JP6251607B2 - Offshore structure - Google Patents

Offshore structure Download PDF

Info

Publication number
JP6251607B2
JP6251607B2 JP2014046109A JP2014046109A JP6251607B2 JP 6251607 B2 JP6251607 B2 JP 6251607B2 JP 2014046109 A JP2014046109 A JP 2014046109A JP 2014046109 A JP2014046109 A JP 2014046109A JP 6251607 B2 JP6251607 B2 JP 6251607B2
Authority
JP
Japan
Prior art keywords
frp
dimensional
rod
structure according
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014046109A
Other languages
Japanese (ja)
Other versions
JP2015168372A (en
Inventor
寛 越智
寛 越智
関戸 俊英
俊英 関戸
昭彦 西崎
昭彦 西崎
裕二 大屋
裕二 大屋
長洪 胡
長洪 胡
誠 末吉
誠 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Toray Industries Inc
Original Assignee
Kyushu University NUC
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Toray Industries Inc filed Critical Kyushu University NUC
Priority to JP2014046109A priority Critical patent/JP6251607B2/en
Publication of JP2015168372A publication Critical patent/JP2015168372A/en
Application granted granted Critical
Publication of JP6251607B2 publication Critical patent/JP6251607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、FRP(繊維強化プラスチックス)製三次元ユニットおよびそれを用いた海洋構造物に関し、とくに軽量化、高い力学特性(特に、比強度,比剛性)、工事費・設備費低減、長寿命化等が望まれる大型、大規模の海洋構造物に用いて好適な技術に関する。 The present invention relates to a three-dimensional unit made of FRP (Fiber Reinforced Plastics) and an offshore structure using the same, particularly weight reduction, high mechanical properties (particularly specific strength, specific rigidity), construction cost / equipment cost reduction, long The present invention relates to a technique suitable for use in large-scale and large-scale offshore structures for which lifetime is desired.

従来から、海上での風力発電や太陽光発電設備搭載用のエネルギーファーム基盤や防災基地、浮体橋、各種水上建造物搭載用の基盤や基地、各種港湾施設、洋上滑走路、大型建築物の屋根等の大型、大規模の各種構造物には、鋼材を用いて構成した各種構造体が用いられてきた(例えば、特許文献1)。しかし、鋼材を用いた大型の構造体においては、基本的に、材料となる鋼材の重量が大であるため、工事、構築に行いにくさが伴うという問題、工事、構築のために大型の、あるいは専用の重機が必要となり、工期が長くなるとともに、大型の工事用スペースが必要となり、比較的安価な素材であるにもかかわらず総合的に見て工事費が高くなるという問題、耐食性能が低く、メンテナンス費用が高くなるという問題、比強度が比較的低く、長期間にわたる使用においては疲労や寒冷時脆性破壊の問題が発生するおそれがあるという問題、等が存在する。   Traditionally, an energy farm base for offshore wind power generation and solar power generation facilities, disaster prevention bases, floating bridges, bases and bases for mounting various floating structures, various port facilities, offshore runways, roofs of large buildings Various structures constructed using steel materials have been used for various large-scale and large-scale structures (for example, Patent Document 1). However, in large structures using steel materials, the weight of the steel material is basically large, so it is difficult to perform construction and construction, large construction for construction, Or, dedicated heavy machinery is required, the construction period becomes longer, a large construction space is required, and the construction cost is high overall despite the fact that it is a relatively inexpensive material. There are problems such as low and high maintenance costs, relatively low specific strength, and problems of fatigue and brittle fracture during cold use.

このような基本的な問題に加え、例えば、いわゆるポンツーン式と呼ばれる形態で鋼材を用いて構築された大型の海上浮体構造物についてより具体的に考えてみるに、喫水線長さが長く、波浪による局部的に大きな負荷や繰り返し荷重を受ける領域が広くなるため、強度的に相当高範囲に補強しなくてはならなくなり、さらに重量が増して、設備費、工期が増大するとともに、専用重機等の付帯設備の費用も増大する。また、高波等に備えて構造物の水面からの高さを高くすると、重量と排水量が大幅に増加し、益々製造費も増加する。   In addition to such basic problems, for example, when considering more specifically about large floating structures constructed using steel in a so-called pontoon type, the length of the waterline is long and due to waves Since the area that receives locally large loads and repeated loads becomes wider, it must be reinforced in a considerably high range in terms of strength, and further increases in weight, equipment costs, construction time, and dedicated heavy machinery, etc. The cost of incidental equipment will also increase. In addition, when the height of the structure from the water surface is increased in preparation for a high wave or the like, the weight and the amount of drainage are greatly increased, and the manufacturing cost is increased.

また、例えば、大型建築物の屋根のフレーム構造体等に鋼材を用いて構成する場合についてより具体的に考えてみるに、大型クレーンや専用クレーン等の大型重機を準備し溶接や特殊連結構造を採用して構築していく必要があるため、工期が長くなるとともに、専用重機等の付帯設備や、工事用に加え、防錆等のための養生設備等の付帯費用も増大する。   In addition, for example, when considering using steel materials for a frame structure of a roof of a large building, a large heavy machine such as a large crane or a dedicated crane is prepared and welding or a special connection structure is prepared. Since it needs to be adopted and constructed, the construction period becomes longer, and incidental costs for incidental equipment such as dedicated heavy machinery and curing equipment for rust prevention etc. will increase in addition to construction.

このような鋼材を用いた大型構造体における種々の問題に対し、近年急速に需要が伸びてきた軽量で高い力学特性のFRPを大型構造体構成用の材料に使用することが考えられる。この様な特性をなすFRPの使用に関して、例えば、特許文献2には、浮消波装置における浮体や反射壁にFRPを使用してもよい旨の記載があり(特許文献2[0041]段落)、特許文献3には、太陽光発電装置における躯体にCFRP(炭素繊維強化プラスチックス)補強コンクリート製構造体を使用してもよい旨の記載がある(特許文献3[0037]段落)。しかし、これらの提案では、大型構造体の主要構造あるいは基本骨格を構成するための材料としてではなく、付帯設備への、あるいは構造体の部分的な部位へのFRPの使用にとどまっている。   In response to various problems in large structures using such steel materials, it is conceivable to use, as a material for constituting a large structure, lightweight, high-mechanical FRP, which has been rapidly growing in demand in recent years. Regarding the use of FRP having such characteristics, for example, Patent Document 2 describes that FRP may be used for a floating body and a reflection wall in a floating wave breaker (Patent Document 2 [0041] paragraph). Patent Document 3 describes that a structure made of CFRP (carbon fiber reinforced plastics) reinforced concrete may be used as a casing in a photovoltaic power generation apparatus (paragraph 3 of Patent Document 3). However, in these proposals, the use of FRP is not limited to a material for constructing the main structure or basic skeleton of a large-sized structure but to an incidental facility or a partial part of the structure.

特許第4986049号公報Japanese Patent No. 4986049 特開2013−221385号公報JP2013-221385A 特開2010−74130号公報JP 2010-74130 A

上記の特許文献2や特許文献3に例示されるように、軽量なFRPの使用が、大型構造体に対しては、その付帯設備や構造体の部分的な部位への適用に限られていたのは、大型構造体を構成するために用いる部材用のFRPを形成するための強化繊維(例えば、炭素繊維)として、太物強化繊維束(多数本の強化繊維を例えばトウの形態で集合させたもの)が汎用材として本格的に普及していなかったので、大型構造体の主要構造あるいは基本骨格へのFRPの展開が殆ど進展してこなかったためと考えられる。   As exemplified in Patent Document 2 and Patent Document 3 described above, the use of lightweight FRP has been limited to application to partial parts of the incidental facilities and structures for large structures. As a reinforcing fiber (for example, carbon fiber) for forming a FRP for a member used for constituting a large structure, a thick reinforcing fiber bundle (a large number of reinforcing fibers are aggregated in the form of tow, for example). This is probably because the development of FRP to the main structure or basic skeleton of a large-sized structure has hardly progressed.

ところが最近、例えば炭素繊維についてみれば、1束が48K(48,000本)や60K(60,000本)といった、さらにはそれ以上のラージトウの製造による汎用供給が可能になってきた。したがって、最近入手可能になってきたこのようなラージトウをさらに複数束ねて使用できれば、数mから数10m規模の大型構造体の、さらには数100m規模の超大型構造体の、主要構造あるいは基本骨格へのFRPの展開を安価に達成できる可能性が出てきた。   However, recently, for example, regarding carbon fibers, it has become possible to supply general-purpose products by manufacturing large tow, such as 48K (48,000) or 60K (60,000) per bundle. Therefore, if a large number of such large tows that have recently become available can be bundled and used, the main structure or basic skeleton of a large-scale structure of several meters to several tens of meters, or even an ultra-large structure of several hundreds of meters is used. There is a possibility that FRP can be deployed at low cost.

