1以上の任意の整数、図1および図2では、P1〜P11の11箇所)との間の距離を連続的に計測するようになっている。隣り合う測点P間の角度は10°ピッチ以下の間隔で計測される。そして、計測された測定値d1〜dn(図1では、d1〜d11)から中央の測点P(図1では、測点P6)おける変形後の曲率半径(図1では、曲率半径r6)を求めるようになっている(第1のステップS1)。すなわち、図1では、中央の測点P6(測点位置A)について変形後の曲率半径r6を求めるようになっている。この第1のステップS1では、埋設管3を真円と仮定し、管厚tと計測された測定値d1〜dnとに基づいて変形後の曲率半径を求める。 Hereinafter, the present invention will be described with reference to embodiments shown in the drawings. FIG. 1 is an explanatory diagram showing a state in which a first measuring device used in a pipe bending strain estimation method according to a first embodiment of the present invention is arranged in a pipe. As shown in FIG. 1, the first measuring device (measuring means) 2 according to the present embodiment is introduced into the buried pipe (piping) 3 from the ground via a vertical hole (not shown), and the strain is to be obtained. Placed in. The measuring device (first measuring device) 2 includes a distance measuring device (first distance measuring device) 2A and a support leg 2B that supports the distance measuring device 2A in the buried pipe 3. The distance measuring device 2A measures the distance between each measurement point on the measurement side from the measurement reference point on the measurement device side with, for example, a laser distance meter or a digital scanner. The distance measuring device 2A includes a plurality of measuring points P1 to Pn (in a desired range W1 (W1 = 10 ° to 360 °) in the circumferential direction among the distance measuring device 2A arranged in the embedded tube 3 and the inner surface of the embedded tube 3). n is an arbitrary integer greater than or equal to 1, and in FIG. 1 and FIG. 2, the distance between 11 points P1 to P11) is continuously measured. The angle between adjacent measurement points P is measured at intervals of 10 ° pitch or less. Then, the radius of curvature r after deformation at the central measurement point P (measurement point P6 in FIG. 1) from the measured values d1 to dn (d1 to d11 in FIG. 1) (the curvature radius r6 in FIG. 1). (First step S1). That is, in FIG. 1, the curvature radius r6 after deformation is obtained for the central measurement point P6 (measurement position A). In this first step S1, the buried pipe 3 is assumed to be a perfect circle, and the curvature radius after deformation is obtained based on the pipe thickness t and the measured values d1 to dn.

このとき、距離測定器2Aによる計測は、まず、埋設管3内に配置された距離測定器2Aと各測点P1〜Pnとの間の距離の計測値d1〜dnが計測されると、次に、中央の測点P6(図2の計測位置A)から等距離の測点P1とP11(Pn)、P2とP10(P(n−1))、・・・P5とP7(P(n−4))間の距離を計算することができる。ここで図1における測点P1は、図2における位置Fに相当し、測点P2は位置Eに相当する。こうして測点P3からP11(Pn)までは順に、位置DからF’に対応するようになっている。曲率半径の計算は、三点の測点があれば可能であり、求めたい位置A〜F’のひずみを、複数の測点の組み合わせを用いて計算する。例えば、図2に示すように、5種類の測点のデータABB’、ACC’、ADD’、AEE’、AFF’を組み合わせて、測点位置A(測点P6)の曲率半径r6を計算する。複数の測点P1〜Pn毎の変形後の曲率半径を、例えば、測点P5(測点位置B)の曲率半径r5を求める場合、ひずみを求めたい位置が「B」である場合、複数の三測点のデータで、つまり、BCA、BDB’、BEC’、BFD’を組み合わせて測点位置B(測点P5)の曲率半径r5を計算する。こうして、測点位置の範囲を広げ測点を増加させると、埋設管3の内面において周方向の所望の位置の曲率半径r1〜rn(nは1以上の任意の整数)を求めることができる。ここで、計測範囲W1について各測定位置A〜F’毎の曲率半径r1〜r11の値のばらつきが小さければ、計測範囲W1は均一に変形していることを示す。 At this time, the measurement by the distance measuring device 2A starts with the measurement values d1 to dn of the distance between the distance measuring device 2A arranged in the buried pipe 3 and the measurement points P1 to Pn. Further, the measurement points P1 and P11 (Pn), P2 and P10 (P (n-1)), equidistant from the central measurement point P6 (measurement position A in FIG. 2), P5 and P7 (P (n -4)) can be calculated. Here, the measurement point P1 in FIG. 1 corresponds to the position F in FIG. 2, and the measurement point P2 corresponds to the position E. Thus, the measuring points P3 to P11 (Pn) correspond to the positions D to F ′ in order. The calculation of the radius of curvature is possible if there are three measurement points, and the distortion at the positions A to F ′ to be obtained is calculated using a combination of a plurality of measurement points. For example, as shown in FIG. 2, the curvature radius r6 of the station position A (station P6) is calculated by combining the data ABB ′, ACC ′, ADD ′, AEE ′, and AFF ′ of five types of station. . For example, when the curvature radius r5 of the measurement point P5 (measurement position B) is obtained as the curvature radius after deformation for each of the plurality of measurement points P1 to Pn, when the position where the strain is to be obtained is “B”, The curvature radius r5 of the station position B (station P5) is calculated by combining the data of the three stations, that is, BCA, BDB ′, BEC ′, and BFD ′. Thus, if the range of the measurement point position is expanded and the number of measurement points is increased, the curvature radii r1 to rn (n is an arbitrary integer greater than or equal to 1) at a desired position in the circumferential direction on the inner surface of the buried pipe 3 can be obtained. Here, if the variation of the values of the curvature radii r1 to r11 for each measurement position A to F ′ in the measurement range W1 is small, it indicates that the measurement range W1 is uniformly deformed.

測点位置A(測点P6)において、測点間距離が小さい場合(例えば、ABB’)、製造に伴う真円からの不均一性による精度低下が大きく、正確なひずみが求められないことがある(図3参照)。このため、本実施例では、計測値d1〜dnについて、スムージング処理を行い、製造に伴う真円からの不均一性が精度に与える影響を小さくするようにしている(図5(A)、(B)参照)。つまり、スムージング処理した値を用いて、任意の三点の測点を選定し、変形後の曲率半径を計算するようにしている。このようにすることで、精度の良ひずみを推定することができる。 When the distance between measurement points is small (for example, ABB ′) at the measurement point A (measurement point P6), the accuracy is greatly reduced due to non-uniformity from a perfect circle due to manufacturing, and accurate distortion may not be required. Yes (see FIG. 3). For this reason, in this embodiment, the measured values d1 to dn are subjected to a smoothing process so as to reduce the influence of the nonuniformity from the perfect circle due to the manufacturing on the accuracy (FIG. 5A, ( B)). That is, using the smoothed values, arbitrary three points are selected, and the curvature radius after deformation is calculated. In this way, it is possible to estimate the distortion has good accuracy.

