JP6253488B2 - Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus - Google Patents

Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus Download PDF

Info

Publication number
JP6253488B2
JP6253488B2 JP2014079462A JP2014079462A JP6253488B2 JP 6253488 B2 JP6253488 B2 JP 6253488B2 JP 2014079462 A JP2014079462 A JP 2014079462A JP 2014079462 A JP2014079462 A JP 2014079462A JP 6253488 B2 JP6253488 B2 JP 6253488B2
Authority
JP
Japan
Prior art keywords
hollow member
outer diameter
inner diameter
forward extrusion
diameter surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014079462A
Other languages
Japanese (ja)
Other versions
JP2015110242A (en
Inventor
洋輝 成宮
洋輝 成宮
根石 豊
豊 根石
久貴 佐分
久貴 佐分
勝彦 田中
勝彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014079462A priority Critical patent/JP6253488B2/en
Publication of JP2015110242A publication Critical patent/JP2015110242A/en
Application granted granted Critical
Publication of JP6253488B2 publication Critical patent/JP6253488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、前方押出加工方法、中空部材の製造方法及び前方押出加工装置に関する。   The present invention relates to a forward extrusion method, a method for producing a hollow member, and a forward extrusion apparatus.

自動車部品などの機械部品の軽量化、低コスト化の要求に対応して、様々な中空冷間鍛造品が製造されるようになっている。例えば、中実部材を後方押出とその後の打ち抜きによって中空化し、そこからさらに据込みや前方押出を行って所定の形状に成形している。しかし、中実部材の前方押出においてシェブロンクラックと呼ばれる内部割れが発生する事があるのと同様に、中空部材の前方押出においても条件によっては内径部(内径面)に割れが発生する事がある。   Various hollow cold forgings have been manufactured in response to demands for weight reduction and cost reduction of machine parts such as automobile parts. For example, a solid member is hollowed out by backward extrusion and subsequent punching, and further upsetting and forward extrusion are performed from there to form a predetermined shape. However, just as internal cracks called chevron cracks may occur during forward extrusion of solid members, cracks may occur in the inner diameter portion (inner diameter surface) depending on conditions in forward extrusion of hollow members. .

特許文献1には加工硬化指数n値が0.2以上の被加工材を用いる、または、被加工材の加工硬化指数n値が0.2以上になるよう熱処理を行うことで、多段の冷間前方押出における内部割れを抑制できる方法が提案されている。また、特許文献2には鉄を主成分とする中実焼結体の前方押出において、背圧を付加することで内部割れを抑制する方法が提案されている。   In Patent Document 1, a work material having a work hardening index n value of 0.2 or more is used, or heat treatment is performed so that a work hardening index n value of the work material becomes 0.2 or more. There has been proposed a method capable of suppressing internal cracks in forward extrusion. Patent Document 2 proposes a method of suppressing internal cracking by applying back pressure in forward extrusion of a solid sintered body containing iron as a main component.

特開2000−312947号公報Japanese Patent Laid-Open No. 2000-312947 特開2002−137039号公報JP 2002-137039 A

しかし、特許文献1で開示された方法は、加工硬化指数n値が0.2以上の被加工材に限定され、また、n値を0.2以上にするための熱処理工程を必要とするため製造コストの増加を余儀なくされた。また、特許文献2で開示された方法は、背圧を付与するために金型や鍛造装置が大型、複雑になり、ひいては、製造コストが増加するというデメリットがあった。   However, the method disclosed in Patent Document 1 is limited to a workpiece having a work hardening index n value of 0.2 or more, and requires a heat treatment step for making the n value 0.2 or more. The manufacturing cost was forced to increase. In addition, the method disclosed in Patent Document 2 has a demerit that a die and a forging device become large and complicated in order to apply a back pressure, and as a result, a manufacturing cost increases.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、製造コストの大幅な増加を伴うこと無く、多様な中空部材の内径面割れを抑制することが可能な、新規かつ改良された前方押出加工方法、中空部材の製造方法及び前方押出加工装置を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to suppress cracks on the inner surface of various hollow members without a significant increase in manufacturing cost. It is an object of the present invention to provide a new and improved forward extrusion method, a method for manufacturing a hollow member, and a forward extrusion apparatus.

上記課題を解決するために、本発明のある観点によれば、ダイス及びマンドレルを用いて中空部材を前方押出加工する前方押出加工方法において、ダイスの内径面に設けられた外径絞り部により中空部材の外径面を絞るステップと、マンドレルの外径面のうち、外径絞り部に対向する位置に設けられた内径拡径部により中空部材の内径面を拡径するステップと、を含むことを特徴とする、前方押出加工方法が提供される。   In order to solve the above-described problems, according to a certain aspect of the present invention, in a forward extrusion method in which a hollow member is forwardly extruded using a die and a mandrel, a hollow is formed by an outer diameter drawn portion provided on an inner diameter surface of the die. The step of narrowing the outer diameter surface of the member, and the step of expanding the inner diameter surface of the hollow member by an inner diameter enlarged portion provided at a position facing the outer diameter throttle portion of the outer diameter surface of the mandrel. A forward extrusion method is provided.

ここで、外径絞り部は、中空部材の進行方向に沿って複数段設けられていてもよい。この場合、全ての外径絞り部について、その対向する位置に内径拡径部が設けられていなくてもよいが、少なくとも1段は、外径絞り部に対向する位置に内径拡径部が設けられている必要がある。   Here, the outer diameter throttle part may be provided in a plurality of stages along the traveling direction of the hollow member. In this case, the inner diameter enlarged portion may not be provided at the opposing position of all the outer diameter restricting portions, but at least one stage is provided with the inner diameter enlarged portion at a position facing the outer diameter restricting portion. Need to be.

また、内径拡径部のうち、中空部材の進行方向に交差する面と、中空部材の進行方向とのなす角度は、60°以上であってもよい。   Further, the angle formed by the surface intersecting the traveling direction of the hollow member in the inner diameter enlarged portion and the traveling direction of the hollow member may be 60 ° or more.

また、内径拡径部による中空部材の内径面の径変化量は、中空部材の外径の2%以下であってもよい。   Moreover, 2% or less of the outer diameter of a hollow member may be sufficient as the amount of diameter changes of the internal diameter surface of the hollow member by an internal diameter expansion part.

また、中空部材は、前方押出加工を行う前に、後方押出とその後の打ち抜きによって中実部材を中空化したものであってもよい。   Further, the hollow member may be a hollow member that is hollowed out by backward extrusion and subsequent punching before performing forward extrusion.

また、中空部材は金属部材であってもよい。   The hollow member may be a metal member.

また、金属部材は鋼材であってもよい。   The metal member may be a steel material.

本発明の他の観点によれば、ダイス及びマンドレルを用いて中空部材を前方押出加工する中空部材の製造方法において、前方押出加工は、ダイスの内径面に設けられた外径絞り部により中空部材の外径面を絞るステップと、マンドレルの外径面のうち、外径絞り部に対向する位置に設けられた内径拡径部により中空部材の内径面を拡径するステップと、を含むことを特徴とする、中空部材の製造方法が提供される。   According to another aspect of the present invention, in the method of manufacturing a hollow member in which a hollow member is forwardly extruded using a die and a mandrel, the forward extrusion is performed by an outer diameter drawing portion provided on an inner diameter surface of the die. Squeezing the outer diameter surface of the mandrel, and expanding the inner diameter surface of the hollow member by an inner diameter enlarged portion provided at a position facing the outer diameter throttle portion, of the outer diameter surface of the mandrel. A method for manufacturing a hollow member is provided.

本発明の他の観点によれば、ダイス及びマンドレルを用いて中空部材を前方押出加工する前方押出加工装置において、ダイスの内径面に設けられ、中空部材の外径面を絞る外径絞り部と、マンドレルの外径面のうち、外径絞り部に対向する位置に設けられ、中空部材の内径面を拡径する内径拡径部と、を備えることを特徴とする、前方押出加工装置が提供される。   According to another aspect of the present invention, in a forward extrusion apparatus that forwardly extrudes a hollow member using a die and a mandrel, an outer diameter restricting portion that is provided on the inner diameter surface of the die and restricts the outer diameter surface of the hollow member; A forward extrusion processing apparatus is provided, comprising: an outer diameter surface of the mandrel, the inner diameter expansion portion provided at a position facing the outer diameter throttle portion and expanding the inner diameter surface of the hollow member. Is done.

以上説明した本発明によれば、内径拡径部が中空部材の進行に対する抵抗となり内径面での引張応力の発生が抑制されるので、内径面割れが発生する可能性が低減される。また、中空部材の加工硬化指数n値によらず、内径面割れを抑制することができる。また、マンドレルに内径拡径部を設けるだけで内径面割れを抑制することができるので、製造コストの大幅な増加を伴うことがない。なお、本発明は冷間鍛造だけでなく、熱間鍛造や管材の押出加工(および引抜加工)にも適用可能である。   According to the present invention described above, the inner diameter enlarged portion becomes resistance to the progress of the hollow member, and the generation of tensile stress on the inner diameter surface is suppressed, so that the possibility of occurrence of inner surface cracks is reduced. Further, the inner surface crack can be suppressed regardless of the work hardening index n value of the hollow member. Moreover, since the inner surface crack can be suppressed only by providing the inner diameter enlarged portion on the mandrel, the manufacturing cost is not significantly increased. The present invention is applicable not only to cold forging but also to hot forging and tube extrusion (and drawing).

本発明の実施形態に係る前方押出加工装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of the front extrusion processing apparatus which concerns on embodiment of this invention. 同実施形態に係る外径絞り部の詳細構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detailed structure of the outer diameter aperture | diaphragm | squeeze part which concerns on the embodiment. 同実施形態に係る内径拡径部の詳細構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detailed structure of the internal diameter enlarged diameter part which concerns on the same embodiment. 従来の前方押出加工装置の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the conventional front extrusion processing apparatus. 従来の前方押出加工装置の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the conventional front extrusion processing apparatus. 図4に示す例に内径拡径部を設けた本発明の実施形態に係る前方押出加工装置の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the front extrusion processing apparatus which concerns on embodiment of this invention which provided the internal diameter enlarged diameter part in the example shown in FIG. 中空部材の各小領域の延性破壊指数と各小領域の位置との対応関係を示すグラフである(外径面1段絞り)。It is a graph which shows the correspondence of the ductile fracture index | exponent of each small area | region of a hollow member, and the position of each small area | region (outer diameter surface 1 step | paragraph). 中空部材の各小領域の延性破壊指数と各小領域の位置との対応関係を示すグラフである(外径面2段絞り)。It is a graph which shows the correspondence of the ductile fracture index | exponent of each small area | region of a hollow member, and the position of each small area | region (outer diameter surface 2 step | paragraph drawing). 後方押出とその後の打ち抜きによって中実部材を中空化する工程を説明する図である。It is a figure explaining the process of hollowing a solid member by back extrusion and subsequent punching. 図5に示す例に内径拡径部を二つ設けた本発明の実施形態に係る前方押出加工装置の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the front extrusion apparatus which concerns on embodiment of this invention which provided two internal diameter enlarged parts in the example shown in FIG.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、以下の説明では、中空部材が前方押出加工装置内を進行する(流れる)方向を下流方向、下流方向の逆方向を上流方向とする。
Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol. Moreover, in the following description, the direction in which the hollow member travels (flows) in the front extrusion processing apparatus is the downstream direction, and the reverse direction of the downstream direction is the upstream direction.