そこで本発明の課題は、上記のような強化繊維束の太束化の現状およびその適用可能性を考慮するとともに、前述のような鋼材を用いて大型構造物を構築する場合の問題点に着目し、FRPの特性である軽量性、高い力学特性、接合や成形の容易性等を最大限に活かしつつ、通常、鋼材よりも高価なFRPを部材構成用素材として使用しても、大型構造物を構築するための総合的な設備・工事費用として、鋼材を用いた場合に比べ遜色のない費用で構造物を構築することである。特に海洋環境下では、FRPの優れた耐食性等を活かしてメンテナンス費用の大幅な低減が可能なことから、長期間安定して所望の状態を維持可能な、FRP製三次元ユニットおよびそれを用いた海洋構造物を提供することにある。 Therefore, the problem of the present invention is to consider the current situation of the thickening of the reinforcing fiber bundle as described above and its applicability, and pay attention to the problems when constructing a large structure using the steel material as described above. Even if FRP, which is more expensive than steel, is used as a material for component construction, while utilizing the light weight, high mechanical properties, ease of joining and molding, etc. As a comprehensive equipment / construction cost for building a structure, it is to construct a structure at a cost comparable to that of using steel. Especially in the marine environment, since the maintenance cost can be significantly reduced by taking advantage of the excellent corrosion resistance of FRP, etc., the FRP three-dimensional unit that can stably maintain a desired state for a long period of time and the same are used. To provide offshore structures.

上記課題を解決するために、本発明に係る海洋構造物は、複数の節点部での一体成形による結合を介して複数のFRP製棒状部材が三次元的に組織され、全節点部でFRP製棒状部材同士が剛接されて材料力学上の「ラーメン構造」を構成しており、前記全節点部の少なくとも一部において、FRPの強化繊維がFRP製棒状部材間にわたって連続して延びているFRP製三次元ユニットまたは該FRP製三次元ユニットが複数連接されてなるFRP製三次元構造体が、少なくとも3つ、枠体を形成するように接続されてなるFRP製組立構造体、または該FRP製組立構造体が複数連接されてなる大型FRP製構築体が、上下方向に水面を含む位置に配置され、該FRP製組立構造体または大型FRP製構築体の下部側の少なくとも一部に対し、全体が水中に位置する浮力体が配置されていることを特徴とするものからなる。また、該棒状部材とはその断面が円形でも非円形でもよく、中実でも中空でもよいFRP製部材である。 In order to solve the above-described problems, in the offshore structure according to the present invention, a plurality of FRP rod-shaped members are three-dimensionally organized through a joint formed by integral molding at a plurality of nodes, and all nodes are made of FRP. FRP in which rod-shaped members are rigidly connected to form a “ramen structure” in material mechanics, and in at least a part of all the nodes, FRP reinforcing fibers continuously extend between the FRP rod-shaped members At least three FRP three-dimensional structures formed by connecting a plurality of three-dimensional units made of FRP or three-dimensional units made of FRP, or an FRP assembled structure connected to form a frame, or made of FRP A large FRP construction body in which a plurality of assembly structures are connected to each other is arranged at a position including the water surface in the vertical direction, and at least a part of the FRP assembly structure or the large FRP construction body on the lower side. And consists of those wherein the buoyant body which is entirely located in the water is disposed. The rod-shaped member is a member made of FRP which may be circular or non-circular in cross section and may be solid or hollow.

このような本発明に係る海洋構造物のFRP製三次元ユニットにおいては、複数の節点部での一体成形による結合を介して複数のFRP製棒状部材が三次元的に組織されて、例えば、平面的に見てあるいは側面的に見て略矩形の、あるいはユニット断面としての骨格が三角柱や四角柱形状をなす立体的な三次元ユニットが構成される。このようなFRP製三次元ユニットにおいて、全節点部でFRP製棒状部材同士が剛接されてラーメン構造に構成されているので、この三次元ユニット自体は、鋼材等に比べて軽量性が確保されつつ、その全体として極めて高い剛性、強度が確保される。とくに、FRP製棒状部材の作製に近年採用が可能になってきた多数本の強化繊維の太束を使用すれば、さらに高い剛性、強度の達成が可能になる。また、上記全節点部の少なくとも一部において、FRPの強化繊維がFRP製棒状部材間にわたって連続して延びていることにより、節点部でFRP製棒状部材同士がより確実に剛接され、望ましいラーメン構造が構成され、三次元ユニットとしての高い強度や剛性が達成される。また、この三次元ユニットはFRP製であるから、成形による製造を容易に行うことができ、複数の節点部での結合も、金属同士の様な溶接作業などを伴うことなく、一体成形によって達成でき、鋼材製に比べて製造の容易化を図ることができるとともに、鋼材よりも割高な素材費用を考慮しても全体として鋼材製に比べて遜色のない製造コストの達成が可能になる。とくに海洋環境下では、鋼材よりも高い比強度を容易に達成できるとともに、疲労、耐食性については鋼材よりも優れた特性を発現可能であるので、長期間所望の性能を安定して維持可能となり、メンテナンス費用の大幅な低減も可能になる。したがって、このように優れた特性を有するFRP製三次元ユニットを適切に大きな構造に構成してそのユニット自体を構造体や構造物の主要構造や基本骨格の構成に使用するか、FRP製三次元ユニットを複数連接してより大きな構造を実現することにより、このFRP製三次元ユニットを大型の構造体や構造物の基本構成ユニットとして使用することが可能になり、それによって、従来鋼材で構成されていた大型の構造体や構造物に対し、とくに海洋構造物に対し、総合的に見て、重量面で、強度、剛性面で、設備、工事費面で、工事のやりやすさ、工期面で、長期耐久性面で、技術革新をもたらすことが可能になる。そして、本発明に係る海洋構造物は、このようなFRP製三次元ユニットを用いて、とくに前記全節点部の少なくとも一部において、FRPの強化繊維がFRP製棒状部材間にわたって連続して延びているFRP製三次元ユニットまたは該FRP製三次元ユニットが複数連接されてなるFRP製三次元構造体が、少なくとも3つ、枠体を形成するように接続されてなるFRP製組立構造体、または該FRP製組立構造体が複数連接されてなる大型FRP製構築体が、上下方向に水面を含む位置に配置され、該FRP製組立構造体または大型FRP製構築体の下部側の少なくとも一部に対し、全体が水中に位置する浮力体が配置されている構成とされる。 In such a three-dimensional unit made of FRP for an offshore structure according to the present invention, a plurality of FRP rod-shaped members are three-dimensionally organized through a combination of integral molding at a plurality of nodes, for example, a plane A three-dimensional three-dimensional unit having a substantially rectangular shape as viewed from the side or from the side, or a skeleton as a unit cross section having a triangular prism shape or a quadrangular prism shape. In such a three-dimensional unit made of FRP, since the FRP rod-like members are rigidly connected to each other at all the nodes and are configured in a ramen structure, the three-dimensional unit itself is secured to be lighter than steel. However, as a whole, extremely high rigidity and strength are ensured. In particular, if a thick bundle of a large number of reinforcing fibers, which has recently become possible to produce FRP rod-shaped members, is used, higher rigidity and strength can be achieved. In addition, the FRP reinforcing fibers continuously extend between the FRP rod-shaped members in at least a part of all the node portions, so that the FRP rod-shaped members are more securely fixed to each other at the node portions. A structure is formed, and high strength and rigidity as a three-dimensional unit are achieved. Further, since the three-dimensional unit is made of FRP, the production by molding can be easily performed, even the binding of a plurality of nodes section, without such such welding between metals, by a body forming It can be achieved, and the manufacturing can be facilitated as compared with that made of steel, and the manufacturing cost comparable to that made of steel as a whole can be achieved even when considering the higher material cost than steel. Especially in the marine environment, it is possible to easily achieve a higher specific strength than steel, and it is possible to express characteristics superior to steel in terms of fatigue and corrosion resistance. Maintenance costs can be significantly reduced. Therefore, an FRP three-dimensional unit having such excellent characteristics is appropriately configured in a large structure, and the unit itself is used for the main structure or basic structure of the structure or structure, or the FRP three-dimensional unit. By connecting multiple units to achieve a larger structure, this FRP three-dimensional unit can be used as a basic structural unit for large structures and structures, which are conventionally made of steel. Compared to large structures and structures, especially marine structures , in terms of weight, strength and rigidity, facilities and construction costs, ease of construction, and construction period This makes it possible to bring about technological innovation in terms of long-term durability. The offshore structure according to the present invention uses such a three-dimensional unit made of FRP, and particularly in at least a part of all the node portions, the reinforcing fiber of FRP extends continuously between the rod-like members made of FRP. FRP three-dimensional unit or a plurality of FRP three-dimensional units connected to each other, and at least three FRP three-dimensional structures connected so as to form a frame, A large FRP structure formed by connecting a plurality of FRP assembly structures is disposed at a position including the water surface in the vertical direction, and at least a part of the FRP assembly structure or the large FRP structure at the lower side. The buoyant body, which is located underwater as a whole, is arranged.

