JP6255912B2 - 無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法 - Google Patents

無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法 Download PDF

Info

Publication number
JP6255912B2
JP6255912B2 JP2013230671A JP2013230671A JP6255912B2 JP 6255912 B2 JP6255912 B2 JP 6255912B2 JP 2013230671 A JP2013230671 A JP 2013230671A JP 2013230671 A JP2013230671 A JP 2013230671A JP 6255912 B2 JP6255912 B2 JP 6255912B2
Authority
JP
Japan
Prior art keywords
parameter
wireless communication
unit
function
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013230671A
Other languages
English (en)
Other versions
JP2015091063A5 (ja
JP2015091063A (ja
Inventor
武司 梅本
武司 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013230671A priority Critical patent/JP6255912B2/ja
Publication of JP2015091063A publication Critical patent/JP2015091063A/ja
Publication of JP2015091063A5 publication Critical patent/JP2015091063A5/ja
Application granted granted Critical
Publication of JP6255912B2 publication Critical patent/JP6255912B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法に関する。
従来、空間に散在させた複数のセンサノードが協調して環境や物理的状況を採取するセンサネットワークなどの無線通信システムが知られている。無線通信システムの無線通信装置には、たとえば、無線通信装置の持つべき通信機能(通信プロトコル)を階層構造に分割した階層化通信モデルが用いられる(たとえば、下記特許文献1〜5参照。)。
特表2005−518717号公報 特開2007−201725号公報 特開平8−275236号公報 特開2006−254338号公報 特表2012−531166号公報
しかしながら、上述した従来技術では、たとえばセンサノードなどの無線通信装置において、無線通信の伝搬環境を直接測定することは困難である。このため、伝搬環境の変動に対して、サポート要件を満たしつつ、消費電力を抑えるように無線通信の各機能を制御することは困難という問題がある。
1つの側面では、本発明は、消費電力の低減を図ることができる無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、本発明の一側面によれば、設定された第1パラメータに応じた機能により無線通信を行う通信部を備える無線通信装置において、前記通信部によって受信された信号の測定値に基づく第2パラメータを算出し、前記通信部に設定中の第1パラメータおよび算出した前記第2パラメータの組み合わせと、前記組み合わせごとの前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法が提案される。
本発明の一側面によれば、消費電力の低減を図ることができる。
実施の形態1にかかる無線通信装置の一例を示す図である。 図1Aに示した無線通信装置における信号の流れの一例を示す図である。 無線通信装置における機能パラメータおよび環境パラメータの関係の一例を示す図である。 実施の形態2にかかる無線通信装置の一例を示す図である。 図3Aに示した無線通信装置における信号の流れの一例を示す図である。 無線通信装置のハードウェア構成の例1を示す図である。 図4Aに示した無線通信装置のハードウェア構成における信号の流れの一例を示す図である。 無線通信装置のハードウェア構成の例2を示す図である。 図5Aに示した無線通信装置のハードウェア構成における信号の流れの一例を示す図である。 機能選択、通信信頼性および消費電力の関係の一例を示す図である。 伝搬特性推計テーブルの一例を示す図である。 最小消費電力機能パラメータ選択テーブルの一例を示す図である。 無線通信装置によるデータ送信時の処理の一例を示すシーケンス図である。 無線通信装置によるAck受信時の処理の一例を示すシーケンス図である。 無線通信装置によるデータ再送時の処理の一例を示すシーケンス図である。 無線通信装置による送信失敗時の処理の一例を示すシーケンス図である。 無線通信装置による測定制御時の処理の一例を示すシーケンス図である。 無線通信装置による機能選択制御時の処理の一例を示すシーケンス図である。 伝搬特性の変動モデルの一例を示す図である。 実施の形態2にかかる無線通信装置の変形例を示す図である。 図15Aに示した無線通信装置の変形例における信号の流れの一例を示す図である。 変形例にかかる最小消費電力機能パラメータ選択テーブルの一例を示す図である。 変形例にかかる無線通信装置による機能選択制御時の処理の一例を示すシーケンス図である。 PHY層の機能の一例を示す図(その1)である。 PHY層の機能の一例を示す図(その2)である。
以下に図面を参照して、本発明にかかる無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法の実施の形態を詳細に説明する。
(実施の形態1)
(実施の形態1にかかる無線通信装置)
図1Aは、実施の形態1にかかる無線通信装置の一例を示す図である。図1Bは、図1Aに示した無線通信装置における信号の流れの一例を示す図である。図1A,図1Bに示すように、実施の形態1にかかる無線通信装置110は、通信部111と、算出部112と、選択部113と、設定部114と、を備える。
通信部111は、他の無線通信装置120との間で無線通信を行う。また、通信部111は、設定部114によって設定された第1パラメータ(機能パラメータ)に応じて無線通信の機能を変化させる。また、通信部111は、無線通信によって受信した信号を算出部112へ出力する。無線通信によって受信した信号には、たとえば無線通信によって送信した信号に対する応答信号(Ack)が含まれてもよい。
算出部112は、通信部111から出力された信号の測定値に基づく第2パラメータを算出する。第2パラメータは、たとえば通信部111による無線通信の通信品質である。たとえば、信号の測定値に基づく第2パラメータは、通信部111によって無線送信された信号に対する応答信号に基づく、通信部111による信号の送信失敗率(または送信成功率)である。算出部112は、算出した第2パラメータを選択部113へ通知する。
選択部113は、現在の第1パラメータおよび第2パラメータの組み合わせごとに、通信部111に設定すべき第1パラメータを示す対応情報を取得する。たとえば、選択部113は、無線通信装置110のメモリから対応情報を取得してもよいし、無線通信装置110の外部との通信により対応情報を取得してもよい。
対応情報は、たとえば、現在の第1パラメータおよび第2パラメータの組み合わせごとに、その組み合わせから推計される無線通信の伝搬特性(伝搬路特性)における無線通信のサポート要件および消費電力が所定の条件を満たす第1パラメータを示す情報とすることができる。伝搬特性は、たとえばビットエネルギー対雑音電力密度比Eb/N0[db]などの、無線通信における伝搬環境を示す特性である。
選択部113は、通信部111に設定中の第1パラメータおよび算出部112から通知された第2パラメータの組み合わせに対応する、通信部111に設定すべき第1パラメータを、取得した対応情報から選択する。通信部111に設定中の第1パラメータは、たとえば通信部111または設定部114から取得することができる。選択部113は、選択した第1パラメータを設定部114へ通知する。設定部114は、選択部113から通知された第1パラメータを通信部111に設定する。