<1.本発明者が行った検討>
本発明者は、中空部材に内径面割れが発生する原因及びその内径面割れを抑制する方法について検討し、その結果、本実施形態に係る前方押出加工装置及び前方押出加工方法に想到した。そこで、まず、本発明者が行った検討について説明する。
<1. Study conducted by the present inventor>
The inventor examined the cause of the occurrence of inner surface cracks in the hollow member and a method for suppressing the inner surface cracks, and as a result, the inventors have conceived the forward extrusion apparatus and the forward extrusion method according to the present embodiment. Therefore, first, the study conducted by the present inventor will be described.

本発明者は、中空部材に内径面割れが発生する原因を突き止めるために、前方押出中の中空部材に生じる延性破壊指数を有限要素法解析により推定した。その過程を図4〜図7に基づいて説明する。   The present inventor estimated the ductile fracture index generated in the hollow member during forward extrusion by finite element analysis in order to find out the cause of the occurrence of the inner surface crack in the hollow member. The process will be described with reference to FIGS.

まず、本発明者は、中空部材の外径面を1段絞る場合の延性破壊指数について推定した。図4は、中空部材の外径面を1段絞る前方押出加工装置100の概要を示す縦断面図である。前方押出加工装置100は、ダイス101と、マンドレル102とを備える。ダイス101は、略円筒形状の部材である。ダイス101の内径面101bには、外径絞り部130が形成されている。   First, the present inventor estimated the ductile fracture index when the outer diameter surface of the hollow member was reduced by one step. FIG. 4 is a longitudinal sectional view showing an outline of the forward extrusion processing apparatus 100 that narrows the outer diameter surface of the hollow member by one step. The front extrusion processing apparatus 100 includes a die 101 and a mandrel 102. The die 101 is a substantially cylindrical member. An outer diameter restricting portion 130 is formed on the inner diameter surface 101 b of the die 101.

外径絞り部130は、ランド部131と、傾斜面132と、逃げ部133とを備える。
ランド部131は、マンドレル102側に突出した部分である。傾斜面132は、中空部材Wの進行方向(矢印A1方向)に交差する面であり、ランド部131とランド部131の上流側の内径面101bとを連結する。逃げ部133は、ランド部131の下流側に形成される。逃げ部133の内径面(表面)は、ランド部131の内径面(表面)よりも外側(ダイス101の外径面側)に配置される。すなわち、逃げ部133と中空部材Wとの間には隙間が形成される。
The outer diameter throttle portion 130 includes a land portion 131, an inclined surface 132, and a relief portion 133.
The land portion 131 is a portion protruding to the mandrel 102 side. The inclined surface 132 is a surface that intersects the traveling direction (arrow A1 direction) of the hollow member W, and connects the land portion 131 and the inner diameter surface 101b on the upstream side of the land portion 131. The escape portion 133 is formed on the downstream side of the land portion 131. The inner diameter surface (surface) of the escape portion 133 is disposed on the outer side (outer diameter surface side of the die 101) than the inner diameter surface (surface) of the land portion 131. That is, a gap is formed between the escape portion 133 and the hollow member W.

マンドレル102は、略円柱形状の部材であり、ダイス101の内部にダイス101と同軸上に設けられている。直線102aはマンドレル102(及びダイス101)の中心軸を示す。マンドレル102の外径面102bとダイス101の内径面101bとの間には隙間が形成されている。   The mandrel 102 is a substantially cylindrical member, and is provided coaxially with the die 101 inside the die 101. A straight line 102a indicates the central axis of the mandrel 102 (and the die 101). A gap is formed between the outer diameter surface 102 b of the mandrel 102 and the inner diameter surface 101 b of the die 101.

この前方押出加工装置100を用いた前方押出加工方法は以下のとおりである。すなわち、中空部材Wをダイス101とマンドレル102との間に通し、中空部材Wを前方押出する。これにより、中空部材Wは、矢印A1方向に進行する。中空部材Wの外径面は、外径絞り部130により絞られる(すなわち縮径される)。これにより、中空部材Wが成形される。   The forward extrusion method using this forward extrusion apparatus 100 is as follows. That is, the hollow member W is passed between the die 101 and the mandrel 102, and the hollow member W is extruded forward. Thereby, the hollow member W advances in the arrow A1 direction. The outer diameter surface of the hollow member W is squeezed (ie, reduced in diameter) by the outer squeezed portion 130. Thereby, the hollow member W is shape | molded.

本発明者は、前方押出中の中空部材Wに生じる延性破壊指数を有限要素法解析により推定した。すなわち、中空部材Wを複数の小領域に区分し、各小領域に生じる延性破壊指数を推定した。延性破壊指数は以下の数式(1)で示される。   The inventor estimated the ductile fracture index generated in the hollow member W during forward extrusion by finite element analysis. That is, the hollow member W was divided into a plurality of small regions, and the ductile fracture index generated in each small region was estimated. The ductile fracture index is expressed by the following formula (1).

Figure 0006253488
Figure 0006253488

ここで、Iは延性破壊指数、σmaxは最大主応力、σeqは相当応力、εeqは相当塑性ひずみである。数式(1)右辺の分子に書かれている積分式はCockcroft&Lathamの式と呼ばれる延性破壊条件式であり、この積分式から計算される数値が材料固有の定数cに達すると、割れが発生すると判断する。すなわち、延性破壊指数が1に達すると割れが発生すると判断する。 Here, I is the ductile fracture index, σ max is the maximum principal stress, σ eq is the equivalent stress, and ε eq is the equivalent plastic strain. The integral expression written in the numerator on the right side of Equation (1) is a ductile fracture condition equation called Cockcroft &Latham's equation. To do. That is, when the ductile fracture index reaches 1, it is determined that cracking occurs.

また、解析条件は以下のとおりである。外径φ20mm、内径φ10mmの中空部材Wを前方押出により外径φ19.5mm、内径φ10mmとなるように成形した。中空部材Wの進行方向と傾斜面132のなす角度は45°、傾斜面132の角部の曲率半径は0.5mm、ランド部131の長さは2.0mm、逃げ量は0.1mmとした。せん断摩擦係数m=0.1、軸対称モデル、ダイス及びマンドレルは剛体、被加工材は剛塑性体(四角形要素)でS55C球状化焼鈍材の変形抵抗曲線を使用した。   The analysis conditions are as follows. A hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm was formed by forward extrusion so as to have an outer diameter of φ19.5 mm and an inner diameter of φ10 mm. The angle between the traveling direction of the hollow member W and the inclined surface 132 is 45 °, the radius of curvature of the corner portion of the inclined surface 132 is 0.5 mm, the length of the land portion 131 is 2.0 mm, and the escape amount is 0.1 mm. . The shear friction coefficient m = 0.1, the axisymmetric model, the die and mandrel were rigid bodies, the workpiece was a rigid plastic body (square element), and the deformation resistance curve of the S55C spheroidized annealed material was used.

解析結果を図7(L20及びL21)に示す。図7の縦軸は小領域の延性破壊指数、横軸は小領域の位置を示す。小領域の位置は、小領域から中空部材Wの内径面に下ろした垂線の長さrと、小領域を通る横断面上での中空部材Wの内径面から外径面までの距離rの比r/rで示される。すなわち、r/r=0は内径面を、r/r=1は外径面を表す。 The analysis results are shown in FIG. 7 (L20 and L21). In FIG. 7, the vertical axis represents the ductile fracture index of the small area, and the horizontal axis represents the position of the small area. The position of the small region is a length r of a perpendicular line drawn from the small region to the inner diameter surface of the hollow member W, and a distance r 0 from the inner diameter surface to the outer diameter surface of the hollow member W on the cross section passing through the small region. represented by the ratio r / r 0. That is, r / r 0 = 0 represents the inner diameter surface, and r / r 0 = 1 represents the outer diameter surface.

グラフL20は、図4の横断面(平断面)C上の小領域の延性破壊指数と小領域の位置との対応関係を示す。また、グラフL21は、横断面D上の小領域の延性破壊指数と小領域の位置との対応関係を示す。グラフL20、L21からわかるように、中空部材Wの外径面が絞られることで、中空部材Wの内径面の延性破壊指数が大きく増大する。   A graph L20 shows a correspondence relationship between the ductile fracture index of the small region on the transverse cross section (planar cross section) C in FIG. 4 and the position of the small region. The graph L21 shows the correspondence between the ductile fracture index of the small region on the cross section D and the position of the small region. As can be seen from the graphs L20 and L21, by reducing the outer diameter surface of the hollow member W, the ductile fracture index of the inner diameter surface of the hollow member W is greatly increased.

次に、本発明者は、中空部材の外径面を2段絞る場合の延性破壊指数について推定した。図5は、中空部材の外径面を2段絞る前方押出加工装置200の概要を示す縦断面図である。前方押出加工装置200は、前方押出加工装置100のダイス101をダイス201に変更したものである。   Next, the present inventor estimated the ductile fracture index when the outer diameter surface of the hollow member was narrowed by two steps. FIG. 5 is a longitudinal cross-sectional view showing an outline of a front extrusion processing apparatus 200 for reducing the outer diameter surface of the hollow member by two steps. The front extrusion processing apparatus 200 is obtained by changing the die 101 of the front extrusion processing apparatus 100 to a die 201.

ダイス201は、略円筒形状の部材である。ダイス201の内径面201bには、外径絞り部230が2段形成されている。外径絞り部230は、ランド部231と、傾斜面232と、逃げ部233とを備える。外径絞り部230の各部分の機能は外径絞り部130と同様である。また、前方押出加工装置200を用いた前方押出加工方法は前方押出加工装置100を用いた前方押出加工方法と同様である。   The die 201 is a substantially cylindrical member. On the inner diameter surface 201 b of the die 201, two stages of outer diameter restricting portions 230 are formed. The outer diameter restricting portion 230 includes a land portion 231, an inclined surface 232, and a relief portion 233. The function of each part of the outer diameter restrictor 230 is the same as that of the outer diameter restrictor 130. The forward extrusion method using the forward extrusion apparatus 200 is the same as the forward extrusion method using the forward extrusion apparatus 100.