また、上記全節点部の少なくとも一部において、FRPの強化繊維として連続繊維と不連続繊維が共存している形態とすることもできる。不連続繊維の存在により、優れた形状賦形性や成形性を発揮しつつ、節点部での連続繊維の存在により、上記同様、FRP製棒状部材同士がより確実に剛接され、三次元ユニットとしての高い強度と剛性が達成される。   Further, in at least a part of all the nodes, continuous fibers and discontinuous fibers can coexist as reinforcing fibers of FRP. The presence of discontinuous fibers provides excellent shape shaping and formability, and the presence of continuous fibers at the node portion ensures that the FRP rod-like members are more securely rigidly connected to each other, as described above. High strength and rigidity are achieved.

また、FRP製三次元ユニットを構成する上記FRP製棒状部材においても、FRPの強化繊維として連続繊維が用いられる形態、連続繊維と不連続繊維が共存している形態とすることができる。連続繊維と不連続繊維が共存している形態においては、例えば、不連続繊維が存在しているが、連続繊維と例えば20mm以上はオーバーラップしている棒状部材の構造を採用することができ、高い剛性、強度と、優れた形状賦形性や成形性との両立をはかることが可能である。   In the FRP rod-shaped member constituting the FRP three-dimensional unit, continuous fibers can be used as FRP reinforcing fibers, and continuous fibers and discontinuous fibers can coexist. In the form where the continuous fiber and the discontinuous fiber coexist, for example, the discontinuous fiber exists, but the structure of a rod-shaped member that overlaps with the continuous fiber, for example, 20 mm or more, can be adopted. It is possible to achieve both high rigidity and strength, and excellent shape shaping and formability.

また、上記FRP製三次元ユニットにおいては、部分的にFRP製面状体が接合されている構成を採用することもできる。面状体は、その面方向に高い剛性を発現するので、必要に応じて部分的にFRP製面状体を接合しておくことにより、FRP製三次元ユニットを補強でき、とくに該面状体設置部で三次元ユニットの立体形状を維持するための高い剛性を確保できるようになり、上記節点部での剛接と併せて、FRP製三次元ユニット全体としてより高い剛性を確保できるようになる。さらに、複数の三次元ユニットの連接のために、FRP製面状体同士による接合用としても効果的に利用できる。   In the FRP three-dimensional unit, a configuration in which an FRP planar body is partially joined may be employed. Since the planar body exhibits high rigidity in the surface direction, the FRP three-dimensional unit can be reinforced by partially joining the FRP planar body as necessary, and in particular, the planar body. It becomes possible to secure high rigidity for maintaining the three-dimensional shape of the three-dimensional unit at the installation part, and it is possible to secure higher rigidity as a whole FRP three-dimensional unit in combination with the rigid contact at the above-mentioned node part. . Furthermore, since the plurality of three-dimensional units are connected, it can be effectively used for joining by FRP planar bodies.

このような本発明に係るFRP製三次元ユニットは、ユニット自体の形状、構造において、連接可能に構成されていることが好ましい。このようなFRP製三次元ユニットを連接することにより、より大型でかつ個々の部位が高い剛性を有する構造体の構成が可能になる。   Such an FRP three-dimensional unit according to the present invention is preferably configured to be connectable in the shape and structure of the unit itself. By connecting such FRP three-dimensional units, it is possible to construct a structure that is larger in size and has high rigidity at each part.

上記のようなFRP製三次元ユニットにおける強化繊維としては、とくに限定されず、炭素繊維やガラス繊維、アラミド繊維等の強化繊維、さらにはこれら強化繊維を組み合わせたハイブリッド構成の採用が可能である。例えば、疲労特性や剛性に優れる炭素繊維と疲労特性は高くないが材料費が安価なガラス繊維を適切な比率で構成することによって、波浪による繰り返し荷重に対して構造体としての所要の剛性を維持しつつ耐疲労特性に優れたコストパフォーマンスの高い強化繊維構成を創出可能となる。また、高い剛性、強度を目指す部位には、FRP製棒状部材の強化繊維として炭素繊維だけを用いられていることが好ましい。前述したように、近年炭素繊維の太束の入手が可能になってきたことから、太束化された炭素繊維束(例えば、48K(48,000本)や60K(60,000本)といった太束化された炭素繊維束)を使用したり、さらにはこのような太束化された炭素繊維束を複数束ねてより太束化された炭素繊維束を形成して使用したりできる。それによって、高い剛性、強度を確保しつつ、より大型のFRP製三次元ユニット、さらには多数のFRP製三次元ユニット連接構造からなる大型構造体に対応できる。また、より安価な構成を望む場合には、高い剛性や疲労特性を必要としない部位にはガラス繊維を主体に使用すればよい。この様に強化繊維のハイブリッド構成には、繊維束が複数の強化繊維から構成される場合や三次元構造体の部位によって適用する強化繊維を変えたり、繊維束の強化繊維構成を極端に変えることなどがある。   The reinforcing fiber in the three-dimensional unit made of FRP as described above is not particularly limited, and it is possible to employ a reinforcing fiber such as carbon fiber, glass fiber, or aramid fiber, or a hybrid configuration in which these reinforcing fibers are combined. For example, by constructing carbon fiber with excellent fatigue characteristics and rigidity and glass fiber that is not high in fatigue characteristics but low in material costs at an appropriate ratio, the required rigidity as a structure is maintained against repeated loads caused by waves. However, it is possible to create a reinforced fiber structure with excellent fatigue resistance and high cost performance. Moreover, it is preferable that only carbon fiber is used as the reinforcing fiber of the FRP rod-shaped member at a site aiming at high rigidity and strength. As described above, since a large bundle of carbon fibers has become available in recent years, a thick bundle of carbon fibers (for example, 48K (48,000) or 60K (60,000)) is obtained. Bundled carbon fiber bundles) can be used, and a plurality of such thickened carbon fiber bundles can be bundled to form a thickened carbon fiber bundle. Thereby, while ensuring high rigidity and strength, it is possible to cope with a larger FRP three-dimensional unit and a large-sized structure composed of a large number of FRP three-dimensional unit connecting structures. When a cheaper configuration is desired, glass fiber may be mainly used for a portion that does not require high rigidity and fatigue characteristics. In this way, in the hybrid configuration of reinforcing fibers, when the fiber bundle is composed of a plurality of reinforcing fibers, the reinforcing fiber to be applied is changed depending on the part of the three-dimensional structure, or the reinforcing fiber configuration of the fiber bundle is extremely changed. and so on.

このように、本発明においては、上記のようなFRP製三次元ユニットを複数連接して、より大型のFRP製三次元構造体を構成することが可能である。例えば、FRP製三次元ユニットを複数連接することにより、全体として直線状に延びるFRP製三次元構造体や面状に延びるFRP製三次元構造体を構成することが可能である。   Thus, in the present invention, it is possible to configure a larger FRP three-dimensional structure by connecting a plurality of FRP three-dimensional units as described above. For example, by connecting a plurality of three-dimensional units made of FRP, it is possible to configure a three-dimensional structure made of FRP that extends linearly as a whole or a three-dimensional structure made of FRP that extends in a planar shape.