このように、実施の形態1にかかる無線通信装置110によれば、現在の機能パラメータと通信品質の組み合わせに応じて新たな機能パラメータを選択することにより、無線通信の伝搬環境に応じた機能制御を行うことができる。このため、伝搬環境の変動に対して、所定のサポート要件を満たしつつ、消費電力の低減を図ることが可能になる。
<対応情報について>
対応情報は、一例としては、第1対応情報および第2対応情報の組み合わせであってもよい(たとえば図7A,図7B参照)。第1対応情報は、現在の第1パラメータおよび第2パラメータの組み合わせと、その組み合わせから推計される無線通信の伝搬特性と、の対応情報である。第2対応情報は、無線通信の伝搬特性と、その伝搬特性において所定のサポート要件(たとえば通信品質)を満たす範囲で消費電力が(たとえば最小に)抑えられる第1パラメータと、の対応情報である。
この場合は、選択部113は、第1対応情報において、現在の第1対応情報および第2対応情報の組み合わせに対応する伝搬特性を取得する。そして、選択部113は、第2対応情報において、取得した伝搬特性に対応する第1パラメータを選択し、選択した第1パラメータを設定部114へ通知する。
または、対応情報は、現在の第1パラメータおよび第2パラメータの組み合わせと、その組み合わせから推計される伝搬特性において所定のサポート要件を満たす範囲で消費電力が抑えられる第1パラメータと、を直接対応付ける情報でもよい(たとえば図16参照)。この場合は、選択部113は、対応情報において、現在の第1対応情報および第2対応情報の組み合わせに対応する第1パラメータを選択し、選択した第1パラメータを設定部114へ通知する。
<第1パラメータについて>
第1パラメータは、通信部111の無線通信における階層化通信モデルの複数の階層の各機能パラメータの組み合わせとしてもよい。これにより、無線通信の伝搬特性に応じて、階層化通信モデルの複数の階層における各機能を一括して設定することができる。このため、たとえば各階層において機能パラメータを独立して最適化する場合に比べて、所定のサポート要件を満たす範囲において消費電力の低減を図ることが可能になる。
階層化通信モデルの複数の階層は、たとえば、物理層と、MAC(Media Access Control:メディアアクセス制御)層と、物理層およびMAC層の上位層と、に含まれる複数の階層である。
(実施の形態2)
たとえば、無線通信装置においては階層化通信モデルが採用される。階層化通信モデルの各層はそれぞれサービス要件を満たすための機能およびパラメータを有しており、機能を有効にすると一定量のユーザデータを送信するのに要する時間が長くなる。
たとえばPHY層の機能の誤り訂正においては、訂正用の冗長ビット(誤り訂正符号)が送信時に付与され、ビットエラーが発生したときに受信側でビット訂正に用いられる。誤り訂正を有効にすると、冗長ビットが送信されるため送信時間が長くなり、電力を多く消費する。また、変調方式の選択においては、伝搬特性(伝搬路の品質)がよい場合は伝送速度の速い高速変調が使用され、伝搬特性が悪い場合は低速変調が使用されることにより受信成功率が高まる。高速変調では送信時間が短いため電力消費が少なく、低速変調では送信時間が長いため電力消費が大きい。
MAC層機能のフレーム再送においては、送信に失敗したときに再度同じフレームが送信される。フレーム再送を有効にすると、再送を行うことにより受信成功率が高まるが、消費電力が大きくなる。
(無線通信装置における機能パラメータおよび環境パラメータの関係)
図2は、無線通信装置における機能パラメータおよび環境パラメータの関係の一例を示す図である。図2に示す上位層210、MAC層220およびPHY層230は、実施の形態2にかかる無線通信装置300(たとえば図3A,図3B参照)における無線通信の階層化通信モデルに含まれる各階層である。
上位層210の機能には、たとえばパケット再送211が含まれる。上位層210の機能パラメータには、たとえばパケット再送回数212が含まれる。パケット再送回数212はパケット再送211についての機能パラメータである。上位層210の環境パラメータには、パケット送信失敗率213およびパケットサイズ214が含まれる。
MAC層220の機能には、たとえばフレーム再送221が含まれる。MAC層220の機能パラメータには、たとえば最大フレーム再送回数222が含まれる。最大フレーム再送回数222はフレーム再送221についての機能パラメータである。MAC層220の環境パラメータには、たとえばフレームサイズ223およびパケットエラーレート224(PER:Packet Error Rate)が含まれる。
PHY層230の機能には、たとえば誤り訂正231、変調232および送信電力制御233が含まれる。PHY層230の機能パラメータには、たとえば誤り訂正有無234、変調方式235および送信電力236が含まれる。誤り訂正有無234は、誤り訂正231についての機能パラメータである。送信電力236は、送信電力制御233についての機能パラメータである。変調方式235は、変調232についての機能パラメータである。PHY層230の環境パラメータには、たとえばビットエラーレート237(BER:Bit Error Rate)、受信電力238および伝搬特性239が含まれる。
消費電力240は、無線通信装置300の無線通信における消費電力である。消費電力240は、パケット再送211、フレーム再送221、誤り訂正231、変調232、送信電力制御233といった各層の総合的な消費電力である。
図2は、機能パラメータ、機能、環境パラメータのそれぞれの関係を示している。一例としては、ビットエラーレート237は、外部環境である伝搬特性239の他に、PHY層230の機能である誤り訂正231および変調232から影響を受ける。パケットエラーレート224は、フレームサイズ223やビットエラーレート237から影響を受ける。パケット送信失敗率213は、パケットサイズ214、パケットエラーレート224、パケット再送211、フレーム再送221から影響を受ける。
消費電力240は、パケット再送回数212、最大フレーム再送回数222、誤り訂正有無234、変調方式235および送信電力236といった各層の機能パラメータから影響を受ける。
無線通信装置300は、パケット送信失敗率213を用いて、パケット再送回数212、最大フレーム再送回数222、誤り訂正有無234、変調方式235および送信電力236といった各層の機能パラメータを一括して制御する。これにより、所定のサポート要件を満たしつつ、消費電力240の低減を図ることが可能になる。
(実施の形態2にかかる無線通信装置)
図3Aは、実施の形態2にかかる無線通信装置の一例を示す図である。図3Bは、図3Aに示した無線通信装置における信号の流れの一例を示す図である。図3A,図3Bに示すように、実施の形態2にかかる無線通信装置300は、上位層処理部310と、MAC層処理部320と、PHY層処理部330と、を備える。
<上位層処理部>
上位層処理部310は、PHY層およびMAC層より上位の層の処理を行う。上位層は、たとえば階層化通信モデルのネットワーク層、トランスポート層、セッション層、プレゼンテーション層、アプリケーション層の少なくともいずれかを含む。
上位層処理部310は、パケット受信制御部311と、パケット再送制御部312と、パケット送信制御部313と、を備える。パケット受信制御部311は、MAC層処理部320から出力されるパケットの受信制御を行う。
パケット再送制御部312は、パケット受信制御部311におけるパケットの受信結果に基づくパケットの再送制御を行う。たとえば、パケット再送制御部312は、パケット損失を監視し、パケット損失が発生した場合に、上限回数に達するまでパケット再送を行う。パケット再送制御部312によるパケット再送の上限回数(最大再送回数)は、たとえば機能選択制御部342によって設定される。
パケット送信制御部313は、パケットの送信制御によってパケットをMAC層処理部320へ出力する。パケット送信制御部313によるパケットの送信制御には、パケット再送制御部312による再送制御に基づく再送パケットの送信制御も含まれる。
<MAC層処理部>
MAC層処理部320は、MAC層の処理を行う。MAC層処理部320は、フレーム受信制御部321と、パケット組立・分割制御部322と、フレーム再送制御部323と、パケット分割制御部324と、フレーム送信制御部325と、を備える。
フレーム受信制御部321は、PHY層処理部330から出力されるフレームの受信制御を行う。パケット組立・分割制御部322は、フレーム受信制御部321による受信結果に基づくパケットの組立制御および分割制御を行い、組立制御および分割制御によって得られたパケットを上位層処理部310へ出力する。
