JP6253083B2 - Crack-induced joint structure of reinforced concrete beams - Google Patents
Crack-induced joint structure of reinforced concrete beams Download PDFInfo
- Publication number
- JP6253083B2 JP6253083B2 JP2013149395A JP2013149395A JP6253083B2 JP 6253083 B2 JP6253083 B2 JP 6253083B2 JP 2013149395 A JP2013149395 A JP 2013149395A JP 2013149395 A JP2013149395 A JP 2013149395A JP 6253083 B2 JP6253083 B2 JP 6253083B2
- Authority
- JP
- Japan
- Prior art keywords
- joint
- crack
- sides
- longitudinal direction
- reinforced concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Building Environments (AREA)
- Rod-Shaped Construction Members (AREA)
Description
本発明は、鉄筋コンクリート製梁(特にRC梁又はPCa梁)のひび割れ誘発目地構造に関する。 The present invention relates to a crack-induced joint structure of a reinforced concrete beam (particularly an RC beam or a PCa beam).
建築物のコンクリート構造は、膨張収縮を繰り返すことでひび割れ(亀裂とも云う。)を生ずる。このひび割れをコントロールするために、構造物の一部にひび割れを誘発する技術を壁面に適用することが一般的に行われている。すなわち、ひび割れ誘発目地とは、乾燥収縮などコンクリート自身が持つ機能によって、不可避的に発生するひび割れを、想定した位置に発生させ、有害なひび割れが発生することを防止するために意図的に設けられるコンクリートの壁に入れる目地のことであって、一定間隔に壁厚の薄い箇所を設け、ひび割れを誘発させるために設ける目地を云い、特に外壁であればこの部分にはシーリング材を充填しておくことが一般的に行われている。時には鉄筋も切断してひび割れを入れ易くする技術も適用されている。 A concrete structure of a building is cracked (also referred to as a crack) by repeatedly expanding and contracting. In order to control this crack, it is a common practice to apply a technique for inducing a crack to a part of the structure to the wall surface. In other words, the crack-inducing joint is intentionally provided to prevent the occurrence of harmful cracks by generating cracks that are inevitably generated by the functions of the concrete itself, such as drying shrinkage. This is a joint to be put in a concrete wall, where the thin wall is provided at regular intervals and the joint is provided to induce cracks, especially for the outer wall, this part is filled with a sealing material. It is generally done. Sometimes, a technique is also applied to cut the rebar and make it easier to crack.
例えば特許文献1の図6には、コンクリート耐力壁の表裏両面に、一対の目地を、当該コンクリート耐力壁の内部に、耐力壁の幅方向に幅広に埋め込まれた帯板状の金属製遮断部材を、それぞれ平行に形成した技術が開示されている。しかしながら、この形態では、コンクリートと遮断部材との付着力により十分なひび割れ効果が得られないという問題がある。 For example, FIG. 6 of Patent Document 1 shows a strip-shaped metal blocking member in which a pair of joints are embedded on the front and back surfaces of a concrete load bearing wall and are embedded in the concrete load bearing wall in the width direction of the load bearing wall. Are disclosed in parallel with each other. However, in this embodiment, there is a problem that a sufficient cracking effect cannot be obtained due to the adhesive force between the concrete and the blocking member.
そこで特許出願人は、上記遮蔽部材に代えて、壁厚方向に幅広の2枚の平行な縁部材を分離可能に重ね合せて埋設し、その重ね合せ面を境目にひび割れを誘発する技術を開発した(特許文献1の図1参考)。 Therefore, instead of the shielding member, the patent applicant developed a technology that embeds two parallel edge members that are wide in the wall thickness direction so that they can be separated, and induces cracks at the boundary of the overlapping surface. (See FIG. 1 of Patent Document 1).
特許文献1の技術は、耐力壁を対象としたものであり、梁(特にRC梁)に適用することに関しては特別に開示していない。梁は、或る二点(例えば柱)の間に架設され垂直荷重を支える機能を有しており、上記技術を適用する上でも、当該機能を担保することが必要である。 The technique of Patent Document 1 is intended for a load-bearing wall, and is not specifically disclosed regarding application to beams (particularly RC beams). The beam has a function of supporting a vertical load provided between two points (for example, columns), and it is necessary to secure the function even when the above technique is applied.
一般にRC部材で十分なひび割れ集中機能を発揮させるには、目地の断面欠損は部材厚さの20%である。部材表面の目地(以下「外部目地」という)だけで必要な欠損率を得るためには、外部目地の深さを大きくする必要があり、他方、梁の機能を担保するためには、外部目地を設けた横断面において、目地形成箇所を除く残りの梁部分だけで梁の剛性及び強度を担保しなければならない。そうなると、梁部材の横断面の四方に位置する主鉄筋の外側に、目地深さに相当する厚みの余裕を持たせておくことになる。すなわち部材の目地深さ相当部分が増厚することになるので、より多くの材料が必要となり、重量も大となる。 In general, in order to exhibit a sufficient crack concentration function with an RC member, the cross-sectional defect of the joint is 20% of the member thickness. In order to obtain the required defect rate only with the joints on the surface of the member (hereinafter referred to as “external joints”), it is necessary to increase the depth of the external joints. On the other hand, to ensure the function of the beams, external joints are required. In the cross section provided with the beam, it is necessary to ensure the rigidity and strength of the beam only by the remaining beam portion excluding the joint formation portion. As a result, a margin of thickness corresponding to the joint depth is provided on the outer side of the main reinforcing bar located in the four directions of the cross section of the beam member. That is, the portion corresponding to the joint depth of the member is increased in thickness, so that more material is required and the weight is increased.
