JP6260570B2 - Film damage detection method and film damage detection apparatus - Google Patents

Film damage detection method and film damage detection apparatus Download PDF

Info

Publication number
JP6260570B2
JP6260570B2 JP2015070578A JP2015070578A JP6260570B2 JP 6260570 B2 JP6260570 B2 JP 6260570B2 JP 2015070578 A JP2015070578 A JP 2015070578A JP 2015070578 A JP2015070578 A JP 2015070578A JP 6260570 B2 JP6260570 B2 JP 6260570B2
Authority
JP
Japan
Prior art keywords
electron beam
film
image
damage detection
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015070578A
Other languages
Japanese (ja)
Other versions
JP2016191574A (en
Inventor
嘉之 梅垣
嘉之 梅垣
重宏 高城
重宏 高城
飯塚 幸理
幸理 飯塚
名越 正泰
正泰 名越
花澤 和浩
和浩 花澤
広朗 戸田
広朗 戸田
曽谷 保博
保博 曽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015070578A priority Critical patent/JP6260570B2/en
Publication of JP2016191574A publication Critical patent/JP2016191574A/en
Application granted granted Critical
Publication of JP6260570B2 publication Critical patent/JP6260570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面上に被膜を有する鋼板に電子ビームを照射した際に発生し得る被膜の損傷を検知する被膜損傷検知方法及び被膜損傷検知装置に関する。   The present invention relates to a coating damage detection method and a coating damage detection apparatus that detect damage to a coating that may occur when a steel plate having a coating on the surface is irradiated with an electron beam.

従来、電子ビームを照射することによって電磁鋼板に熱歪みを付与することにより電磁鋼板の鉄損を低減する技術(例えば特許文献1参照)が知られている。この技術では、電子ビームは電磁鋼板の表面からやや内部に浸透した位置で熱エネルギーに変換され、熱エネルギーによって電磁鋼板に熱歪みが付与される。   2. Description of the Related Art Conventionally, a technique for reducing iron loss of an electromagnetic steel sheet by applying thermal distortion to the electromagnetic steel sheet by irradiating an electron beam (see, for example, Patent Document 1) is known. In this technique, the electron beam is converted into thermal energy at a position slightly penetrating from the surface of the electromagnetic steel sheet, and thermal distortion is imparted to the electromagnetic steel sheet by the thermal energy.

一般に、電磁鋼板の表面にはその絶縁性を確保するために被膜が形成されている。このような電磁鋼板に電子ビームを照射する際、電子ビームの照射強度が強すぎたり、電子ビームの照射強度が適切であっても被膜の強度や密着性が弱かったりすると、電子ビームから付与された熱エネルギーによって電磁鋼板が局所的に膨張・収縮することにより、被膜が損傷することがある。   In general, a film is formed on the surface of the electromagnetic steel sheet to ensure its insulation. When irradiating such an electromagnetic steel sheet with an electron beam, if the irradiation intensity of the electron beam is too strong, or if the film strength and adhesion are weak even if the irradiation intensity of the electron beam is appropriate, it is applied from the electron beam. The coating may be damaged by the local expansion and contraction of the electrical steel sheet by the thermal energy.

電子ビームによって被膜が損傷した場合、電磁鋼板の絶縁性が低下したり、母材がむき出しになることによって錆が発生したりする。このため、一般に、電子ビームの照射後には被膜の損傷の有無を検査する必要がある。被膜の損傷の有無を検査する方法としては、目視検査や電磁鋼板の表面画像を撮影して画像処理により検査する方法がある。   When the film is damaged by the electron beam, the insulating properties of the electromagnetic steel sheet are lowered, or the base material is exposed and rust is generated. For this reason, it is generally necessary to inspect for damage to the coating after irradiation with an electron beam. As a method for inspecting the presence or absence of damage to the coating, there are a visual inspection and a method for inspecting the surface of the electromagnetic steel sheet by image processing.