フレーム再送制御部323は、フレーム再送制御部323による受信結果に基づくフレームの再送制御を行う。たとえば、フレーム再送制御部323は、フレーム損失を監視し、フレーム損失が発生した場合に、上限回数に達するまでフレーム再送を行う。フレーム再送制御部323によるフレーム再送の上限回数(最大再送回数)は、たとえば機能選択制御部342によって設定される。パケット分割制御部324は、上位層処理部310から出力されたパケットの分割制御を行う。
フレーム送信制御部325は、フレームの送信制御によってフレームをPHY層処理部330へ出力する。フレーム送信制御部325によるフレームの送信制御には、フレーム再送制御部323による再送制御に基づくフレームの再送制御や、パケット分割制御部324による分割制御によって得られたフレームの送信制御が含まれる。
<PHY層処理部>
PHY層処理部330は、PHY層の処理を行う。PHY層処理部330は、変調処理部331と、スプレッド処理部332と、ビットインタリーブ処理部333と、誤り訂正符号生成部334と、誤り検出符号生成部335と、を備える。
変調処理部331は、スプレッド処理部332から出力された信号の変調や、無線通信装置300が無線受信した信号の復調を行う。変調処理部331によって変調された信号は無線通信装置300から無線送信される。変調処理部331における変調方式は、たとえば機能選択制御部342によって設定される。
スプレッド処理部332は、変調処理部331から出力された信号をスプレッド(Spread:拡散)処理してビットインタリーブ処理部333へ出力する。また、スプレッド処理部332は、ビットインタリーブ処理部333から出力された信号をスプレッド処理して変調処理部331へ出力する。スプレッド処理部332のオン/オフは、たとえば機能選択制御部342によって設定される。
ビットインタリーブ処理部333は、スプレッド処理部332から出力された信号をビットインタリーブ(Bit Interleave)処理して誤り訂正符号生成部334へ出力する。また、ビットインタリーブ処理部333は、誤り訂正符号生成部334から出力された信号をビットインタリーブ処理してスプレッド処理部332へ出力する。ビットインタリーブ処理部333のオン/オフは、たとえば機能選択制御部342によって設定される。
誤り訂正符号生成部334は、ビットインタリーブ処理部333から出力された信号の誤り訂正処理を行って誤り検出符号生成部335へ出力する。また、誤り訂正符号生成部334は、誤り検出符号生成部335から出力された信号を誤り訂正符号化してビットインタリーブ処理部333へ出力する。誤り訂正符号生成部334のオン/オフは、たとえば機能選択制御部342によって設定される。
誤り検出符号生成部335は、誤り訂正符号生成部334から出力された信号の誤り検出処理を行ってMAC層処理部320へ出力する。また、誤り検出符号生成部335は、MAC層処理部320から出力された信号を誤り検出符号化して誤り訂正符号生成部334へ出力する。
<測定制御部>
測定制御部341は、たとえば周期的に、パケット受信制御部311による受信結果(たとえばAckの受信結果)に基づいて、パケット送信失敗率を測定する。そして、測定制御部341は、測定したパケット送信失敗率および現在の機能パラメータから、無線通信装置300の無線通信における伝搬特性(伝搬特性レベル)を推計する。たとえば、測定制御部341は、記憶部351に記憶された伝搬特性推計テーブル(たとえば図7A参照)を用いて伝搬特性を推計する。そして、測定制御部341は、推計した伝搬特性を機能選択制御部342へ通知する。
<機能選択制御部>
機能選択制御部342は、測定制御部341から通知された伝搬特性において、所定のサポート要件を満たしつつ、消費電力が最小となる上位層処理部310、MAC層処理部320およびPHY層処理部330の各機能パラメータを選択する。たとえば、機能選択制御部342は、記憶部352に記憶された最小消費電力機能パラメータ選択テーブル(たとえば図7B参照)を用いて各機能パラメータを選択する。
そして、機能選択制御部342は、選択した各機能パラメータを上位層処理部310、MAC層処理部320およびPHY層処理部330に設定する。図3A,図3Bに示す例では、機能選択制御部342は、パケット再送制御部312、フレーム再送制御部323、変調処理部331、スプレッド処理部332、ビットインタリーブ処理部333および誤り訂正符号生成部334の各機能パラメータを設定する。
無線通信装置300の各部の処理例については後述する(たとえば図8〜図13,図17参照)。なお、記憶部351,352は、それぞれ別のメモリによって実現されてもよいし、1つのメモリによって実現されてもよい。
図1A,図1Bに示した無線通信装置110は、たとえば無線通信装置300によって実現することができる。この場合に、図1A,図1Bに示した通信部111は、たとえば上位層処理部310、MAC層処理部320およびPHY層処理部330によって実現することができる。また、図1A,図1Bに示した算出部112は、たとえば測定制御部341によって実現することができる。図1A,図1Bに示した選択部113および設定部114は、たとえば機能選択制御部342によって実現することができる。
(無線通信装置のハードウェア構成の例)
図4Aは、無線通信装置のハードウェア構成の例1を示す図である。図4Bは、図4Aに示した無線通信装置のハードウェア構成における信号の流れの一例を示す図である。無線通信装置300をセンサネットワークのセンサノードに適用する場合は、図3A,図3Bに示した無線通信装置300は、たとえば図4A,図4Bに示すセンサノード400によって実現することができる。
センサノード400は、アンテナ410(ANT)と、RFFE420(Radio Frequency Front End)と、DBB430(Digital Base Band)と、を備える。また、センサノード400は、MPU440(Micro−Processing Unit)と、センサ450(Sensor)と、を備える。
アンテナ410は、RFFE420から出力された信号を空中(Air)へ無線送信する。また、アンテナ410は、空中から無線受信した信号をRFFE420へ出力する。
RFFE420は、DBB430から出力された信号のRF(Radio Frequency:高周波)処理を行う。そして、RFFE420は、RF処理を行った信号をアンテナ410へ出力する。また、RFFE420は、アンテナ410から出力された信号のRF処理を行う。そして、RFFE420は、RF処理を行った信号をDBB430へ出力する。
DBB430は、PHY層送信処理部431(TX PHY)およびPHY層受信処理部432(RX PHY)を備える。PHY層送信処理部431は、MPU440から出力された信号のデジタルのベースバンド処理を行う。そして、PHY層送信処理部431は、ベースバンド処理を行った信号をRFFE420へ出力する。PHY層受信処理部432は、RFFE420から出力された信号のデジタルのベースバンド処理を行う。そして、PHY層受信処理部432は、ベースバンド処理を行った信号をMPU440へ出力する。
MPU440は、センサノード400の全体の制御を司る。MPU440においては、たとえば、MAC層処理ソフトウェア441(MAC Software)と、センサ制御ソフトウェア442(Sensor Control Software)と、が実行される。また、MPU440においては、機能制御ソフトウェア443(Function Control Software)が実行される。
MAC層処理ソフトウェア441は、センサノード400の無線通信におけるMAC層の処理を行う。センサ制御ソフトウェア442は、センサ450の制御や、センサ450のセンシングデータ(Data)の送信制御などを行う。機能制御ソフトウェア443は、PHY層送信処理部431、PHY層受信処理部432、MAC層処理ソフトウェア441、センサ制御ソフトウェア442などの機能パラメータの制御を行う。
センサ450は、MPU440からの制御に従ってセンシングを行い、センシングによって得られた測定値(センシングデータ)をMPU440へ出力する。センサ450には、温度、圧力、腐食、音、光などの各種のセンサを用いることができる。
センサ450から出力されたセンシングデータ(Data)は、センサ制御ソフトウェア442、MAC層処理ソフトウェア441、PHY層送信処理部431およびRFFE420を経由してアンテナ410から無線送信される。また、センシングデータに対する応答信号(Ack)が、アンテナ410によって無線受信され、RFFE420およびPHY層受信処理部432を経由してMAC層処理ソフトウェア441へ入力される。
図3A,図3Bに示した上位層処理部310は、たとえばセンサ制御ソフトウェア442によって実現することができる。図3A,図3Bに示したMAC層処理部320は、たとえばMAC層処理ソフトウェア441によって実現することができる。図3A,図3Bに示したPHY層処理部330は、たとえばPHY層送信処理部431およびPHY層受信処理部432によって実現することができる。図3A,図3Bに示した測定制御部341および機能選択制御部342は、たとえば機能制御ソフトウェア443によって実現することができる。