本発明の第1の目的は、梁材の中央部に2枚の板材を離間可能に埋設してなる内部目地を設けることで、梁材の内部にひび割れを誘発するようにした鉄筋コンクリート製梁のひび割れ誘発目地構造を提案することである。
本発明の第2の目的は、鉄筋コンクリート製梁の中央部に内部目地に形成することにより、梁部材の目地深さ(外部目地の深さ)相当部分の増厚を低減できるようにすることである。
The first object of the present invention is to provide a reinforced concrete beam that induces cracks in the interior of the beam by providing an internal joint formed by embedding two plates in the center of the beam so as to be separated from each other. It is to propose a crack-induced joint structure.
The second object of the present invention is to form the inner joint at the central part of the reinforced concrete beam so as to reduce the increase in the thickness corresponding to the joint depth (external joint depth) of the beam member. is there.
第1の手段は、長手方向に延びる複数の主鉄筋を有する鉄筋コンクリート製梁のひび割れ誘発構造であって、
コンクリート製の梁材の長手方向と直交する一つの仮想断面と梁材の表面とが交差する箇所の少なくとも一部に外部目地を形成し、
上記仮想断面の中心部に、長手方向と直交しかつ分離可能に重なり合う2枚の板材を埋設してなる内部目地を形成し、
外部目地と内部目地との間の中間領域に複数の主鉄筋を挿通させることで、2枚の板材12の重ね面を境目として、ひび割れが誘発されるように構成し、
上記梁材の長手方向と直交する梁材の縦断面を、横方向に平行な一対の第1辺及び縦方向に平行な一対の第2辺を有する長方形状とし、
かつ上記2枚の板材を、側方及び長手方向と直交する方向に波形が繰り返す波形コッターに形成し、
これら波形コッターの両側に表れる波形の面のうち相互に対向する側の2面を前述の重ね面とするとともに、反対側の2面がコンクリートと接するように設けている。
The first means is a crack inducing structure of a reinforced concrete beam having a plurality of main reinforcing bars extending in the longitudinal direction,
Forming an external joint in at least a part of the intersection of one virtual cross section perpendicular to the longitudinal direction of the beam made of concrete and the surface of the beam;
In the center of the virtual cross section, an internal joint is formed by embedding two plate materials that are perpendicular to the longitudinal direction and are separably overlapped,
By inserting a plurality of main rebars in the middle region between the outer joint and the inner joint, a crack is induced on the overlapping surface of the two plate members 12,
The longitudinal section of the beam material orthogonal to the longitudinal direction of the beam material is a rectangular shape having a pair of first sides parallel to the horizontal direction and a pair of second sides parallel to the vertical direction,
And, the two plate members are formed into a waveform cotter in which the waveform repeats in the direction orthogonal to the side and the longitudinal direction,
Of the corrugated surfaces appearing on both sides of these corrugated cotters, two surfaces facing each other are used as the above-mentioned overlapping surfaces, and the two opposite surfaces are provided so as to be in contact with the concrete.
本手段は、図1に示す如く、梁体4の表面に外部目地10Oを、また梁体4の中央部に内部目地10Iをそれぞれ形成し、外部目地10Oと内部目地10Iとの間の中間領域Mに主鉄筋を設ける構造を示している。主鉄筋の設置箇所より内側に内部目地を設けているので、十分なひび割れ誘発機能を期待できる。
また本手段は、図4に示すように内部目地を形成する2枚の板材を波形に形成する態様を設ける。波形が連なる方向へのせん断力に対する抵抗が大となる。
As shown in FIG. 1, the present means forms an external joint 10O on the surface of the beam body 4 and an internal joint 10I in the center of the beam body 4, and an intermediate region between the external joint 10O and the internal joint 10I. A structure in which main reinforcing bars are provided in M is shown. A sufficient crack-inducing function can be expected because an internal joint is provided on the inner side of the main reinforcing bar.
Moreover, this means provides the aspect which forms two board | plate materials which form an internal joint in a waveform as shown in FIG. Resistance to shearing force in the direction in which the waveforms are continuous increases.
第2の手段は、第1の手段を有し、かつ
上記梁材の長手方向と直交する梁材の縦断面を、横方向に平行な一対の第1辺及び縦方向に平行な一対の第2辺を有する長方形状とし、それら第2辺の一方又は双方にのみ外部目地を形成している。
The second means includes the first means, and the vertical cross section of the beam material perpendicular to the longitudinal direction of the beam material is divided into a pair of first sides parallel to the horizontal direction and a pair of first sides parallel to the vertical direction. A rectangular shape having two sides is formed, and external joints are formed only on one or both of the second sides.