特開平2−118022号公報Japanese Patent Laid-Open No. 2-118022

しかしながら、目視検査によって電磁鋼板の表面全体について被膜の損傷の有無を検査することは非効率的であり、また被膜の損傷を目視検査によって精度高く検知するためには熟練度を要する。一方、電磁鋼板の表面画像を撮影して画像処理により被膜の損傷の有無を検査する方法は自動化できるので、電磁鋼板の表面全体について被膜の損傷の有無を効率よく検査できる。ところが、ビーム径が収束された電子ビームを照射することにより生じる被膜の損傷は非常に小さな点状痕であり、その大きさは100μmよりも小さいことが多い。このため、画像処理により被膜の損傷の有無を検査する方法では、画像中で点状痕とノイズ(鋼板の模様)とを区別し、被膜の損傷を精度高く検知することは困難である。   However, it is inefficient to inspect the entire surface of the electrical steel sheet for the presence or absence of damage to the film by visual inspection, and skill is required to detect damage to the film with high accuracy by visual inspection. On the other hand, since the method of photographing the surface image of the electromagnetic steel sheet and inspecting the presence or absence of the film damage by image processing can be automated, the presence or absence of the film damage can be efficiently inspected for the entire surface of the electromagnetic steel sheet. However, damage to the film caused by irradiation with an electron beam with a converged beam diameter is very small point marks, and the size is often smaller than 100 μm. For this reason, in the method for inspecting the presence or absence of damage to the coating film by image processing, it is difficult to distinguish between spot-like marks and noise (pattern of steel plate) in the image and to detect damage to the coating film with high accuracy.

本発明は、上記に鑑みてなされたものであって、熟練度を要することなく被膜の損傷を精度高く検知可能な被膜損傷検知方法及び被膜損傷検知装置を提供することにある。   This invention is made in view of the above, Comprising: It is providing the film damage detection method and film damage detection apparatus which can detect the damage of a film with high precision, without requiring a skill level.

本発明に係る被膜損傷検知方法は、表面上に被膜を有する鋼板に電子ビームを照射した際に発生し得る被膜の損傷を検知する被膜損傷検知方法であって、前記電子ビームを照射している際に前記電子ビームが照射されている領域を含む前記鋼板の表面の画像を撮影する撮影ステップと、前記撮影ステップにおいて撮影された画像から前記電子ビームが照射されている領域内の各位置における輝度を算出する算出ステップと、前記算出ステップにおいて算出された輝度が所定の閾値以上である位置において前記被膜の損傷が発生していると判定する判定ステップと、を含むことを特徴とする。   A film damage detection method according to the present invention is a film damage detection method for detecting damage to a film that may occur when an electron beam is irradiated to a steel sheet having a film on the surface, and the electron beam is irradiated A photographing step for photographing an image of the surface of the steel sheet including the region irradiated with the electron beam, and brightness at each position in the region irradiated with the electron beam from the image photographed in the photographing step And a determination step of determining that the film is damaged at a position where the luminance calculated in the calculation step is equal to or greater than a predetermined threshold value.

本発明に係る被膜損傷検知方法は、上記発明において、前記電子ビームは、前記鋼板の表面上で収束された電子ビームを走査することによって照射され、前記画像は、収束された電子ビームの走査に同期して走査毎に撮影されることを特徴とする。   In the coating damage detection method according to the present invention, in the above invention, the electron beam is irradiated by scanning an electron beam focused on the surface of the steel plate, and the image is scanned by the focused electron beam. It is characterized in that it is photographed for every scanning in synchronism.

本発明に係る被膜損傷検知方法は、上記発明において、前記算出ステップは、前記画像中の前記電子ビームの走査線上の各位置において、前記走査線と直交する方向における最大の輝度を該位置における輝度として算出するステップを含むことを特徴とする。   The film damage detection method according to the present invention is the film damage detection method according to the above invention, wherein the calculation step sets a maximum luminance in a direction perpendicular to the scanning line at each position on the scanning line of the electron beam in the image. It is characterized by including the step of calculating as follows.

本発明に係る被膜損傷検知方法は、上記発明において、前記閾値は、前記電子ビームの照射位置毎に複数設定されることを特徴とする。   The film damage detection method according to the present invention is characterized in that, in the above invention, a plurality of the threshold values are set for each irradiation position of the electron beam.

本発明に係る被膜損傷検知方法は、上記発明において、前記被膜は、フォルステライト被膜であることを特徴とする。   The film damage detection method according to the present invention is characterized in that, in the above invention, the film is a forsterite film.

本発明に係る被膜損傷検知方法は、上記発明において、前記画像は、700nm以上の波長を有する光を受光して撮影されることを特徴とする。   The film damage detection method according to the present invention is characterized in that, in the above invention, the image is taken by receiving light having a wavelength of 700 nm or more.