図5Aは、無線通信装置のハードウェア構成の例2を示す図である。図5Bは、図5Aに示した無線通信装置のハードウェア構成における信号の流れの一例を示す図である。図5A,図5Bにおいて、図4A,図4Bに示した部分と同様の部分については同一の符号を付して説明を省略する。無線通信装置300をセンサネットワークのハブ(管理サーバ)に適用する場合は、図3A,図3Bに示した無線通信装置300は、たとえば図5A,図5Bに示すハブ500によって実現することができる。
ハブ500は、アンテナ410(ANT)と、RFFE420と、DBB430と、MPU440と、上位層デバイス510(Upper Layer Device)と、を備える。MPU440は、MAC層処理ソフトウェア441と、機能制御ソフトウェア443と、を備える。
アンテナ410は、センサノードから無線送信されたセンシングデータ(Data)を無線受信する。アンテナ410によって無線受信されたセンシングデータは、RFFE420、PHY層送信処理部431およびMAC層処理ソフトウェア441を経由して上位層デバイス510へ入力される。MAC層処理ソフトウェア441は、センシングデータに対する応答信号(Ack)をDBB430へ出力する。DBB430へ出力された応答信号(Ack)は、PHY層受信処理部432およびRFFE420を経由してアンテナ410から無線送信される。
上位層デバイス510は、MPU440から出力されたセンシングデータに基づく統計処理などの各種処理を行う。また、上位層デバイス510は、ハブ500に接続されたパーソナルコンピュータなどの外部のデバイスであってもよい。
(機能選択、通信信頼性および消費電力の関係)
図6は、機能選択、通信信頼性および消費電力の関係の一例を示す図である。図6に示すグラフG1は、無線通信装置300の無線通信における伝搬特性(伝搬品質)とパケット送信失敗率との関係を、無線通信装置300における機能パラメータの組み合わせごとに示すグラフである。グラフG1において、横軸は伝搬特性[db]を示し、縦軸はパケット送信失敗率を示している。伝搬特性は、時間や場所によって変動する。
グラフG2は、無線通信装置300の無線通信における伝搬特性と無線通信装置300の消費電力との関係を、無線通信装置300における機能パラメータの組み合わせごとに示すグラフである。グラフG2において、横軸は伝搬特性[db]を示し、縦軸は1[bit]送信あたりの消費電力[mWH]を示している。
グラフG1,G2において、特性611〜616,621〜626,631〜636は、無線通信装置300における機能パラメータの各組み合わせにおける特性を示している。グラフG1の特性611〜616,621〜626,631〜636に示すように、パケット送信失敗率が低いほど通信信頼性(伝搬特性)が高い。
グラフG1,G2は、たとえば実験やシミュレーションによってあらかじめ得ることができる。伝搬特性(1)〜(8)は、最適な機能選択が切り替わるポイントとなる伝搬特性(Eb/N0)の値である(たとえば図7B参照)。伝搬特性(1)が最も伝搬特性が悪く、伝搬特性(8)が最も伝搬特性が良い。
グラフG1の閾値601は、パケット送信失敗率の閾値であり、図6に示す例では1%である。グラフG1において、パケット送信失敗率が閾値601より高い領域(網掛け部)は、所定のサービス品質(パケット送信失敗率≦1%)を満たさない領域である。グラフG1のパケット送信失敗率602は、機能選択制御部342による機能選択の結果のパケット送信失敗率である。
グラフG2の消費電力603は、機能選択制御部342による機能選択の結果の消費電力である。グラフG2において、消費電力が消費電力603より低い領域は、所定のサービス品質(パケット送信失敗率≦1%)を満たさない領域である。
パケット送信失敗率602および消費電力603に示すように、機能選択制御部342によれば、所定のサービス品質(パケット送信失敗率≦1%)を満たす範囲で、消費電力が最小となるように機能選択を行うことができる。
(伝搬特性推計テーブル)
図7Aは、伝搬特性推計テーブルの一例を示す図である。記憶部351は、たとえば図7Aに示す伝搬特性推計テーブル710を記憶する。伝搬特性推計テーブル710の「グラフ」は、図6に示したグラフG1,G2における特性611〜616,621〜626,631〜636との対応を参考として示している。ただし、伝搬特性推計テーブル710から「グラフ」を省いてもよい。
伝搬特性推計テーブル710においては、「PHY機能パラメータ」、「MAC機能パラメータ」および「パケット送信失敗率」の組み合わせごとに、伝搬特性を示す「ビットエネルギー対雑音電力密度比Eb/N0[db]」が対応付けられている。伝搬特性推計テーブル710は、たとえば図6に示したグラフG1,G2に示す特性に基づいて作成することができる。
たとえば、現在のパケット送信失敗率が1.0E−04であり、現在の機能パラメータが{誤り訂正=あり,変調方式=中速変調,最大再送回数=2}であるとする。この場合は、測定制御部341は、伝搬特性推計テーブル710を用いて、伝搬特性をEb/N0=10.4と推計する。
(最小消費電力機能パラメータ選択テーブル)
図7Bは、最小消費電力機能パラメータ選択テーブルの一例を示す図である。記憶部352は、たとえば図7Bに示す最小消費電力機能パラメータ選択テーブル720を記憶する。最小消費電力機能パラメータ選択テーブル720の「グラフ」は、図6に示したグラフG1,G2における特性611〜616,621〜626,631〜636との対応を参考として示している。ただし、最小消費電力機能パラメータ選択テーブル720から「グラフ」を省いてもよい。
最小消費電力機能パラメータ選択テーブル720は、「PHY機能パラメータ」、「MAC機能パラメータ」および「伝搬特性」の組み合わせごとに、サービス要件を満たすか否かを示している。たとえば、“○”はサービス要件を満たすことを示し、“×”はサービス要件を満たさないことを示す。また、各伝搬特性において消費電力が最小となる部分に下線を付している。最小消費電力機能パラメータ選択テーブル720は、たとえば図6に示したグラフG1,G2に示す特性に基づいて作成することができる。
たとえば、測定制御部341によって推計された伝搬特性がEb/N0=10.4、すなわち伝搬特性(3)〜(4)の間であるとする。この場合は、機能選択制御部342は、最小消費電力機能パラメータ選択テーブル720において、伝搬特性(3)〜(4)のうちのサービス要件を満たす範囲で消費電力が最小となる部分(下線を付した“○”)を特定する。そして、機能選択制御部342は、特定した部分に対応する「PHY機能パラメータ」および「MAC機能パラメータ」の組み合わせ{誤り訂正=なし,変調方式=低速変調,最大再送回数=1}を選択する。
これにより、現在の伝搬特性において、サービス要件を満たす範囲で消費電力が最小となる機能パラメータの組み合わせを選択することができる。機能選択制御部342は、選択した機能パラメータをMAC層処理部320およびPHY層処理部330に設定する。
(無線通信装置によるデータ送信時の処理)
図8は、無線通信装置によるデータ送信時の処理の一例を示すシーケンス図である。無線通信装置300は、データ送信時の処理として、たとえば図8に示す各ステップを実行する。まず、データ発生時などのデータ送信契機が発生すると、上位層処理部310がパケットを生成する(ステップS801)。つぎに、上位層処理部310が、ステップS801によって生成したパケットの送信を要求するパケット送信要求をMAC層処理部320へ出力する(ステップS802)。
つぎに、MAC層処理部320が、上位層処理部310からのパケット送信要求にかかるパケットを格納したMAC PDUを生成する(ステップS803)。つぎに、MAC層処理部320が、ステップS803によって生成したMAC PDUの送信を要求するMAC PDU送信要求をPHY層処理部330へ出力する(ステップS804)。
つぎに、PHY層処理部330が、機能選択制御部342から“誤り訂正機能あり”を設定されているか否かを判断する(ステップS805)。“誤り訂正機能あり”を設定されている場合(ステップS805:Yes)は、PHY層処理部330は、MAC層処理部320からのMAC PDU送信要求にかかるMAC PDUを格納し、誤り訂正符号を付与したフレームを生成する(ステップS806)。そして、PHY層処理部330は、ステップS808へ移行する。
ステップS805において、“誤り訂正機能あり”を設定されていない場合(ステップS805:No)は、PHY層処理部330は、MAC PDU送信要求にかかるMAC PDUを格納し、誤り訂正符号なしのフレームを生成する(ステップS807)。