なお、測点間距離が小さい場合(例えば、ABB’)で、製造に伴う真円からの不均一性による精度低下が大きくなる場合でも、測点間距離が大きくなるにつれて、不均一性による精度低下は小さくなるため、精度の良いひずみを計算できるようになる(図3参照)。このようにして、精度の良いひずみの計算および適切な測点(測点間距離)の選定を行うことができる。   In addition, when the distance between measurement points is small (for example, ABB '), even when the deterioration in accuracy due to non-uniformity from a perfect circle due to manufacturing increases, the accuracy due to non-uniformity increases as the distance between measurement points increases. Since the decrease is small, accurate distortion can be calculated (see FIG. 3). In this way, accurate strain calculation and selection of appropriate measurement points (inter-station distance) can be performed.

次に、第1のステップS1で求められた変形後の曲率半径rnr1r2、・・・r11)に曲り梁の弾性論を適用して埋設管3の曲げひずみεを推定する(第2のステップS2)。すなわち、図4に示すように、管の一部が曲げモーメントを受けると、曲げひずみが生じて曲率半径が変化する、この曲率半径の変化を計測して、以下に示す曲り梁の弾性論から導かれる曲率半径と曲げひずみの関係から曲げひずみεを計算する。 Next, the bending strain ε of the buried pipe 3 is estimated by applying the elastic theory of the curved beam to the radius of curvature rn ( r1 , r2 ,... R11 ) obtained in the first step S1 (first step). 2 step S2). That is, as shown in FIG. 4, when a part of the tube is subjected to a bending moment, a bending strain is generated and the radius of curvature changes, and the change in the radius of curvature is measured. The bending strain ε is calculated from the relationship between the derived curvature radius and the bending strain.

(数1)
εmax = t/2(1/ra −1/rb) ・・・(1)
ここで、εmax:最大曲げひずみ、t:管厚、ra:変形後の管の曲率半径、rb:変形前の管の曲率半径である。また、(1)式は、曲率半径に対して管厚が充分に小さいときに成立する。ここで、変形前の管の曲率半径rbは、埋設管を真円と仮定して導かれる曲率半径である。
(Equation 1)
ε max = t / 2 (1 / r a −1 / r b ) (1)
Where ε max is the maximum bending strain, t is the tube thickness, r a is the radius of curvature of the tube after deformation, and r b is the radius of curvature of the tube before deformation. Also, equation (1) is established when the tube thickness is sufficiently small with respect to the radius of curvature. Here, the curvature radius r b of the undeformed tube, a radius of curvature which is guided a buried pipe assuming a perfect circle.

次に、本実施例に係る配管の曲げひずみ推定方法の作用について説明する。本実施例に係る配管の曲げひずみ推定方法では、第1のステップS1で、レーザ距離計またはデジタルスキャナ等の距離測定器2Aと脚2Bとを備えた測定装置2を、埋設管3内の任意の位置に導入して配置し、距離測定器2Aと埋設管3内面との距離を計測し、計測された測定値d1〜dnから変形後の曲率半径rn(本実施例では、ひずみを求めたい位置である測定位置Aにおける測点P6の曲率半径)を求め、第2のステップS2で、第1のステップS1で求められた変形後の曲率半径rnr6)に曲り梁の弾性論を適用して埋設管3のひずみεを推定するようにしている。このため、任意の位置で埋設管3の曲げひずみεを簡便にかつ迅速に推定することができ、保守管理が効率化される。第1のステップS1では、埋設管3を真円と仮定し、管厚tと計測されたそれぞれの測定値d1〜dnとに基づいて変形後の曲率半径r1ないしrnを求めるようにしている。このため、真円からの不均一性による精度低下を抑制し、精度の高い曲率半径を求めることができる。また、第1のステップS1では、距離測定器2Aにより、埋設管3内面との距離を計測する際、埋設管3内面側の測点P1〜Pnを周方向に所定の間隔で複数設定し、複数の測点P1〜Pnのデータ、すなわち、三測点のデータ(ABB’、ACC’、・・・)を組み合わせて曲率半径r1rnを求めるようにしている。このため、精度の高い曲率半径を求めることができる。さらに、第1のステップS1では、距離測定器2Aにより計測された測定値d1〜dnについて、スムージング処理により補正し、スムージング処理されて補正された測定値を用いて任意の三点の測点を選定し、曲率半径を求めるようにしているので、精度の高い曲率半径を求めることができる。精度の高い曲率半径を求めることができるので、推定される曲げひずみεの精度も向上する。 Next, the effect | action of the bending-strain estimation method of piping which concerns on a present Example is demonstrated. In the pipe bending strain estimation method according to the present embodiment, in the first step S1, a measuring device 2 provided with a distance measuring device 2A such as a laser distance meter or a digital scanner and a leg 2B is installed in an arbitrary position in the embedded pipe 3. The distance between the distance measuring instrument 2A and the inner surface of the buried pipe 3 is measured, and the radius of curvature rn after deformation is measured from the measured values d1 to dn (in this embodiment, the strain is to be obtained) The curvature radius of the measuring point P6 at the measurement position A, which is the position, is obtained, and in the second step S2, the elasticity theory of the curved beam is applied to the curvature radius rn ( r6 ) after the deformation obtained in the first step S1. Thus, the strain ε of the buried pipe 3 is estimated. Therefore, the bending strain ε of the buried pipe 3 can be estimated easily and quickly at an arbitrary position, and maintenance management is made efficient. In the first step S1, the buried pipe 3 is assumed to be a perfect circle, and the curvature radii r1 to rn after deformation are obtained based on the pipe thickness t and the measured values d1 to dn measured. For this reason, it is possible to suppress a decrease in accuracy due to nonuniformity from a perfect circle and to obtain a highly accurate curvature radius. In the first step S1, when measuring the distance from the inner surface of the buried pipe 3 by the distance measuring device 2A, a plurality of measurement points P1 to Pn on the inner surface of the buried pipe 3 are set at predetermined intervals in the circumferential direction. The curvature radii r1 to rn are obtained by combining data of a plurality of measurement points P1 to Pn, that is, data of three measurement points (ABB ′, ACC ′,...). For this reason, a highly accurate radius of curvature can be obtained. Further, in the first step S1, the measurement values d1 to dn measured by the distance measuring device 2A are corrected by the smoothing process, and arbitrary three points are measured using the measurement values corrected by the smoothing process. Since the radius of curvature is selected and the radius of curvature is obtained, a highly accurate radius of curvature can be obtained. Since the curvature radius with high accuracy can be obtained, the accuracy of the estimated bending strain ε is also improved.