このようなFRP製三次元構造体においては、FRP製三次元ユニット間の連接部の少なくとも一部が、FRP製三次元ユニットの端部同士の剛接によるラーメン構造に構成されていることもできるし、FRP製三次元ユニット間の連接部の少なくとも一部が、FRP製三次元ユニットの端部同士の柔接による非ラーメン構造に構成されていることもできる。構成されるべきFRP製三次元構造体に対する要求特性に応じて、連接部を剛接構造にしたり、柔接構造にしたりできる。この連接部の剛接構造には、基本的にはFRP製三次元ユニット内における剛接ラーメン構造と同等の構造を採用することができ、柔接構造には、回動可能な連結構造(例えば、ピンを介した連結構造)等を採用できる。ただし、これらの連接部では、必ずしもFRP製部材のみを使用する必要はなく、必要に応じて、金属製部材(例えば、(穿孔部を有する)金属板状部材、ボルト/ナット、ピン)を使用してもよい。   In such a three-dimensional structure made of FRP, at least a part of the connecting portion between the three-dimensional units made of FRP can be configured as a ramen structure by rigid contact between the end portions of the three-dimensional unit made of FRP. And at least one part of the connection part between 3D units made from FRP can also be comprised by the non-ramen structure by the soft connection of the edge parts of the 3D unit made from FRP. Depending on the required characteristics of the three-dimensional FRP structure to be constructed, the connecting portion can be a rigid structure or a flexible structure. As the rigid connection structure of the connecting portion, a structure equivalent to the rigid connection rigid frame structure in the three-dimensional unit made of FRP can be basically adopted, and the flexible connection structure includes a rotatable connection structure (for example, , A connecting structure via a pin) or the like. However, it is not always necessary to use only FRP members at these connecting parts, and metal members (for example, metal plate-like members (with perforations), bolts / nuts, pins) are used as necessary. May be.

また、本発明においては、少なくとも3つの、前述のようなFRP製三次元ユニットまたは上述のようなFRP製三次元構造体が、枠体を形成するように接続されてなるFRP製組立構造体についても提供される。枠体の形成は、平面的に見て枠体を形成するように行われてもよく、側面的に見て枠体を形成するように行われてもよく、これら両方にて、つまり立体的に見て枠体を形成するように行われてもよい。換言すれば、FRP製三次元ユニットやFRP製三次元構造体が、三角形や四角形や、さらにはそれ以上の多角形の枠体を形成するように接続され、より大型のFRP製組立構造体が構成されることになる。各接続部においては、剛接、柔接のいずれも可能である。大型になっても極力剛体構造であることが望まれる場合には剛接すればよく、大型になったために局部的に応力を解放して全体として大きな外力やモーメントを支えなくてもよい構造が望まれる場合には柔接すればよい。   In the present invention, at least three FRP three-dimensional units as described above or FRP three-dimensional structures as described above are connected so as to form a frame. Is also provided. The frame body may be formed so as to form a frame body when viewed in a plan view, or may be formed so as to form a frame body when viewed from a side surface. It may be performed so as to form a frame body. In other words, the FRP three-dimensional unit and the FRP three-dimensional structure are connected so as to form a polygonal frame of a triangle, a quadrangle, or more, and a larger FRP assembly structure is obtained. Will be composed. Each connecting portion can be either rigid or flexible. If it is desired to have a rigid structure as much as possible even if it is large, it is sufficient to make a rigid contact, and since it has become large, a structure that does not support large external forces and moments as a whole by releasing stress locally is desired. If you ’re going to be intimidated, you ’re good at it.

そして、このようなFRP製組立構造体を複数連接することにより、より一層大型のFRP製組立構造体の連結体である「大型FRP製構築体」の構成が可能になる。各連接部においては、剛接、柔接のいずれも可能である。この場合にも、該FRP製組立構造体と同様に連接部については、大型になっても極力剛体構造の構築体であることが望まれる場合には剛接すればよく、大型になったために局部的に応力を解放して全体として大きな外力やモーメントを支えなくてもよい構造の該構築体が望まれる場合には柔接すればよい。   By connecting a plurality of such FRP assembly structures, it is possible to construct a “large FRP construction body” that is a connected body of even larger FRP assembly structures. Each connecting portion can be either rigid connection or soft connection. Also in this case, like the FRP assembly structure, the connecting portion may be rigidly connected if it is desired to be a structure having a rigid structure as much as possible even if it is large. In the case where the structure having a structure that does not need to support the large external force and moment as a whole by releasing the stress is desired, it may be softly connected.

上記のようなFRP製組立構造体や大型FRP製構築体は、とくに、海洋構造物に用いて好適なものとなる。したがって、上述のFRP製組立構造体または大型FRP製構築体が上下方向に水面を含む位置に配置され、該FRP製組立構造体または大型FRP製構築体の下部側の少なくとも一部に対し、全体が水中に位置する浮力体が配置されている本発明に係る海洋構造物が構成される。この場合、浮力体は、例えばFRPやエンジニアリングプラスチックスを用いて構成することが可能である。 The FRP assembly structure and the large FRP structure as described above are particularly suitable for use in offshore structures. Therefore, the above-mentioned FRP assembly structure or large FRP structure is disposed at a position including the water surface in the vertical direction, and at least part of the FRP assembly structure or large FRP structure is at least partly lower. A marine structure according to the present invention in which a buoyant body located in the water is disposed . In this case, the buoyancy body can be configured using, for example, FRP or engineering plastics.

このような海洋構造物においては、上下方向に水面を含む位置に配置されるFRP製組立構造体または大型FRP製構築体が、複数の節点部での剛接結合を介して複数のFRP製棒状部材が三次元的に組織されたFRP製三次元ユニットを用いて構成されているので、FRP製組立構造体または大型FRP製構築体設置部では貫通開口が形成されることになり、この部分では海水が実質的に自由に通過できるようになるため、その設置部では基本的に海水からは大きな波力を受けなくて済むことになる。その結果、海洋構造物においては、FRP製組立構造体や大型FRP製構築体にたとえ部分的に柔接部があったとしても、波動による揺動が非常に小さいため海洋構造物全体として必要な形態を保つことが可能になり、大型の海洋構造物であっても、構築が可能になる。また、FRP製組立構造体または大型FRP製構築体の下部側には、浮力体がその全体が水中に位置する状態で配置されているので、上記のFRP製組立構造体または大型FRP製構築体設置部での海水が実質的に自由に通過できる貫通開口状態を維持しつつ、浮力体による大きな浮力が得られ、FRP製組立構造体またはFRP製構築体の上部側の水上位置を適切に維持することが可能になる。FRP製組立構造体または大型FRP製構築体の上部上には、何らかの設備(例えば、前述のような海上での風力発電装置や太陽光発電設備などの搭載用エネルギーファーム基盤や防災基地、各種水上建造物搭載用の基盤や基地、各種港湾施設、飛行体の洋上滑走路)が搭載されることになるが、その搭載物を支えている海洋構造物としては、適切な浮力を発生させる構造と、上記FRP製組立構造体または大型FRP製構築体設置部における海水から大きな力を受けなくて済む構造との両立が可能になる。より具体的には、最も基本的な構成要素として細身のFRP製棒状部材を用いて構成された上記のようなFRP製組立構造体または大型FRP製構築体設置部は水面貫通部として構成され、水面下深くに全体が水中に位置するように配置された浮力体は波力等による大きな変動力を受けることのない必要な浮力発生部として構成されるので、水面近くになるほど大きくなる波や吹送流による力の低減、浮力変動の低減、過剰な復元力を持たないことによる浮力体動揺の同調周期の長周期化による波の主要周期との共振回避、などを図ることが可能になる。さらに、耐腐食特性、耐疲労特性の高いFRPをこの水面貫通部の構成に用いることにより、最も厳しい腐食環境であるとともに、水圧変動の大きな水面近傍の構造として、極めて有利な構造を実現できる。ただし現実的には、搭載物を支えている部位の直下には、上下方向に水面を含む位置に配置された、上記全体が水中に位置する浮力体とは別の浮力体を有する構成も好ましい。   In such an offshore structure, an FRP assembly structure or a large FRP structure arranged at a position including the water surface in the vertical direction has a plurality of FRP rod-like shapes through rigid connection at a plurality of nodes. Since the member is configured using a three-dimensional FRP unit in which the members are three-dimensionally organized, a through opening is formed in the FRP assembly structure or large FRP structure installation part. Since the seawater can pass through substantially freely, the installation section basically does not need to receive a large wave force from the seawater. As a result, in the marine structure, even if the FRP assembly structure or the large FRP structure has a partially welded portion, it is necessary for the entire marine structure because the oscillation due to the wave is very small. The form can be maintained, and even a large offshore structure can be constructed. In addition, since the buoyancy body is disposed in a state where the whole of the buoyancy body is located in the water, the FRP assembly structure or the large FRP structure is disposed on the lower side of the FRP assembly structure or the large FRP structure. Large buoyancy by the buoyancy body is obtained while maintaining a through-opening state in which seawater at the installation section can pass substantially freely, and the water position on the upper side of the FRP assembly structure or FRP structure is appropriately maintained. It becomes possible to do. On top of the FRP assembly structure or large FRP structure, there is some kind of equipment (for example, the above-mentioned energy farm base for mounting wind power generators or solar power generation facilities, disaster prevention bases, various water (Building foundations and bases, various port facilities, flying offshore runways) will be installed, but as an offshore structure that supports the mounted structure, it has a structure that generates appropriate buoyancy. The FRP assembly structure or the large FRP structure installation part can be compatible with a structure that does not require a large force from seawater. More specifically, the FRP assembly structure or the large FRP structure installation part configured using a thin FRP rod-shaped member as the most basic constituent element is configured as a water surface penetrating part, The buoyancy body, which is placed deep under the surface of the water so that the entire body is located in the water, is configured as a necessary buoyancy generator that does not receive large fluctuating forces due to wave forces, etc. It is possible to reduce the force caused by the flow, reduce buoyancy fluctuations, avoid resonance with the main period of the wave by increasing the tuning period of the buoyant body oscillation by not having an excessive restoring force, and the like. Furthermore, by using FRP having high corrosion resistance and fatigue resistance for the structure of the water surface penetration portion, it is possible to realize a very advantageous structure as a structure in the vicinity of the water surface that is the most severe corrosive environment and has a large water pressure fluctuation. However, in reality, a configuration having a buoyancy body different from the buoyancy body located entirely in water, which is disposed at a position including the water surface in the vertical direction, immediately below the portion supporting the load is also preferable. .

なお、本発明による技術思想を用いれば、上記のような海洋構造物以外にも大型の構造物の構築が可能である。とくに、前述のようなFRP製組立構造体または大型FRP製構築体を建物または橋梁の骨格として用いた構造物の構築が可能であり、より具体的には、大型建築物の屋根の下部フレーム構造体や、浮体橋の骨格や鉄道橋あるいは道路橋の骨格として用いることが可能である。 If the technical idea according to the present invention is used, it is possible to construct a large structure in addition to the marine structure as described above. In particular, it is possible to construct a structure using the above-mentioned FRP assembly structure or large FRP structure as a building or bridge skeleton, and more specifically, the lower frame structure of the roof of a large building. It can be used as a skeleton of a body, a floating bridge, a railway bridge, or a road bridge.

このように、本発明によれば、軽量性、接合や成形、工事の容易性等を確保しつつ、総合的な設備・工事費用として、鋼材を用いた場合に比べ遜色のない費用で大型の構造物を構築でき、しかもFRPの優れた耐食性等を活かしてメンテナンス費用の大幅な低減が可能になる。その効果は、海洋構造物として適用した場合に顕著である。   As described above, according to the present invention, while ensuring lightness, joining and molding, ease of construction, etc., as a comprehensive equipment / construction cost, it is large compared with the case of using steel materials at a large cost. A structure can be constructed, and the maintenance cost can be greatly reduced by utilizing the excellent corrosion resistance of FRP. The effect is remarkable when applied as an offshore structure.

本発明の一実施態様に係るFRP製三次元ユニットの概略斜視図である。It is a schematic perspective view of the three-dimensional unit made from FRP which concerns on one embodiment of this invention. 本発明の一実施態様に係るFRP製組立構造体と大型FRP製構築体の概略斜視図である。It is a schematic perspective view of the FRP assembly structure and large FRP structure according to one embodiment of the present invention. 本発明の一実施態様に係る海洋構造物の概略斜視図である。It is a schematic perspective view of the offshore structure which concerns on one embodiment of this invention. 図3の海洋構造物の部分拡大概略正面図である。FIG. 4 is a partially enlarged schematic front view of the offshore structure of FIG. 3. 本発明の技術思想による構造物の概略斜視図である。It is a schematic perspective view of the structure by the technical idea of this invention. 図5の構造物のA部やB部の拡大概略側面図である。It is an expansion schematic side view of A part and B part of the structure of FIG. 本発明の別の実施態様に係るFRP製組立構造体の概略斜視図である。It is a schematic perspective view of the assembly structure made from FRP which concerns on another embodiment of this invention. 本発明の技術思想による別の構造物の概略部分斜視図である。It is a general | schematic fragmentary perspective view of another structure by the technical idea of this invention. 本発明の技術思想によるさらに別の構造物の概略部分斜視図である。It is a general | schematic fragmentary perspective view of another structure by the technical idea of this invention. 本発明別の実施態様に係る海洋構造物の概略断面図である。It is a schematic cross-sectional view of the offshore structure in accordance with another embodiment of the present invention.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の一実施態様に係るFRP製三次元ユニットを示している。図1に示すFRP製三次元ユニット1においては、複数の節点部2での結合を介して複数のFRP製棒状部材3が三次元的に組織され、より具体的には全体として矩形の箱形の骨組みを形成するように三次元的に組織され、全節点部2でFRP製棒状部材3同士が剛接されてラーメン構造を構成している。全節点部2での剛接により、FRP製三次元ユニット1全体として極めて高い剛性が確保されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an FRP three-dimensional unit according to an embodiment of the present invention. In the FRP three-dimensional unit 1 shown in FIG. 1, a plurality of FRP rod-like members 3 are three-dimensionally structured through coupling at a plurality of node portions 2, and more specifically, a rectangular box shape as a whole. The FRP rod-shaped members 3 are rigidly contacted with each other at all the node portions 2 to form a ramen structure. Due to the rigid contact at all the nodes 2, extremely high rigidity is ensured as the entire FRP three-dimensional unit 1.

このようなFRP製三次元ユニット1においては、前述したように、全節点部2の少なくとも一部の節点部2において、FRPの強化繊維(例えば、炭素繊維)がFRP製棒状部材3間にわたって連続して延びていることが好ましい。また、少なくとも一部の節点部2において、FRPの強化繊維として連続繊維と不連続繊維が共存している形態とすることもできる。とくに節点部2での連続繊維の存在により、FRP製棒状部材3同士がより確実に剛接され、三次元ユニット1としての高い剛性が達成される。さらに高い剛性を例えば部分的に確保したい場合には、その部位に対してFRP製面状体(図示略)を付設することもできる。   In such an FRP three-dimensional unit 1, as described above, FRP reinforcing fibers (for example, carbon fibers) are continuous across the FRP rod-shaped members 3 in at least some of the node portions 2 of all the node portions 2. Preferably extending. In addition, at least some of the node portions 2 may have a form in which continuous fibers and discontinuous fibers coexist as reinforcing fibers of FRP. In particular, due to the presence of continuous fibers at the node 2, the FRP rod-like members 3 are more firmly connected to each other, and high rigidity as the three-dimensional unit 1 is achieved. For example, when it is desired to partially secure a higher rigidity, an FRP surface body (not shown) can be attached to the portion.

上記のようなFRP製三次元ユニット1を連接可能に構成しておき、複数のFRP製三次元ユニット1を連接することにより、例えば図2に示すように、より大型のFRP製三次元構造体10を構成することが可能であり、図示例では、複数のFRP製三次元ユニット1を直線状に連接することにより、直線状に延びるFRP製三次元構造体10が形成されている。ただし、面状に連接すれば、面状に広がるFRP製三次元構造体(図示略)を構成することも可能である。このようなFRP製三次元構造体10においては、FRP製三次元ユニット1間の連接部は、剛接によるラーメン構造に構成することもできるし、柔接による非ラーメン構造に構成することもでき、必要に応じて選択すればよい。例えばFRP製三次元構造体10の長さが比較的長く、外力により大きなモーメントや応力(例えば曲げ応力)が発生しやすい場合には、適宜柔接構造を採用すればよく、FRP製三次元構造体10の長さが比較的短く、FRP製三次元構造体10全体が剛体であることを望まれる場合には、適宜剛接構造を採用すればよい。とくに柔接構造を採用する場合には、連結部に金属製の板状部材やボルト/ナットやピン等の使用も可能である。   By configuring the FRP three-dimensional unit 1 as described above to be connectable and connecting a plurality of FRP three-dimensional units 1, for example, as shown in FIG. 2, a larger FRP three-dimensional structure is provided. 10, the FRP three-dimensional structure 10 extending linearly is formed by connecting a plurality of FRP three-dimensional units 1 linearly. However, it is also possible to constitute a three-dimensional FRP three-dimensional structure (not shown) that spreads in a planar shape if connected in a planar shape. In such an FRP three-dimensional structure 10, the connecting portion between the FRP three-dimensional units 1 can be configured to have a rigid frame structure or a non-ramen structure by soft connection. The selection may be made as necessary. For example, if the length of the FRP three-dimensional structure 10 is relatively long and a large moment or stress (for example, bending stress) is likely to be generated by an external force, a flexible structure may be adopted as appropriate. When the length of the body 10 is relatively short and the entire FRP three-dimensional structure 10 is desired to be a rigid body, a rigid contact structure may be employed as appropriate. In particular, when a flexible structure is adopted, it is possible to use a metal plate-like member, a bolt / nut, a pin, or the like for the connecting portion.

上記のようなFRP製三次元構造体10(場合によっては、FRP製三次元構造体10の構成要素であるFRP製三次元ユニット1)を、少なくとも3つ、枠体を形成するように接続することにより、例えば図2に示すようなFRP製組立構造体11を構成できる。図示例では、平面的に見て三角形の枠体を形成するように3つのFRP製三次元構造体10が接続されているが、FRP製組立構造体の構成は、側面的に見て枠体を形成するように行われてもよく、立体的に見て枠体を形成するように行われてもよい。また、図2に示したようなFRP製組立構造体11の各接続部においては、剛接、柔接のいずれも可能である。大型になっても極力剛体構造であることが望まれる場合には適宜剛接すればよく、大型になったために局部的に応力を解放して全体として大きな外力やモーメントを支えなくてもよい構造が望まれる場合には適宜柔接すればよい。   At least three FRP three-dimensional structures 10 (in some cases, FRP three-dimensional units 1 that are constituent elements of the FRP three-dimensional structure 10) are connected so as to form a frame. Thus, for example, an FRP assembly structure 11 as shown in FIG. 2 can be configured. In the illustrated example, three FRP three-dimensional structures 10 are connected so as to form a triangular frame when viewed in plan, but the configuration of the FRP assembly structure is a frame when viewed from the side. It may be performed so as to form a frame body when viewed three-dimensionally. Moreover, in each connection part of the assembly structure 11 made from FRP as shown in FIG. 2, either rigid contact or soft contact is possible. If it is desired to have a rigid structure as much as possible even if it becomes large, it is sufficient to make a rigid contact as appropriate, and since it has become large, there is a structure that does not support large external forces and moments as a whole by releasing stress locally. If desired, it may be softened appropriately.

上記のようなFRP製組立構造体11を複数連接することにより、より一層大型のFRP製構築体12の構成が可能になる。FRP製組立構造体11の連接は、例えばX−X方向やY−Y方向、さらにはこれら両方向に行うことが可能であり、場合によっては、縦型姿勢のFRP製組立構造体11も加えて、立体的に連接することも可能である。例えば、後述の図7に示すようなFRP製組立構造体、さらにはそれに類似するFRP製組立構造体を構造要素として複数用い、それらを平面的に、または/および、立体的に、任意に組み合わせて連接し、所望の大型FRP製構築体を構成することが可能である。図2に示した例では、複数のFRP製組立構造体11がX−X方向とY−Y方向に連接され、平面的に見て巨大な大型FRP製構築体12が構成される場合を示している。この場合にも、各連接部においては、剛接、柔接のいずれも可能である。前述したのと同様、各連接部においては、大型になっても極力剛体構造の構築体であることが望まれる場合には適宜剛接すればよく、大型になったために局部的に応力を解放して全体として大きな外力やモーメントを支えなくてもよい構造の大型FRP製構築体が望まれる場合には適宜柔接すればよい。   By connecting a plurality of the FRP assembly structures 11 as described above, it is possible to configure an even larger FRP structure 12. The FRP assembly structure 11 can be connected, for example, in the XX direction, the YY direction, or both of these directions. In some cases, the FRP assembly structure 11 in a vertical posture is also added. It is also possible to connect three-dimensionally. For example, an FRP assembly structure as shown in FIG. 7 to be described later, or an FRP assembly structure similar to the FRP assembly structure, is used as a structural element, and they are arbitrarily combined in a planar or / and three-dimensional manner. To establish a desired large FRP construction. In the example shown in FIG. 2, a plurality of FRP assembly structures 11 are connected in the XX direction and the YY direction, and a huge large FRP structure 12 is configured in plan view. ing. Also in this case, each connection portion can be either rigid connection or soft connection. Similar to the above, at each connecting part, if it is desired to be a structure with a rigid structure as much as possible even if it becomes large, it may be rigidly connected as appropriate. When a large FRP structure having a structure that does not need to support a large external force or moment as a whole is desired, it may be softened appropriately.

上記のような大型FRP製構築体12(場合によっては、大型FRP製構築体12の構成要素であるFRP製組立構造体11)は、例えば、大型の海洋構造物や、大型の建物や橋梁の骨格に展開可能である。   The large FRP structure 12 as described above (in some cases, the FRP assembly structure 11 that is a component of the large FRP structure 12) is, for example, a large marine structure, a large building, or a bridge. Can be deployed to the skeleton.

図3、図4は、FRP製組立構造体11が複数X−X方向とY−Y方向に連接されたFRP製構築体12を用いて大型の海洋構造物21を構成する場合を例示している。図示例では、FRP製組立構造体11が複数X−X方向とY−Y方向に連接された構成例を示しているが、前述したように、必要に応じて任意の立体的な連接、構成も可能である。図3、図4に示した例では、大型FRP製構築体12が、より詳しくは各FRP製組立構造体11が、上下方向に水面22を含む位置に配置され、各FRP製組立構造体11の下部側に、より詳しくはFRP製組立構造体11を構成する各FRP製三次元構造体10の下部側に、全体が水中に位置する浮力体23が配置されている。各浮力体23は、本例ではFRP製の密封中空体に形成されており、大きな浮力を発生させて大型FRP製構築体12の上部を水上の位置に保つことができるようになっている。なお、図示例では、各浮力体23は、一本物の均一な太さのものとして示してあるが、必要に応じて(例えば、搭載物に応じて)、異なった、あるいは同一の太さの分割形式のものに構成してもよい。また、図示例では、各浮力体23は各FRP製三次元構造体10の真下に配置されているが、他の構成も可能である。例えば、浮力体を各FRP製三次元構造体10や各FRP製組立構造体11の下部内に抱き込む構成や、浮力体よりも下方に位置する部材を吊り上げるようにした構成の採用、これらの構成を任意に組み合わせた構成の採用も可能である。このような構成の採用により、流体から受ける力の抑制を図ることが可能になる。   3 and 4 exemplify a case in which a large marine structure 21 is configured by using FRP construction bodies 12 in which FRP construction structures 11 are connected in a plurality of XX directions and YY directions. Yes. In the illustrated example, a configuration example in which the FRP assembly structures 11 are connected in a plurality of X-X directions and Y-Y directions is shown. However, as described above, any three-dimensional connection and configuration can be made as necessary. Is also possible. In the example shown in FIGS. 3 and 4, the large FRP construction body 12 is arranged in more detail, and each FRP assembly structure 11 is disposed at a position including the water surface 22 in the vertical direction. More specifically, a buoyancy body 23 that is entirely located in water is disposed on the lower side of each FRP three-dimensional structure 10 that constitutes the FRP assembly structure 11. Each buoyancy body 23 is formed in a sealed hollow body made of FRP in this example, and can generate a large buoyancy to keep the upper portion of the large FRP construction body 12 at a position on the water. In the illustrated example, each buoyancy body 23 is shown as having a single uniform thickness. However, if necessary (for example, depending on the load), the buoyancy bodies 23 have different or the same thickness. It may be configured in a divided format. In the illustrated example, each buoyancy body 23 is disposed directly below each FRP three-dimensional structure 10, but other configurations are possible. For example, adopting a configuration in which a buoyancy body is held in the lower part of each FRP three-dimensional structure 10 or each FRP assembly structure 11, or a configuration in which a member positioned below the buoyancy body is lifted, It is also possible to adopt a configuration in which the configurations are arbitrarily combined. By adopting such a configuration, it is possible to suppress the force received from the fluid.

上記のような海洋構造物21においては、複数のFRP製棒状部材が三次元的に組織されたFRP製三次元ユニットを用いて構成されたFRP製組立構造体11または図2に示したような大型FRP製構築体12が、上下方向に水面22を含む位置に配置されるので、この水面22を含む位置では貫通開口が形成されることになり、この部分では海水が実質的に自由に通過できるようになって、基本的に海水からは大きな力を受けなくて済むことになる。その結果、海洋構造物21においては、たとえ部分的に柔接部があったとしても、海洋構造物21全体として必要な形態を保つことが可能になり、極めて大型の海洋構造物21であっても、構築が可能になる。そして、全体が水中に位置する浮力体23が設けられていることにより、その大きな浮力によって、海洋構造物21の上面位置を水面22の上方の適切な高さに保つことが可能になる。したがって、図3に示した海洋構造物21の上面上には、相当な重量物の搭載が可能になり、種々の用途展開をはかることが可能になる。   In the offshore structure 21 as described above, an FRP assembly structure 11 configured using an FRP three-dimensional unit in which a plurality of FRP rod-shaped members are three-dimensionally organized, or as shown in FIG. Since the large FRP structure 12 is disposed at a position including the water surface 22 in the vertical direction, a through opening is formed at the position including the water surface 22, and seawater passes substantially freely through this portion. As a result, it is basically not necessary to receive great power from seawater. As a result, the marine structure 21 can maintain a necessary form as the entire marine structure 21 even if there is a soft part, and the marine structure 21 is an extremely large marine structure 21. Can also be built. And by providing the buoyancy body 23 which is entirely located in water, it becomes possible to keep the upper surface position of the marine structure 21 at an appropriate height above the water surface 22 due to the large buoyancy. Therefore, it is possible to mount a considerable heavy object on the upper surface of the offshore structure 21 shown in FIG. 3 and to develop various applications.

図5は、図2に示したのとは異なる形状のFRP製組立構造体31が複数一方向に連接されて、トラス構造を有する大型FRP製構築体32が構成されている。この大型FRP製構築体32のA部やB部は、例えば図6に示すように、図1に示したようなFRP製三次元ユニット1を一列あるいは複数列で一方向に連接することによって構成できる。この場合、種々の形態のFRP製三次元ユニットを用いてFRP製組立構造体を構成することができるが、それについては後述の図7を用いて例示する。   In FIG. 5, a large FRP structure 32 having a truss structure is configured by connecting a plurality of FRP assembly structures 31 having shapes different from those shown in FIG. 2 in one direction. For example, as shown in FIG. 6, the A part and the B part of the large FRP structure 32 are configured by connecting the FRP three-dimensional units 1 as shown in FIG. 1 in one or more rows in one direction. it can. In this case, an FRP assembly structure can be configured using various types of FRP three-dimensional units, which will be exemplified with reference to FIG. 7 described later.

上記のような大型FRP製構築体32も極めて大型あるいは長尺のものに構成可能であり、軽量でありながら極めて高い剛性を発現可能である。したがって、大型FRP製構築体32は、大型の構造物の構築、例えば、大型建築物の屋根のフレーム構造体や、浮体橋の骨格や鉄道橋あるいは道路橋の骨格の構築に用いることが可能である。   The large FRP structure 32 as described above can also be configured to be extremely large or long, and can exhibit extremely high rigidity while being lightweight. Therefore, the large FRP structure 32 can be used to construct a large structure, for example, a frame structure of a roof of a large building, a skeleton of a floating bridge, a skeleton of a railway bridge, or a road bridge. is there.

また、本発明におけるFRP製三次元ユニット、FRP製三次元構造体、FRP製組立構造体、大型FRP製構築体は、上述した構造例以外にも各種の形態、形状を採り得る。前述のFRP製三次元ユニット1は、矩形の骨組みを基本に形成されていたが、他の形状、とくに三角形の骨組みを基本に形成してもよい。例えば図7に、三角形の骨組みを基本に形成されたFRP製三次元ユニット41を用いて構成したFRP製組立構造体42(またはFRP製三次元構造体)を例示する。三角形のFRP製三次元ユニット41を用いることにより、FRP製組立構造体42を少なくとも部分的にトラス構造に構成でき、高い剛性を有する構造物の構築が可能になる。このようなFRP製組立構造体42を用いて、例えば図8に示すように、構造物としての建物における、大型FRP製構築体としての大型の屋根の骨格43を構成することが可能である。44は、屋根の骨格43上に設けられた表層材を示している。このように、大型の屋根の骨格43であっても、軽量で高剛性に構築することが可能になり、各部の構成要素を連接して構築できるので、工事の容易化を図ることができるとともに、コスト、工数の低減も可能になる。   Further, the FRP three-dimensional unit, the FRP three-dimensional structure, the FRP assembly structure, and the large FRP structure in the present invention may take various forms and shapes in addition to the above-described structural examples. The FRP three-dimensional unit 1 described above is formed based on a rectangular frame, but may be formed based on another shape, particularly a triangular frame. For example, FIG. 7 illustrates an FRP assembly structure 42 (or an FRP three-dimensional structure) configured using an FRP three-dimensional unit 41 formed based on a triangular framework. By using the triangular three-dimensional unit 41 made of FRP, the FRP assembly structure 42 can be at least partially configured as a truss structure, and a structure having high rigidity can be constructed. Using such an FRP assembly structure 42, for example, as shown in FIG. 8, it is possible to configure a large roof skeleton 43 as a large FRP structure in a building as a structure. Reference numeral 44 denotes a surface layer material provided on the roof skeleton 43. Thus, even the large roof skeleton 43 can be constructed with light weight and high rigidity, and can be constructed by connecting the components of each part, so that construction can be facilitated. In addition, cost and man-hours can be reduced.

また、図9に示すように、三角形形状のFRP製三次元ユニット51と他の形状のFRP製三次元ユニットを適切に組み合わせることにより、必要な部位がトラス構造に構成された大型の橋梁の骨格52を構成することが可能である。この場合にも、大型の橋梁の骨格52であっても、軽量で高剛性に構築することが可能になり、各部の構成要素を連接して構築できるので、工事の容易化をはかることができるとともに、コスト、工数の低減も可能になる。この様に工事費が大幅に低減することから、図3で示した海洋構造物の適用も拡がり、図10に示す様な海洋構造物21の上に各種建築物55、56、57が設置された大規模浮体建築物ファームが可能となる。   Further, as shown in FIG. 9, a large-scale bridge skeleton in which necessary portions are configured in a truss structure by appropriately combining a triangular FRP three-dimensional unit 51 and another shape FRP three-dimensional unit. 52 can be configured. Also in this case, even the large bridge skeleton 52 can be constructed with light weight and high rigidity, and can be constructed by connecting the components of each part, so that the construction can be facilitated. At the same time, cost and man-hours can be reduced. Since the construction cost is greatly reduced in this way, the application of the marine structure shown in FIG. 3 is also expanded, and various buildings 55, 56, 57 are installed on the marine structure 21 as shown in FIG. A large-scale floating building farm becomes possible.

上述したような海洋構造物21や大型FRP製構築体32、43、52は、現場にて、適切な大きさのFRP製ユニット単位で作製したものを順次接合していくことで構築可能である。各ユニットはFRP製で軽量であるから、大型のあるいは専用の重機を使用することなく極めて容易にかつ安価に接合することが可能になり、最終的な構築物が大型のものであっても、総合的にみて従来の金属製海洋構造物よりも安価な工事費の達成が可能である。海洋構造物21や大型FRP製構築体32の主要素材がFRPであるので、長期間安定して性能を維持することが可能であり、メンテナンス費用の削減も可能である。   The marine structure 21 and the large FRP structures 32, 43, and 52 as described above can be constructed by sequentially joining those produced in units of FRP units of an appropriate size on site. . Since each unit is made of FRP and is lightweight, it can be joined very easily and inexpensively without using large or dedicated heavy machinery. Even if the final structure is large, In view of this, it is possible to achieve construction costs that are lower than conventional metal offshore structures. Since the main material of the offshore structure 21 and the large FRP structure 32 is FRP, the performance can be stably maintained for a long time, and the maintenance cost can be reduced.

このような本発明に係る大型の構造物は、上記のような海洋構造物21やFRP製構築体32、43、52以外にも、防災基地、浮体橋、各種水上建造物搭載用の基盤や基地、各種港湾施設、洋上滑走路等への適用を図ることが可能である。   In addition to the marine structure 21 and the FRP structures 32, 43, and 52, the large structure according to the present invention includes a disaster prevention base, a floating bridge, a base for mounting various floating structures, Application to bases, various port facilities, offshore runways, etc. is possible.

本発明は、軽量化、高い力学特性、工事費・設備費低減、長寿命化等が望まれるあらゆる大型、大規模の各種構造体や構造物に適用可能である。   The present invention can be applied to various large-scale and large-scale structures and structures for which weight reduction, high mechanical properties, construction cost / equipment cost reduction, long life, and the like are desired.

1、41、51 FRP製三次元ユニット
2 節点部
3 FRP製棒状部材
10 FRP製三次元構造体
11、42 FRP製組立構造体
12 大型FRP製構築体
21 海洋構造物
22 水面
23 浮力体
31 FRP製組立構造体
32 大型FRP製構築体
43 屋根の骨格
44 表層材
52 橋梁の骨格
55、56、57 建築物
DESCRIPTION OF SYMBOLS 1, 41, 51 FRP three-dimensional unit 2 Node part 3 FRP rod-shaped member 10 FRP three-dimensional structure 11, 42 FRP assembly structure 12 Large FRP structure 21 Marine structure 22 Water surface 23 Buoyant body 31 FRP Assembly structure 32 Large FRP structure 43 Roof skeleton 44 Surface material 52 Bridge skeleton 55, 56, 57 Building

Claims (7)

複数の節点部での一体成形による結合を介して複数のFRP製棒状部材が三次元的に組織され、全節点部でFRP製棒状部材同士が剛接されてラーメン構造を構成しており、前記全節点部の少なくとも一部において、FRPの強化繊維がFRP製棒状部材間にわたって連続して延びているFRP製三次元ユニットまたは該FRP製三次元ユニットが複数連接されてなるFRP製三次元構造体が、少なくとも3つ、枠体を形成するように接続されてなるFRP製組立構造体、または該FRP製組立構造体が複数連接されてなる大型FRP製構築体が、上下方向に水面を含む位置に配置され、該FRP製組立構造体または大型FRP製構築体の下部側の少なくとも一部に対し、全体が水中に位置する浮力体が配置されていることを特徴とする海洋構造物。 A plurality of FRP rod-shaped members are three-dimensionally organized through a joint formed by integral molding at a plurality of node portions, and the FRP rod-shaped members are rigidly connected to each other at all node portions to constitute a ramen structure , An FRP three-dimensional unit in which FRP reinforcing fibers continuously extend between FRP rod-shaped members or a plurality of FRP three-dimensional units connected to each other in at least a part of all nodes. However, at least three FRP assembly structures that are connected so as to form a frame body, or a large-scale FRP structure that is formed by connecting a plurality of FRP assembly structures, includes a water surface in the vertical direction. A buoyant body that is entirely located in water is disposed at least partly on the lower side of the FRP assembly structure or large FRP structure. Creation. 前記全節点部の少なくとも一部において、FRPの強化繊維として連続繊維と不連続繊維が共存している、請求項に記載の海洋構造物。 The offshore structure according to claim 1 , wherein continuous fibers and discontinuous fibers coexist as reinforcing fibers of FRP in at least a part of all the node portions . 前記FRP製三次元ユニットにおいて、部分的にFRP製面状体が接合されている、請求項1または2に記載の海洋構造物。 The offshore structure according to claim 1 or 2 , wherein in the three-dimensional unit made of FRP, a surface body made of FRP is partially joined . 少なくとも一部のFRP製棒状部材の強化繊維として炭素繊維が用いられている、請求項1〜のいずれかに記載の海洋構造物。 The marine structure according to any one of claims 1 to 3 , wherein carbon fibers are used as reinforcing fibers of at least some of the FRP rod-shaped members . FRP製三次元ユニット間の接続部の少なくとも一部が、FRP製三次元ユニットの端部同士の剛接によるラーメン構造に構成されている、請求項1〜4のいずれかに記載の海洋構造物。 The marine structure according to any one of claims 1 to 4, wherein at least a part of a connection portion between the three-dimensional units made of FRP is configured as a rigid frame structure by rigid contact between end portions of the three-dimensional units made of FRP. . FRP製三次元ユニット間の接続部の少なくとも一部が、FRP製三次元ユニットの端部同士の柔接による非ラーメン構造に構成されている、請求項1〜5のいずれかに記載の海洋構造物。 The marine structure according to any one of claims 1 to 5, wherein at least a part of a connection portion between the three-dimensional units made of FRP is configured in a non-ramen structure by soft contact between end portions of the three-dimensional units made of FRP. object. 前記浮力体が、FRPを用いて構成されている、請求項1〜6のいずれかに記載の海洋構造物。 The buoyant body is configured using FRP, marine structure according to any one of claims 1 to 6.
JP2014046109A 2014-03-10 2014-03-10 Offshore structure Active JP6251607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046109A JP6251607B2 (en) 2014-03-10 2014-03-10 Offshore structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046109A JP6251607B2 (en) 2014-03-10 2014-03-10 Offshore structure

Publications (2)

Publication Number Publication Date
JP2015168372A JP2015168372A (en) 2015-09-28
JP6251607B2 true JP6251607B2 (en) 2017-12-20

Family

ID=54201492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046109A Active JP6251607B2 (en) 2014-03-10 2014-03-10 Offshore structure

Country Status (1)

Country Link
JP (1) JP6251607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027006A (en) * 2020-08-21 2020-12-04 山东电力工程咨询院有限公司 Floating type renewable energy and offshore pasture integrated platform

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO342731B1 (en) * 2017-02-02 2018-08-06 Flexible Floating System As Frame structure for a floating installation
CN113859461B (en) * 2021-11-11 2022-08-19 哈尔滨工业大学(深圳) Large foldable floating body on sea

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446666A (en) * 1979-07-03 1984-05-08 Allied Corporation Tetrahedral truss
JPS5885788A (en) * 1981-11-17 1983-05-23 Tomoegumi Iron Works Ltd Marine floating structure
JPH07112714B2 (en) * 1990-05-14 1995-12-06 三菱電機株式会社 Fiber-reinforced composite material truss joint and manufacturing method thereof
JPH07112713B2 (en) * 1990-05-14 1995-12-06 三菱電機株式会社 Fiber-reinforced composite material truss joint and manufacturing method thereof
WO1998019843A1 (en) * 1996-11-08 1998-05-14 Nu-Cast Inc. Improved truss structure design
US8042312B2 (en) * 2003-11-07 2011-10-25 Industry Foundation Of Chonnam National University Three-dimensional cellular light structures directly woven by continuous wires and the manufacturing method of the same
KR20090039500A (en) * 2007-10-18 2009-04-22 전남대학교산학협력단 Structure having reinforcement of three-dimensional truss type cellular material and manufacturing method thereof
KR101057946B1 (en) * 2008-07-25 2011-08-18 전남대학교산학협력단 Truss type periodic porous material filled with some of the cells inside
JP2010074130A (en) * 2008-08-18 2010-04-02 Toshiaki Ota Power generator by solar power generation
JP2013059948A (en) * 2011-09-14 2013-04-04 Toyota Industries Corp Composite material structure and method for manufacturing the same
JP2013221385A (en) * 2012-04-19 2013-10-28 Hitachi Zosen Corp Floating wave-dissipating device with gyro-type wave power generating function
JP2014024502A (en) * 2012-07-30 2014-02-06 Kawasaki Heavy Ind Ltd Floating body unit, floating bridge and, floating body pier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027006A (en) * 2020-08-21 2020-12-04 山东电力工程咨询院有限公司 Floating type renewable energy and offshore pasture integrated platform

Also Published As

Publication number Publication date
JP2015168372A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US9915047B2 (en) Energy dissipator
KR101377859B1 (en) Floated Structure with Eco-Friendship for Equipping Solar Energy Generating Module
CN101589227A (en) The reinforced blade that is used for wind turbine
JP6251607B2 (en) Offshore structure
CN102359205A (en) Corrugated steel plate aseismic shear wall
JP7433859B2 (en) Support structure for wind power generation equipment and wind power generation equipment
JP7286197B2 (en) pontoons and floating bodies
JP2016504532A (en) Hydroelectric power plant
JP2013241911A (en) Oceanic wind power generation facility, support device thereof and design method thereof
Han et al. Development of self-floating fibre reinforced polymer composite structures for photovoltaic energy harvesting
JP2015168373A (en) Ocean structure
EP3516765B1 (en) Connectors for modular support platforms
KR101262016B1 (en) Solarcell panel supporting structure having device for coupling frames
JP6663273B2 (en) FRP profiles and bridges
JP2013525635A (en) Stand structure
WO2018157849A1 (en) Connecting structure for steel tube truss and tower barrel of lattice wind power generation tower, prestressed polygon wind tower provided with circular box girder for direct fan on top of tower, wind power generation tower, and wind tower having prestressed anti-fatigue structure
JP2007162270A (en) Dome truss made of aluminum alloy
US9932095B2 (en) Assembly of floatable modules
KR20130110932A (en) Solarcell panel supporting structure having device for coupling buoyant member thereof
CN102905966A (en) A framework with a buoyant body for a subsea vessel as well as a method for construction of a framework
KR101661092B1 (en) Hybrid support structure for marine wind power generation and construction method thereof
CN105927002A (en) Steel structural cooling tower consisting of triangular grids and provided with support
CN114555459A (en) Floating metal platform
CN105442899B (en) Offshore anemometer tower and its pedestal
JP6719040B2 (en) Reinforcement structure of water structure and reinforcement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6251607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250