つぎに、PHY層処理部330が、ステップS806またはステップS807によって生成したフレームを送信する(ステップS808)。ステップS808において、PHY層処理部330は、機能選択制御部342からの指定の方式で変調した無線信号によってフレームを空中(Air)へ無線送信する。
(無線通信装置によるAck受信時の処理)
図9は、無線通信装置によるAck受信時の処理の一例を示すシーケンス図である。無線通信装置300は、Ack受信時の処理として、たとえば図9に示す各ステップを実行する。ここで、Ackは、たとえば図8に示した各ステップによって送信されたパケット(フレーム)に対するAckである。まず、PHY層処理部330が、空中(Air)よりAckを受信すると、フレームを受信したことを通知するフレーム受信通知をMAC層処理部320へ出力する(ステップS901)。
つぎに、MAC層処理部320が、PHY層処理部330からのフレーム受信通知にかかるフレームに格納されたMAC PDUを解析する(ステップS902)。図9に示す例では、ステップS902によって、受信フレームがAckであることが判明したとする。つぎに、MAC層処理部320が、パケットの送信成功を通知するパケット送信成功通知を上位層処理部310へ出力する(ステップS903)。
つぎに、上位層処理部310が、MAC層処理部320からのパケット送信成功通知を測定制御部341へ出力する(ステップS904)。つぎに、測定制御部341が、パケット送信数をインクリメント(パケット送信数++)する(ステップS905)。つぎに、測定制御部341が、ステップS905によってインクリメントしたパケット送信数に基づいてパケット送信失敗率を算出する(ステップS906)。パケット送信失敗率は、たとえばパケット送信失敗数/パケット送信数によって算出することができる。
(無線通信装置によるデータ再送時の処理)
図10は、無線通信装置によるデータ再送時の処理の一例を示すシーケンス図である。無線通信装置300は、データ再送時の処理として、たとえば図10に示す各ステップを実行する。たとえば、図8に示した各ステップによるパケット(フレーム)の送信後に、PHY層処理部330によって空中(Air)よりAckを受信せず、MAC層処理部320においてAck待ちタイムアウトになったとする。
この場合は、MAC層処理部320が、現在の再送回数が最大再送回数以下か否かを判断する(ステップS1001)。最大再送回数は、MAC層処理部320の機能パラメータであり、たとえば機能選択制御部342によって設定される。再送回数が最大再送回数を超えている場合(ステップS1001:No)は、送信失敗時の処理へ移行する(ステップS1002)。送信失敗時の処理については後述する(たとえば図11参照)。
ステップS1001において、再送回数が最大再送回数以下である場合(ステップS1001:Yes)は、MAC層処理部320は、MAC PDUの再送を要求するMAC PDU送信要求(再送)をPHY層処理部330へ送信する(ステップS1003)。図10に示すステップS1004〜S1007は、図8に示したステップS805〜S808と同様である。
(無線通信装置による送信失敗時の処理)
図11は、無線通信装置による送信失敗時の処理の一例を示すシーケンス図である。図10に示したステップS1002において、無線通信装置300は、送信失敗時の処理として、たとえば図11に示す各ステップを実行する。まず、MAC層処理部320が、パケットの送信失敗を通知するパケット送信失敗通知を上位層処理部310へ出力する(ステップS1101)。
つぎに、上位層処理部310が、MAC層処理部320からのパケット送信失敗通知を測定制御部341へ出力する(ステップS1102)。つぎに、測定制御部341が、パケット送信数をインクリメント(パケット送信数++)する(ステップS1103)。また、測定制御部341が、パケット送信失敗数をインクリメント(パケット送信失敗数++)する(ステップS1104)。
つぎに、測定制御部341が、ステップS1103,S1104によってインクリメントしたパケット送信数およびパケット送信失敗数に基づいてパケット送信失敗率を算出する(ステップS1105)。パケット送信失敗率は、たとえばパケット送信失敗数/パケット送信数によって算出することができる。
(無線通信装置による測定制御時の処理)
図12は、無線通信装置による測定制御時の処理の一例を示すシーケンス図である。無線通信装置300は、測定制御時の処理として、たとえば図12に示す各ステップを実行する。
まず、一定周期などの伝搬特性の推計契機が発生すると、測定制御部341が、MAC層処理部320およびPHY層処理部330の現在の機能パラメータの通知を要求する機能パラメータ通知要求を機能選択制御部342へ出力する(ステップS1201)。
つぎに、機能選択制御部342が、MAC層処理部320およびPHY層処理部330の現在の機能パラメータを通知する機能パラメータ通知を測定制御部341へ出力する(ステップS1202)。MAC層処理部320の機能パラメータは、たとえば最大再送回数を含む。PHY層処理部330の機能パラメータは、たとえば誤り訂正の有無や変調方式を含む。
つぎに、測定制御部341が、ステップS1202によって通知された機能パラメータと、無線通信装置300の現在のパケット送信失敗率と、に基づいて、伝搬特性を推計する(ステップS1203)。現在のパケット送信失敗率は、たとえば、図9に示したステップS906または図11に示したステップS1105によって算出されたパケット送信失敗率のうちの最新のパケット送信失敗率である。
ステップS1203において、たとえば、測定制御部341は、ステップS1202によって通知された機能パラメータとパケット送信失敗率との組み合わせに対応する伝搬特性を、記憶部351の伝搬特性推計テーブルから取得する。伝搬特性は、たとえば「ビットエネルギー対雑音電力密度比Eb/N0(単位:db)」である。
(無線通信装置による機能選択制御時の処理)
図13は、無線通信装置による機能選択制御時の処理の一例を示すシーケンス図である。無線通信装置300は、機能選択制御時の処理として、たとえば図13に示す各ステップを実行する。まず、一定周期などの機能選択契機が発生すると、機能選択制御部342が、現在の伝搬特性の通知を要求する伝搬特性通知要求を測定制御部341へ出力する(ステップS1301)。
つぎに、測定制御部341が、現在の伝搬特性を通知する伝搬特性通知を機能選択制御部342へ出力する(ステップS1302)。現在の伝搬特性は、たとえば図12のステップS1203によって推計された伝搬特性のうちの最新の伝搬特性(たとえばEb/N0)である。
つぎに、機能選択制御部342が、測定制御部341からの伝搬特性通知が示す伝搬特性に対応する機能パラメータを、記憶部352の最小消費電力機能パラメータ選択テーブルから選択する(ステップS1303)。たとえば、機能選択制御部342は、伝搬特性通知が示す伝搬特性において、所定のサポート要件を満たす範囲で最小電力となる機能パラメータを最小消費電力機能パラメータ選択テーブルから選択する。
つぎに、機能選択制御部342が、ステップS1303によって選択した機能パラメータのうちのMAC層処理部320の機能パラメータをMAC層処理部320に設定する(ステップS1304)。MAC層処理部320の機能パラメータは、たとえば最大再送回数を含む。また、機能選択制御部342が、ステップS1303によって選択した機能パラメータのうちのPHY層処理部330の機能パラメータをPHY層処理部330に設定する(ステップS1305)。PHY層処理部330の機能パラメータは、たとえば誤り訂正の有無や変調方式を含む。
(伝搬特性の変動モデル)
図14は、伝搬特性の変動モデルの一例を示す図である。図14において、図6に示した部分と同様の部分については同一の符号を付して説明を省略する。図14のグラフG2における変動モデル1401は、無線通信装置300における無線通信の伝搬特性の変動を、平均=14.0db、標準偏差3.5の正規分布によって表したものである。
仮に、ユースケースにおいて想定される最悪の伝搬特性を元にサービス要件を満たすための機能パラメータを固定値として選択する場合について説明する。この場合は、伝搬特性区間1411における伝搬特性の付近が発生しうる最低の伝搬特性である。このため、伝搬特性区間1411でサービス要件(図14に示す例ではパケット送信失敗率1%以下)を満たすためには低通信速度変調/誤り訂正あり/再送回数大を選択することになる。この場合の消費電力は、グラフG2の消費電力1402に示す通りである。