次に、上記第1の実施例に係る配管の曲げひずみ推定方法を用いた配管の安全率評価方法について説明する。上記実施例に係る曲げひずみ推定方法を用いた配管の安全率評価方法は、まず、製造された埋設管3毎に予め破断ひずみ(または降伏ひずみ)を求め、上記曲げひずみ推定方法により推定された埋設管3の曲げひずみεと予め求められた破断ひずみ(または降伏ひずみ)とを比較し、変形後の曲げひずみεが予め求められた破断ひずみ(または降伏ひずみ)の基準内であれば、定量的な安全率が高いと評価し、基準を超えていれば定量的な安全率が低いと評価するようにしている。なお、破断ひずみと降伏ひずみとはいずれか一方を用いてもよいし、両方を組み合わせて用いてもよい。   Next, a pipe safety factor evaluation method using the pipe bending strain estimation method according to the first embodiment will be described. In the pipe safety factor evaluation method using the bending strain estimation method according to the above embodiment, first, the fracture strain (or yield strain) is obtained in advance for each manufactured buried pipe 3 and estimated by the bending strain estimation method. The bending strain ε of the buried pipe 3 is compared with the fracture strain (or yield strain) obtained in advance, and if the bending strain ε after deformation is within the criteria for the fracture strain (or yield strain) obtained in advance, a quantitative determination is made. The safety factor is evaluated as high, and if it exceeds the standard, the quantitative safety factor is evaluated as low. Note that either one of the breaking strain and the yield strain may be used, or both may be used in combination.

例えば、農業用水の圧力管路に広く利用される強化プラスチック複合管(以下、FRPM管という)については、ISO10471に基づき試験を行い、FRPM管で50年後の長期極限曲げひずみBを求めると、9,830μとなる。この9,830μと比較して安全率を評価するようになっている。また、距離測定器2Aによる計測時点での極限曲げひずみBと比較して、その時点における安全率を評価するようになっている。 For example, a reinforced plastic composite pipe (hereinafter referred to as “FRPM pipe”) widely used in pressure pipes for agricultural water is tested based on ISO10471, and the long-term ultimate bending strain B b after 50 years is obtained from the FRPM pipe. , 9,830 μ. The safety factor is evaluated in comparison with 9,830 μm. The distance as compared to the ultimate bending strain B b at the measurement point by the measurement instrument 2A, is adapted to evaluate the safety factor at that time.

さらに、国際規格としてアメリカ水道協会(American Water WorksAssociation)のAWWA−M45では、長期極限内圧ひずみHDBに対して1.8、長期極限曲げひずみBに対して1.5の安全率を考慮するように規定している。また、農水省設計基準では、内圧に対して試験内圧の1/2、外圧に対して試験外圧(破壊外圧の80%)の1/2を、使用条件の上限としている。フィラメントワインディング成形(FW成形)によるFRPM管の場合、メーカーは内圧による限界ひずみを安全側に9,000×10−6と設定し、さらにクリープ係数1.5で除したものを試験内圧負荷時のひずみとしている。さらに、外圧による破断ひずみを14,900×10−6とし、その80%を試験外圧負荷時のひずみと設定している。各々安全率2で除した値が、使用時の上限となっている(図6参照)。このように、上記実施例に係る曲げひずみ推定方法を用いた配管の安全率評価方法では、製造された埋設管3毎に破断ひずみ(または降伏ひずみ)を予め求め、第2のステップS2で求められた曲げひずみεと、予め求められた破断ひずみ(または降伏ひずみ)とを比較し、この比較に基づいて安全評価対象の埋設管(配管)3の定量的な安全率を評価するようにしている。このため、任意の位置で埋設管3の曲げひずみを簡便にかつ迅速に推定することができ、保守管理が効率化されるとともに、局所的に変形した配管についても安全性を適切に評価することができる。 Furthermore, the AWWA-M45 American Water Works Association (American Water WorksAssociation) as an international standard, long extreme pressure strain 1.8 relative HDB, to consider the safety factor of 1.5 with respect to long-term extreme bending strain B b It is stipulated in. Further, according to the design standards of the Ministry of Agriculture and Fisheries, the upper limit of the use condition is 1/2 of the test internal pressure with respect to the internal pressure and 1/2 of the test external pressure (80% of the fracture external pressure) with respect to the external pressure. In the case of an FRPM tube by filament winding molding (FW molding), the manufacturer sets the limit strain due to internal pressure to 9,000 × 10 −6 on the safe side, and further divides it by a creep factor of 1.5 when the test internal pressure is applied Strain. Furthermore, the breaking strain due to the external pressure is 14,900 × 10 −6, and 80% of the strain is set as the strain at the test external pressure load. Each value divided by the safety factor 2 is the upper limit during use (see FIG. 6). Thus, in the piping safety factor evaluation method using the bending strain estimation method according to the above-described embodiment, the fracture strain (or yield strain) is obtained in advance for each manufactured buried pipe 3 and obtained in the second step S2. The obtained bending strain ε is compared with the fracture strain (or yield strain) obtained in advance, and based on this comparison, the quantitative safety factor of the buried pipe (piping) 3 to be evaluated for safety is evaluated. Yes. For this reason, the bending strain of the buried pipe 3 can be estimated easily and quickly at an arbitrary position, maintenance management is made efficient, and safety is appropriately evaluated even for locally deformed pipes. Can do.

次に、本発明の第2の実施例に係る配管の曲げひずみ推定方法について説明する。第2の実施例に係る配管の曲げひずみ推定方法は、図7に示すように、上記第1の実施例に係る配管の曲げひずみ推定方法が、例えば、レーザ距離計またはデジタルスキャナ等からなる距離測定器2Aを、支持脚2Bにより埋設管3内に支持し、測定器2A側の計測基準点と被計測側の各測点との間の距離を計測するようにしているのに対し、第2の測定装置12を、所望の長さに設定されて埋設管3の内部に導入され、両端側が埋設管内面の周方向に沿って当接されるベース13と、このベース13の中心に設けられ、ベース13中心の測定位置と埋設管内面との間の径方向距離da(dan)を計測するデプスゲージ(第2の距離測定器)14とを備えて構成した点が異なっている外は、上記第1の実施例とほぼ同一の構成を備えている。   Next, a bending strain estimation method for piping according to a second embodiment of the present invention will be described. As shown in FIG. 7, the pipe bending strain estimation method according to the second embodiment is a distance formed by, for example, a laser distance meter or a digital scanner. The measuring instrument 2A is supported in the buried pipe 3 by the support leg 2B, and the distance between the measuring reference point on the measuring instrument 2A side and each measuring point on the measured side is measured. The measuring device 12 of 2 is set to a desired length and introduced into the embedded tube 3, and a base 13 with both ends abutting along the circumferential direction of the inner surface of the embedded tube is provided at the center of the base 13. Except that a depth gauge (second distance measuring device) 14 for measuring a radial distance da (dan) between the measurement position at the center of the base 13 and the inner surface of the buried pipe is different. It has almost the same configuration as the first embodiment.