本発明者は、前方押出中の中空部材Wに生じる延性破壊指数を有限要素法解析により推定した。すなわち、中空部材Wを複数の小領域に区分し、各小領域に生じる延性破壊指数を推定した。解析条件は以下のとおりである。外径φ20mm、内径φ10mmの中空部材Wを、まず外径φ19.5mm、内径φ10mmとした後、さらに、外径φ19.0mm、内径φ10mmとなるように二段の前方押出を行った。中空部材Wの進行方向と傾斜面232のなす角度は45°、傾斜面232の角部の曲率半径は0.5mm、ランド部231の長さは2.0mm、逃げ量は0.1mmとした。せん断摩擦係数m=0.1、軸対称モデル、ダイス及びマンドレルは剛体、被加工材は剛塑性体(四角形要素)でS55C球状化焼鈍材の変形抵抗曲線を使用した。   The inventor estimated the ductile fracture index generated in the hollow member W during forward extrusion by finite element analysis. That is, the hollow member W was divided into a plurality of small regions, and the ductile fracture index generated in each small region was estimated. The analysis conditions are as follows. A hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm was first set to an outer diameter of φ19.5 mm and an inner diameter of φ10 mm, and then further forward extrusion was performed in two stages so as to obtain an outer diameter of φ19.0 mm and an inner diameter of φ10 mm. The angle formed by the traveling direction of the hollow member W and the inclined surface 232 is 45 °, the radius of curvature of the corner of the inclined surface 232 is 0.5 mm, the length of the land portion 231 is 2.0 mm, and the escape amount is 0.1 mm. . The shear friction coefficient m = 0.1, the axisymmetric model, the die and mandrel were rigid bodies, the workpiece was a rigid plastic body (square element), and the deformation resistance curve of the S55C spheroidized annealed material was used.

解析結果を図8(L23及びL24)に示す。図8の縦軸、縦軸の意味は図7と同様である。グラフL23は、図5の横断面(平断面)E上の小領域の延性破壊指数と小領域の位置との対応関係を示す。また、グラフL24は、横断面F上の小領域の延性破壊指数と小領域の位置との対応関係を示す。グラフL23、L24及び図7に示すグラフL20、L21からわかるように、中空部材Wの外径面が絞られる段数が増える毎に、中空部材Wの内径面の延性破壊指数が累積される。従って、外径絞りの段数が増えるほど内径面割れが発生する可能性が高くなる。図8に示す例では、内径面の延性破壊指数が1を超えているので、内径面割れが発生する可能性が非常に高い。   The analysis results are shown in FIG. 8 (L23 and L24). The meanings of the vertical axis and the vertical axis in FIG. 8 are the same as those in FIG. A graph L23 shows a correspondence relationship between the ductile fracture index of the small region on the cross section (planar cross section) E in FIG. 5 and the position of the small region. A graph L24 shows the correspondence between the ductile fracture index of the small area on the cross section F and the position of the small area. As can be seen from the graphs L23 and L24 and the graphs L20 and L21 shown in FIG. 7, the ductile fracture index of the inner diameter surface of the hollow member W is accumulated each time the number of steps where the outer diameter surface of the hollow member W is reduced. Therefore, the possibility of occurrence of inner surface cracks increases as the number of outer diameter stops increases. In the example shown in FIG. 8, since the ductile fracture index of the inner surface exceeds 1, the possibility of occurrence of inner surface cracks is very high.

このように、加工条件によっては、中空部材Wの外径面が絞られることで、内径面の延性破壊指数が大きく増大することがあるが、その理由は、中空部材Wの外径面が絞られることで、外径絞り部に対向する位置で中空部材Wの内径面に大きな引張応力が生じ、内径面が引張応力下で塑性変形を受けたためである。   As described above, depending on the processing conditions, the outer diameter surface of the hollow member W may be narrowed, so that the ductile fracture index of the inner diameter surface may be greatly increased. This is because a large tensile stress is generated on the inner diameter surface of the hollow member W at a position facing the outer diameter throttle portion, and the inner diameter surface is subjected to plastic deformation under the tensile stress.

このような内径面割れを防止する方法として、前方押出加工の減面率を大きくする、傾斜面の角度(後述する縮径角度θ)を小さくする、傾斜面角部の曲率半径(後述する曲率半径R)を大きくする、などの対策が提案されている。これらはいずれも内径面に生じる引張応力を緩和する方法であるが、最終製品形状の制約もあり、いずれも内径面割れを十分に抑制することができなかった。そこで、本発明者は、他の方法により内径面に生じる引張応力を緩和することを検討し、この結果、中空部材Wの内径面を拡径することを考えた。 As a method for preventing such cracks on the inner surface, the surface area of the forward extrusion process is increased, the angle of the inclined surface (reduced diameter angle θ 1 described later) is decreased, and the curvature radius of the inclined surface corner portion (described later). Measures such as increasing the curvature radius R 1 ) have been proposed. These are all methods for relieving the tensile stress generated on the inner diameter surface, but due to restrictions on the shape of the final product, none of the inner surface cracks could be sufficiently suppressed. Therefore, the present inventor studied to relieve the tensile stress generated on the inner diameter surface by another method, and as a result, considered expanding the inner diameter surface of the hollow member W.

具体的には、まず、本発明者は、図4に示す前方押出加工装置100において、中空部材Wの内径面を拡径することを考えた。その具現例を図6に示す。図6に示す前方押出加工装置300は、図4に示す前方押出加工装置100のマンドレル102をマンドレル302に変更したものである。   Specifically, first, the present inventor considered expanding the inner diameter surface of the hollow member W in the forward extrusion processing apparatus 100 shown in FIG. An implementation example is shown in FIG. A forward extrusion apparatus 300 shown in FIG. 6 is obtained by changing the mandrel 102 of the forward extrusion apparatus 100 shown in FIG.

マンドレル302は、略円柱形状の部材であり、ダイス101の内部にダイス101と同軸上に設けられている。直線302aはマンドレル302(及びダイス101)の中心軸を示す。マンドレル302の外径面302bとダイス101の内径面101bとの間には隙間が形成されている。   The mandrel 302 is a substantially cylindrical member, and is provided coaxially with the die 101 inside the die 101. A straight line 302a indicates the central axis of the mandrel 302 (and the die 101). A gap is formed between the outer diameter surface 302 b of the mandrel 302 and the inner diameter surface 101 b of the die 101.

また、マンドレル302の外径面302bのうち、外径絞り部130に対向する位置には、内径拡径部340が設けられている。内径拡径部340は、ランド部341と、傾斜面342と、逃げ部343とを備える。ランド部341は、ダイス101側に突出した部分である。傾斜面342は、中空部材Wの進行方向に交差する面であり、ランド部341とランド部341の上流側の外径面302bとを連結する。逃げ部343は、ランド部341の下流側に形成される。逃げ部343の外径面(表面)は、ランド部341の外径面(表面)よりも内側(マンドレル302の中心軸(=直線302a)側)に配置される。すなわち、逃げ部343と中空部材Wとの間には隙間が形成される。   In addition, an inner diameter enlarged portion 340 is provided at a position facing the outer diameter throttle portion 130 on the outer diameter surface 302 b of the mandrel 302. The inner diameter enlarged portion 340 includes a land portion 341, an inclined surface 342, and a relief portion 343. The land portion 341 is a portion protruding toward the die 101 side. The inclined surface 342 is a surface that intersects the traveling direction of the hollow member W, and connects the land portion 341 and the outer diameter surface 302b on the upstream side of the land portion 341. The escape portion 343 is formed on the downstream side of the land portion 341. The outer diameter surface (surface) of the escape portion 343 is disposed on the inner side (center axis (= straight line 302a) side of the mandrel 302) than the outer diameter surface (surface) of the land portion 341. That is, a gap is formed between the escape portion 343 and the hollow member W.

この前方押出加工装置300を用いた前方押出加工方法は以下のとおりである。すなわち、中空部材Wをダイス101とマンドレル302との間に通し、中空部材Wを前方押出する。これにより、中空部材Wは、矢印A1方向に進行する。中空部材Wの外径面は、外径絞り部130により絞られる(すなわち縮径される)。さらに、中空部材Wの内径面は、内径拡径部340により拡径される。このとき、外径面が絞られたことによって中空部材Wの内径面に生じる引張応力は、内径拡径部340が中空部材Wの進行に対する抵抗となったことによって生じる圧縮応力によって相殺される。ただし、中空部材Wの内径面を拡径することで、引張応力の発生位置が中空部材Wの内径面から内部へとシフトし、後述するように、中空部材Wの内部で延性破壊指数が上昇する。   The forward extrusion method using this forward extrusion apparatus 300 is as follows. That is, the hollow member W is passed between the die 101 and the mandrel 302, and the hollow member W is extruded forward. Thereby, the hollow member W advances in the arrow A1 direction. The outer diameter surface of the hollow member W is squeezed (ie, reduced in diameter) by the outer squeezed portion 130. Further, the inner diameter surface of the hollow member W is expanded by the inner diameter expanded portion 340. At this time, the tensile stress generated on the inner diameter surface of the hollow member W due to the narrowing of the outer diameter surface is offset by the compressive stress generated when the inner diameter enlarged portion 340 becomes resistance to the progress of the hollow member W. However, by expanding the inner diameter surface of the hollow member W, the tensile stress generation position shifts from the inner diameter surface of the hollow member W to the inside, and the ductile fracture index increases inside the hollow member W as will be described later. To do.

本発明者は、前方押出中の中空部材Wに生じる延性破壊指数を有限要素法解析により推定した。すなわち、中空部材Wを複数の小領域に区分し、各小領域に生じる延性破壊指数を推定した。解析条件は以下のとおりである。外径φ20mm、内径φ10mmの中空部材Wを前方押出により外径φ19.5mm、φ10.5mmとなるように成形した。中空部材Wの進行方向と傾斜面132及び傾斜面342のなす角度は45°、傾斜面132及び傾斜面342の角部の曲率半径は0.5mm、ランド部131及びランド部341の長さは2.0mm、逃げ量は0.1mmとした。せん断摩擦係数m=0.1、軸対称モデル、ダイス及びマンドレルは剛体、被加工材は剛塑性体(四角形要素)でS55C球状化焼鈍材の変形抵抗曲線を使用した。   The inventor estimated the ductile fracture index generated in the hollow member W during forward extrusion by finite element analysis. That is, the hollow member W was divided into a plurality of small regions, and the ductile fracture index generated in each small region was estimated. The analysis conditions are as follows. A hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm was formed by forward extrusion so as to have an outer diameter of φ19.5 mm and φ10.5 mm. The angle between the traveling direction of the hollow member W and the inclined surface 132 and the inclined surface 342 is 45 °, the curvature radius of the corner of the inclined surface 132 and the inclined surface 342 is 0.5 mm, and the length of the land portion 131 and the land portion 341 is The escape amount was set to 2.0 mm and 0.1 mm. The shear friction coefficient m = 0.1, the axisymmetric model, the die and mandrel were rigid bodies, the workpiece was a rigid plastic body (square element), and the deformation resistance curve of the S55C spheroidized annealed material was used.