これに対して、無線通信装置300の機能選択制御部342によって機能パラメータを選択した場合の消費電力は、消費電力603に示す通りである。このことから、機能選択制御部342による、伝搬特性区間1411〜1416における消費電力の改善量は、グラフG2の改善量1421〜1426に示す通りとなる。
図14に示す例では、改善量1421〜1426は、それぞれ3%,12%,33%,30%,17%,5%となる。このため、変動モデル1401を前提とした総合的な省電力効果は、0.03×0.00+0.12×0.18+0.33×0.50+0.30×0.58+0.17×0.67+0.05×0.73=0.51=51%の削減となる。
(実施の形態2にかかる無線通信装置の変形例)
図15Aは、実施の形態2にかかる無線通信装置の変形例を示す図である。図15Bは、図15Aに示した無線通信装置の変形例における信号の流れの一例を示す図である。図15A,図15Bにおいて、図3A,図3Bに示した部分と同様の部分については同一の符号を付して説明を省略する。
図15A,図15Bに示す無線通信装置300は、図3A,図3Bに示した記憶部351,352に代えて記憶部1501を備える。記憶部1501は、現在の機能パラメータおよびパケット送信失敗率の組み合わせと、その組み合わせに対応する各機能パラメータと、を直接対応付ける最小消費電力機能パラメータ選択テーブル(たとえば図16参照)を記憶する。組み合わせに対応する各機能パラメータは、その組み合わせから推計される伝搬特性において所定のサポート要件を満たしつつ消費電力が抑えられる、上位層処理部310、MAC層処理部320およびPHY層処理部330の各機能パラメータである。
図15A,図15Bに示す測定制御部341は、測定したパケット送信失敗率を機能選択制御部342へ通知する。機能選択制御部342は、測定制御部341から通知されたパケット送信失敗率および現在の機能パラメータに対応する上位層処理部310、MAC層処理部320およびPHY層処理部330の各機能パラメータを選択する。たとえば、機能選択制御部342は、記憶部1501に記憶された最小消費電力機能パラメータ選択テーブルを用いて各機能パラメータを選択する。
(変形例にかかる最小消費電力機能パラメータ選択テーブル)
図16は、変形例にかかる最小消費電力機能パラメータ選択テーブルの一例を示す図である。記憶部1501は、たとえば図16に示す最小消費電力機能パラメータ選択テーブル1600を記憶する。最小消費電力機能パラメータ選択テーブル1600の「グラフ」は、図6に示したグラフG1,G2における特性611〜616,621〜626,631〜636との対応を参考として示している。ただし、最小消費電力機能パラメータ選択テーブル1600から「グラフ」を省いてもよい。
最小消費電力機能パラメータ選択テーブル1600の「選択パターンNo」は、「PHY機能パラメータ」、「MAC機能パラメータ」および「パケット送信失敗率」の組み合わせを示す識別情報である。最小消費電力機能パラメータ選択テーブル1600においては、「PHY機能パラメータ」、「MAC機能パラメータ」および「パケット送信失敗率」の組み合わせごとに、「選択パターンNo」が対応付けられている。
“To X”は、「選択パターンNo」のXが示す各機能パラメータへの遷移を指示する情報である。“Stay X”は、「選択パターンNo」のXが示す各機能パラメータの維持を指示する情報である。最小消費電力機能パラメータ選択テーブル1600は、たとえば図7Aに示した伝搬特性推計テーブル710および図7Bに示した最小消費電力機能パラメータ選択テーブル720を統合することによって作成することができる。
たとえば、現在のパケット送信失敗率が1.0E−04であり、現在の機能パラメータが{誤り訂正=あり,変調方式=中速変調,最大再送回数=1}であるとする。この場合は、機能選択制御部342は、最小消費電力機能パラメータ選択テーブル1600を用いて、設定すべき機能パラメータとして「選択パターンNo」の<15>に示す{誤り訂正=あり,変調方式=中速変調,最大再送回数=2}を選択する。
(変形例にかかる無線通信装置による機能選択制御時の処理)
図17は、変形例にかかる無線通信装置による機能選択制御時の処理の一例を示すシーケンス図である。変形例にかかる無線通信装置300は、図12,図13に示した処理に代えて、たとえば図17に示す各ステップを実行する。まず、一定周期などの機能選択契機が発生すると、機能選択制御部342が、現在のパケット送信失敗率の通知を要求するパケット送信失敗率通知要求を測定制御部341へ出力する(ステップS1701)。
つぎに、測定制御部341が、現在のパケット送信失敗率を通知するパケット送信失敗率通知を機能選択制御部342へ出力する(ステップS1702)。現在のパケット送信失敗率は、たとえば図9に示したステップS906または図11に示したステップS1105によって算出されたパケット送信失敗率のうちの最新のパケット送信失敗率である。
つぎに、機能選択制御部342が、現在の機能パラメータおよびパケット送信失敗率の組み合わせに対応する機能パラメータを、記憶部1501の最小消費電力機能パラメータ選択テーブルから選択する(ステップS1703)。パケット送信失敗率は、たとえば測定制御部341からのパケット送信失敗率通知が示すパケット送信失敗率である。図17に示すステップS1704,S1705は、図13に示したステップS1304,S1305と同様である。
以上説明したように、無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法によれば、消費電力の低減を図ることができる。
たとえば、近年、センサ(M2M)ネットワークが注目されている。センサネットワークは、医療分野などの様々な分野に応用可能な技術である。センサネットワークのセンサノードは、モノ、人、環境などに遍在させるものであり、小型かつケーブルレスで実現することが求められる。そのため、使用する電池(バッテリ)についても小型化が要求されており、使用できる電池容量に制限がある。したがって、センサノードに搭載する無線通信装置においては、少ない電池容量で長時間の処理の持続を実現するために、低消費電力化が求められている。
しかしながら、従来技術では、無線通信装置の階層化通信モデルの各層は独立しており、各層の機能は層を跨いで連携しない。さらに、無線通信装置を統合的に電力消費の観点で各層の通信品質向上機能を制御するようなことは行われていない。そのため、各層の総合では過剰に機能が動作することによる過剰サービスとなる場合があり、結果として消費電力が大きくなる。たとえばPHY層の誤り訂正機能やMAC層のフレーム再送機能は他の階層から独立して動作するため、伝搬特性に関わらず誤り訂正機能とフレーム再送機能がそれぞれ独立して動作し、無駄に電力を消費する場合がある。
これに対して、上述した各実施の形態によれば、無線通信装置の外部からインプットされる可変の環境パラメータおよびサービス要件に基づき、最小消費電力となるように各層の機能パラメータを適応的に選択することができる。環境パラメータは、たとえば図2に示した伝搬特性239である。サービス要件は、たとえばパケット送信失敗率のようなユーザが感じる機能性である。
機能パラメータの選択にあたっては、各層のアウトプットをそれぞれ最大化するという既存技術の発想ではなく、状況に応じてある層では機能低下させ、ある層では機能動作を活性化するという各層連携の選択を行うことができる。これにより、サービス要件を満足させつつ最小消費電力を実現することができる。この各層連携の選択は、たとえば、MAC機能の再送機能における再送回数を増やし、PHY機能の誤り訂正を無効化するなどの選択である。
このように、上述した各実施の形態によれば、動的に変化する伝搬特性に対し、一定の品質範囲で各層統合的に低消費電力となる機能パラメータを抽出し適応することにより、サービス要件を満たしつつ消費電力を最小化することが可能である。
一例として、IEEE802.15.6に規定される近距離無線であるBAN(Body Area Network)を用いる無線通信装置について説明する。
(PHY層の機能)
図18Aおよび図18Bは、PHY層の機能の一例を示す図である。図18Aのテーブル1810は、BANの400[MHz]帯におけるPHY層の機能を示している。図18Bのテーブル1820は、BANの420〜450[MHz]帯におけるPHY層の機能を示している。
たとえば、テーブル1810の機能1801は、高速変調(M=8)かつ誤り訂正あり(Code rate<1)という機能である。また、テーブル1820の機能1802は、中速変調(M=2)かつ誤り訂正あり(Code rate<1)という機能である。また、テーブル1820の機能1803は、中速変調(M=2)かつ誤り訂正なし(Code rate=1)という機能である。