本手段は、縦断面長方形状のひび割れ誘発構造体の第2辺(図示例において垂直方向の辺)にのみ外部目地を形成することを提案している。みかけ上の増厚を少なくするためである。本手段において、「縦方向」及び「横方向」とは、それぞれ梁部材を水平に架設した状態での各方向をいうものとする。なお、より好適な形態として上記側方に図った梁材の幅をD、内部目地の幅をdI、外部目地の深さの和をdOとするとき、[(dI+dO)/D]で与えられる欠損率が20%以上40%以下である形態とすることができる。 This means proposes to form external joints only on the second side (vertical side in the illustrated example) of the crack-inducing structure having a rectangular longitudinal section. This is to reduce the apparent thickness increase. In this means, the “longitudinal direction” and the “lateral direction” refer to respective directions in a state where the beam members are horizontally installed. As a more preferable form, when the width of the beam material directed to the side is D, the width of the inner joint is d I , and the sum of the depths of the outer joint is d O , [(d I + d O ) / D] can be in the form of a defect rate of 20% to 40%.
第3の手段は、第1の手段又は第2の手段を有し、かつ
前記外部目地を梁材の下面から横方向の両側面に亘って形成した。
The third means has the first means or the second means, and
The external joint was formed from the lower surface of the beam material to both side surfaces in the lateral direction.
本手段では、前記外部目地を梁材の下面から横方向の両側面に亘って形成している。梁材の下面にも外部目地を設けることにより、梁材の下面に生じたひびが人目に触れる可能性がある場合でも、体裁を損なわないようにすることができる。 In this means, the external joint is formed from the lower surface of the beam material to both lateral sides. By providing an external joint also on the lower surface of the beam material, even if there is a possibility that a crack generated on the lower surface of the beam material may be touched by human eyes, the appearance can be maintained.
第1の手段に係る発明によれば、梁体4の表面に外部目地10Oを、また梁体4の中央部に内部目地10Iをそれぞれ形成し、外部目地10Oと内部目地10Iとの間の中間領域に主鉄筋を設けたから、内部目地による十分なひび割れ誘発機能を発揮できる。
また第1の手段に係る発明によれば、内部目地10Iを形成する板材12を波形に形成したから、せん断力に対する抵抗が大である。
第2の手段に係る発明によれば、梁部材の第2辺にのみ外部目地を設けたから、外部目地による増厚を低減できる。
第3の手段に係る発明によれば、梁材の下面に生じたひびが人目に触れる可能性がある場合でも、体裁を損なわないようにすることができる。
According to the first aspect of the invention, the outer joint 10O is formed on the surface of the beam body 4, and the inner joint 10I is formed in the center of the beam body 4, and the intermediate between the outer joint 10O and the inner joint 10I is formed. Since the main rebar is provided in the area, it can exert a sufficient crack-inducing function due to the internal joint.
Further, according to the first aspect of the invention, since the plate material 12 forming the internal joint 10I is formed in a corrugated shape, the resistance to the shearing force is large.
According to the invention relating to the second means, since the external joint is provided only on the second side of the beam member, the thickness increase due to the external joint can be reduced.
According to the invention relating to the third means, even if there is a possibility that a crack generated on the lower surface of the beam member may be touched by human eyes, the appearance can be kept intact.
図1から図4は、本発明の第1実施形態に係るRC梁のひび割れ誘発目地構造の縦断面図である。 1 to 4 are longitudinal sectional views of a crack-induced joint structure of an RC beam according to a first embodiment of the present invention.
説明の都合上、まずRC梁2から説明を始める。RC梁2は、柱などの連結箇所(図示せず)に長手方向Xの両端部を連結して用いるコンクリート製の梁体4の内部に、そのX方向に延びる主鉄筋6と、あばら筋8とを埋設してなる。なお、RC梁に代えてPCa梁としてもよい。主鉄筋6は、コンクリート製梁体4の表面から一定の被り深さA1の位置に埋め込まれている。 For convenience of explanation, the explanation starts with the RC beam 2 first. The RC beam 2 includes a main reinforcing bar 6 extending in the X direction and a stirrup bar 8 inside a concrete beam body 4 that is used by connecting both ends in the longitudinal direction X to a connecting portion (not shown) such as a column. And buried. Note that a PCa beam may be used instead of the RC beam. The main rebar 6 is embedded at a certain covering depth A 1 from the surface of the concrete beam body 4.
ひび割れ誘発目地構造10は、梁体4の長手方向の少なくとも一か所(好適には梁材の長手方向中間部と両端部との間の2箇所)に、長手方向と直交する仮想断面Sに沿って形成される。具体的には、当該ひび割れ誘発目地構造は、当該仮想断面Sの中央部に形成される内部目地10Iと、当該仮想断面Sと梁体4の表面との交差箇所付近に形成される外部目地10Oとからなる。図2に示すように上記仮想断面Sは、各あばら筋8の設置箇所から十分に離して設定する。 The crack-inducing joint structure 10 has a virtual cross section S orthogonal to the longitudinal direction at least at one location in the longitudinal direction of the beam body 4 (preferably at two locations between the longitudinal intermediate portion and both end portions of the beam member). Formed along. Specifically, the cracks induced joint structure, the external joint is formed with internal joint 10 I formed at the center of the virtual cross section S, in the vicinity of intersection of the the virtual cross section S and Haritai fourth surface 10 O. As shown in FIG. 2, the virtual cross section S is set sufficiently away from the installation location of each stirrup 8.