すなわち、本実施例に係る配管の曲げひずみ推定方法では、第1のステップS11で、この第2の測定装置12を埋設管3内部に導入し、第2の測定装置12のベース13を周方向に移動させてはベース13の測定位置(計測基準点)Psと埋設管3内面Paとの間の径方向距離da(da1、da2、・・・dan)を求めるようにしている。第2のステップS12では、上記第1の実施例と同様に求められた変形後の曲率半径ranra1ra2、・・・ran)に曲り梁の弾性論を適用して埋設管3の曲げひずみεaを推定するようになっている。 That is, in the pipe bending strain estimation method according to the present embodiment, in the first step S11, the second measuring device 12 is introduced into the buried pipe 3, and the base 13 of the second measuring device 12 is set in the circumferential direction. In other words, the radial distance da (da1, da2,..., Dan) between the measurement position (measurement reference point) Ps of the base 13 and the inner surface Pa of the buried pipe 3 is obtained. In a second step S12, the first embodiment and the radius of curvature ran after deformation obtained in the same manner (ra1, ra2, ··· ran) by applying the theory of elasticity of curved beam bending of buried pipe 3 The strain εa is estimated.

ここで、ベース13の一端13Aからデプスゲージ14の計測基準点Psまでの距離Lは一定であり、計測基準点Psから埋設管3内面の測点Paまでの径方向距離daが求められると、ピタゴラスの定理により距離Lと計測された径方向距離daとをそれぞれ直角の2辺とする三角形が求められ、変形後の曲率半径ranra1ra2、・・・ran)が導かれる。 Here, the distance L from the one end 13A of the base 13 to the measurement reference point Ps of the depth gauge 14 is constant, and when the radial distance da from the measurement reference point Ps to the measurement point Pa on the inner surface of the buried pipe 3 is obtained, Pythagoras asked triangle to the theorem distance L between the measured radial distance da and the respectively orthogonal two sides, the radius of curvature ran after deformation (ra1, ra2, ··· ran) is derived.

本実施例に係る配管の曲げひずみ推定方法に用いられる第2の測定装置12では、ベース13は矩形の平板状に形成され、長手方向両端角部が埋設管3の内面に長手方向を周方向に合致させて当接されるようになっている。デプスゲージ14は、ベース13の長手方向の中央かつ短寸方向の中央に設けられる。このデプスゲージ14は、ベース13下面に合致する計測基準点Psとこの計測基準点Psから垂直に下がった埋設管3内面の測点Paとの間の距離da(da1、da2、・・・dan)を計測するようになっている。すなわち、ベース13を埋設管3の内面周方向に移動させつつ、距離daを計測するようになっている。ベース13の両端13A、13Bが当接する埋設管3内面の当接部PaA、PaB間の周方向距離W2の中央がデプスゲージ14の埋設管3内面の測点Paと合致するようになっている。(PaA⌒Pa=Pa⌒PaB)   In the second measuring device 12 used in the pipe bending strain estimation method according to the present embodiment, the base 13 is formed in a rectangular flat plate shape, and both end corners in the longitudinal direction are in the circumferential direction on the inner surface of the buried pipe 3. It is made to contact | abut to match. The depth gauge 14 is provided at the center in the longitudinal direction and the center in the short dimension direction of the base 13. The depth gauge 14 has a distance da (da1, da2,..., Da) between the measurement reference point Ps that matches the lower surface of the base 13 and the measurement point Pa on the inner surface of the buried pipe 3 that is perpendicularly lowered from the measurement reference point Ps. Is to measure. That is, the distance da is measured while moving the base 13 in the circumferential direction of the inner surface of the buried pipe 3. The center of the circumferential distance W2 between the abutting portions PaA and PaB of the inner surface of the embedded tube 3 with which both ends 13A and 13B of the base 13 are in contact with the measuring point Pa on the inner surface of the embedded tube 3 of the depth gauge 14. (PaA⌒Pa = Pa⌒PaB)

本実施例に係る配管の曲げひずみ推定方法では、第1のステップS11で、この第2の測定装置12を埋設管3内部に導入し、第2の測定装置12のベース13を周方向に移動させてはベース13の測定位置Psと埋設管3内面Paとの間の径方向距離da(da1、da2、・・・dan)を求め、第2のステップS12で、上記第1の実施例と同様に、第1のステップS11で求められた変形後の曲率半径ranra1ra2、・・・ran)に曲り梁の弾性論を適用して埋設管3の曲げひずみεaを推定するようにしているので、計測作業が迅速化され精度の高い曲げひずみを求めることができる。 In the bending strain estimation method for piping according to the present embodiment, in the first step S11, the second measuring device 12 is introduced into the buried pipe 3, and the base 13 of the second measuring device 12 is moved in the circumferential direction. Then, the radial distance da (da1, da2,...) Between the measurement position Ps of the base 13 and the inner surface Pa of the buried pipe 3 is obtained, and in the second step S12, the distance between the first embodiment and the first embodiment is obtained. Similarly, so as to estimate a first curvature after modification obtained in step S11 radius ran (ra1, ra2, ··· ran ) bending strain εa of buried pipe 3 by applying the theory of elasticity of curved beam to As a result, the measurement work can be speeded up and a highly accurate bending strain can be obtained.

次に、本発明の第3の実施例に係る配管の曲げひずみ推定方法について説明する。第3の実施例に係る配管の曲げひずみ推定方法は、図8に示すように、上記第2の実施例に係る配管の曲げひずみ推定方法が、第2の測定装置12を、両端側が埋設管3内面の周方向に沿って当接されるベース13と、このベース13の中心に設けられたデプスゲージ14とを備えて構成しているのに対し、第3の測定装置22を、所望の長さに設定されて埋設管3の内部に導入され、両端23A、23Bが埋設管3内面の周方向に沿って当接されるベース23と、このベース23の長手方向に摺動可能に設けられ、ベース23の長手方向の測定位置Psi(Ps1、Ps2、・・・Psn)とこのベース23の測定位置Psi(Ps1〜Psn)から垂下された埋設管3内面の測点Pb(Pb1、Pb2、・・・Pbn)との間の距離db(db1、db2、・・・dbn)を計測する可動デプスゲージ(第3の距離測定器)24とを備えて構成した点が異なっている外は、上記第2の実施例とほぼ同一の構成を備えている。   Next, a bending strain estimation method for piping according to a third embodiment of the present invention will be described. As shown in FIG. 8, the pipe bending strain estimation method according to the third embodiment is the same as the pipe bending strain estimation method according to the second embodiment, except that the second measuring device 12 is embedded at both ends. 3 comprises a base 13 abutted along the circumferential direction of the inner surface, and a depth gauge 14 provided at the center of the base 13, whereas the third measuring device 22 has a desired length. The base 23 is set so as to be introduced into the buried pipe 3 and both ends 23A and 23B are brought into contact with each other along the circumferential direction of the inner surface of the buried pipe 3, and the base 23 is slidable in the longitudinal direction. , The measurement position Psi (Ps1, Ps2,... Psn) in the longitudinal direction of the base 23 and the measurement points Pb (Pb1, Pb2, Psn) on the inner surface of the buried pipe 3 suspended from the measurement positions Psi (Ps1 to Psn) of the base 23. ... db distance to Pbn) Except that the movable depth gauge (third distance measuring device) 24 for measuring db1, db2,..., dbn) is different, the configuration is almost the same as that of the second embodiment. ing.

すなわち、本実施例に係る配管の曲げひずみ推定方法に用いられる第3の測定装置22では、ベース23は矩形の平板状に形成され、長手方向両端角部が埋設管3の内面に長手方向を周方向に合致させて当接されるようになっている。このベース23には、長手方向に沿って図示しない溝が形成され、可動デプスゲージ24はこの図示しない溝に摺動自在に係合されて移動するようになっている。そして、可動デプスゲージ24はベース23の長手方向の所望の測定位置でPsi(Ps1、Ps2、・・・Psn)停止し、この測定位置を計測基準点Psiとして計測基準点Psiからベース23底面に対して垂下された埋設管3内面の測点pbとの間の距離db(db1、db2、・・・dbn)を計測するようになっている。すなわち、ベース23の両端23A、23Bを埋設管3の内面周方向に当接させた状態で、可動デプスゲージ24をベース23の長手方向に移動させては、所望の測定位置でPsi(Ps1、Ps2、・・・Psn)停止させ、可動デプスゲージ24の停止後、ベース23の測定位置Psiから垂下された埋設管3内面の測点Pbnとの間の距離dbnを計測するようになっている。そして、ベース23の両端23A、23Bが当接する埋設管3内面の当接部PbA、PbB間の周方向の範囲W3(PbA⌒PbB)で複数の垂下距離db(db1、db2、・・・dbn)を計測するようになっている。ベース23の当接位置での計測が完了すると、ベース23を埋設管3の内面周方向に移動させ、異なる当接位置における距離dbを計測するようになっている。   That is, in the third measuring device 22 used in the pipe bending strain estimation method according to the present embodiment, the base 23 is formed in a rectangular flat plate shape, and both longitudinal corners extend in the longitudinal direction on the inner surface of the buried pipe 3. It is made to contact in the circumferential direction. A groove (not shown) is formed in the base 23 along the longitudinal direction, and the movable depth gauge 24 is slidably engaged with the groove (not shown) and moves. The movable depth gauge 24 stops Psi (Ps1, Ps2,... Psn) at a desired measurement position in the longitudinal direction of the base 23, and this measurement position is taken as a measurement reference point Psi from the measurement reference point Psi to the bottom surface of the base 23. A distance db (db1, db2,..., Dbn) between the inner surface of the buried pipe 3 suspended and the measuring point pb is measured. That is, when the movable depth gauge 24 is moved in the longitudinal direction of the base 23 in a state where both ends 23A and 23B of the base 23 are in contact with the circumferential direction of the inner surface of the embedded tube 3, Psi (Ps1, Ps2) is obtained at a desired measurement position. ,... Psn) After stopping the movable depth gauge 24, the distance dbn between the measurement point Pbn on the inner surface of the buried pipe 3 suspended from the measurement position Psi of the base 23 is measured. Then, a plurality of drooping distances db (db1, db2,. ) Is measured. When the measurement at the contact position of the base 23 is completed, the base 23 is moved in the circumferential direction of the inner surface of the buried pipe 3 and the distance db at different contact positions is measured.

ここで、ベース23の一端23Aから可動デプスゲージ24が停止した位置の計測基準点Psiまでの距離Liと、計測基準点Psiから埋設管3内面の測点Pbまでの計測距離dbとが求められると、ピタゴラスの定理により距離Liと計測距離dbとをそれぞれ直角の2辺とする三角形が求められ、変形後の曲率半径rbnrb1rb2、・・・rbn)が導かれる。 Here, when the distance Li from the one end 23A of the base 23 to the measurement reference point Psi at the position where the movable depth gauge 24 is stopped and the measurement distance db from the measurement reference point Psi to the measurement point Pb on the inner surface of the buried pipe 3 are obtained. , Pythagorean's theorem determines a triangle having a distance Li and a measurement distance db each having two right angles, and derives the radius of curvature rbn ( rb1 , rb2 ,... Rbn ) after deformation.

こうして、本実施例に係る配管の曲げひずみ推定方法では、第1のステップS21で、この第3の測定装置22を埋設管3内部に導入し、ベース23を任意の最初の周方向計測位置に当接させて保持し、可動デプスゲージ24をベース23に沿って移動させては摺動範囲でベース23の複数の測定位置Psi(Ps1、Ps2、・・・Psn)で停止させて、これら測定位置Psiから垂下された埋設管3内面の測点Pb(Pb1、Pb2、・・・Pbn)との間の距離db(db1、db2、・・・dbn)を求め、ベース23が当接された前記周方向計測位置における距離の計測が終了すると、ベース23を周方向に移動させては可動デプスゲージ24による測定を繰り返し、ベース23の測定位置Psi(Ps1、Ps2、・・・Psn)と埋設管3内面との間の距離db(db1、db2、・・・dbn)を求めるようにしている。そして、第2のステップS22では、上記第2の実施例と同様に、第1のステップS21で求められた変形後の曲率半径rbnrb1rb2、・・・rbn)に曲り梁の弾性論を適用して埋設管3の曲げひずみεbを推定するようにしている。このため、測定範囲が均一に変形しているか否かを評価することができる。また、同時に計測に用いるベースの長さが適切か否かも評価することができる。すなわち、ベースの長さの適不適については、ベースは埋設管3内に導入可能な長さ以下であればよいが、短かすぎると測定値がばらついて変形後の曲率半径に影響を与える虞があるためである。 Thus, in the pipe bending strain estimation method according to the present embodiment, in the first step S21, the third measuring device 22 is introduced into the buried pipe 3, and the base 23 is set to an arbitrary first circumferential measurement position. The movable depth gauge 24 is moved in contact with the base 23 and stopped at a plurality of measurement positions Psi (Ps1, Ps2,... Psn) of the base 23 in the sliding range. A distance db (db1, db2,... Dbn) between the inner surface of the buried pipe 3 suspended from Psi and the measuring point Pb (Pb1, Pb2,... Pbn) is obtained. When the measurement of the distance at the circumferential measurement position is completed, the base 23 is moved in the circumferential direction and the measurement by the movable depth gauge 24 is repeated, and the measurement position Psi (Ps1, Ps2,... Ps) of the base 23 is repeated. ) And the distance db (db1, db2 between buried pipe 3 inside surface, so that seek · · · dbn). Then, in the second step S22, similarly to the second embodiment, the elasticity theory of the curved beam is changed to the curvature radius rbn ( rb1 , rb2 ,... Rbn ) obtained in the first step S21. Is applied to estimate the bending strain εb of the buried pipe 3. For this reason, it can be evaluated whether the measurement range is deformed uniformly. At the same time, it is possible to evaluate whether or not the length of the base used for measurement is appropriate. In other words, as to the suitability of the length of the base, it is sufficient that the base is equal to or shorter than the length that can be introduced into the buried pipe 3, but if the length is too short, the measured value may vary and the radius of curvature after deformation may be affected. Because there is.

次に、本発明の第4の実施例に係る配管の曲げひずみ推定方法について説明する。第4の実施例に係る配管の曲げひずみ推定方法は、図9に示すように、上記第3の実施例に係る配管の曲げひずみ推定方法が、第3の測定装置22を、ベース23と、このベース23の長手方向に摺動可能に設けられた可動デプスゲージ24とを備えて構成しているのに対し、第4の測定装置32を、所望の長さに設定されて埋設管3の内部に導入され、両端33A、33Bが埋設管3内面の周方向に沿って当接されるベース33と、このベース33の長手方向に所望の間隔を隔てて複数設けられ、ベース33に沿った複数の測定位置Psj1〜Psjn(nは1以上の任意の整数)とこれらベース33の複数の測定位置Psj1〜Psjnからそれぞれ垂下された配管内面の測点Pc1〜Pcn(nは1以上の任意の整数)との間の距離を計測する固定デプスゲージ(第4の距離測定器)34a〜34eとを備えて構成した点が異なっている外は、上記第3の実施例とほぼ同一の構成を備えている。   Next, a bending strain estimation method for piping according to a fourth embodiment of the present invention will be described. As shown in FIG. 9, the pipe bending strain estimation method according to the fourth embodiment is the same as the pipe bending strain estimation method according to the third embodiment, in which the third measuring device 22, the base 23, In contrast to the movable depth gauge 24 slidably provided in the longitudinal direction of the base 23, the fourth measuring device 32 is set to a desired length so that the inside of the embedded pipe 3 And a plurality of bases 33 provided at both ends 33 </ b> A and 33 </ b> B along the circumferential direction of the inner surface of the buried pipe 3, and provided at a desired interval in the longitudinal direction of the base 33. Measurement positions Psj1 to Psjn (n is an arbitrary integer greater than or equal to 1) and the measurement points Pc1 to Pcn (n is an arbitrary integer greater than or equal to 1) on the inner surface of the pipe suspended from the plurality of measurement positions Psj1 to Psjn of the base 33 ) The distance between Outside the points constructed by a measuring securing the depth gauge (fourth distance measuring device) 34 a - 34 e are different, has almost the same configuration as the third embodiment.

すなわち、本実施例に係る配管の曲げひずみ推定方法に用いられる第4の測定装置32では、ベース33は矩形の平板状に形成され、長手方向両端角部33A、33Bが埋設管3の内面に長手方向を周方向に合致させて当接されるようになっている。このベース33には、複数の固定デプスゲージ34a〜34eが長手方向に沿って所望の間隔を隔てて複数設けられ、それぞれの固定デプスゲージ34a〜34eが計測基準点Psj1〜Psjn(本実施例では、計測基準点Psj1〜Psj5の5箇所)からベース33底面に対して垂下された埋設管3内面の測点pc1〜Pcn(本実施例では、Pc1〜Pc5)との間の距離dc1〜dcn(本実施例ではdc1〜dc5)をそれぞれ計測するようになっている。そして、ベース33の両端33A、33Bが当接する埋設管3内面の当接部PcA、PcB間の周方向の範囲W4(PcA⌒PcB)で複数の垂下距離dc1〜dc5を計測するようになっている。ベース33の当接位置での計測が完了すると、ベース33を埋設管3の内面周方向に移動させ、異なる当接位置における距離dcを計測するようになっている。   That is, in the fourth measuring device 32 used in the pipe bending strain estimation method according to the present embodiment, the base 33 is formed in a rectangular flat plate shape, and both longitudinal corners 33A and 33B are formed on the inner surface of the buried pipe 3. The longitudinal direction is matched with the circumferential direction so as to come into contact. The base 33 is provided with a plurality of fixed depth gauges 34a to 34e at a desired interval along the longitudinal direction, and each of the fixed depth gauges 34a to 34e is provided with measurement reference points Psj1 to Psjn (in this embodiment, measurement is performed). Distances dc1 to dcn between the measurement points pc1 to Pcn (in this embodiment, Pc1 to Pc5) of the inner surface of the buried pipe 3 suspended from the bottom surface of the base 33 from the five reference points Psj1 to Psj5 (this embodiment) In the example, dc1 to dc5) are respectively measured. Then, a plurality of drooping distances dc1 to dc5 are measured in a circumferential range W4 (PcA) PcB) between the contact portions PcA and PcB on the inner surface of the embedded pipe 3 where both ends 33A and 33B of the base 33 abut. Yes. When the measurement at the contact position of the base 33 is completed, the base 33 is moved in the circumferential direction of the inner surface of the buried pipe 3, and the distance dc at different contact positions is measured.

こうして、本実施例に係る配管の曲げひずみ推定方法では、第1のステップS31で、この第4の測定装置32を埋設管3内部に導入し、ベース33を任意の最初の周方向計測位置に当接させて保持し、各固定デプスゲージ34a〜34eによりそれぞれの測定位置Psj1〜Psj5から垂下された埋設管3内面の測点Pc1〜Pc5との間の距離dc1〜dc5を求め、ベース33が当接された前記周方向計測位置における距離の計測が終了すると、ベース33を周方向に移動させては各固定デプスゲージ34a〜34eによる測定を繰り返し、ベース33の測定位置Psj1〜Psj5と埋設管3内面との間の距離dc1〜dc5を求めるようにしている。そして、第2のステップS32では、上記第3の実施例と同様に、第1のステップS31で求められた変形後の曲率半径rcnrc1rc2、・・・rc5)に曲り梁の弾性論を適用して埋設管3の曲げひずみεcを推定するようにしている。このため、本実施例に係る配管の曲げひずみ推定方法では、計測作業が迅速化され精度の高い曲げひずみを求めることができる。 Thus, in the pipe bending strain estimation method according to the present embodiment, in the first step S31, the fourth measuring device 32 is introduced into the buried pipe 3, and the base 33 is set to an arbitrary first circumferential measurement position. The distances dc1 to dc5 between the measurement points Pc1 to Pc5 on the inner surface of the buried pipe 3 suspended from the respective measurement positions Psj1 to Psj5 by the fixed depth gauges 34a to 34e are obtained, and the base 33 is applied. When the measurement of the distance at the contacted circumferential measurement position is completed, the base 33 is moved in the circumferential direction, and the measurement by the fixed depth gauges 34a to 34e is repeated. The distances dc1 to dc5 between the two are obtained. In the second step S32, similarly to the third embodiment, the elasticity theory of the curved beam is set to the radius of curvature rcn ( rc1 , rc2 ,... Rc5 ) after the deformation obtained in the first step S31. Is applied to estimate the bending strain εc of the buried pipe 3. For this reason, in the bending strain estimation method for piping according to the present embodiment, the measurement work is speeded up, and a highly accurate bending strain can be obtained.

なお、上記実施例では、地中に埋設された埋設管について述べているが、これに限られるものではなく、地上に設置された配管にも適用可能であることはいうまでもない。   In addition, although the said Example has described the buried pipe buried in the ground, it is not restricted to this, and it cannot be overemphasized that it is applicable also to the piping installed on the ground.

2 測定装置(第1の測定装置、測定手段)
3 埋設管(配管)
d1〜dn 測定装置と埋設管との距離
r1rn 変形後の曲率半径
S1 第1のステップ
S2 第2のステップ
2 Measuring device (first measuring device, measuring means)
3 buried pipes (piping)
d1 to dn Distance between measuring device and buried pipe
radius of curvature after r1 to rn deformation S1 first step S2 second step

Claims (9)

変形後の配管内の任意の位置に測定手段を導入し、測定手段と管内面との距離を計測し、計測された測定値から、変形前の配管の曲率半径に対する変形後の曲率半径を求める第1のステップと、第1のステップで求められた変形後の曲率半径に曲り梁の弾性論を適用して配管のひずみを推定する第2のステップとを有することを特徴とする配管の曲げひずみ推定方法。 Measuring means is introduced at an arbitrary position in the pipe after deformation , the distance between the measuring means and the inner surface of the pipe is measured, and the curvature radius after deformation with respect to the curvature radius of the pipe before deformation is obtained from the measured value. Bending of piping characterized by having a first step and a second step of estimating strain of the piping by applying the elasticity theory of the bending beam to the radius of curvature after deformation obtained in the first step Strain estimation method. 第1のステップで変形前の配管を真円と仮定し、管厚と計測された測定値とに基づいて変形後の曲率半径を求めることを特徴とする請求項1に記載の配管の曲げひずみ推定方法。 2. The pipe bending strain according to claim 1, wherein the pipe before deformation is assumed to be a perfect circle in the first step, and the radius of curvature after deformation is obtained based on the pipe thickness and the measured value. Estimation method. 測定手段を、第1の距離測定器と配管内でこの第1の距離測定器を所定の位置に支持する脚とを備えた第1の測定装置により構成し、第1のステップで、配管内部に第1の測定装置を導入し、導入された第1の測定装置の第1の距離測定器と配管内面との距離を計測する際、配管内面側の測点を周方向に所定の間隔で複数設定し、複数の測点のデータを組み合わせて曲率半径を求めることを特徴とする請求項1または2に記載の配管の曲げひずみ推定方法。   The measuring means is constituted by a first measuring device including a first distance measuring device and a leg that supports the first distance measuring device at a predetermined position in the pipe. When measuring the distance between the first distance measuring device of the introduced first measuring device and the inner surface of the pipe, the measuring points on the inner surface side of the pipe are set at predetermined intervals in the circumferential direction. The method for estimating bending strain of piping according to claim 1 or 2, wherein a plurality of settings are made and the curvature radius is obtained by combining data of a plurality of measurement points. 第1の距離測定器により計測された測定値について、スムージング処理により補正し、スムージング処理されて補正された測定値を用いて任意の三点の測点を選定し、曲率半径を求めることを特徴とする請求項3に記載の配管の曲げひずみ推定方法。   The measurement value measured by the first distance measuring device is corrected by the smoothing process, and any three measurement points are selected using the measurement value corrected by the smoothing process, and the curvature radius is obtained. The bending strain estimation method for piping according to claim 3. 測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースの中心に設けられ、ベースの中心の測定位置と配管内面との間の径方向距離を計測する第2の距離測定器とを備えた第2の測定装置により構成し、
第1のステップで、この第2の測定装置を配管内部に導入し、第2の測定装置のベースを周方向に移動させては前記径方向距離を求めることを特徴とする請求項1または2に記載の配管の曲げひずみ推定方法。
The measuring means is set to a desired length and introduced into the pipe, and both ends are abutted along the circumferential direction of the pipe inner surface, and the measurement position of the center of the base is provided at the center of the base. And a second measuring device comprising a second distance measuring device for measuring a radial distance between the pipe and the inner surface of the pipe,
3. In the first step, the second measuring device is introduced into a pipe and the base of the second measuring device is moved in the circumferential direction to obtain the radial distance. The bending strain estimation method of piping as described in 2.
測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースに長手方向に摺動可能に設けられ、ベースの変位可能な測定位置とこの測定位置から垂直に下がる配管内面の測点との間の距離を計測する第3の距離測定器とを備えた第3の測定装置により構成し、
第1のステップで、この第3の測定装置を配管内部に導入し、ベースを任意の最初の周方向計測位置に保持し、第3の距離測定器をベースに沿って移動させては摺動範囲でベースの複数の測定位置とこれら測定位置から垂下された配管内面の測点との間の距離を求め、ベースの前記周方向計測位置における距離の計測が終了すると、ベースを周方向に移動させては第3の距離測定器による測定を繰り返すことを特徴とする請求項1または2に記載の配管の曲げひずみ推定方法。
The measuring means is set to a desired length and introduced into the pipe, and both ends are abutted along the circumferential direction of the pipe inner surface, and the base is slidable in the longitudinal direction. A third measuring device comprising a third distance measuring device for measuring a distance between the displaceable measuring position and a measuring point on the inner surface of the pipe vertically falling from the measuring position,
In the first step, the third measuring device is introduced into the pipe, the base is held at an arbitrary first circumferential measuring position, and the third distance measuring device is moved along the base to slide. Find the distance between the multiple measurement positions of the base in the range and the measurement points on the inner surface of the pipe suspended from these measurement positions, and when the distance measurement at the circumferential measurement position of the base is completed, move the base in the circumferential direction Then, the measurement by the third distance measuring device is repeated, and the bending strain estimation method for piping according to claim 1 or 2.
測定手段を、所望の長さに設定されて配管の内部に導入され、両端側が配管内面の周方向に沿って当接されるベースと、このベースの長手方向に所望の間隔を隔てて複数設けられ、ベースに沿った複数の測定位置とこれらベースの複数の測定位置からそれぞれ垂直に下がる配管内面の測点との間の距離を計測する第4の距離測定器とを備えた第4の測定装置により構成し、
第1のステップで、この第4の測定装置を配管内部に導入し、ベースを任意の最初の周方向計測位置に保持し、第4の距離測定器によりベースの複数の測定位置とこれら測定位置から垂下された配管内面の測点との間の距離を求め、ベースの最初の周方向計測位置における距離の計測が終了すると、ベースを周方向に移動させては第4の距離測定器による測定を繰り返すことを特徴とする請求項1または2に記載の配管の曲げひずみ推定方法。
A plurality of measuring means are set in a desired length and introduced into the pipe, and a plurality of bases with both ends abutting along the circumferential direction of the pipe inner surface are provided at a desired interval in the longitudinal direction of the base. And a fourth distance measuring device that measures a distance between the plurality of measurement positions along the base and the measurement points on the inner surface of the pipe that respectively descend vertically from the plurality of measurement positions of the base. Consisting of equipment,
In the first step, the fourth measuring device is introduced into the pipe, the base is held at any initial circumferential measurement position, and a plurality of measurement positions of the base and these measurement positions are measured by the fourth distance measuring device. After measuring the distance from the measurement point on the inner surface of the pipe hanging down from the base and measuring the distance at the first circumferential measurement position of the base, move the base in the circumferential direction and measure with the fourth distance measuring instrument. The method of estimating a bending strain of piping according to claim 1 or 2, wherein:
配管は地中に埋設された埋設管であることを特徴とする請求項1ないし7のうちいずれか1に記載の配管の曲げひずみ推定方法。   The pipe bending strain estimation method according to any one of claims 1 to 7, wherein the pipe is a buried pipe buried in the ground. 配管毎に予め破断ひずみまたは降伏ひずみのうち少なくともいずれか1のひずみを求め、請求項1ないし8のうちいずれか1の方法により推定された配管の曲げひずみと前記予め求められたひずみとの比較に基づいて、当該評価対象の配管の定量的な安全率を評価することを特徴とする配管の安全率評価方法。   Comparing the bending strain of the pipe estimated by the method according to any one of claims 1 to 8 with the previously determined strain, by obtaining at least any one of breaking strain and yield strain for each piping in advance. A method for evaluating the safety factor of a pipe, characterized in that a quantitative safety factor of the pipe to be evaluated is evaluated based on
JP2014025896A 2014-02-13 2014-02-13 Piping bending strain estimation method and piping safety factor evaluation method using the method Active JP6261365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025896A JP6261365B2 (en) 2014-02-13 2014-02-13 Piping bending strain estimation method and piping safety factor evaluation method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025896A JP6261365B2 (en) 2014-02-13 2014-02-13 Piping bending strain estimation method and piping safety factor evaluation method using the method