無線通信時の通信信頼性は、変調速度が低いほど高くなる。また、無線通信時の通信信頼性は、誤り訂正がある場合の方が、誤り訂正がない場合より高くなる。しかしながら、有効データ1[bit]送信あたりの消費電力は概ね送信時間に依存する。このため、消費電力は、機能1801〜1803のうちの、機能1801のときに最も小さく、機能1802のときに最も大きい。
このように、消費電力と通信信頼性はほぼトレードオフの関係となる(たとえば図6参照)。またMAC層における再送機能も同様に、再送を実施するごとに通信信頼性が向上するが、それとともに送信時間が増加(すなわち消費電力が増加)するため消費電力と通信信頼性はトレードオフの関係である。
これに対して、上述した各実施の形態によれば、現在の機能パラメータと送信失敗率の組み合わせに応じて機能パラメータを選択することにより、無線通信の伝搬環境に応じた機能パラメータの更新を行うことができる。このため、サポート要件を満たす範囲での消費電力の低減が可能になる。
なお、本実施の形態で説明したパラメータ選択方法は、たとえば、あらかじめ用意されたプログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD−ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネット等のネットワークを介して配布されてもよい。
上述した各実施の形態に関し、さらに以下の付記を開示する。
(付記1)設定された第1パラメータに応じた機能により無線通信を行う通信部と、
前記通信部によって受信された信号の測定値に基づく第2パラメータを算出する算出部と、
前記通信部に設定中の第1パラメータおよび前記算出部によって算出された第2パラメータの組み合わせと、前記組み合わせごとの前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する選択部と、
前記選択部によって選択された第1パラメータを前記通信部に設定する設定部と、
を備えることを特徴とする無線通信装置。
(付記2)前記対応情報は、前記組み合わせごとに、前記組み合わせから推計される前記無線通信の伝搬特性における前記無線通信のサポート要件および消費電力が所定の条件を満たす前記通信部に設定すべき第1パラメータを示すことを特徴とする付記1に記載の無線通信装置。
(付記3)前記対応情報は、前記組み合わせごとに、前記伝搬特性において、前記無線通信のパケット失敗率が所定の失敗率の範囲であり、かつ消費電力が最小となる前記通信部に設定すべき第1パラメータを示すことを特徴とする付記2に記載の無線通信装置。
(付記4)前記第1パラメータは、前記無線通信における階層化通信モデルの複数の階層の各パラメータの組み合わせであることを特徴とする付記1または2に記載の無線通信装置。
(付記5)前記複数の階層は、物理層と、メディアアクセス制御層と、前記物理層および前記メディアアクセス制御層の上位層と、に含まれる複数の階層であることを特徴とする付記4に記載の無線通信装置。
(付記6)前記第2パラメータは、前記通信部による送信信号に対する応答信号の測定値に基づく、前記送信信号の送信失敗率を示すパラメータであることを特徴とする付記1〜4のいずれか一つに記載の無線通信装置。
(付記7)設定された第1パラメータに応じた機能により無線通信を行う通信部を備える無線通信装置のコンピュータに、
前記通信部によって受信された信号の測定値に基づく第2パラメータを算出し、
前記通信部に設定中の第1パラメータおよび算出した前記第2パラメータの組み合わせと、前記組み合わせごとの前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する、
処理を実行させることを特徴とするパラメータ選択プログラム。
(付記8)設定された第1パラメータに応じた機能により無線通信を行う通信部を備える無線通信装置のパラメータ選択方法であって、
前記通信部によって受信された信号の測定値に基づく第2パラメータを算出し、
前記通信部に設定中の第1パラメータおよび算出した前記第2パラメータの組み合わせと、前記組み合わせごとの前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する、
ことを特徴とするパラメータ選択方法。
110,120,300 無線通信装置
111 通信部
112 算出部
113 選択部
114 設定部
210 上位層
211 パケット再送
212 パケット再送回数
213,602 パケット送信失敗率
214 パケットサイズ
220 MAC層
221 フレーム再送
222 最大フレーム再送回数
223 フレームサイズ
224 パケットエラーレート
230 PHY層
231 誤り訂正
232 変調
233 送信電力制御
234 誤り訂正有無
235 変調方式
236 送信電力
237 ビットエラーレート
238 受信電力
239 伝搬特性
240,603,1402 消費電力
310 上位層処理部
311 パケット受信制御部
312 パケット再送制御部
313 パケット送信制御部
320 MAC層処理部
321 フレーム受信制御部
322 パケット組立・分割制御部
323 フレーム再送制御部
324 パケット分割制御部
325 フレーム送信制御部
330 PHY層処理部
331 変調処理部
332 スプレッド処理部
333 ビットインタリーブ処理部
334 誤り訂正符号生成部
335 誤り検出符号生成部
341 測定制御部
342 機能選択制御部
351,352,1501 記憶部
400 センサノード
410 アンテナ
420 RFFE
430 DBB
431 PHY層送信処理部
432 PHY層受信処理部
440 MPU
441 MAC層処理ソフトウェア
442 センサ制御ソフトウェア
443 機能制御ソフトウェア
450 センサ
500 ハブ
510 上位層デバイス
601 閾値
611〜616,621〜626,631〜636 特性
710 伝搬特性推計テーブル
720,1600 最小消費電力機能パラメータ選択テーブル
1401 変動モデル
1411〜1416 伝搬特性区間
1421〜1426 改善量
1801〜1803 機能
1810,1820 テーブル

Claims (4)

  1. 無線通信における階層化通信モデルの複数の階層の各パラメータの組み合わせである第1パラメータが設定され、設定された第1パラメータに応じた機能により無線通信を行う通信部と、
    前記通信部によって受信された信号の測定値に基づく第2パラメータを算出する算出部と、
    前記通信部に設定中の第1パラメータおよび前記算出部によって算出された第2パラメータの組み合わせと、前記組み合わせごとに、前記組み合わせから推計される前記無線通信の伝搬特性における前記無線通信のサポート要件および消費電力が所定の条件を満たす前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する選択部と、
    前記選択部によって選択された第1パラメータを前記通信部に設定する設定部と、
    を備えることを特徴とする無線通信装置。
  2. 前記対応情報は、前記組み合わせごとに、前記伝搬特性において、前記無線通信のパケット失敗率が所定の失敗率の範囲であり、かつ消費電力が最小となる前記通信部に設定すべき第1パラメータを示すことを特徴とする請求項1に記載の無線通信装置。
  3. 無線通信における階層化通信モデルの複数の階層の各パラメータの組み合わせである第1パラメータが設定され、設定された第1パラメータに応じた機能により無線通信を行う通信部を備える無線通信装置のコンピュータに、
    前記通信部によって受信された信号の測定値に基づく第2パラメータを算出し、
    前記通信部に設定中の第1パラメータおよび算出した前記第2パラメータの組み合わせと、前記組み合わせごとに、前記組み合わせから推計される前記無線通信の伝搬特性における前記無線通信のサポート要件および消費電力が所定の条件を満たす前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する、
    処理を実行させることを特徴とするパラメータ選択プログラム。
  4. 無線通信における階層化通信モデルの複数の階層の各パラメータの組み合わせである第1パラメータが設定され、設定された第1パラメータに応じた機能により無線通信を行う通信部を備える無線通信装置のパラメータ選択方法であって、
    前記通信部によって受信された信号の測定値に基づく第2パラメータを算出し、
    前記通信部に設定中の第1パラメータおよび算出した前記第2パラメータの組み合わせと、前記組み合わせから推計される前記無線通信の伝搬特性における前記無線通信のサポート要件および消費電力が所定の条件を満たす前記通信部に設定すべき第1パラメータを示す対応情報と、に基づいて前記通信部に設定すべき第1パラメータを選択する、