内部目地10Iは、上記仮想断面Sの中心部に沿って重ね合せた2枚の板材12を分離可能に埋設することで、それら2枚の板材12の境目に形成される。これら板材12は、コンクリートが進入しないように隙間なく重ね合せる。隙間をなくするのは、その間にコンクリートが進入することを防止するためである。実際には2枚の板材の重なり合う面に撥水剤を塗布した後、無収縮モルタルを注入して隙間を埋め、無収縮モルタル硬化後に側面をシールしてなる。好適な図示例では、上記一対の板材12は、相互に係合可能な波形スレートとして形成されている。これによって、無収縮モルタルを注入して隙間の密着性が向上するばかりか、梁体4のせん断力を相互に伝達可能とするとともに、撥水剤の塗布によりひび割れを容易に誘発させることができる。撥水剤は、上記一対の板材の向かい合う面の一方に塗布してもよいが、双方に塗布した場合の方が好適である。 Internal joint 10 I, by detachably embedded two plates 12 superposed along the central portion of the virtual cross-section S, is formed on the boundary between those two plate members 12. These plate members 12 are overlapped with no gap so that concrete does not enter. The reason for eliminating the gap is to prevent the concrete from entering between them. In practice, a water repellent is applied to the overlapping surface of the two plate materials, then non-shrink mortar is injected to fill the gap, and the side surfaces are sealed after curing the non-shrink mortar. In the preferred illustrated example, the pair of plate members 12 are formed as corrugated slate that can be engaged with each other. As a result, non-shrinking mortar is injected to improve the adhesiveness of the gap, and the shearing force of the beam bodies 4 can be transmitted to each other and cracks can be easily induced by application of the water repellent. . The water repellent may be applied to one of the opposing surfaces of the pair of plate members, but it is more preferable when applied to both.
上記の構成において、2枚の板材12を重ね合わせた状態でコンクリート内に図示のように埋め込むことで、コンクリートが乾燥収縮したときに2枚の板材の合わせ目を境としてひび割れが誘起される。2枚の板材の代わりに一枚の板材の表面及び(/又は)裏面に撥水剤を塗ったものでもある程度のひび割れ誘発作用を生ずるが、その作用の程度において本願発明の構成の方が優る。 In the above configuration, by embedding the two plate members 12 in the state of being overlapped as shown in the figure, when the concrete is dried and contracted, cracks are induced at the boundary between the two plate members. Even if the surface and / or the back surface of one sheet material is coated with a water repellent instead of two sheet materials, a certain degree of cracking induction effect is produced, but the configuration of the present invention is superior in the degree of the effect. .
上記梁体4の製造工程において、上記一対の板材12は、図示しない連結具を介して、主鉄筋6に連結され、図示の位置に支持されるものとする。図2の如く重ね合わせた2枚の板材12の両側(紙面の手前側及び奥側)に位置する少なくとも一対の水平な支持鉄筋(図示せず)を、板材の高さの範囲で上述のあばら筋に連結させ、これら支持鉄筋の間に、一対の板材12の図左方及び右方を通過する押さえ鉄筋(図示せず)を架設し、これら押さえ鉄筋を番線で縛って、一対の板材12が押さえ鉄筋の間に挟持されるように構成してもよい。 In the manufacturing process of the beam body 4, the pair of plate members 12 are connected to the main reinforcing bar 6 via a connection tool (not shown) and supported at the position shown. As shown in FIG. 2, at least a pair of horizontal support reinforcing bars (not shown) located on both sides (the front side and the back side of the sheet) of the two sheets 12 stacked as shown in FIG. Pressing reinforcing bars (not shown) that pass through the left and right sides of the pair of plate members 12 are erected between the supporting reinforcing bars, and the holding reinforcing bars are tied with a wire to connect them to the supporting bars. May be sandwiched between the holding reinforcing bars.
上記内部目地10Iを形成する一対の板材12と主鉄筋6との間には、コンクリートの流動性及び充填性を確保するために“あき”A2をとる。主鉄筋6の近傍領域Mでもコンクリートの回りを良好とするためである。あきの大きさは、主鉄筋同士の“あき”と同程度とし、具体的には、粗骨材寸法の1.25倍以上で隣り合う鉄筋の平均径(d)の1.5倍以上とすればよい。次の表1に粗骨材の最大寸法が25mmである場合の、主鉄筋の平均径d毎のあきA2の最小値を示す。 Between the pair of plate members 12 and the main reinforcing bar 6 forming the inner joint 10 I, in order to ensure the fluidity and filling property of the concrete "autumn" take A 2. This is because the surrounding area of the main reinforcing bar 6 is also good around the concrete. The size of the opening is about the same as the “opening” between the main reinforcing bars. Specifically, the opening is at least 1.25 times the coarse aggregate size and 1.5 times the average diameter (d) of the adjacent reinforcing bars. That's fine. When the maximum dimension of coarse aggregate in the following table 1 is 25 mm, the minimum value of the empty A 2 for each average diameter d of the main reinforcement.