Publications (2)

Publication Number Publication Date
JP2015152403A JP2015152403A (en) 2015-08-24
JP6261365B2 true JP6261365B2 (en) 2018-01-17

Family

ID=53894824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025896A Active JP6261365B2 (en) 2014-02-13 2014-02-13 Piping bending strain estimation method and piping safety factor evaluation method using the method

Country Status (1)

Country Link
JP (1) JP6261365B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800056B2 (en) * 1990-03-02 1998-09-21 大阪瓦斯株式会社 Non-destructive stress estimation method for buried piping system
JPH076883B2 (en) * 1991-03-14 1995-01-30 日本鋼管株式会社 Subsidence control method for buried piping
JPH07311022A (en) * 1994-05-20 1995-11-28 Nippon Telegr & Teleph Corp <Ntt> Device for measuring meander of pipe line
JP2000074651A (en) * 1998-08-27 2000-03-14 Yoshikawa Sangyo Kk Device for measuring concrete specimen and measuring method using the device
JP2001317907A (en) * 2000-05-11 2001-11-16 Hitachi Cable Ltd Multi-purpose measurement unit for radius of curvature
JP4356549B2 (en) * 2004-08-03 2009-11-04 住友金属工業株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2005049360A (en) * 2004-11-18 2005-02-24 Jfe Engineering Kk Cross section profile measurement device of tube
JP2009248187A (en) * 2008-04-11 2009-10-29 Jfe Steel Corp Steel pipe for secondarily working into deformed cross section
JP5648569B2 (en) * 2011-04-25 2015-01-07 Jfeスチール株式会社 CFT column steel pipe design method

Also Published As

Publication number Publication date
JP2015152403A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US20110172982A1 (en) Site based quantification of substrate topography and its relation to lithography defocus and overlay
Ren et al. Numerical study on the X80 UOE pipe forming process
KR101613815B1 (en) System and method for image-based structural health monitoring suitable for structures having uncertain load conditions and support conditions
CN104990478A (en) Calibration method for textile spinning machine roller entry and exit fixing gauge
CN104535011B (en) A kind of room parameter scaling method of three-dimensional line laser rut detection equipment
CN108088407B (en) Method and system for correcting morphology deviation of optical glass product
JP6261365B2 (en) Piping bending strain estimation method and piping safety factor evaluation method using the method
JP5732026B2 (en) Method for predicting the degree of vulcanization of rubber materials
KR101687226B1 (en) Bearing life prediction method on run-out
CN105737723B (en) A kind of rotary kiln tyre supporting-roller shaft line deflection measurement method
CN105431722A (en) Method for producing a force-measuring element
DE602007008517D1 (en) ADAPTATION OF MULTI-DIMENSIONAL MEASUREMENTS TO TOLERANCE RANGE, INCLUDING MEASUREMENT SAFETY
US11486736B2 (en) Linear variable differential transformer
TWI612277B (en) Tunnel displacement monitoring method
JP6388566B2 (en) Liner dimensional accuracy measurement method for mandrel mill chock
JP6477541B2 (en) Steel plate shape correction method and steel plate manufacturing method
JP5790302B2 (en) Cross sectional shape verification method for tire treads
JP6363971B2 (en) Estimation method and estimation apparatus
KR102190471B1 (en) 3D white light scanner calibration method
CN204535686U (en) A kind of standard set-up for alignment profiles instrument
RU2726168C1 (en) Steel pipe deformability estimation method and steel pipe manufacturing method
JP2013053490A (en) Method for improving accuracy of planar visualization of measurement data on earth retaining wall
CN113231489B (en) Manufacturing process of bridge pier template for road and bridge construction
Godina et al. Measurement uncertainty analysis for calibration of gauge blocks
JP2016114442A (en) Method for inspecting installation part of product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6261365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250