図7のグラフL22は、横断面H上の小領域の延性破壊指数と小領域の位置との対応関係を示すものである。なお、横断面G上の小領域の延性破壊指数と小領域の位置との対応関係はグラフL20に示す通りである。グラフL21とL22とを対比すると、中空部材Wに生じる延性破壊指数のピーク位置は、中空部材Wの内径面を拡径することで、中空部材Wの内径面から内部へとシフトすることがわかる。したがって、中空部材Wの内径面の延性破壊指数が減少するので、内径面割れが生じる可能性が低減される。また、内径拡径を行ったことで減面率が高くなり延性破壊指数のピーク高さ自体も減少している。   A graph L22 in FIG. 7 shows a correspondence relationship between the ductile fracture index of the small region on the cross section H and the position of the small region. The correspondence relationship between the ductile fracture index of the small region on the cross section G and the position of the small region is as shown in the graph L20. When the graphs L21 and L22 are compared, it can be seen that the peak position of the ductile fracture index generated in the hollow member W shifts from the inner diameter surface of the hollow member W to the inside by expanding the inner diameter surface of the hollow member W. . Therefore, since the ductile fracture index of the inner diameter surface of the hollow member W is reduced, the possibility of occurrence of inner diameter surface cracks is reduced. Moreover, the reduction in area ratio is increased and the peak height of the ductile fracture index itself is reduced by expanding the inner diameter.

本発明者は、中空部材Wの内径面を拡径することをさらに検討し、本実施形態に係る前方押出加工装置10及び前方押出加工方法に想到した。以下、本実施形態に係る前方押出加工装置10及び前方押出加工方法について説明する。   The inventor further studied to enlarge the inner diameter surface of the hollow member W, and came up with the forward extrusion apparatus 10 and the forward extrusion method according to the present embodiment. Hereinafter, the front extrusion apparatus 10 and the front extrusion method according to the present embodiment will be described.

<2.前方押出加工装置の構成>
次に、図1〜図3に基づいて、前方押出加工装置10の構成について説明する。前方押出加工装置10は、ダイス11と、マンドレル12とを備える。ダイス11は、略円筒形状の部材である。ダイス11の内径面11bには、外径絞り部30が複数段形成されている。なお、本実施形態では、各外径絞り部30の順番を最上流側の外径絞り部30から順に1段目、2段目とカウントする。
<2. Configuration of forward extrusion processing equipment>
Next, based on FIGS. 1-3, the structure of the front extrusion apparatus 10 is demonstrated. The front extrusion processing apparatus 10 includes a die 11 and a mandrel 12. The die 11 is a substantially cylindrical member. On the inner diameter surface 11 b of the die 11, a plurality of outer diameter throttle portions 30 are formed. In the present embodiment, the order of the outer diameter throttle parts 30 is counted as the first stage and the second stage in order from the outermost diameter throttle part 30 on the most upstream side.

外径絞り部30は、図1及び図2に示すように、ランド部31と、傾斜面32と、逃げ部33とを備える。ランド部31は、マンドレル12側に突出した部分である。ランド部31の内径面(表面)からランド部31の上流側の内径面11bまでの距離0.5×dは特に制限されず、従来の外径絞り部30がとりうる値であれば任意に適用可能である。ここで、距離dは、外径絞り部30によって中空部材Wの外径面が絞られる量、すなわち外径の縮径量に相当する。また、ランド部31の上流側の内径面11bは、ランド部31が2段目となる場合、1段目の逃げ部33に相当する。 As shown in FIGS. 1 and 2, the outer diameter restricting portion 30 includes a land portion 31, an inclined surface 32, and a relief portion 33. The land portion 31 is a portion protruding to the mandrel 12 side. The distance 0.5 × d 1 from the inner diameter surface (surface) of the land portion 31 to the inner diameter surface 11b on the upstream side of the land portion 31 is not particularly limited as long as it is a value that the conventional outer diameter throttle portion 30 can take. It is applicable to. Here, the distance d 1, the amount of the outer-diameter throttle portion 30 the outer diameter surface of the hollow member W is squeezed, i.e. corresponding to diameter reduction of the outer diameter. Further, the inner diameter surface 11b on the upstream side of the land portion 31 corresponds to the first-stage escape portion 33 when the land portion 31 is in the second stage.

傾斜面32は、ランド部31とランド部31の上流側の内径面11bとを連結する部分である。例えば、2段目の外径絞り部30の傾斜面32は、1段目の外径絞り部30の逃げ部33と、2段目の外径絞り部30のランド部31とを連結する。傾斜面32と中空部材Wの進行方向とのなす角度(縮径角度)θは特に制限されず、従来の外径絞り部30がとりうる値であれば任意に適用可能である。 The inclined surface 32 is a portion that connects the land portion 31 and the inner diameter surface 11 b on the upstream side of the land portion 31. For example, the inclined surface 32 of the second stage outer diameter throttle part 30 connects the relief part 33 of the first stage outer diameter throttle part 30 and the land part 31 of the second stage outer diameter throttle part 30. The angle (reduction angle) θ 1 formed between the inclined surface 32 and the traveling direction of the hollow member W is not particularly limited, and any value that can be taken by the conventional outer diameter restricting portion 30 is applicable.

また、傾斜面32の上端部32aと下端部32bとの曲率半径Rは特に制限されず、従来の外径絞り部30がとりうる値であれば任意に適用可能である。 Moreover, the radius of curvature R 1 of the upper portion 32a and lower portion 32b of the inclined surface 32 is not particularly limited, it can be arbitrarily applied to any conventional values outside diameter throttle portions 30 can take.

逃げ部33は、ランド部31の下流側に形成される。逃げ部33の内径面(表面)は、ランド部31の内径面(表面)よりも外側(ダイス11の外径面側)に配置される。すなわち、逃げ部33と中空部材Wとの間には隙間が形成される。逃げ部33の内径面とランド部31の内径面との距離0.5×dは特に制限されず、従来の外径絞り部30がとりうる値であれば任意に適用可能である。ここで、距離dは、中空部材Wと逃げ部33との間に設けられた隙間の広さ、すなわち逃げ量に相当する。 The escape portion 33 is formed on the downstream side of the land portion 31. The inner diameter surface (surface) of the escape portion 33 is disposed on the outer side (outer diameter surface side of the die 11) than the inner diameter surface (surface) of the land portion 31. That is, a gap is formed between the escape portion 33 and the hollow member W. The distance 0.5 × d 2 between the inner diameter surface of the escape portion 33 and the inner diameter surface of the land portion 31 is not particularly limited, and any value that can be taken by the conventional outer diameter throttle portion 30 can be applied. Here, the distance d 2 corresponds to the size, i.e. clearance amount of provided a gap between the hollow member W and a flank portion 33.

マンドレル12は、略円柱形状の部材であり、ダイス11の内部にダイス11と同軸上に設けられている。直線12aはマンドレル12(及びダイス11)の中心軸を示す。マンドレル12の外径面12bとダイス11の内径面11bとの間には隙間が形成されている。   The mandrel 12 is a substantially cylindrical member, and is provided coaxially with the die 11 inside the die 11. A straight line 12a indicates the central axis of the mandrel 12 (and the die 11). A gap is formed between the outer diameter surface 12 b of the mandrel 12 and the inner diameter surface 11 b of the die 11.

また、マンドレル12の外径面12bのうち、2段目の外径絞り部30に対向する位置には、内径拡径部40が設けられている。内径拡径部40は、図1及び図3に示すように、ランド部41と、傾斜面42と、逃げ部43とを備える。   Further, an inner diameter enlarged portion 40 is provided at a position of the outer diameter surface 12 b of the mandrel 12 that faces the second stage outer diameter throttle portion 30. As shown in FIGS. 1 and 3, the inner diameter enlarged portion 40 includes a land portion 41, an inclined surface 42, and a relief portion 43.

ランド部41は、ダイス11側に突出した部分である。ランド部41の外径面(表面)からランド部41の上流側の外径面12bまでの距離0.5×dは特に制限されない。ここで、距離dは、内径拡径部40による中空部材Wの内径面の径変化量、すなわち内径の拡径量に相当する。距離dは中空部材Wの外径の2%以下であることが好ましい。距離dの下限値は特に制限されず、0より大きければ(すなわち、ランド部41がわずかでも突出していれば)よい。径変化量dがこのような範囲となる場合に、中空部材Wの内径面の延性破壊指数がより減少する。 The land portion 41 is a portion protruding toward the die 11 side. The distance 0.5 × d 3 from the outer diameter surface (surface) of the land portion 41 to the outer diameter surface 12b on the upstream side of the land portion 41 is not particularly limited. Here, the distance d 3 is diameter change of the inner diameter surface of the hollow member W by the inner diameter expanded portion 40, i.e. corresponding to the enlarged diameter of the inner diameter. The distance d 3 is preferably not more than 2% of the outer diameter of the hollow member W. The lower limit of the distance d 3 is not particularly limited, is greater than 0 (i.e., if the protruding even slightly land portion 41) Good. When the diameter change amount d 3 is within this range, ductile fracture index inner surface of the hollow member W is reduced more.

傾斜面42は、中空部材Wの進行方向に交差する面であり、ランド部41とランド部41の上流側の外径面12bとを連結する。傾斜面42と中空部材Wの進行方向とのなす角度(拡径角度)θは特に制限されないが、60°以上であることが好ましい。拡径角度θがこのような範囲となる場合に、中空部材Wの内径面の延性破壊指数がより減少する。なお、拡径角度θの上限値は特に制限されず、90°未満であればよい。 The inclined surface 42 is a surface that intersects the traveling direction of the hollow member W, and connects the land portion 41 and the outer diameter surface 12 b on the upstream side of the land portion 41. The angle (expansion angle) θ 2 formed by the inclined surface 42 and the traveling direction of the hollow member W is not particularly limited, but is preferably 60 ° or more. If the diameter angle theta 2 is in such a range, ductile fracture index inner surface of the hollow member W is reduced more. The upper limit of the diameter expansion angle theta 2 is not particularly limited, and may be less than 90 °.