外部目地10Oは、仮想断面S上において、断面縦長の梁体4の4辺のうち少なくとも一対の縦辺(請求項にいう第2辺)に沿って設けるものとする。ひび割れを誘発させるという意味では、外部目地10Oは、上記一対の縦辺に設ければ十分であり、梁体4の一対の横辺には設けなくてよい。もっとも梁体4の上面側及び下面側に生じたひびが人の目に触れて体裁を損なう可能性がある場合には、図示の如く、梁体4の一対の横辺にも外部目地を設け、これらの目地を後でシールすることができる。梁体4の上部側にスラブを設ける場合には梁体4の上横辺に外部目地を設ける必要がない。 The external joint 10 O is provided on the virtual cross section S along at least a pair of vertical sides (second side in the claims) among the four sides of the vertically long beam body 4. In terms of inducing cracks, it is sufficient that the external joint 10 O is provided on the pair of vertical sides, and does not have to be provided on the pair of horizontal sides of the beam body 4. However, if there is a possibility that the cracks generated on the upper surface side and the lower surface side of the beam body 4 may touch the human eyes and damage the appearance, external joints are also provided on the pair of lateral sides of the beam body 4 as shown in the figure. These joints can be sealed later. When a slab is provided on the upper side of the beam body 4, it is not necessary to provide an external joint on the upper horizontal side of the beam body 4.
上記構成によれば、主鉄筋6によりコンクリートが拘束されている中間領域Mをさけて、梁体4の表面に外部目地10Oを、また梁体4の中心部に内部目地10Iをそれぞれ形成しているので、各目地が十分なひび割れ誘発機能を発揮できるとともに、せん断応力の伝達ができる。 According to the above configuration, the outer joint 10 O is formed on the surface of the beam body 4 and the inner joint 10 I is formed at the center of the beam body 4 so as to avoid the intermediate region M where the concrete is restrained by the main reinforcing bars 6. Therefore, each joint can exert a sufficient crack-inducing function and can transmit shear stress.
次に本発明の成果を複数の試験体を用いて試験したので、その内容を説明する。
[試験体の説明]
RC梁2の試験体として、外部目地のみを有する1種類の試験体(B−13)と、内部目地及び外部目地を有する3種類の試験体(図6に示すS−25、図5に示すS−40、図7に示すW−40)を使用した。B−13は、他の試験体の構造から内部目地形成用の板材を省略した形態であるので、作図を省略する。試験体の一覧を表2に、試験体の属性(材料試験結果など)を表3に記載する。
試験体の断面は、幅150mm×高さ650mmであり、せん断スパン比は2.8とする。外部目地は全試験体に共通とし、内部目地の有無と内部目地の種類と欠損率(外部目地深さと内部目地深さとの和を梁幅で除した値)を変数とした。外部目地は、梁の両側に深さの台形状の欠け込みとし、欠損率は13%である。内部目地は、スレート波板2枚重ね合わせたもの(図5及び図6)と波形鋼板(図7)との2種類とし、欠損率を25%(図6)と40%(図5、図7)とした。欠損率に関しては、20%程度以下ではひび割れ集中効果が小さく、40%以上ではひび割れ集中性能に変化がなくなることが知られている。
なお、図5(A)中、b(=70mm)、c(=40mm)、d(=10mm)、e(=430mm)、f(=70mm)、g(=40mm)は、各試験体共通である。他方、図5でのa1及び図7のa3はともに40mm、図6のa2は17.5mmである。
Next, the results of the present invention were tested using a plurality of specimens, and the contents thereof will be described.
[Explanation of specimen]
As a specimen of the RC beam 2, one kind of specimen (B-13) having only an external joint and three kinds of specimens having an internal joint and an external joint (S-25 shown in FIG. 6, shown in FIG. 5). S-40, W-40 shown in FIG. 7 was used. Since B-13 is the form which abbreviate | omitted the board | plate material for internal joint formation from the structure of another test body, drawing is abbreviate | omitted. A list of test specimens is shown in Table 2, and attributes (material test results, etc.) of the test specimens are shown in Table 3.
The cross section of the test body is 150 mm wide × 650 mm high, and the shear span ratio is 2.8. External joints were common to all specimens, and the presence or absence of internal joints, the type of internal joints, and the defect rate (the value obtained by dividing the sum of external joint depth and internal joint depth by the beam width) were used as variables. The external joint has a trapezoidal notch with a depth on both sides of the beam, and the defect rate is 13%. There are two types of internal joints: two slate corrugated plates (FIGS. 5 and 6) and corrugated steel plates (FIG. 7), with a defect rate of 25% (FIG. 6) and 40% (FIGS. 5 and 5). 7). With respect to the defect rate, it is known that the crack concentration effect is small if it is about 20% or less, and that there is no change in the crack concentration performance if it is 40% or more.
In FIG. 5A, b (= 70 mm), c (= 40 mm), d (= 10 mm), e (= 430 mm), f (= 70 mm), and g (= 40 mm) are common to each specimen. It is. On the other hand, a 3 of a 1 and 7 in FIG. 5 are both 40 mm, a 2 in FIG. 6 is 17.5 mm.