本発明に係る被膜損傷検知装置は、表面上に被膜を有する鋼板に電子ビームを照射した際に発生し得る被膜の損傷を検知する被膜損傷検知装置であって、前記電子ビームを照射している際に前記電子ビームが照射されている領域を含む前記鋼板の表面の画像を撮影する撮影手段と、前記撮影手段によって撮影された画像から前記電子ビームが照射されている領域内の各位置における輝度を算出する算出手段と、前記算出手段によって算出された輝度が所定の閾値以上である位置において前記被膜の損傷が発生していると判定する判定手段と、を備えることを特徴とする。   A film damage detection apparatus according to the present invention is a film damage detection apparatus that detects damage to a film that may occur when a steel sheet having a film on the surface is irradiated with an electron beam, and irradiates the electron beam. A photographing means for photographing an image of the surface of the steel sheet including the region irradiated with the electron beam, and brightness at each position in the region irradiated with the electron beam from the image photographed by the photographing means And calculating means for determining that the film is damaged at a position where the luminance calculated by the calculating means is equal to or greater than a predetermined threshold value.

本発明に係る被膜損傷検知方法及び被膜損傷検知装置によれば、熟練度を要することなく被膜の損傷を精度高く検知することができる。   According to the coating film damage detection method and the coating film damage detection device according to the present invention, it is possible to accurately detect damage to the coating film without requiring skill.

図1は、電子ビームの照射強度の変化に伴う電磁鋼板の発光スペクトルの変化を示す図である。FIG. 1 is a diagram showing a change in the emission spectrum of an electrical steel sheet accompanying a change in the irradiation intensity of an electron beam. 図2は、電子ビームの照射強度の変化に伴う電磁鋼板の表面性状の変化を示す光学顕微鏡画像図である。FIG. 2 is an optical microscope image diagram showing changes in the surface properties of the electrical steel sheet accompanying changes in the electron beam irradiation intensity. 図3は、電子ビームの照射領域の撮影画像及び光学顕微鏡画像を示す図である。FIG. 3 is a diagram showing a captured image and an optical microscope image of an electron beam irradiation area. 図4は、図3に示す領域(i)の光学顕微鏡画像を示す図である。FIG. 4 is a diagram showing an optical microscope image of the region (i) shown in FIG. 図5は、本発明の一実施形態である被膜損傷検知装置を備える電子ビーム照射装置の構成を示す模式図である。FIG. 5 is a schematic diagram showing a configuration of an electron beam irradiation apparatus including a film damage detection apparatus according to an embodiment of the present invention. 図6は、画像処理装置による被膜損傷検知処理の流れを説明するための図である。FIG. 6 is a diagram for explaining the flow of coating damage detection processing by the image processing apparatus.

〔本発明の概念〕
本発明の発明者らは、表面上にフォルステライト被膜を有する電磁鋼板について、電子ビームの照射強度の変化に伴う発光スペクトルの変化を評価した。図1は、電子ビームの照射強度の変化に伴う電磁鋼板の発光スペクトルの変化を示す図である。図1に示すように、電子ビームの各照射強度(ビーム電流)において、波長400〜500nmの波長領域及び波長600〜700nmの波長領域の2つの波長領域に特徴的なピークを有する発光スペクトルが観測された。これらは参考文献(国際公開第2014/157713号)に開示されているようにカソードルミネッセンスに起因する発光スペクトルである。
[Concept of the present invention]
The inventors of the present invention evaluated the change in the emission spectrum of the electrical steel sheet having a forsterite film on the surface accompanying the change in the irradiation intensity of the electron beam. FIG. 1 is a diagram showing a change in the emission spectrum of an electrical steel sheet accompanying a change in the irradiation intensity of an electron beam. As shown in FIG. 1, at each irradiation intensity (beam current) of an electron beam, an emission spectrum having characteristic peaks in two wavelength regions of a wavelength region of 400 to 500 nm and a wavelength region of 600 to 700 nm is observed. It was done. These are emission spectra resulting from cathodoluminescence as disclosed in a reference (International Publication No. 2014/157713).

一方、電子ビームの照射強度の増加に伴い波長700nm以上の近赤外領域にピークを有する発光スペクトルが出現することが確認された。波長700nm以上の近赤外領域にカソードルミネッセンスに起因する発光スペクトルが出現するとの記載は上記参考文献にはない。そこで、本発明の発明者らは、各電子ビームの照射強度について電子ビーム照射後の電磁鋼板の表面状態を顕微鏡により観察した。   On the other hand, it was confirmed that an emission spectrum having a peak in the near infrared region having a wavelength of 700 nm or more appeared with an increase in irradiation intensity of the electron beam. There is no description in the above-mentioned reference that an emission spectrum due to cathodoluminescence appears in the near infrared region having a wavelength of 700 nm or more. Therefore, the inventors of the present invention observed the surface state of the electrical steel sheet after the electron beam irradiation with a microscope for the irradiation intensity of each electron beam.