また、傾斜面42の上端部42aと下端部42bとの曲率半径Rは特に制限されないが、より大きい方が好ましい。また、傾斜面42の下端部42bは、2段目の外径絞り部30の傾斜面32の下端部32bとほぼ同一横断面上に配置される。ここで、「ほぼ同一」とは、両者が同一横断面上に配置されることだけでなく、外径面が絞られたことによって中空部材Wの内径面に生じる引張応力の少なくとも一部が、内径拡径部40が中空部材Wの進行に対する抵抗となったことによって生じる圧縮応力によって相殺されるのであれば、両者の位置がずれてもよいことを意味する。両者は同一横断面上に配置されることが好ましく、さらに、下端部42bが下端部32bよりも多少下流側に配置されることが、より好ましい。ただし、ランド部41の少なくとも一部は、2段目の外径絞り部30のランド部31に対向する。 Although the radius of curvature R 2 of the upper portion 42a and lower portion 42b of the inclined surface 42 is not particularly limited, it greater are preferred. Further, the lower end portion 42 b of the inclined surface 42 is disposed on substantially the same cross section as the lower end portion 32 b of the inclined surface 32 of the second-stage outer diameter throttle portion 30. Here, “substantially the same” means not only that both are arranged on the same cross section, but also that at least part of the tensile stress generated on the inner diameter surface of the hollow member W due to the outer diameter surface being reduced, If the inner diameter enlarged portion 40 is offset by the compressive stress generated by the resistance to the progress of the hollow member W, it means that the positions of both may be shifted. Both are preferably disposed on the same cross section, and more preferably, the lower end portion 42b is disposed somewhat downstream from the lower end portion 32b. However, at least a part of the land portion 41 faces the land portion 31 of the second stage outer diameter restricting portion 30.

逃げ部43は、ランド部41の下流側に形成される。逃げ部43の外径面(表面)は、ランド部41の外径面(表面)よりも内側(マンドレル12の中心軸(=直線12a)側)に配置される。すなわち、逃げ部43と中空部材Wとの間には隙間が形成される。逃げ部43の外径面とランド部41の外径面との距離0.5×dは特に制限されない。ここで、距離dは、中空部材Wと逃げ部33との間に設けられた隙間の広さ、すなわち逃げ量に相当する。 The escape portion 43 is formed on the downstream side of the land portion 41. The outer diameter surface (surface) of the escape portion 43 is disposed on the inner side (the central axis (= straight line 12a) side of the mandrel 12) than the outer diameter surface (surface) of the land portion 41. That is, a gap is formed between the escape portion 43 and the hollow member W. The distance 0.5 × d 4 between the outer diameter surface of the escape portion 43 and the outer diameter surface of the land portion 41 is not particularly limited. Here, the distance d 4 corresponds to the width of the gap provided between the hollow member W and the escape portion 33, that is, the escape amount.

なお、本実施形態では、ダイス11に外径絞り部30が2段設けられているが、より多段の外径絞り部30が設けられてもよい。この場合、全ての外径絞り部30について、その対向する位置に内径拡径部40が設けられていなくてもよいが、少なくとも1段は、外径絞り部30に対向する位置に内径拡径部40が設けられている必要がある。   In the present embodiment, the die 11 is provided with two stages of the outer diameter throttle part 30, but more stages of the outer diameter throttle part 30 may be provided. In this case, for all the outer diameter throttle parts 30, the inner diameter enlarged part 40 does not have to be provided at the facing position, but at least one stage has an inner diameter enlarged diameter at a position facing the outer diameter throttle part 30. The part 40 needs to be provided.

また、外径絞り部30は1段であってもよい。この場合、内径拡径部40は、外径絞り部30に対向する位置に設けられる。すなわち、本実施形態は、図6に示す構成も含む。   Further, the outer diameter throttle part 30 may be one stage. In this case, the inner diameter enlarged portion 40 is provided at a position facing the outer diameter throttle portion 30. That is, this embodiment also includes the configuration shown in FIG.

図10は、本実施形態に係る前方押出加工装置の他の例である前方押出加工装置400を示す。前方押出加工装置400は、図5に示す前方押出加工装置200のマンドレル102をマンドレル401に変更したものである。   FIG. 10 shows a forward extrusion apparatus 400 that is another example of the forward extrusion apparatus according to the present embodiment. The front extrusion apparatus 400 is obtained by changing the mandrel 102 of the front extrusion apparatus 200 shown in FIG.

マンドレル401は、略円柱形状の部材であり、ダイス201の内部にダイス201と同軸上に設けられている。直線400aはマンドレル401(及びダイス201)の中心軸を示す。マンドレル401の外径面400bとダイス201の内径面201bとの間には隙間が形成されている。   The mandrel 401 is a substantially cylindrical member, and is provided coaxially with the die 201 inside the die 201. A straight line 400a indicates the central axis of the mandrel 401 (and the die 201). A gap is formed between the outer diameter surface 400 b of the mandrel 401 and the inner diameter surface 201 b of the die 201.

また、マンドレル12の外径面12bのうち、1段目及び2段目の外径絞り部230に対向する位置には、内径拡径部440が設けられている。内径拡径部440は、ランド部441と、傾斜面442と、逃げ部443とを備える。ランド部441、傾斜面442、及び逃げ部443は、図1に示すランド部41、傾斜面42、及び逃げ部43と同様の構成であるので、説明を省略する。   Further, an inner diameter enlarged portion 440 is provided at a position facing the outer diameter restricting portion 230 at the first stage and the second stage on the outer diameter surface 12 b of the mandrel 12. The inner diameter enlarged portion 440 includes a land portion 441, an inclined surface 442, and a relief portion 443. The land portion 441, the inclined surface 442, and the escape portion 443 have the same configuration as the land portion 41, the inclined surface 42, and the escape portion 43 shown in FIG.

<3.前方押出加工方法>
次に、前方押出加工装置10を用いた前方押出加工方法について説明する。中空部材Wをダイス11とマンドレル12との間に通し、中空部材Wを前方押出する。これにより、中空部材Wは、矢印A1方向に進行する。中空部材Wの外径面は、まず、1段目の外径絞り部30により絞られる(すなわち縮径される)。中空部材Wはさらに矢印A1方向に進行する。その後、中空部材Wの外径面は、2段目の外径絞り部30により絞られ、それと同時に、中空部材Wの内径面は、内径拡径部40により拡径される。すなわち、図5に示す例では、中空部材Wが外径絞り部230を通過する毎に延性破壊指数が中空部材Wの内径面に累積されていく。これに対し、本実施形態では、まず、外径面が1段目の外径絞り部30により絞られる際、中空部材Wの内径面で延性破壊指数が上昇する。次に、外径面が2段目の外径絞り部30により絞られる際は、内径拡径部40により中空部材Wの内径面が拡径されるため、中空部材Wの内部で延性破壊指数が上昇する。このように、中空部材Wに発生する延性破壊指数が中空部材Wの内径面と内部とに分散され、内径面割れが発生する可能性が低減される。
<3. Forward extrusion method>
Next, a front extrusion method using the front extrusion apparatus 10 will be described. The hollow member W is passed between the die 11 and the mandrel 12, and the hollow member W is extruded forward. Thereby, the hollow member W advances in the arrow A1 direction. The outer diameter surface of the hollow member W is first squeezed (that is, reduced in diameter) by the first-stage outer diameter squeezing portion 30. The hollow member W further proceeds in the direction of arrow A1. Thereafter, the outer diameter surface of the hollow member W is squeezed by the second-stage outer diameter restricting portion 30, and at the same time, the inner diameter surface of the hollow member W is expanded by the inner diameter expanding portion 40. That is, in the example shown in FIG. 5, the ductile fracture index is accumulated on the inner diameter surface of the hollow member W every time the hollow member W passes through the outer diameter throttle portion 230. In contrast, in this embodiment, first, when the outer diameter surface is narrowed by the first-stage outer diameter throttling portion 30, the ductile fracture index increases on the inner diameter surface of the hollow member W. Next, when the outer diameter surface is squeezed by the second-stage outer diameter restricting portion 30, the inner diameter surface of the hollow member W is enlarged by the inner diameter enlarged portion 40, so that the ductile fracture index is inside the hollow member W. Rises. Thus, the ductile fracture index generated in the hollow member W is dispersed between the inner diameter surface and the inside of the hollow member W, and the possibility of occurrence of inner diameter surface cracks is reduced.

なお、中空部材Wの種類は特に制限されず、金属部材であってもよい。また、金属部材は鋼材であってもよい。   In addition, the kind in particular of hollow member W is not restrict | limited, A metal member may be sufficient. The metal member may be a steel material.

本発明者は、前方押出中の中空部材Wに生じる延性破壊指数を有限要素法解析により推定した。すなわち、中空部材Wを複数の小領域に区分し、各小領域に生じる延性破壊指数を推定した。解析条件は以下のとおりである。外径φ20mm、内径φ10mmの中空部材Wを、まず外径φ19.5mm、内径φ10mmとした後、さらに、外径φ19.0mm、内径φ10.5mmとなるように二段の前方押出を行った。中空部材Wの進行方向と傾斜面32及び傾斜面42のなす角度は45°、傾斜面32及び傾斜面42の角部の曲率半径は0.5mm、ランド部31及びランド部41の長さは2.0mm、逃げ量は0.1mmとした。せん断摩擦係数m=0.1、軸対称モデル、ダイス及びマンドレルは剛体、被加工材は剛塑性体(四角形要素)でS55C球状化焼鈍材の変形抵抗曲線を使用した。   The inventor estimated the ductile fracture index generated in the hollow member W during forward extrusion by finite element analysis. That is, the hollow member W was divided into a plurality of small regions, and the ductile fracture index generated in each small region was estimated. The analysis conditions are as follows. The hollow member W having an outer diameter of φ20 mm and an inner diameter of φ10 mm was first made to have an outer diameter of φ19.5 mm and an inner diameter of φ10 mm, and further subjected to two-stage forward extrusion so as to have an outer diameter of φ19.0 mm and an inner diameter of φ10.5 mm. The angle between the traveling direction of the hollow member W and the inclined surface 32 and the inclined surface 42 is 45 °, the curvature radius of the corners of the inclined surface 32 and the inclined surface 42 is 0.5 mm, and the lengths of the land portion 31 and the land portion 41 are The escape amount was set to 2.0 mm and 0.1 mm. The shear friction coefficient m = 0.1, the axisymmetric model, the die and mandrel were rigid bodies, the workpiece was a rigid plastic body (square element), and the deformation resistance curve of the S55C spheroidized annealed material was used.