    ことを特徴とするパラメータ選択方法。
JP2013230671A 2013-11-06 2013-11-06 無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法 Active JP6255912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230671A JP6255912B2 (ja) 2013-11-06 2013-11-06 無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230671A JP6255912B2 (ja) 2013-11-06 2013-11-06 無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法

Publications (3)

Publication Number Publication Date
JP2015091063A JP2015091063A (ja) 2015-05-11
JP2015091063A5 JP2015091063A5 (ja) 2016-08-18
JP6255912B2 true JP6255912B2 (ja) 2018-01-10

Family

ID=53194403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230671A Active JP6255912B2 (ja) 2013-11-06 2013-11-06 無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法

Country Status (1)

Country Link
JP (1) JP6255912B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3377913B1 (en) * 2015-11-20 2024-07-10 Koninklijke Philips N.V. High data rate and real time operating system wireless coupling for medical imaging systems and method of operation thereof
US11348615B2 (en) 2018-10-24 2022-05-31 Sony Corporation Cartridge memory for magnetic tape cartridge, control method therefor, cartridge, and recording/reproduction system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339897B2 (en) * 2002-02-22 2008-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Cross-layer integrated collision free path routing
JP3746280B2 (ja) * 2003-06-27 2006-02-15 株式会社東芝 通信方法、通信システム及び通信装置
JP2007096982A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 情報送信装置、送信条件制御方法及び記録媒体
US8942184B2 (en) * 2008-06-17 2015-01-27 Broadcom Corporation Method and apparatus for link adaptation in a wireless communication network
JP5115750B2 (ja) * 2009-03-26 2013-01-09 Necインフロンティア株式会社 再送制御方法および無線通信装置
JP5815334B2 (ja) * 2011-08-31 2015-11-17 Necプラットフォームズ株式会社 送信装置、通信システム、通信条件決定方法および通信条件決定プログラム

Also Published As

Publication number Publication date
JP2015091063A (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
Lin et al. ATPC: Adaptive transmission power control for wireless sensor networks
EP1843528A1 (en) Method and wireless sensor device for allocating time slots in a wireless sensor network
JP2018530260A (ja) 隣接ノードとの通信のネットワークランクの決定方法
Yigit et al. A survey on packet size optimization for terrestrial, underwater, underground, and body area sensor networks
CN105723777B (zh) 使用超低功率节点的无线接口的无线信道分配
CN104509019A (zh) 无线通信网络传输的基于表的链路自适应
JP6255912B2 (ja) 無線通信装置、パラメータ選択プログラムおよびパラメータ選択方法
US8194693B2 (en) Autonomous wireless networks
WO2013038821A1 (ja) 適応変調符号化方法、及び装置
KR20120113797A (ko) 소거 시퀀스 검출의 성능을 개선하기 위한 방법 및 장치
CN102006626A (zh) 基于哈夫曼编码和随机优化策略的传感网络数据压缩方法
US10805922B2 (en) Method for transmitting a sequence of sets of data from a communication device to an access point
KR101037679B1 (ko) 실시간 끊김없는 무선 데이터 전송 시스템, 및 방법
Liu et al. Adaptive channel access in spectrum database-driven cognitive radio networks
Nikodem et al. Transmission power control based on packet reception rate
US20160360494A1 (en) Information processing apparatus and control method thereof
Sun et al. Confidence interval based model predictive control of transmit power with reliability constraint
Zhang et al. Throughput maximization for energy harvesting cognitive radio networks with finite horizon
Zouine et al. Energy Harvesting WSNs with Adaptive Modulation: Inter-delivery-aware Scheduling Algorithms
Kim et al. Adaptive priority-based medium access control protocol for IEEE 802.15. 6 wireless body sensor networks
Zucchetto et al. A random access scheme to balance energy efficiency and accuracy in monitoring applications
KR101092640B1 (ko) 무선 센서 네트워크 센서 노드 및 센서 노드의 전력 관리 방법
WO2024100950A1 (ja) 送信装置
JP6033095B2 (ja) ファイル伝送装置
JPWO2013190671A1 (ja) 無線局、無線通信システム、及び方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6255912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150