[試験内容の説明]
積載履歴は、ひび割れ荷重の測定および提案目地のひび割れ集中性能の把握のための引張載荷、および、ひび割れ後の梁の構造性能の把握のためのせん断力載荷の2段階で実施した。
(1)引張載荷試験
各試験体Eの下部を土台Bに固定するとともに、試験体の上部を図示しない加力鉄骨と一体化して、加力鉄骨をジャッキで押し上げることで試験体に引張加重を加えた。この試験での力の制御は、実大で目地部に残留ひび割れ幅0.3mmのひび割れを再現することを目標とした。引張荷重は、次のいずれかまで与えることにした。
(a)目地部にひび割れが生ずる場合、目地部延長鉛直伸び変位δmを測定するために取り付けた3箇所の変位計の測定値の平均が0.3mm
(b)目地部にひび割れが発生しない場合、試験体の全長鉛直変位δaを計背側するために取り付けた2箇所の変位計の測定値の平均が0.6mm
(2)せん断力載荷試験
各試験体の下部を固定するとともに、試験体の上部に水平力を加えた。長周期地震動を模擬した多数回繰り返し載荷を設定した。±1.0、±2.0、±3.3、±5.0、(±2.0)、±7.5、±10、(±5.0)、±20、±30、±40、±50×10−3rad.をそれぞれ基本的に2回ずつ繰り返す。但し、2.0×10−3rad.及び5.0×10−3rad.[()内は小サイクル]の部材角では繰り返し回数を各10回とした。
[Explanation of test contents]
The loading history was carried out in two stages: measurement of cracking load and tensile loading for grasping the crack concentration performance of the proposed joint and shear loading for grasping the structural performance of the beam after cracking.
(1) Tensile loading test The lower part of each specimen E is fixed to the base B, and the upper part of the specimen is integrated with an unillustrated force steel frame, and the force steel frame is pushed up with a jack to apply a tensile load to the specimen. added. The control of the force in this test was aimed at reproducing a crack with a residual crack width of 0.3 mm in the joint part at actual size. The tensile load was given to one of the following.
(A) When a crack occurs in the joint, the average of the measured values of the three displacement meters attached to measure the joint extension vertical elongation displacement δm is 0.3 mm.
(B) When no cracks occur in the joint, the average of the measured values of the two displacement gauges attached to measure the full length vertical displacement δa of the specimen is 0.6 mm.
(2) Shear force loading test The lower part of each specimen was fixed, and a horizontal force was applied to the upper part of the specimen. A large number of repeated loadings simulating long-period ground motion were set up. ± 1.0, ± 2.0, ± 3.3, ± 5.0, (± 2.0), ± 7.5, ± 10, (± 5.0), ± 20, ± 30, ± 40 ± 50 × 10 −3 rad. Are basically repeated twice. However, 2.0 × 10 −3 rad. And 5.0 × 10 −3 rad. The number of repetitions was 10 times for each member angle in [() is a small cycle].
[実験結果]
(1)引張載荷試験の結果
加力終了時のひび割れ図を図8に示す。内部目地を有しない試験体B−13では、ひび割れが目地部では発生せず、目地部以外(一般部と称す)で発生した。一方、内部目地を設けた試験体では、ひび割れが目地部で発生した後に一般部で発生した。ひび割れが発生した荷重は、内部目地の種類を波形鋼板とした試験体W−40の値が最小であった。
(2)せん断力載荷試験の結果
加力時のせん断力−部材角関係を図9に、部材角R=5/1000rad.時のひび割れ状況を図10に示す。全試験体において部材角R=0.4/1000rad.で曲げひび割れが発生した。その後、数本の曲げひび割れがあばら筋位置に発生し、梁成中央に向かって斜めに進展した。部材角R=±7.5/1000rad.サイクル時に、主筋とあばら筋に貼り付けたひずみゲージの値が降伏ひずみに達した。部材角R=8〜10/1000rad.で梁端部に圧壊の兆候が見られた。部材角R=8〜10/1000rad.以降のサイクルで最大耐力をむかえたが、その後のサイクルでも大きな耐力低下は見られなかった。部材角R=30/1000rad.で試験体が面外に倒れ込む様子が確認された。なお、本願明細書において“部材角が○○rad.サイクル時であるときにある事象が生じた。”とは、そのサイクルの中のどこかで当該事象が生じたことをいい、また“部材角が○○rad.(時)であるときにある事象を生じたとは、その部材角になったときに当該事象が生じたことをいう。
[Experimental result]
(1) Results of tensile loading test
A crack diagram at the end of the applied force is shown in FIG. In Specimen B-13 having no internal joints, cracks did not occur in the joints but occurred in places other than the joints (referred to as general parts). On the other hand, in the test body provided with the internal joint, the crack occurred in the general part after the crack occurred in the joint part. As for the load at which cracking occurred, the value of the specimen W-40 having a corrugated steel sheet as the type of internal joint was the smallest.
(2) Results of shear load test
FIG. 9 shows the relationship between the shearing force and the member angle during application, and the member angle R = 5/1000 rad. FIG. 10 shows the cracking situation at the time. Member angle R = 0.4 / 1000 rad. Bending cracks occurred. After that, several bending cracks occurred at the position of the streaks and progressed diagonally toward the center of beam formation. Member angle R = ± 7.5 / 1000 rad. During the cycle, the strain gauge values applied to the main and stirrups reached the yield strain. Member angle R = 8 to 10/1000 rad. There were signs of collapse at the end of the beam. Member angle R = 8 to 10/1000 rad. The maximum yield strength was changed in subsequent cycles, but no major decline in yield strength was observed in the subsequent cycles. Member angle R = 30/1000 rad. It was confirmed that the test body collapsed out of the plane. In the specification of the present application, “an event occurs when the member angle is at the time of the cycle” means that the event occurred somewhere in the cycle, The occurrence of a certain event when the angle is OO rad. (Hour) means that the event has occurred when the angle of the member is reached.