図8のグラフL25は、横断面C上の小領域の延性破壊指数と小領域の位置との対応関係を示す。なお、横断面A上の小領域の延性破壊指数と小領域の位置との対応関係は、グラフL23に示す通りである。グラフL23〜L25からわかるように、外径面が2段目の外径絞り部30により絞られる際に、内径拡径部40により中空部材Wの内径面を拡径すると、延性破壊指数の上昇位置が中空部材Wの内径面から内部へとシフトするので、延性破壊指数が中空部材Wの内径面と内部とに分散される。したがって、中空部材Wの内径面の延性破壊指数が減少するので、内径面割れが生じる可能性が低減される。   A graph L25 in FIG. 8 shows the correspondence between the ductile fracture index of the small region on the cross section C and the position of the small region. The correspondence relationship between the ductile fracture index of the small area on the cross section A and the position of the small area is as shown in the graph L23. As can be seen from the graphs L23 to L25, when the outer diameter surface is squeezed by the second-stage outer diameter throttle portion 30, if the inner diameter surface of the hollow member W is enlarged by the inner diameter enlarged portion 40, the ductile fracture index increases. Since the position shifts from the inner diameter surface of the hollow member W to the inside, the ductile fracture index is dispersed between the inner diameter surface and the inside of the hollow member W. Therefore, since the ductile fracture index of the inner diameter surface of the hollow member W is reduced, the possibility of occurrence of inner diameter surface cracks is reduced.

<4.後方押出とその後の打ち抜きによる中実部材の中空化>
中空部材は、前方押出加工の前に、図9に示すように、後方押出とその後の打ち抜きによって中実部材を中空化したものであってもよい。さらに、熱処理を施してもよいが、生産性を考慮すると、後方押出、打ち抜きを、順次、行った後、そのまま前方押出加工することが好ましい。この場合、中空部材は、後方押出工程で内径面に大ひずみが付与され、加工硬化によって延性が著しく低下している。そのため、前方押出によって外径を絞った際に内径面割れが発生し易くなるが、中空部材の内径面を拡径する本発明によれば、内径面割れの発生を防止することができる。
<4. Hollowing out a solid member by backward extrusion and subsequent punching>
As shown in FIG. 9, the hollow member may be formed by hollowing the solid member by backward extrusion and subsequent punching before the forward extrusion process. Further, heat treatment may be performed. However, in consideration of productivity, it is preferable to perform forward extrusion and punching sequentially, and then forward extrusion as it is. In this case, the hollow member is given a large strain on the inner diameter surface in the backward extrusion process, and the ductility is remarkably lowered by work hardening. Therefore, when the outer diameter is reduced by forward extrusion, the inner surface crack is likely to occur. However, according to the present invention in which the inner diameter surface of the hollow member is expanded, the occurrence of the inner surface crack can be prevented.

(実施例1)
次に、好ましい径変化量d、拡径角度θ、及び曲率半径Rの範囲を確認するために、以下の実施例を行った。
Example 1
Next, in order to confirm the ranges of preferable diameter change amount d 3 , diameter expansion angle θ 2 , and radius of curvature R 2 , the following examples were performed.

本実施例でも、上述したように、有限要素法解析により中空部材Wに発生する延性破壊指数を推定した。解析条件は以下のとおりである。外径φ20mm、内径φ10mmの中空部材を、外径φ19.5mm、内径φ(10+d)mmとなるように前方押出を行った。外径絞り部については、中空部材の進行方向と傾斜面のなす角度(すなわち縮径角度θ)は45°、傾斜面の角部の曲率半径は0.1mm、ランド部の長さは2.0mm、逃げ量は0.1mmとした。内径拡径部については、径変化量はd、中空部材の進行方向と傾斜面のなす角度(すなわち拡径角度)はθ、傾斜面の角部の曲率半径は0.05mm、ランド部の長さは2.0mm、逃げ量は0.1mmとした。せん断摩擦係数m=0.1、軸対称モデル、ダイス及びマンドレルは剛体、被加工材は剛塑性体(四角形要素)でS55C球状化焼鈍材の変形抵抗曲線を使用した。 Also in the present example, as described above, the ductile fracture index generated in the hollow member W was estimated by the finite element method analysis. The analysis conditions are as follows. A hollow member having an outer diameter of φ20 mm and an inner diameter of φ10 mm was subjected to forward extrusion so as to have an outer diameter of φ19.5 mm and an inner diameter of φ (10 + d 3 ) mm. As for the outer diameter narrowed portion, the angle formed by the traveling direction of the hollow member and the inclined surface (that is, the reduced diameter angle θ 1 ) is 45 °, the radius of curvature of the corner portion of the inclined surface is 0.1 mm, and the length of the land portion is 2. 0.0 mm and the escape amount was 0.1 mm. For the inner diameter enlarged portion, the diameter change amount is d 3 , the angle between the traveling direction of the hollow member and the inclined surface (that is, the enlarged diameter angle) is θ 2 , the curvature radius of the corner portion of the inclined surface is 0.05 mm, and the land portion The length was 2.0 mm, and the escape amount was 0.1 mm. The shear friction coefficient m = 0.1, the axisymmetric model, the die and mandrel were rigid bodies, the workpiece was a rigid plastic body (square element), and the deformation resistance curve of the S55C spheroidized annealed material was used.

(好ましい径変化量及び拡径角度の組み合わせの確認)
上記解析条件のうち、径変化量d及び拡径角度θの組み合わせを0.2mm<d<4.0mm、5°<θ<85°の範囲で変更することで、好ましい径変化量d及び拡径角度θの組み合わせを確認した。この結果を表1に示す。
(Confirmation of combination of preferred diameter change and diameter expansion angle)
Among the above analysis conditions, a preferable diameter change is obtained by changing the combination of the diameter change amount d 3 and the diameter expansion angle θ 2 in a range of 0.2 mm <d 3 <4.0 mm, 5 ° <θ 2 <85 °. It confirmed the combination of the amount d 3 and enlarged angle theta 2. The results are shown in Table 1.

Figure 0006253488
Figure 0006253488

表1によれば、拡径角度はより大きいほど内径面の延性破壊指数が低く、60°以上であることが好ましい。また、径変化量はより小さいほど内径面の延性破壊指数が低く、0.4mm以下(=中空部材の外径の2%以下)であることが好ましいことがわかった。   According to Table 1, the larger the expansion angle, the lower the ductile fracture index of the inner surface, and it is preferably 60 ° or more. Further, it was found that the smaller the amount of change in diameter, the lower the ductile fracture index of the inner diameter surface, and it is preferably 0.4 mm or less (= 2% or less of the outer diameter of the hollow member).

(好ましい曲率半径の確認)
上記解析条件のうち、拡径角度を45°、径変化量を0.4mmとして、曲率半径Rを0mm<R<3mmの範囲で変更することで、好ましい曲率半径Rの範囲を確認した。この結果を表2に示す。
(Confirmation of preferred curvature radius)
Of the above analysis condition, enlarged angle 45 °, as 0.4mm and diameter change amount, by changing the radius of curvature R 2 in the range of 0 mm <R 2 <3 mm, confirm the preferred range of the curvature radius R 2 did. The results are shown in Table 2.

Figure 0006253488
Figure 0006253488

表2によれば、曲率半径Rはより大きい方が好ましいことがわかった。 According to Table 2, the radius of curvature R 2 was found to be better greater are preferred.

(実施例2)
次に、本発明は、中空部材Wが、前方押出加工を行う前に、後方押出とその後の打ち抜きによって中実部材を中空化したものである場合に好適であることを確認するため、以下の実施例を行った。
(Example 2)
Next, in order to confirm that the present invention is suitable when the hollow member W is obtained by hollowing the solid member by backward extrusion and subsequent punching before performing the forward extrusion process, An example was conducted.

まず、球状化焼鈍処理を施したS43Cの中実部材(外径φ45mm、球状化率は約70%、成分は質量%で、C:0.43%、Si:0.22%、Mn:0.80%、P:0.011%、S:0.016%、残部はFe)を外径φ19.9mmに切削加工し、潤滑のため、リン酸塩石けん皮膜処理を施した。そして、図9に示すように、冷間の後方押出によってカップ状に成形した後、カップ底を打ち抜き、外径φ20mm、内径φ10mmの中空部材とした。これを中空部材Wfとする。   First, a solid member of S43C subjected to spheroidizing annealing (outer diameter φ45 mm, spheroidization rate is about 70%, components are mass%, C: 0.43%, Si: 0.22%, Mn: 0 .80%, P: 0.011%, S: 0.016%, the balance being Fe) was cut to an outer diameter of φ19.9 mm and subjected to a phosphate soap film treatment for lubrication. And as shown in FIG. 9, after shape | molding in the cup shape by cold back extrusion, the cup bottom was pierced and it was set as the hollow member of outer diameter (phi) 20mm and internal diameter (phi) 10mm. This is the hollow member Wf.

次に、中空部材Wfを、図4に示す前方押出加工装置100を用いて、外径φ19.5mm、内径φ10mmとなるように成形した。中空部材Wfの進行方向と傾斜面132のなす角度は45°、傾斜面132の角部の曲率半径は0.5mm、ランド部131の長さは2.0mm、逃げ量は0.1mmとした([従来法]前方押出加工装置100)。   Next, the hollow member Wf was formed to have an outer diameter of φ19.5 mm and an inner diameter of φ10 mm using the forward extrusion apparatus 100 shown in FIG. The angle between the traveling direction of the hollow member Wf and the inclined surface 132 is 45 °, the radius of curvature of the corner portion of the inclined surface 132 is 0.5 mm, the length of the land portion 131 is 2.0 mm, and the escape amount is 0.1 mm. ([Conventional method] Forward extrusion apparatus 100).

また、中空部材Wfを、図5に示す前方押出加工装置200を用いて、まず外径φ19.5mm、内径φ10mmとした後、さらに、外径φ19.0mm、内径φ10mmとなるように二段の前方押出を行った。中空部材Wfの進行方向と傾斜面232のなす角度は45°、傾斜面232の角部の曲率半径は0.5mm、ランド部231の長さは2.0mm、逃げ量は0.1mmとした([従来法]前方押出加工装置200)。   In addition, the hollow member Wf is first made to have an outer diameter φ19.5 mm and an inner diameter φ10 mm by using the front extrusion processing apparatus 200 shown in FIG. 5, and then further arranged in two stages so as to have an outer diameter φ19.0 mm and an inner diameter φ10 mm. Forward extrusion was performed. The angle between the traveling direction of the hollow member Wf and the inclined surface 232 is 45 °, the radius of curvature of the corner of the inclined surface 232 is 0.5 mm, the length of the land portion 231 is 2.0 mm, and the escape amount is 0.1 mm. ([Conventional method] Forward extrusion apparatus 200).