図2は、電子ビームの照射強度の変化に伴う電磁鋼板の表面性状の変化を示す光学顕微鏡画像図である。図2に示すように、電子ビームのビーム電流が20mAより大きくなると、被膜に損傷領域(光学顕微鏡画像(暗視野像)中の白い領域)が出現し、電子ビームのビーム電流の増加に伴い被膜の損傷領域が大きくなっている。以上のことから、本発明の発明者らは、図1に示す波長700nm以上の近赤外領域にピークを有する発光スペクトルは、カソードルミネッセンスに起因する発光スペクトルではなく、被膜の損傷に起因する発光スペクトルであると考えた。   FIG. 2 is an optical microscope image diagram showing changes in the surface properties of the electrical steel sheet accompanying changes in the electron beam irradiation intensity. As shown in FIG. 2, when the beam current of the electron beam exceeds 20 mA, a damaged region (a white region in the optical microscope image (dark field image)) appears in the coating, and the coating increases as the beam current of the electron beam increases. The damaged area is getting bigger. From the above, the inventors of the present invention show that the emission spectrum having a peak in the near-infrared region having a wavelength of 700 nm or more shown in FIG. 1 is not the emission spectrum caused by cathodoluminescence but the emission caused by damage to the film. The spectrum was considered.

そして、本発明の発明者らは、鋭意研究を重ねてきた結果、表面上に被膜を有する鋼板に対して電子ビームを表面上で走査するように照射し、電子ビームの照射領域の画像を電子ビームの走査に同期して撮影し、撮影された画像に基づいて波長700nm以上の近赤外領域にピークを有する発光スペクトルの強度を評価することにより、熟練度を要することなく被膜の損傷を精度高く検知できるという本発明の技術思想を想到するに至った。   As a result of extensive research, the inventors of the present invention irradiate a steel sheet having a coating on the surface so as to scan the surface with an electron beam, and image the electron beam irradiation area. Taken in synchronization with beam scanning, and evaluated the intensity of the emission spectrum having a peak in the near-infrared region with a wavelength of 700 nm or more based on the taken image, so that the film can be damaged accurately without requiring skill. The inventor has come up with the technical idea of the present invention that it can be detected at a high level.

本発明の具体例を図3,図4に示す。図3(a),(b)はそれぞれ、電子ビームの照射領域の撮影画像及び光学顕微鏡画像(暗視野)を示す図である。図3(a),(b)に示すように、電子ビームの照射に伴って発生した線状の蛍光とこの蛍光に混じって蛍光よりも輝度が強い点状の発光領域(i)〜(iv)とが発生している。そこで、この輝度が高い領域の表面性状を光学顕微鏡により観察した。図4は、領域(i)の光学顕微鏡画像を示す図である。図4に示すように、領域(i)には被膜の損傷領域R1,R2があることが確認された。以上のことから、本発明によれば、熟練度を要することなく被膜の損傷を精度高く検知できることが確認された。   Specific examples of the present invention are shown in FIGS. FIGS. 3A and 3B are views showing a captured image and an optical microscope image (dark field) of an electron beam irradiation area, respectively. As shown in FIGS. 3 (a) and 3 (b), linear fluorescent light generated by electron beam irradiation and point-like light emitting regions (i) to (iv) that are mixed with the fluorescent light and have higher luminance than the fluorescent light. ) And have occurred. Therefore, the surface texture of this high luminance region was observed with an optical microscope. FIG. 4 is a diagram showing an optical microscope image of the region (i). As shown in FIG. 4, it was confirmed that the region (i) has damaged regions R1 and R2 of the film. From the above, according to the present invention, it was confirmed that damage to the coating could be detected with high accuracy without requiring skill.

以下、図5,図6を参照して、上記の本発明の技術思想に基づいて想到された、本発明の一実施形態である被膜損傷検知装置の構成及びその動作について説明する。   Hereinafter, with reference to FIG. 5 and FIG. 6, the configuration and operation of a coating damage detection apparatus according to an embodiment of the present invention, which has been conceived based on the above technical idea of the present invention, will be described.

〔電子ビーム照射装置の構成〕
図5は、本発明の一実施形態である被膜損傷検知装置を備える電子ビーム照射装置の構成を示す模式図である。図5に示すように、本発明の一実施形態である被膜損傷検知装置を備える電子ビーム照射装置1は、電子を放出するフィラメント2a、フィラメント2aから放出された電子を制御するグリッド2b、及びフィラメント2aから放出された電子を加速するための陽極2cを有する電子銃2と、電磁レンズ(集束コイル)3と、偏向コイル4と、撮像装置5、ビーム制御装置6と、画像処理装置7と、表示装置8と、を備えている。本発明の一実施形態である被膜損傷検知装置は、撮像装置5、画像処理装置7、及び表示装置8によって構成されている。
[Configuration of electron beam irradiation device]
FIG. 5 is a schematic diagram showing a configuration of an electron beam irradiation apparatus including a film damage detection apparatus according to an embodiment of the present invention. As shown in FIG. 5, an electron beam irradiation apparatus 1 including a film damage detection apparatus according to an embodiment of the present invention includes a filament 2a that emits electrons, a grid 2b that controls electrons emitted from the filament 2a, and a filament. An electron gun 2 having an anode 2c for accelerating electrons emitted from 2a, an electromagnetic lens (focusing coil) 3, a deflection coil 4, an imaging device 5, a beam control device 6, an image processing device 7, Display device 8. The film damage detection apparatus according to an embodiment of the present invention includes an imaging device 5, an image processing device 7, and a display device 8.

この電子ビーム照射装置1では、電子銃2から射出された電子ビームは、ビーム制御装置6によって電流制御された電磁レンズ3及び偏向コイル4の作用によって焦点距離及び偏向角が制御され、鋼板Sの表面上の所定範囲を走査する。なお、電子ビーム照射時は、電子ビーム照射装置1の内部は真空雰囲気に保たれている。   In this electron beam irradiation apparatus 1, the focal length and the deflection angle of the electron beam emitted from the electron gun 2 are controlled by the action of the electromagnetic lens 3 and the deflection coil 4 whose current is controlled by the beam control apparatus 6, and Scan a predetermined area on the surface. During the electron beam irradiation, the inside of the electron beam irradiation apparatus 1 is kept in a vacuum atmosphere.

ビーム制御装置6は、電磁レンズ3及び偏向コイル4に出力する制御電流のパターンを保持している。この制御電流のパターンは、電子ビームの偏向角又は走査位置に応じて電磁レンズ3及び偏向コイル4の制御電流を定めたものであり、最終的に電子ビームの走査中においてどの照射方向(照射位置)においても常に電子ビームの焦点位置が鋼板Sの表面上に合うように電磁レンズ3及び偏向コイル4の制御電流が調整される。   The beam control device 6 holds a pattern of control current output to the electromagnetic lens 3 and the deflection coil 4. This control current pattern is obtained by determining the control current of the electromagnetic lens 3 and the deflection coil 4 in accordance with the deflection angle or scanning position of the electron beam, and finally in which irradiation direction (irradiation position) during scanning of the electron beam. ), The control currents of the electromagnetic lens 3 and the deflection coil 4 are adjusted so that the focal position of the electron beam always matches the surface of the steel sheet S.

撮像装置5は、観察窓を介する形で電子ビーム照射装置1の外部又は耐真空構造を有する形で電子ビーム照射装置1の内部に設けられ、鋼板Sの表面上の電子ビームの走査範囲全体(又は一部)が撮像視野内に入るように設置されている。撮像装置5は、ビーム制御装置6から電子ビームの1回の走査を示す同期信号(走査中にオンとなるパルス信号又は走査開始タイミングを示すパルス信号等)を取得し、電子ビームの1回の走査毎、且つ、走査中に露光を行い、鋼板Sの表面の画像を撮影する。   The imaging device 5 is provided outside the electron beam irradiation device 1 through the observation window or inside the electron beam irradiation device 1 in a form having a vacuum-proof structure, and the entire scanning range of the electron beam on the surface of the steel sheet S ( (Or a part of them) is placed in the imaging field of view. The imaging device 5 obtains a synchronization signal (one pulse signal that is turned on during scanning, a pulse signal that indicates scanning start timing, etc.) indicating one scanning of the electron beam from the beam control device 6 and one electron beam. Exposure is performed during each scanning and during scanning, and an image of the surface of the steel sheet S is taken.

画像処理装置7は、撮像装置5によって撮影された鋼板Sの表面の画像を取得し、取得した鋼板Sの表面の画像から鋼板Sの電子ビーム照射面上の各照射位置(又は電子ビームの各偏向方向)での発光輝度分布を抽出し、抽出された発光輝度分布に基づいて鋼板Sの表面上に形成された被膜の損傷を検知する(被膜損傷検知処理)。ここで、図6を参照して、画像処理装置7による被膜損傷検知処理について詳しく説明する。   The image processing device 7 acquires an image of the surface of the steel plate S photographed by the imaging device 5, and each irradiation position (or each electron beam on the electron beam irradiation surface of the steel plate S from the acquired image of the surface of the steel plate S. The emission luminance distribution in the deflection direction) is extracted, and damage to the coating formed on the surface of the steel sheet S is detected based on the extracted emission luminance distribution (coating damage detection processing). Here, with reference to FIG. 6, the coating-film damage detection process by the image processing apparatus 7 is demonstrated in detail.

図6(a)は電子ビームの走査と同期して撮像装置5によって撮影された画像である。図中X方向に電子ビームが走査されることによって、電子ビームの照射に伴って発生した線状の蛍光と同蛍光に混じって被膜の損傷に伴って発生した蛍光よりも強い点状の発光とが映っている。なお、図6(a)に示す撮影画像は、表面上にフォルステライト被膜を有する電磁鋼板の撮影画像であり、撮像装置5にロングパスフィルタを取り付けて概ね650〜1000nmの波長帯域の光を撮影することによって、電子ビームの照射に伴って発生するカソードルルミネッセンスの影響を軽減したものである。   FIG. 6A is an image taken by the imaging device 5 in synchronization with the scanning of the electron beam. By scanning the electron beam in the X direction in the figure, the line-like fluorescence generated with the electron beam irradiation is mixed with the same fluorescence, and the point emission is stronger than the fluorescence generated with damage to the coating. Is reflected. The photographed image shown in FIG. 6A is a photographed image of a magnetic steel sheet having a forsterite film on the surface. A long-pass filter is attached to the imaging device 5 to photograph light in a wavelength band of approximately 650 to 1000 nm. As a result, the influence of cathodoluminescence generated with the irradiation of the electron beam is reduced.

図6(b)は、図6(a)に示す撮影画像のX方向の各位置におけるY方向の最大輝度Hm(X)を示すグラフである。図6(b)に示すように、X方向に直交するY方向の最大輝度Hm(X)に対してある閾値曲線Hthr(X)を設定し、Hm(X)≧Hthr(X)の時は値が1、Hm(X)<Hthr(X)の時は値が0となる評価値Hb(X)を定義する。なお、閾値曲線Hthr(X)は、例えば被膜損傷が起きない程度の照射強度の電子ビームを繰返し照射した時の複数の撮影画像の各位置Xでの最大輝度Hm(X)の平均値Hma(X)と標準偏差Hms(X)を求め、以下に示す数式(1)を用いて設定される値である。図6(c)は、評価値Hb(X)のグラフである。上記のように評価値Hb(X)を定義することにより、評価値Hb(X)の値が1になる位置Xで被膜の損傷が発生したと判定できる。   FIG. 6B is a graph showing the maximum luminance Hm (X) in the Y direction at each position in the X direction of the captured image shown in FIG. As shown in FIG. 6B, a threshold curve Hthr (X) is set for the maximum luminance Hm (X) in the Y direction orthogonal to the X direction, and when Hm (X) ≧ Hthr (X) When the value is 1 and Hm (X) <Hthr (X), an evaluation value Hb (X) where the value is 0 is defined. The threshold curve Hthr (X) is, for example, an average value Hma () of the maximum luminance Hm (X) at each position X of a plurality of captured images when an electron beam having an irradiation intensity that does not cause film damage is repeatedly irradiated. X) and standard deviation Hms (X) are obtained, and are values set using the following formula (1). FIG. 6C is a graph of the evaluation value Hb (X). By defining the evaluation value Hb (X) as described above, it can be determined that the film has been damaged at the position X where the value of the evaluation value Hb (X) is 1.

ここで、Kは正の定数である。 Here, K is a positive constant.

表示装置8は、撮像装置5が撮影した画像、画像処理装置7の被膜損傷検知結果等の各種情報を表示する。オペレータは、表示装置8に表示された被膜損傷検知結果に基づいて被膜が損傷した鋼板と被膜が損傷していない鋼板とを分別して電磁鋼板を製造する。   The display device 8 displays various information such as an image taken by the imaging device 5 and a film damage detection result of the image processing device 7. The operator manufactures the electromagnetic steel sheet by separating the steel sheet whose film is damaged and the steel sheet whose film is not damaged based on the film damage detection result displayed on the display device 8.

以上の説明から明らかなように、本発明の一実施形態である被膜損傷検知装置は、電子ビームを照射している際に電子ビームが照射されている領域を含む鋼板Sの表面の画像を撮影し、撮影された画像から電子ビームが照射されている領域内の各位置における輝度を算出し、算出された輝度が所定の閾値以上である位置において被膜の損傷が発生していると判定するので、熟練度を要することなく被膜の損傷を精度高く検知できる。   As is clear from the above description, the film damage detection apparatus according to an embodiment of the present invention takes an image of the surface of the steel sheet S including the region irradiated with the electron beam when the electron beam is irradiated. Then, the brightness at each position in the region irradiated with the electron beam is calculated from the photographed image, and it is determined that the film is damaged at the position where the calculated brightness is equal to or higher than a predetermined threshold. Therefore, it is possible to detect the damage of the coating with high accuracy without requiring skill.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれる。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings constituting a part of the disclosure of the present invention according to this embodiment. What comprised each component suitably was also included in this invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 電子ビーム照射装置
2 電子銃
3 電磁レンズ
4 変更コイル
5 撮像装置
6 ビーム制御装置
7 画像処理装置
8 表示装置
S 鋼板
DESCRIPTION OF SYMBOLS 1 Electron beam irradiation apparatus 2 Electron gun 3 Electromagnetic lens 4 Change coil 5 Imaging apparatus 6 Beam control apparatus 7 Image processing apparatus 8 Display apparatus S Steel plate

Claims (5)

表面上に被膜を有する鋼板に電子ビームを照射した際に発生し得る被膜の損傷を検知する被膜損傷検知方法であって、
前記電子ビームを照射している際に前記電子ビームが照射されている領域を含む前記鋼板の表面の画像を撮影する撮影ステップと、
前記撮影ステップにおいて撮影された画像から前記電子ビームが照射されている領域内の各位置における輝度を算出する算出ステップと、
前記算出ステップにおいて算出された輝度が所定の閾値以上である位置において前記被膜の損傷が発生していると判定する判定ステップと、
を含み、
前記被膜は、フォルステライト被膜であり、前記画像は、700nm以上の波長を有する光を受光して撮影されることを特徴とする被膜損傷検知方法。
A coating damage detection method for detecting damage to a coating that may occur when an electron beam is irradiated to a steel sheet having a coating on the surface,
A photographing step of photographing an image of the surface of the steel sheet including a region irradiated with the electron beam when the electron beam is irradiated;
A calculation step of calculating the luminance at each position in the region irradiated with the electron beam from the image captured in the imaging step;
A determination step for determining that the film is damaged at a position where the luminance calculated in the calculation step is equal to or greater than a predetermined threshold;
Only including,
The film damage detection method , wherein the film is a forsterite film, and the image is taken by receiving light having a wavelength of 700 nm or more .
前記電子ビームは、前記鋼板の表面上で収束された電子ビームを走査することによって照射され、前記画像は、収束された電子ビームの走査に同期して走査毎に撮影されることを特徴とする請求項1に記載の被膜損傷検知方法。   The electron beam is irradiated by scanning the focused electron beam on the surface of the steel sheet, and the image is taken for each scan in synchronization with the focused electron beam scan. The film damage detection method according to claim 1. 前記算出ステップは、前記画像中の前記電子ビームの走査線上の各位置において、前記走査線と直交する方向における最大の輝度を該位置における輝度として算出するステップを含むことを特徴とする請求項2に記載の被膜損傷検知方法。   The calculation step includes a step of calculating a maximum luminance in a direction orthogonal to the scanning line as a luminance at the position at each position on the scanning line of the electron beam in the image. The method for detecting damage to a coating film according to 1. 前記閾値は、前記電子ビームの照射位置毎に複数設定されることを特徴とする請求項1〜3のうち、いずれか1項に記載の被膜損傷検知方法。   The film damage detection method according to any one of claims 1 to 3, wherein a plurality of the threshold values are set for each irradiation position of the electron beam. 表面上に被膜を有する鋼板に電子ビームを照射した際に発生し得る被膜の損傷を検知する被膜損傷検知装置であって、
前記電子ビームを照射している際に前記電子ビームが照射されている領域を含む前記鋼板の表面の画像を撮影する撮影手段と、
前記撮影手段によって撮影された画像から前記電子ビームが照射されている領域内の各位置における輝度を算出する算出手段と、
前記算出手段によって算出された輝度が所定の閾値以上である位置において前記被膜の損傷が発生していると判定する判定手段と、
を備え
前記被膜は、フォルステライト被膜であり、前記画像は、700nm以上の波長を有する光を受光して撮影されることを特徴とする被膜損傷検知装置。
A coating damage detection device that detects damage to a coating that may occur when an electron beam is irradiated to a steel sheet having a coating on the surface,
A photographing means for photographing an image of the surface of the steel sheet including a region irradiated with the electron beam when the electron beam is irradiated;
Calculating means for calculating the luminance at each position in the region irradiated with the electron beam from the image photographed by the photographing means;
Determining means for determining that the film is damaged at a position where the brightness calculated by the calculating means is equal to or greater than a predetermined threshold;
Equipped with a,
The film damage detection apparatus , wherein the film is a forsterite film, and the image is taken by receiving light having a wavelength of 700 nm or more .
JP2015070578A 2015-03-31 2015-03-31 Film damage detection method and film damage detection apparatus Active JP6260570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070578A JP6260570B2 (en) 2015-03-31 2015-03-31 Film damage detection method and film damage detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070578A JP6260570B2 (en) 2015-03-31 2015-03-31 Film damage detection method and film damage detection apparatus

Publications (2)

Publication Number Publication Date
JP2016191574A JP2016191574A (en) 2016-11-10
JP6260570B2 true JP6260570B2 (en) 2018-01-17

Family

ID=57246502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070578A Active JP6260570B2 (en) 2015-03-31 2015-03-31 Film damage detection method and film damage detection apparatus

Country Status (1)

Country Link
JP (1) JP6260570B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243855A (en) * 1987-03-31 1988-10-11 Shimadzu Corp Charge particle analysis instrument
US4777364A (en) * 1987-06-15 1988-10-11 The United States Of America As Represented By The Secretary Of The Army Defect detection and thickness mapping of the passivation layer(s) of integrated circuits
JPH11183380A (en) * 1997-12-12 1999-07-09 Hitachi Sci Syst Ltd Color image display device
JP2005146291A (en) * 2003-11-11 2005-06-09 Toshiba Corp Thermal barrier coating member, evaluation method therefor, and high temperature thermal equipment
KR101570017B1 (en) * 2011-12-28 2015-11-17 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for manufacturing the same
JP6205710B2 (en) * 2012-10-31 2017-10-04 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
WO2014157713A1 (en) * 2013-03-28 2014-10-02 Jfeスチール株式会社 Forsterite confirmation method, forsterite evaluation device, and steel sheet production line

Also Published As

Publication number Publication date
JP2016191574A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP4528014B2 (en) Sample inspection method
US7829853B2 (en) Sample surface observation method
US7361896B2 (en) Scanning electron microscope and a method for adjusting a focal point of an electron beam of said scanning electron microscope
WO2016002003A1 (en) Substrate inspection apparatus and substrate inspection method
KR101753669B1 (en) Method for pattern measurement, method for setting device parameters of charged particle radiation device, and charged particle radiation device
JP2009245674A (en) Charged particle microscope and image processing method using it
JP2016527658A5 (en)
WO2018138875A1 (en) Charged particle beam device
JP4822826B2 (en) Particle analysis method and apparatus
US10665420B2 (en) Charged particle beam apparatus
KR102535083B1 (en) Adjustment method of charged particle beam device and charged particle beam device system
JP6260570B2 (en) Film damage detection method and film damage detection apparatus
JP5379571B2 (en) Pattern inspection apparatus and pattern inspection method
JP6398961B2 (en) Electron beam irradiation apparatus and electron beam irradiation method
JP2020194691A (en) Sample observation method in electron microscope, image analyzer for electron microscope, electron microscope and image analysis method for electron microscope
JP2010092949A (en) Pattern search condition determination method and pattern search condition setting apparatus
WO2017130364A1 (en) Charged particle beam device
JP4658783B2 (en) Sample image forming method
EP3146374B1 (en) Method for positioning a focal plane of a light imaging device and apparatus arranged for applying said method
JP6221999B2 (en) Electron beam irradiation apparatus and electron beam irradiation method
JP2012169636A (en) Circuit pattern inspection apparatus and method
JP2004347483A (en) Pattern inspection device using electron beam and pattern inspection method using electron beam
JP2014232082A (en) Pattern inspection method and pattern inspection device
JP2005302600A (en) Method and device for fine processing
JP2008078159A (en) Adjustment method of charged particle beam and charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6260570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250