[実験結果の考察]
(1)試験1に関して
引張ひび割れ荷重における計算値と実験値との比較を表4に示す。ここで引張ひび割れ荷重の計算値は、次の式1から算定されるコンクリート引張強度に断面欠損を考慮した断面積を乗じて計算した。
[式1]ft=0.33×(√fc)(N/mm2)
内部目地を設置した試験体S−25、S−40、W−40の目地部において、実験値/計算値が0.84、0.63、0.36であることから、外部目地によるひび割れ集中性能以上に内部目地の効果が発揮されたことが確認できる。なお、目地部に加え一般部においても実験値が計算値を大きく下回った主因は、載荷前に乾燥収縮及び主筋による内部拘束により、コンクリート内部に引張応力が生じたことによると考えられる。
断面欠損率とひび割れ荷重低減係数ηの関係を図11に示す。目地部ひび割れ荷重低減係数ηとは、目地部のひび割れ荷重の実験値を一般部ひび割れ荷重計算値(コンクリート引張強度に、一般部断面積を乗じた値)で除した値と定義する。断面積欠損率が13%程度では目地部にひび割れを生じない。断面積欠損率が22パーセントを超えると目地部でひび割れが発生し、断面積欠損率が大きくなるほど目地部のひび割れ荷重低減係数ηが小さくなり、一般部に先駆けて目地部でひび割れが発生する確率が高まる傾向が認められる。
[Consideration of experimental results]
(1) Regarding Test 1 Table 4 shows a comparison between the calculated value and the experimental value in the tensile crack load. Here, the calculated value of the tensile crack load was calculated by multiplying the concrete tensile strength calculated from the following equation 1 by the cross-sectional area taking into account the cross-sectional defect.
[Formula 1] f t = 0.33 × (√f c ) (N / mm 2 )
Since the experimental values / calculated values are 0.84, 0.63, and 0.36 at the joints of the test bodies S-25, S-40, and W-40 with the internal joints installed, the crack concentration due to the external joints It can be confirmed that the effect of the internal joint was exhibited more than the performance. In addition to the joint part, it is considered that the main reason why the experimental value was significantly lower than the calculated value in the general part was that tensile stress was generated in the concrete due to drying shrinkage and internal restraint by the main bar before loading.
FIG. 11 shows the relationship between the cross-sectional defect rate and the crack load reduction coefficient η. The joint crack load reduction coefficient η is defined as a value obtained by dividing the experimental value of the crack load at the joint by the calculated value of the general crack load (the value obtained by multiplying the concrete tensile strength by the sectional area of the general section). If the cross-sectional area defect rate is about 13%, no cracks occur in the joints. When the cross-sectional area defect ratio exceeds 22%, cracks occur at the joints, and as the cross-sectional area defect ratio increases, the crack load reduction coefficient η at the joints decreases, and the probability that cracks occur at the joints ahead of the general part A tendency to increase is observed.
(2)試験2に関して
最大耐力実験値と終局曲げ耐力のせん断力計算値の比較を表5に示す。実験値は計算値(日本建築学会による終局曲げ耐力をせん断力に換算した値)1.09〜1.21を上回まった。試験体間に大きな相違はなかった。
破壊経過、荷重−部材角関係、ひび割れ状況、鉄筋の歪みおよび変位計測値において、内部目地を設けない試験体B−13と提案する目地工法を有するその他の試験体との間に大きな相違は見られなかったことから、内部目地による構造性能への影響は殆どないと考えられる。
(2) Regarding Test 2, Table 5 shows a comparison between the maximum proof stress experimental value and the ultimate bending proof shear force calculation value. The experimental value exceeded the calculated value (the value obtained by converting the ultimate bending strength by the Architectural Institute of Japan into the shearing force) of 1.09 to 1.21. There was no significant difference between the specimens.
There is a significant difference between the specimen B-13 without internal joints and the other specimens with the proposed joint method in terms of fracture progress, load-member angle relationship, crack condition, rebar distortion and displacement measurements. It was considered that there was almost no influence on the structural performance due to the internal joint.
なお、上記実施形態及び実験例は単に本発明の好適な一例を示すものであり、本発明の技術的範囲がこれらに限定されるものではないことは言うまでもない。
In addition, the said embodiment and experiment example show only a suitable example of this invention, and it cannot be overemphasized that the technical scope of this invention is not limited to these.