また、中空部材Wfを、図6に示す前方押出加工装置300を用いて、外径φ19.5mm、内径φ10.5mmとなるように成形した。中空部材Wfの進行方向と傾斜面132および傾斜面342のなす角度は45°、傾斜面132および傾斜面342の角部の曲率半径は0.5mm、ランド部131およびランド部341の長さは2.0mm、逃げ量は0.1mmとした([本発明]前方押出加工装置300)。   Further, the hollow member Wf was molded to have an outer diameter of 19.5 mm and an inner diameter of 10.5 mm using the forward extrusion apparatus 300 shown in FIG. The angle between the traveling direction of the hollow member Wf and the inclined surface 132 and the inclined surface 342 is 45 °, the curvature radius of the corner of the inclined surface 132 and the inclined surface 342 is 0.5 mm, and the length of the land portion 131 and the land portion 341 is The escape amount was 2.0 mm and 0.1 mm ([present invention] forward extrusion apparatus 300).

また、中空部材Wfを、図10に示す前方押出加工装置400を用いて、まず外径φ19.5mm、内径φ10.25mmとした後、さらに、外径φ19.0mm、内径φ10.5mmとなるように二段の前方押出を行った。中空部材Wfの進行方向と傾斜面232および傾斜面442のなす角度は45°、傾斜面232および傾斜面442の角部の曲率半径は0.5mm、ランド部231および441の長さは2.0mm、逃げ量は0.1mmとした([本発明]前方押出加工装置400)。   Further, the hollow member Wf is first made to have an outer diameter φ19.5 mm and an inner diameter φ10.25 mm by using the forward extrusion processing apparatus 400 shown in FIG. 10, and then further becomes an outer diameter φ19.0 mm and an inner diameter φ10.5 mm. Two-stage forward extrusion was performed. The angle between the traveling direction of the hollow member Wf and the inclined surface 232 and the inclined surface 442 is 45 °, the radius of curvature of the corners of the inclined surface 232 and the inclined surface 442 is 0.5 mm, and the length of the land portions 231 and 441 is 2. The clearance was 0 mm and the clearance was 0.1 mm ([present invention] forward extrusion apparatus 400).

上記の成形は、いずれも、最大負荷能力6000kN、ストローク300mmのプレス機を用い、速度は20spm、室温下で行った。前方押出後、中空部材を半割りにして内径面を目視で観察し、内径面割れの発生の有無を確認した。
この結果を表3に示す。
Each of the above moldings was performed using a press machine having a maximum load capacity of 6000 kN and a stroke of 300 mm at a speed of 20 spm and room temperature. After forward extrusion, the hollow member was divided in half, and the inner diameter surface was visually observed to confirm the occurrence of inner surface cracks.
The results are shown in Table 3.

Figure 0006253488
Figure 0006253488

表3によれば、前方押出加工装置100、200を用いて中空部材Wfの前方押出を行った場合は内径面割れが発生したが、前方押出加工装置300、400を用いた場合は内径面割れが発生しなかった。   According to Table 3, inner surface cracks occurred when the forward extrusion of the hollow member Wf was performed using the front extrusion apparatuses 100, 200, but inner diameter surface cracks occurred when the front extrusion apparatuses 300, 400 were used. Did not occur.

中空部材Wfは前方押出加工を行う前に、後方押出によって、内径面に300%〜400%程度のひずみが付与されており、加工硬化により内径面の延性が著しく低下している。そのため、内径面に大きな引張応力が生じ、内径面が引張応力下で塑性変形を受ける前方押出加工装置100、200(どちらも従来法)を用いて前方押出を行った場合は、内径面割れが発生した。   Before the hollow member Wf is subjected to forward extrusion processing, a strain of about 300% to 400% is imparted to the inner diameter surface by backward extrusion, and the ductility of the inner diameter surface is significantly reduced by work hardening. For this reason, when the forward extrusion is performed using the forward extrusion apparatuses 100 and 200 (both of which are conventional methods) in which a large tensile stress is generated on the inner diameter surface and the inner diameter surface undergoes plastic deformation under the tensile stress, the inner diameter surface crack is generated. Occurred.

一方、マンドレルに内径拡径部を設ける本発明の前方押出加工装置300、400を用いた場合は、マンドレルの内径拡径部によって内径面での引張応力の発生が抑制されるため、内径面割れの発生が発生しなかった。なお、マンドレルに内径拡径部を設けたことで、内径面ではなく内部で引張応力が発生するが、内径面と違って内部は後方押出工程での延性の低下が比較的小さいため割れが発生しなかったことを、前方押出加工後の中空部材Wfの断面観察により確認している。   On the other hand, in the case of using the forward extrusion processing apparatuses 300 and 400 of the present invention in which the inner diameter enlarged portion is provided in the mandrel, the generation of tensile stress on the inner diameter surface is suppressed by the inner diameter enlarged portion of the mandrel. Occurrence did not occur. The mandrel is provided with an inner diameter enlarged portion, so that tensile stress is generated inside the inner surface instead of the inner surface. However, unlike the inner surface, the inner part has a relatively small decrease in ductility in the backward extrusion process, and cracks are generated. This was confirmed by observing the cross section of the hollow member Wf after forward extrusion.

以上のように、後方押出とその後の打ち抜きによって中実部材を中空化した中空部材Wfは、内径面に引張応力が発生する従来法では一段の前方押出(前方押出加工装置100)でも内径面割れが発生してしまった。一方、本発明を適用すれば、引張応力の発生位置を内部へ移動させることで、内径面の延性が著しく低下している中空部材Wであっても、内径面割れを発生させることなく二段の前方押出(前方押出加工装置400)を行うことが可能となった。   As described above, the hollow member Wf in which the solid member is hollowed by the backward extrusion and the subsequent punching is cracked in the inner diameter surface even in the single-stage forward extrusion (front extrusion processing apparatus 100) in the conventional method in which tensile stress is generated on the inner diameter surface. Has occurred. On the other hand, if the present invention is applied, even if it is a hollow member W in which the ductility of the inner diameter surface is remarkably reduced by moving the position where the tensile stress is generated to the inside, two steps without causing the inner surface cracks. It is possible to perform forward extrusion (front extrusion processing apparatus 400).

以上により、本実施形態によれば、まず、中空部材Wの外径面が1段目の外径絞り部30により絞られる際、中空部材Wの内径面で延性破壊指数が上昇する。次に、中空部材Wの外径面が2段目の外径絞り部30により絞られる際は、内径拡径部40により中空部材Wの内径面が拡径されるため、中空部材Wの内部で延性破壊指数が上昇する。このように、中空部材Wに発生する延性破壊指数が中空部材Wの内径面と内部とに分散され、内径面割れが発生する可能性が低減される。   As described above, according to the present embodiment, first, when the outer diameter surface of the hollow member W is narrowed by the first-stage outer diameter restricting portion 30, the ductile fracture index increases on the inner diameter surface of the hollow member W. Next, when the outer diameter surface of the hollow member W is squeezed by the second-stage outer diameter restricting portion 30, the inner diameter surface of the hollow member W is expanded by the inner diameter expanding portion 40. Increases the ductile fracture index. Thus, the ductile fracture index generated in the hollow member W is dispersed between the inner diameter surface and the inside of the hollow member W, and the possibility of occurrence of inner diameter surface cracks is reduced.

また、中空部材Wの種類は特に制限されない。例えば、本実施形態が適用可能な中空部材Wは、特定の加工硬化指数n値を有する金属部材に制限されない。すなわち、本実施形態は、あらゆる金属部材に適用可能である。本実施形態は、これらの金属部材のうち、鋼材であっても良い。また、本実施形態では、マンドレル12に内径拡径部40を設けるだけでよいので、製造コストを大幅に増加させることなく、内径面割れが発生する可能性を低減することができる。   Further, the type of the hollow member W is not particularly limited. For example, the hollow member W to which the present embodiment is applicable is not limited to a metal member having a specific work hardening index n value. That is, this embodiment is applicable to all metal members. This embodiment may be a steel material among these metal members. Moreover, in this embodiment, since it is only necessary to provide the inner diameter enlarged portion 40 in the mandrel 12, the possibility of occurrence of inner surface cracks can be reduced without significantly increasing the manufacturing cost.

また、拡径角度θは、60°以上にすることで、内径面割れが発生する可能性が更に低減される。 Further, by setting the diameter expansion angle θ 2 to 60 ° or more, the possibility of occurrence of inner surface cracks is further reduced.

また、径変化量dは、中空部材の外径の2%以下にすることで、内径面割れが発生する可能性が更に低減される。 Further, diameter change amount d 3 is, by less than 2% of the outer diameter of the hollow member, possibly inner surface cracking occurs is further reduced.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10 前方押出加工装置
11 ダイス
12 マンドレル
30 外径絞り部
31 ランド部
32 傾斜面
33 逃げ部
40 内径拡径部
41 ランド部
42 傾斜面
43 逃げ部
DESCRIPTION OF SYMBOLS 10 Front extrusion apparatus 11 Die 12 Mandrel 30 Outer diameter reducing part 31 Land part 32 Inclined surface 33 Escape part 40 Inner diameter enlarged part 41 Land part 42 Inclined surface 43 Escape part

Claims (18)

ダイス及びマンドレルを用いて中空部材を前方押出加工する前方押出加工方法において、
前記ダイスの内径面に設けられた外径絞り部により前記中空部材の外径面を絞るステップと、
前記マンドレルの外径面のうち、前記外径絞り部に対向する位置に設けられた内径拡径部により前記中空部材の内径面を拡径するステップと、を含むことを特徴とする、前方押出加工方法。
In a forward extrusion method of forward extrusion of a hollow member using a die and a mandrel,
Squeezing the outer diameter surface of the hollow member by an outer diameter throttle portion provided on the inner diameter surface of the die;
Expanding the inner diameter surface of the hollow member by an inner diameter enlarged portion provided at a position facing the outer diameter throttle portion of the outer diameter surface of the mandrel. Processing method.
前記外径絞り部は、前記中空部材の進行方向に沿って複数段設けられており、
前記内径拡径部は、前記外径絞り部に対向する位置に設けられることを特徴とする、請求項1記載の前方押出加工方法。
The outer diameter throttle portion is provided in a plurality of stages along the traveling direction of the hollow member,
The forward extrusion method according to claim 1, wherein the inner diameter enlarged portion is provided at a position facing the outer diameter throttle portion.
前記内径拡径部のうち、前記中空部材の進行方向に交差する面と、前記中空部材の進行方向とのなす角度は、60°以上であることを特徴とする、請求項1または2記載の前方押出加工方法。   The angle formed by the surface intersecting the traveling direction of the hollow member and the traveling direction of the hollow member in the inner diameter enlarged portion is 60 ° or more. Forward extrusion method. 前記内径拡径部による前記中空部材の内径面の径変化量は、中空部材の外径の2%以下であることを特徴とする、請求項1〜3のいずれか1項に記載の前方押出加工方法。   4. The forward extrusion according to claim 1, wherein a diameter change amount of an inner diameter surface of the hollow member by the inner diameter enlarged portion is 2% or less of an outer diameter of the hollow member. Processing method. 前記中空部材は、前記前方押出加工を行う前に、後方押出とその後の打ち抜きによって中実部材を中空化したものであることを特徴とする、請求項1〜4のいずれか1項に記載の前方押出加工方法。   5. The hollow member according to claim 1, wherein the hollow member is formed by hollowing out a solid member by backward extrusion and subsequent punching before performing the forward extrusion process. 6. Forward extrusion method. 前記中空部材は金属部材であることを特徴とする、請求項1〜5のいずれか1項に記載の前方押出加工方法。   The forward extrusion method according to claim 1, wherein the hollow member is a metal member. 前記金属部材は鋼材であることを特徴とする、請求項6記載の前方押出加工方法。   The forward extrusion method according to claim 6, wherein the metal member is a steel material. ダイス及びマンドレルを用いて中空部材を前方押出加工する中空部材の製造方法において、
前記前方押出加工は、前記ダイスの内径面に設けられた外径絞り部により前記中空部材の外径面を絞るステップと、
前記マンドレルの外径面のうち、前記外径絞り部に対向する位置に設けられた内径拡径部により前記中空部材の内径面を拡径するステップと、を含むことを特徴とする、中空部材の製造方法。
In the method of manufacturing a hollow member that forwardly extrudes the hollow member using a die and a mandrel,
The forward extrusion process includes a step of squeezing the outer diameter surface of the hollow member by an outer diameter squeezing portion provided on the inner diameter surface of the die;
Expanding the inner diameter surface of the hollow member with an inner diameter enlarged portion provided at a position facing the outer diameter throttle portion, of the outer diameter surface of the mandrel. Manufacturing method.
前記外径絞り部は、前記中空部材の進行方向に沿って複数段設けられており、
前記内径拡径部は、前記外径絞り部に対向する位置に設けられることを特徴とする、請求項8記載の中空部材の製造方法。
The outer diameter throttle portion is provided in a plurality of stages along the traveling direction of the hollow member,
The method for manufacturing a hollow member according to claim 8, wherein the inner diameter enlarged portion is provided at a position facing the outer diameter restricting portion.
前記内径拡径部のうち、前記中空部材の進行方向に交差する面と、前記中空部材の進行方向とのなす角度は、60°以上であることを特徴とする、請求項8または9記載の中空部材の製造方法。   The angle formed by the surface intersecting the traveling direction of the hollow member in the inner diameter enlarged portion and the traveling direction of the hollow member is 60 ° or more, 10 or 9, A method for producing a hollow member. 前記内径拡径部による前記中空部材の内径面の径変化量は、中空部材の外径の2%以下であることを特徴とする、請求項8〜10のいずれか1項に記載の中空部材の製造方法。   The hollow member according to any one of claims 8 to 10, wherein a diameter change amount of the inner diameter surface of the hollow member by the inner diameter enlarged portion is 2% or less of an outer diameter of the hollow member. Manufacturing method. 前記中空部材は、前記前方押出加工を行う前に、後方押出とその後の打ち抜きによって中実部材を中空化したものであることを特徴とする、請求項8〜11のいずれか1項に記載の中空部材の製造方法。   12. The hollow member according to claim 8, wherein the hollow member is formed by hollowing out a solid member by backward extrusion and subsequent punching before performing the forward extrusion process. 12. A method for producing a hollow member. 前記中空部材は金属部材であることを特徴とする、請求項8〜12のいずれか1項に記載の中空部材の製造方法。   The said hollow member is a metal member, The manufacturing method of the hollow member of any one of Claims 8-12 characterized by the above-mentioned. 前記金属部材は鋼材であることを特徴とする、請求項13記載の中空部材の製造方法。   The method for manufacturing a hollow member according to claim 13, wherein the metal member is a steel material. ダイス及びマンドレルを用いて中空部材を前方押出加工する前方押出加工装置において、
前記ダイスの内径面に設けられ、前記中空部材の外径面を絞る外径絞り部と、
前記マンドレルの外径面のうち、前記外径絞り部に対向する位置に設けられ、前記中空部材の内径面を拡径する内径拡径部と、を備えることを特徴とする、前方押出加工装置。
In a front extrusion processing apparatus that forward-extrudes a hollow member using a die and a mandrel,
An outer diameter restricting portion that is provided on the inner diameter surface of the die and restricts the outer diameter surface of the hollow member;
A forward extrusion processing apparatus comprising: an outer diameter surface of the mandrel, the inner diameter expansion portion provided at a position facing the outer diameter throttle portion and expanding the inner diameter surface of the hollow member. .
前記外径絞り部は、前記中空部材の進行方向に沿って複数段設けられており、
前記内径拡径部は、前記外径絞り部に対向する位置に設けられることを特徴とする、請求項15記載の前方押出加工装置。
The outer diameter throttle portion is provided in a plurality of stages along the traveling direction of the hollow member,
The forward extrusion processing apparatus according to claim 15, wherein the inner diameter enlarged portion is provided at a position facing the outer diameter throttle portion.
前記内径拡径部のうち、前記中空部材の進行方向に交差する面と、前記中空部材の進行方向とのなす角度は、60°以上であることを特徴とする、請求項15または16記載の前方押出加工装置。   The angle formed by the surface intersecting the traveling direction of the hollow member in the inner diameter enlarged portion and the traveling direction of the hollow member is 60 ° or more, 17 or 16, Forward extrusion processing equipment. 前記マンドレルの外径面に対する前記内径拡径部の径変化量は、前記ダイスの内径の2%以下であることを特徴とする、請求項15〜17のいずれか1項に記載の前方押出加工装置。
The forward extrusion process according to any one of claims 15 to 17, wherein a diameter change amount of the inner diameter enlarged portion with respect to an outer diameter surface of the mandrel is 2% or less of an inner diameter of the die. apparatus.
JP2014079462A 2013-11-07 2014-04-08 Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus Active JP6253488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079462A JP6253488B2 (en) 2013-11-07 2014-04-08 Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013231332 2013-11-07
JP2013231332 2013-11-07
JP2014079462A JP6253488B2 (en) 2013-11-07 2014-04-08 Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus

Publications (2)

Publication Number Publication Date
JP2015110242A JP2015110242A (en) 2015-06-18
JP6253488B2 true JP6253488B2 (en) 2017-12-27

Family

ID=53525568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079462A Active JP6253488B2 (en) 2013-11-07 2014-04-08 Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus

Country Status (1)

Country Link
JP (1) JP6253488B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032964B (en) * 2015-09-19 2016-11-23 太原理工大学 Continuously extruded processing unit (plant) and extruding method for weak basal plane texture magnesium alloy sheet band
CN106881369B (en) * 2017-04-18 2019-01-01 郑州航空工业管理学院 A kind of two-way composite extrusion die and extrusion process of magnesium alloy plate and belt
CN114011897B (en) * 2021-11-01 2024-03-05 湖南中创空天新材料股份有限公司 Extrusion die and working belt
CN116020894A (en) * 2023-03-29 2023-04-28 太原科技大学 Equal-channel double-corner variable-diameter extrusion forming die and process for annular cylindrical part

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3216287C2 (en) * 1982-04-26 1989-03-16 Mannesmann AG, 4000 Düsseldorf Pipe end upsetting press
JPS6340614A (en) * 1986-08-04 1988-02-22 Showa Alum Corp Manufacture of hollow extruded shape having three dimensional shape changes
JPS6471519A (en) * 1987-09-09 1989-03-16 Showa Aluminum Corp Die for manufacturing extrusion pipe for ironing
JPH0596306A (en) * 1991-10-03 1993-04-20 Sumitomo Metal Ind Ltd Manufacture of seamless metallic tube
JP2000312947A (en) * 1999-04-28 2000-11-14 Sanyo Special Steel Co Ltd Extrusion method preventing occurrence of internal defects
JP3774625B2 (en) * 2000-10-30 2006-05-17 株式会社日立製作所 Method for forging sintered parts
ITMI20082325A1 (en) * 2008-12-24 2010-06-25 Danieli Off Mecc EXPANSION HEEL FOR PRESSES BY EXTRUSION OF CABLES
JP5448911B2 (en) * 2010-02-19 2014-03-19 昭和電工株式会社 Drawing machine for tubular workpieces
JP5597764B2 (en) * 2011-09-14 2014-10-01 荻野工業株式会社 Pipe manufacturing method

Also Published As

Publication number Publication date
JP2015110242A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
KR102062076B1 (en) Manufacturing method of steel pipe with different thickness and steel pipe with different thickness
JP6253488B2 (en) Front extrusion method, hollow member manufacturing method, and front extrusion processing apparatus
US8516868B2 (en) Dies for shear drawing
Kang et al. Forming various shapes of tubular bellows using a single-step hydroforming process
Lei et al. Prediction of the forming limit in hydroforming processes using the finite element method and a ductile fracture criterion
JP2007130661A (en) Multi-stage forward extrusion method
Meng et al. Deformation characteristic and geometrical size effect in continuous manufacturing of cylindrical and variable-thickness flanged microparts
TW201833507A (en) Long cartridge case
JP2016073986A (en) Manufacturing method and manufacturing device of diameter expanded pipe part
Winiarski et al. Numerical and experimental study of producing two-step flanges by extrusion with a movable sleeve
Lin et al. Hole flanging with cold extrusion on sheet metals by FE simulation
Nakajima et al. Suppressing method of the cross section deformation for extruded square tubes in press bending
US20170036703A1 (en) Vehicle body framework structure and method of manufacturing the same
Ma et al. Forming of hollow gear-shafts with pressure-assisted injection forging (PAIF)
Hosseini et al. Determination of processing power and optimum billet radius of modified backward extrusion by upper bound approach
Hwang et al. Hot extrusion of hollow helical tubes of magnesium alloys
Zhang et al. Recess swaging method for manufacturing the internal helical splines
JP6665643B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
JP4798875B2 (en) Method for expanding metal pipe end
Choi et al. Forming of the precision aluminum tube for a light weight propeller shaft
Liu et al. Influence of punch shape on geometrical profile and quality of hole piercing-flanging under high pressure
Fu et al. A Review of Progressive and Compound Forming of Bulk Microparts by Using Sheet Metals
EP3278896A1 (en) Press-molded article and method for designing same
GB2609897A (en) Apparatus and method for extruding wide profiles
JP6485832B2 (en) Method for forward extrusion of hollow member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250