2…梁(RC梁) 4…梁体 6…主鉄筋 8…あばら筋
10…ひび割れ誘発目地構造 10I…内部目地 10O…外部目地
12…板材
A1…被り代 A2…あき B…土台 E…試験体
M…主鉄筋近傍領域 S…仮想断面
DESCRIPTION OF SYMBOLS 2 ... Beam (RC beam) 4 ... Beam body 6 ... Main reinforcement 8 ... Rough reinforcement 10 ... Crack induction joint structure 10 I ... Internal joint 10 O ... External joint 12 ... Plate material A 1 ... Covering margin A 2 ... Space B ... Base E ... Specimen M ... Main reinforcing bar vicinity S ... Virtual cross section
Claims (3)
コンクリート製の梁材の長手方向と直交する一つの仮想断面と梁材の表面とが交差する箇所の少なくとも一部に外部目地を形成し、
上記仮想断面の中心部に、長手方向と直交しかつ分離可能に重なり合う2枚の板材を埋設してなる内部目地を形成し、
外部目地と内部目地との間の中間領域に複数の主鉄筋を挿通させることで、2枚の板材の重ね面を境目として、ひび割れが誘発されるように構成し、
上記梁材の長手方向と直交する梁材の縦断面を、横方向に平行な一対の第1辺及び縦方向に平行な一対の第2辺を有する長方形状とし、
かつ上記2枚の板材を、側方及び長手方向と直交する方向に波形が繰り返す波形コッターに形成し、
これら波形コッターの両側に表れる波形の面のうち相互に対向する側の2面を前述の重ね面とするとともに、反対側の2面がコンクリートと接するように設けたことを特徴とする、鉄筋コンクリート製梁のひび割れ誘発目地構造。A crack-inducing structure of a reinforced concrete beam having a plurality of main reinforcing bars extending in the longitudinal direction,
Forming an external joint in at least a part of the intersection of one virtual cross section perpendicular to the longitudinal direction of the beam made of concrete and the surface of the beam;
In the center of the virtual cross section, an internal joint is formed by embedding two plate materials that are perpendicular to the longitudinal direction and are separably overlapped,
By inserting a plurality of main rebars in the middle area between the outer joint and the inner joint, it is configured so that cracks are induced with the overlapping surface of the two plates as a boundary,
The longitudinal section of the beam material orthogonal to the longitudinal direction of the beam material is a rectangular shape having a pair of first sides parallel to the horizontal direction and a pair of second sides parallel to the vertical direction,
And, the two plate members are formed into a waveform cotter in which the waveform repeats in the direction orthogonal to the side and the longitudinal direction,
Made of reinforced concrete, characterized in that two of the corrugated surfaces appearing on both sides of these corrugated cotters are opposed to each other, and the two opposite surfaces are in contact with the concrete. Crack-induced joint structure of beams.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013149395A JP6253083B2 (en) | 2013-07-18 | 2013-07-18 | Crack-induced joint structure of reinforced concrete beams |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013149395A JP6253083B2 (en) | 2013-07-18 | 2013-07-18 | Crack-induced joint structure of reinforced concrete beams |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015021270A JP2015021270A (en) | 2015-02-02 |
JP6253083B2 true JP6253083B2 (en) | 2017-12-27 |
Family
ID=52485964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013149395A Expired - Fee Related JP6253083B2 (en) | 2013-07-18 | 2013-07-18 | Crack-induced joint structure of reinforced concrete beams |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6253083B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5029804A (en) * | 1986-10-16 | 1991-07-09 | Mcgregor Stephen Peter | In situ brick or block making formwork |
JP3899615B2 (en) * | 1997-10-14 | 2007-03-28 | 株式会社大林組 | Crack-induced joint structure |
JP4555648B2 (en) * | 2004-09-24 | 2010-10-06 | 株式会社竹中工務店 | Bearing wall structure |
JP4394048B2 (en) * | 2005-08-05 | 2010-01-06 | 株式会社栗本鐵工所 | Concrete beam and manufacturing method thereof |
JP2007056521A (en) * | 2005-08-24 | 2007-03-08 | Shimizu Corp | Crack induction joint structure |
JP2008082126A (en) * | 2006-09-29 | 2008-04-10 | Kajima Corp | High performance cracking induction joint for earthquake-resisting wall |
-
2013
- 2013-07-18 JP JP2013149395A patent/JP6253083B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015021270A (en) | 2015-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101653740B1 (en) | Girder with vertical walls, rahmen bridge using the same and construction method thereof | |
JP7196886B2 (en) | Steel beam with floor slab | |
JP6166519B2 (en) | Concrete filled steel pipe column | |
KR101948812B1 (en) | Hybrid Beam Consisted Of Compressive U-Shaped Flange And U And H-Shaped End Blocks | |
JP2008111228A (en) | Crack suppressing structure, crack suppressing method, and precast concrete member | |
JP6208090B2 (en) | Temporary support structure for seismic isolation work and seismic isolation method for existing buildings | |
JP5528216B2 (en) | Abutment reinforcement method | |
JP6199201B2 (en) | Frame reinforcement structure and frame reinforcement method | |
JP6253083B2 (en) | Crack-induced joint structure of reinforced concrete beams | |
JP5050088B2 (en) | Reinforced concrete beam design method and reinforced concrete beam | |
EP2537992A1 (en) | A method of reducing the width of cracks in masonry | |
JP7176875B2 (en) | High-rise buildings and precast prestressed concrete columns | |
JP6171418B2 (en) | Pile-foundation joint structure and method | |
JP5525475B2 (en) | Reinforcement structure of existing reinforced concrete wall and reinforcement method of existing reinforced concrete wall | |
JP5737757B2 (en) | Evaluation method of bending moment borne by connecting means for connecting retaining wall and foundation slab. | |
JP2009185532A (en) | Lap joint-anchoring method by deformed wire-welded metal wire net | |
JP6224420B2 (en) | Connection structure between CFT column and concrete bottom slab | |
JP4708295B2 (en) | Pile-column connection structure | |
JP6804727B2 (en) | How to design a column joint structure | |
JP5454494B2 (en) | Underground wall structure | |
JP6773509B2 (en) | Building seismic design methods and programs for seismic design | |
JP2004316367A (en) | Shearing reinforcement method of reinforced concrete column | |
JP2023018420A (en) | reinforced concrete beam | |
JP2005023603A (en) | Reinforcing structure of column-beam joining part | |
JP2015117954A (en) | Method for predicting maximum crack width |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6253083 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |