JP6249228B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6249228B2
JP6249228B2 JP2014069766A JP2014069766A JP6249228B2 JP 6249228 B2 JP6249228 B2 JP 6249228B2 JP 2014069766 A JP2014069766 A JP 2014069766A JP 2014069766 A JP2014069766 A JP 2014069766A JP 6249228 B2 JP6249228 B2 JP 6249228B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069766A
Other languages
Japanese (ja)
Other versions
JP2015191854A (en
Inventor
平 齋藤
平 齋藤
純平 寺島
純平 寺島
歩 鎌倉
歩 鎌倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014069766A priority Critical patent/JP6249228B2/en
Publication of JP2015191854A publication Critical patent/JP2015191854A/en
Application granted granted Critical
Publication of JP6249228B2 publication Critical patent/JP6249228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池等の非水電解液二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、いわゆるポータブル電源や車両搭載用の高出力電源等に好ましく利用されている。
このような非水電解液二次電池では、性能向上の一環として更なる高出力密度化が検討されている。かかる高出力密度化は、例えば正極活物質の性状を調整することによって実現し得る。例えば特許文献1には、BET比表面積が0.5〜1.9m/g、および/または、DBP吸収量が20mL/100g以上の正極活物質を備えることで、内部抵抗が低く出力特性に優れた二次電池を実現し得る旨が記載されている。
Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are preferably used for so-called portable power supplies, high-output power supplies for vehicles, and the like because they are lighter and have higher energy density than existing batteries.
In such a non-aqueous electrolyte secondary battery, higher power density is being studied as part of performance improvement. Such high power density can be realized by adjusting the properties of the positive electrode active material, for example. For example, Patent Document 1 includes a positive electrode active material having a BET specific surface area of 0.5 to 1.9 m 2 / g and / or a DBP absorption of 20 mL / 100 g or more, so that the internal resistance is low and the output characteristics are improved. It is described that an excellent secondary battery can be realized.

特開2012−109166号公報JP 2012-109166 A

ところで、非水電解液二次電池は、誤操作等によって通常以上の電流が供給されると、過充電状態となり電池温度が上昇することがある。近年、信頼性向上の観点から、かかる過充電時の電池温度の上昇を安定的により一層低く抑えること(耐過充電性能に一層優れること)が求められている。好ましくは、耐過充電性能と電池本来の特性(例えば、高出力密度や高エネルギー密度)とを高いレベルで両立することが望まれている。
本発明はかかる事情に鑑みてなされたものであり、その目的は、耐過充電性能に優れた(好ましくは、高い耐過充電性能と優れた電池特性とを兼ね備えた)非水電解液二次電池を提供することにある。
By the way, the non-aqueous electrolyte secondary battery may be in an overcharged state and the battery temperature may rise when a current higher than normal is supplied due to an erroneous operation or the like. In recent years, from the viewpoint of improving reliability, there has been a demand for stably and further suppressing the increase in battery temperature during overcharging (more excellent overcharge resistance). Preferably, it is desired that the overcharge resistance and the original characteristics of the battery (for example, high output density and high energy density) are compatible at a high level.
The present invention has been made in view of such circumstances, and the object thereof is a non-aqueous electrolyte secondary solution excellent in overcharge resistance performance (preferably having high overcharge resistance performance and excellent battery characteristics). To provide a battery.

本発明者らは様々な角度から検討を行い、上記課題を解決するには正極活物質の表面積(具体的には、BET比表面積とDBP吸収量)を制御することが重要との結論に至った。すなわち、例えば正極活物質のBET比表面積を大きくすると、正極活物質と電荷担体との反応場が増えて電池特性(例えばエネルギー密度)の向上につながり得る。しかし、その一方で、過充電時には正極上の反応場が増えて発熱量が大きくなることがあり得る。
そこで、これら相反する両特性を高いレベルで両立すべく鋭意検討を重ねた結果、本発明を創出するに至った。
The present inventors have studied from various angles and have come to the conclusion that it is important to control the surface area of the positive electrode active material (specifically, the BET specific surface area and the DBP absorption amount) in order to solve the above problems. It was. That is, for example, when the BET specific surface area of the positive electrode active material is increased, the reaction field between the positive electrode active material and the charge carrier is increased, which may lead to improvement of battery characteristics (for example, energy density). However, on the other hand, the reaction field on the positive electrode may increase during overcharging, resulting in a large amount of heat generation.
Therefore, as a result of intensive studies to achieve both these conflicting characteristics at a high level, the present invention has been created.

ここに開示される非水電解液二次電池は、正極活物質を有する正極と、負極活物質を有する負極と、非水電解液と、を備える。そして、上記正極活物質のBET比表面積(m/g)をSとし、DBP吸収量(ml/100g)をQとしたときに、上記BET比表面積および上記DBP吸収量を変数とする2次元の座標系において、上記(S,Q)が、以下の5つの座標点:(0.1,30),(0.95,30),(1.7,37.5),(1.7,71),(0.1,54);を隣り合う上記座標点同士で直線状に結んでなる5角形の範囲内にある。
正極活物質のBET比表面積SとDBP吸収量Qとを上記範囲内とすることで、高い耐過充電性能を安定的に実現することができる。そして、好ましくは、高い耐過充電性能と優れた電池特性とを兼ね備えた非水電解液二次電池を実現することができる。
The non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. Then, when the BET specific surface area (m 2 / g) of the positive electrode active material is S and the DBP absorption amount (ml / 100 g) is Q, the BET specific surface area and the DBP absorption amount are two-dimensional. In the coordinate system of (5), the above (S, Q) has the following five coordinate points: (0.1, 30), (0.95, 30), (1.7, 37.5), (1.7). , 71), (0.1, 54); are in the range of a pentagon formed by connecting the adjacent coordinate points linearly.
By setting the BET specific surface area S and the DBP absorption amount Q of the positive electrode active material within the above ranges, high overcharge resistance can be stably realized. And preferably, the non-aqueous-electrolyte secondary battery which has high overcharge-proof performance and the outstanding battery characteristic is realizable.

なお、本明細書中において「BET比表面積」とは、窒素ガスを用いた定容量式吸着法によって測定した表面積をBET法(例えばBET多点法)で解析した比表面積を指す。
具体的には、先ず、測定セル内に試料を凡そ0.5g投入し、100℃で3時間乾燥(前処理)させる。次に、一般的な比表面積測定装置(例えば、Quantachrome Instruments社製のオートソーブ1)を用いて、相対圧0.025〜0.200の範囲の8点で上記試料の測定を行い、その結果をBET法で解析することによって得られる比表面積を指す。
また、本明細書中において「DBP吸収量」とは、一般的な吸収量測定装置(例えば、株式会社あさひ総研の吸収量測定装置S410)を用い、DBP(ジブチルフタレート)を試薬液体として使用して、JIS K6217−4(2008)「ゴム用カーボンブラック‐基本特性‐第4部:DBP吸収量の求め方」に準拠して測定した値を指す。
In the present specification, “BET specific surface area” refers to a specific surface area obtained by analyzing a surface area measured by a constant volume adsorption method using nitrogen gas by a BET method (for example, a BET multipoint method).
Specifically, first, about 0.5 g of a sample is put into a measurement cell and dried (pretreatment) at 100 ° C. for 3 hours. Next, the above sample was measured at 8 points in the range of relative pressure 0.025 to 0.200 using a general specific surface area measuring device (for example, Autosorb 1 manufactured by Quantachrome Instruments), and the result was obtained. It refers to the specific surface area obtained by analyzing by the BET method.
In this specification, “DBP absorption” refers to a general absorption measurement device (for example, absorption measurement device S410 from Asahi Research Institute), and DBP (dibutyl phthalate) is used as a reagent liquid. The value measured in accordance with JIS K6217-4 (2008) “Carbon black for rubber—Basic characteristics—Part 4: Determination of DBP absorption”.

正極活物質のBET比表面積とDBP吸収量との関係を示すグラフである。It is a graph which shows the relationship between the BET specific surface area of a positive electrode active material, and DBP absorption.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、正極活物質の性状)以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の構成要素や一般的な製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification (for example, the properties of the positive electrode active material) and matters necessary for the implementation of the present invention (for example, battery components and general features that do not characterize the present invention) Can be understood as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

≪非水電解液二次電池≫
ここに開示される非水電解液二次電池は、正極活物質を有する正極と、負極活物質を有する負極と、非水電解液と、を備えている。そして、正極活物質の性状が所定の要件を満たすことによって特徴づけられる。したがって、その他の構成要素については特に限定されず、種々の用途に応じて任意に決定することができる。以下、各構成要素について順に説明する。
≪Nonaqueous electrolyte secondary battery≫
The non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. And the characteristic of a positive electrode active material is characterized by satisfy | filling a predetermined requirement. Therefore, the other components are not particularly limited, and can be arbitrarily determined according to various uses. Hereinafter, each component will be described in order.

ここに開示される非水電解液二次電池の正極は、少なくとも正極活物質を含んでいる。かかる正極としては、正極活物質粉末(粒子)をバインダや導電材等とともに正極集電体上に固着させ、正極活物質層を形成した形態のものが好適である。正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル等)からなる導電性部材が好適である。   The positive electrode of the nonaqueous electrolyte secondary battery disclosed herein includes at least a positive electrode active material. As such a positive electrode, a positive electrode active material powder (particles) is preferably fixed on a positive electrode current collector together with a binder, a conductive material and the like to form a positive electrode active material layer. As the positive electrode current collector, a conductive member made of a highly conductive metal (for example, aluminum, nickel, etc.) is suitable.

ここに開示される技術では、正極活物質のBET比表面積S(m/g)とDBP吸収量Q(ml/100g)とが所定の範囲内になるよう制御されている。具体的には、図1に示すように、BET比表面積を縦軸(Y軸)とし、DBP吸収量を横軸(X軸)とした2次元(平面)のXY座標系において、以下の5つの座標点:(0.1,30),(0.95,30),(1.7,37.5),(1.7,71),(0.1,54);を隣り合う座標点同士でそれぞれ直線状に結ぶことによって得られる5角形の範囲内に(S,Q)が収まるよう、正極活物質の性状が制御されている。 In the technology disclosed herein, the BET specific surface area S (m 2 / g) and the DBP absorption amount Q (ml / 100 g) of the positive electrode active material are controlled to be within a predetermined range. Specifically, as shown in FIG. 1, in a two-dimensional (planar) XY coordinate system in which the BET specific surface area is the vertical axis (Y axis) and the DBP absorption amount is the horizontal axis (X axis), the following 5 Two coordinate points: (0.1,30), (0.95,30), (1.7,37.5), (1.7,71), (0.1,54); adjacent coordinates The properties of the positive electrode active material are controlled so that (S, Q) falls within the pentagonal range obtained by connecting the points in a straight line.

換言すれば、正極活物質のBET比表面積S(m/g)とDBP吸収量Q(ml/100g)とが図1に示す5角形の範囲外となる場合、電池の信頼性(典型的には耐過充電性能)等が低下することがあり得る。具体的には、以下のような不具合が生じ得る。
・領域A(すなわち、正極活物質のDBP吸収量が30未満の領域)では、正極活物質と非水電解液が馴染み難く、正極の内部まで非水電解液の含浸が進まずに液枯れを生じることがある。
・領域B(すなわち、正極活物質のBET比表面積が1.7m/gを超える領域)では、正極活物質の表面積が大きすぎるために、過充電時における正極表面の反応場が増え、電池発熱が大きくなることがある。
・領域Cでは、正極活物質のBET比表面積が大きすぎる、および/または、DBP吸収量が高すぎるために、正極(典型的には正極活物質層)を作製することが困難なことがある。
・領域D(すなわち、正極活物質のBET比表面積が0.1m/g未満の領域)では、正極活物質の粒径が大きすぎるために、該活物質を製造する際の焼成が不均一になり、均質な正極(典型的には正極活物質層)を作製することが困難なことがある。
・領域Eでは、正極活物質のBET比表面積に対してDBP吸収量が小さいため、過充電時に正極未分解部が残り、電池発熱が大きくなることがある。すなわち、非水電解液が正極の内部まで含浸せず、過充電時において正極内部で分解反応が均一に進行しないため、正極の内部(典型的には、相対的に正極活物質表面から離れた領域、例えば正極集電体近傍の領域)に未分解部位が残存し、これによって過充電時に電池発熱が大きくなることがある。
ここに開示される技術は、正極活物質の表面積(BET比表面積とDBP吸収量)を上記5角形の範囲内に制御することで、上述のような不具合の発生を回避し、高い信頼性(典型的には耐過充電性能)を実現するものである。さらには、高エネルギー密度や高出力密度といった、優れた電池特性を実現し得るものである。
In other words, when the BET specific surface area S (m 2 / g) and the DBP absorption amount Q (ml / 100 g) of the positive electrode active material are outside the pentagonal range shown in FIG. May deteriorate the anti-overcharge performance). Specifically, the following problems may occur.
In region A (that is, a region where the amount of DBP absorption of the positive electrode active material is less than 30), the positive electrode active material and the non-aqueous electrolyte solution are difficult to get into, and the impregnation of the non-aqueous electrolyte solution does not proceed to the inside of the positive electrode May occur.
In region B (that is, the region where the BET specific surface area of the positive electrode active material exceeds 1.7 m 2 / g), the surface area of the positive electrode active material is too large, and the reaction field on the surface of the positive electrode during overcharging increases. Heat generation may increase.
In region C, it may be difficult to produce a positive electrode (typically a positive electrode active material layer) because the BET specific surface area of the positive electrode active material is too large and / or the DBP absorption amount is too high. .
In region D (that is, a region where the BET specific surface area of the positive electrode active material is less than 0.1 m 2 / g), the particle size of the positive electrode active material is too large, and thus the firing during the production of the active material is non-uniform Thus, it may be difficult to produce a homogeneous positive electrode (typically, a positive electrode active material layer).
In region E, since the DBP absorption amount is small with respect to the BET specific surface area of the positive electrode active material, the positive electrode undecomposed portion remains during overcharging, and battery heat generation may increase. That is, the non-aqueous electrolyte does not impregnate the inside of the positive electrode, and the decomposition reaction does not proceed uniformly inside the positive electrode during overcharge, so the inside of the positive electrode (typically relatively far from the surface of the positive electrode active material) An undecomposed portion may remain in a region (for example, a region near the positive electrode current collector), which may increase battery heat generation during overcharge.
The technique disclosed here avoids the occurrence of the above-described problems by controlling the surface area (BET specific surface area and DBP absorption amount) of the positive electrode active material within the above pentagonal range, and has high reliability ( Typically, it achieves overcharge resistance). Furthermore, excellent battery characteristics such as high energy density and high power density can be realized.

正極活物質としては、層状系のリチウム遷移金属複合酸化物材料(例えば、LiCoO、LiNiO、LiNi0.33Mn0.33Co0.33等)が好適である。なかでも、エネルギー密度や熱安定性の観点から、リチウムニッケルマンガンコバルト系複合酸化物が好ましい。正極活物質のBET比表面積は、上記表面積性状を満たす限りにおいて特に限定されないが、0.5〜1.5m/gであることがより好ましい。正極活物質のDBP吸収量は、上記表面積性状を満たす限りにおいて特に限定されないが、35〜54ml/100gであることがより好ましい。これらのうち少なくともいずれか1つを満たすことで、より安定的に高い耐過充電性能の非水電解液二次電池を実現することができる。 As the positive electrode active material, a layered lithium transition metal composite oxide material (for example, LiCoO 2 , LiNiO 2 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 or the like) is preferable. Of these, lithium nickel manganese cobalt based composite oxide is preferable from the viewpoint of energy density and thermal stability. The BET specific surface area of the positive electrode active material is not particularly limited as long as the surface area property is satisfied, but is more preferably 0.5 to 1.5 m 2 / g. The DBP absorption amount of the positive electrode active material is not particularly limited as long as the surface area property is satisfied, but it is more preferably 35 to 54 ml / 100 g. By satisfying at least one of these, a non-aqueous electrolyte secondary battery with higher overcharge resistance can be realized more stably.

バインダとしては、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂や、ポリエチレンオキサイド(PEO)等のポリアルキレンオキサイドが好適である。導電材としては、カーボンブラック(典型的にはアセチレンブラック、ケッチェンブラック)や活性炭等の炭素材料が好適である。   As the binder, a vinyl halide resin such as polyvinylidene fluoride (PVdF) or a polyalkylene oxide such as polyethylene oxide (PEO) is suitable. As the conductive material, carbon materials such as carbon black (typically acetylene black and ketjen black) and activated carbon are suitable.

正極活物質層全体に占める正極活物質の割合は、エネルギー密度向上の観点から、凡そ50質量%以上とすることが適当であり、通常は50〜98質量%、例えば80〜95質量%とするとよい。正極活物質層全体に占めるバインダの割合は、機械的強度向上や耐久性向上の観点から、例えば凡そ0.5〜10質量%とすることが適当であり、通常は凡そ1〜5質量%とするとよい。正極活物質層全体に占める導電材の割合は、出力密度向上や低抵抗化の観点から、凡そ0〜15質量%とすることが適当であり、通常は凡そ1〜10質量%とするとよい。   The proportion of the positive electrode active material in the entire positive electrode active material layer is suitably about 50% by mass or more from the viewpoint of improving energy density, and is usually 50 to 98% by mass, for example, 80 to 95% by mass. Good. The proportion of the binder in the entire positive electrode active material layer is suitably about 0.5 to 10% by mass, for example, from the viewpoint of improving mechanical strength and durability, and is usually about 1 to 5% by mass. Good. The proportion of the conductive material in the entire positive electrode active material layer is suitably about 0 to 15% by mass from the viewpoint of improving the output density and reducing the resistance, and is usually about 1 to 10% by mass.

ここに開示される非水電解液二次電池の負極は、少なくとも負極活物質を含んでいる。かかる負極としては、負極活物質粉末(粒子)をバインダや増粘剤等とともに負極集電体上に固着させ、負極活物質層を形成した形態のものが好適である。負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル等)からなる導電性材料が好適である。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料が好適であり、なかでもエネルギー密度や耐久性の観点から黒鉛が好ましい。バインダとしては、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン(PTFE)等が好適である。増粘剤としては、カルボキシメチルセルロース(CMC)のセルロース系材料が好適である。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料が好適である。   The negative electrode of the nonaqueous electrolyte secondary battery disclosed herein includes at least a negative electrode active material. As such a negative electrode, a negative electrode active material powder (particles) is preferably fixed on a negative electrode current collector together with a binder, a thickener and the like to form a negative electrode active material layer. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper, nickel, etc.) is suitable. As the negative electrode active material, carbon materials such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon) and the like are preferable, and graphite is particularly preferable from the viewpoint of energy density and durability. . As the binder, styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE) and the like are suitable. As the thickener, a carboxymethyl cellulose (CMC) cellulosic material is suitable. As the negative electrode current collector, a conductive material made of a highly conductive metal (for example, copper) is suitable.

ここに開示される非水電解液二次電池の正極と負極は、典型的にはセパレータを介して対向している。セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートが好適である。上記多孔性樹脂シートの片面または両面には、多孔質の耐熱層を備えていてもよい。   The positive electrode and the negative electrode of the non-aqueous electrolyte secondary battery disclosed herein typically face each other with a separator interposed therebetween. As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) is suitable. A porous heat-resistant layer may be provided on one side or both sides of the porous resin sheet.

ここに開示される非水電解液二次電池の非水電解液は、典型的には常温(例えば25℃)において液状を呈し、好ましくは使用温度域内(例えば−20〜60℃)において常に液状を呈する。非水電解液としては、非水溶媒中に支持塩(例えば、リチウムイオン二次電池ではリチウム塩。)を含有させたものを好適に用いることができる。
非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒が好適である。なかでも、耐久性の観点等から、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)の使用が好ましい。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等が好適であり、なかでもLiPF、LiBF等のリチウム塩が好ましい。
The non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery disclosed herein typically exhibits a liquid state at normal temperature (for example, 25 ° C.), and is preferably always liquid within the operating temperature range (for example, −20 to 60 ° C.). Presents. As the nonaqueous electrolytic solution, a nonaqueous solvent containing a supporting salt (for example, a lithium salt in a lithium ion secondary battery) can be suitably used.
As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones are suitable. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are preferable from the viewpoint of durability. As the supporting salt, a lithium salt, a sodium salt, a magnesium salt, and the like are preferable, and lithium salts such as LiPF 6 and LiBF 4 are particularly preferable.

≪非水電解液二次電池の用途≫
ここに開示される非水電解液二次電池は、正極活物質の性状(表面積)が制御されている効果によって、従来品に比べて高い信頼性(耐過充電性能)を安定的に実現し得るものである。好ましくは、高エネルギー密度と高出力密度と高信頼性とを兼ね備え得るものである。したがって、かかる非水電解液二次電池は各種用途に利用可能であるが、このような特徴を活かして、高エネルギー密度や高入出力密度、高信頼性が要求される用途で好ましく用いることができる。かかる用途としては、例えば、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の車両に搭載される駆動用電源が挙げられる。
≪Use of non-aqueous electrolyte secondary battery≫
The non-aqueous electrolyte secondary battery disclosed herein stably realizes higher reliability (overcharge resistance) than conventional products due to the effect of controlling the properties (surface area) of the positive electrode active material. To get. Preferably, high energy density, high power density, and high reliability can be combined. Therefore, such a non-aqueous electrolyte secondary battery can be used for various applications, but it can be preferably used in applications that require high energy density, high input / output density, and high reliability by taking advantage of such characteristics. it can. Examples of such applications include drive power supplies mounted on vehicles such as plug-in hybrid vehicles, hybrid vehicles, and electric vehicles.

以下、本発明に関するいくつかの例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the specific examples.

<リチウムイオン二次電池の構築>
正極活物質として、表1に示す表面積性状のニッケルマンガンコバルト酸リチウム(Li(Ni0.33Mn0.33Co0.33)O)を準備した。この正極活物質と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを混合し、N−メチルピロリドン(NMP)で粘度を調整することで、正極活物質層形成用スラリーを調製した。かかるスラリーをアルミニウム箔(正極集電体)の表面に塗工し、乾燥することにより、正極活物質層を形成した。これをロール圧延した後、所定の大きさにスリット加工することで、正極集電体上に正極活物質層を備えたシート状の正極(実施例1〜9、比較例1〜3)を得た。
<Construction of lithium ion secondary battery>
As the positive electrode active material, lithium nickel manganese cobaltate (Li (Ni 0.33 Mn 0.33 Co 0.33 ) O 2 ) having a surface area property shown in Table 1 was prepared. By mixing the positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder, and adjusting the viscosity with N-methylpyrrolidone (NMP), the positive electrode active material layer A forming slurry was prepared. The slurry was applied to the surface of an aluminum foil (positive electrode current collector) and dried to form a positive electrode active material layer. After rolling this, slit processing to a predetermined size is performed to obtain sheet-like positive electrodes (Examples 1 to 9 and Comparative Examples 1 to 3) having a positive electrode active material layer on the positive electrode current collector. It was.

次に、負極活物質としてのカーボンと、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを混合し、イオン交換水で粘度を調整することで、負極活物質層形成用スラリーを調製した。かかるスラリーを銅箔(負極集電体)の表面に塗工し、乾燥することにより、負極活物質層を形成した。これをロール圧延した後、所定の大きさにスリット加工することで、負極集電体上に負極活物質層を備えたシート状の負極を得た。
上記作製したシート状の正極と負極とをセパレータシートを介して積層し、電極体(実施例1〜9、比較例1〜3)を作製した。なお、セパレータとしては、ポリプロピレン(PP)/ポリエチレン(PE)/ポリプロピレン(PP)からなる三層構造の多孔質シートを用いた。
Next, carbon as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener are mixed, and the viscosity is adjusted with ion-exchanged water, whereby the negative electrode active material is adjusted. A slurry for forming a material layer was prepared. The slurry was applied to the surface of a copper foil (negative electrode current collector) and dried to form a negative electrode active material layer. This was roll-rolled and then slitted to a predetermined size to obtain a sheet-like negative electrode having a negative electrode active material layer on the negative electrode current collector.
The produced sheet-like positive electrode and negative electrode were laminated via a separator sheet to produce electrode bodies (Examples 1 to 9, Comparative Examples 1 to 3). As the separator, a porous sheet having a three-layer structure made of polypropylene (PP) / polyethylene (PE) / polypropylene (PP) was used.

次に、この電極体をアルミニウム製の角型の電池ケースに収容し、非水電解液を注液した。なお、非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比率で含む混合溶媒に、支持塩としてのLiPFを凡そ1mol/Lの濃度で溶解したものを用いた。上記電池ケースの開口部を封止し、電池ケースの外表面に熱電対を貼り付けて、実施例1〜9および比較例1〜3のリチウムイオン二次電池(理論容量3.8Ah)を構築した。 Next, this electrode body was accommodated in a rectangular battery case made of aluminum, and a non-aqueous electrolyte was injected. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at a volume ratio of 3: 4: 3, and LiPF 6 as a supporting salt is used. What was melt | dissolved in the density | concentration of about 1 mol / L was used. The opening of the battery case is sealed, and a thermocouple is attached to the outer surface of the battery case to construct lithium ion secondary batteries (theoretical capacity 3.8 Ah) of Examples 1 to 9 and Comparative Examples 1 to 3. did.

<過充電試験>
上記構築した電池に対して、コンディショニング処理を施した後、3.0〜4.2Vの電圧範囲で初期容量の確認を行い、異常がないことを確認した。次に、この電池を、25℃の温度環境下で、上限電圧10Vとして過充電状態まで10Aの定電流で充電し、このときの最大電池温度(℃)を確認した。結果を表1に示す。
<Overcharge test>
The battery thus constructed was subjected to a conditioning treatment, and then the initial capacity was confirmed in a voltage range of 3.0 to 4.2 V to confirm that there was no abnormality. Next, this battery was charged with a constant current of 10 A until the overcharged state with an upper limit voltage of 10 V under a temperature environment of 25 ° C., and the maximum battery temperature (° C.) at this time was confirmed. The results are shown in Table 1.

Figure 0006249228
Figure 0006249228

表1より明らかなように、実施例1〜9では、比較例1〜3に比べて過充電時の最大電池温度が低く、具体的には最大電池温度が140℃以下(例えば130℃以下)に抑えられていた。これは、正極活物質のBET比表面積とDBP吸収量とを制御することで、非水電解液を正極の内部まで十分に浸透させることができたためと考えられる。その結果、過充電時に正極内を均質に反応させることができ、正極の発熱を低く抑えることができたと推察される。なかでも、正極活物質のDBP吸収量が35ml/100g以上(例えば40ml/100g以上)であって、54ml/100g以下を満たす場合に、より高い耐過充電性能を実現することができるとわかった。また、正極活物質のBET比表面積が1.5m/g以下(例えば1.0m/g以下)を満たす場合に、より高い耐過充電性能を実現することができるとわかった。これらの結果は、本発明の技術的意義を示すものである。 As is clear from Table 1, in Examples 1 to 9, the maximum battery temperature during overcharging is lower than in Comparative Examples 1 to 3, and specifically, the maximum battery temperature is 140 ° C. or lower (eg, 130 ° C. or lower). It was suppressed to. This is presumably because the non-aqueous electrolyte could be sufficiently penetrated into the positive electrode by controlling the BET specific surface area and the DBP absorption amount of the positive electrode active material. As a result, it is presumed that the inside of the positive electrode can be reacted uniformly during overcharging, and the heat generation of the positive electrode can be suppressed low. In particular, when the positive electrode active material has a DBP absorption of 35 ml / 100 g or more (for example, 40 ml / 100 g or more) and satisfies 54 ml / 100 g or less, it has been found that higher overcharge resistance can be realized. . Further, it was found that when the positive electrode active material has a BET specific surface area of 1.5 m 2 / g or less (for example, 1.0 m 2 / g or less), higher overcharge resistance can be realized. These results show the technical significance of the present invention.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and modified the above-mentioned specific example is included in the invention disclosed here.

Claims (2)

正極活物質を有する正極と、負極活物質を有する負極と、非水電解液と、を備える非水電解液二次電池であって、
前記正極活物質は、層状のリチウム遷移金属複合酸化物であり、
前記正極活物質のBET比表面積(m/g)をSとし、DBP吸収量(ml/100g)をQとしたときに、
前記BET比表面積および前記DBP吸収量を変数とする2次元の座標系において、前記(S,Q)が、以下の座標点:(0.95,30),(1.7,37.5),(1.7,71);を隣り合う前記座標点同士で直線状に結んでなる範囲内にあり、かつ、前記Sが1.6m /g以上であることを特徴とする、非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte,
The positive electrode active material is a layered lithium transition metal composite oxide,
When the BET specific surface area (m 2 / g) of the positive electrode active material is S and the DBP absorption amount (ml / 100 g) is Q,
In the two-dimensional coordinate system using the BET specific surface area and the DBP absorption amount as variables, the (S, Q) is represented by the following coordinate points: (0.95, 30), (1.7, 37.5) , (1.7,71); in the range formed by connecting straight at the coordinate point adjacent the, and wherein S is characterized der Rukoto least 1.6 m 2 / g, the non Water electrolyte secondary battery.
前記Sが1.6mS is 1.6m 2 /gである、請求項1に記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1, which is / g.
JP2014069766A 2014-03-28 2014-03-28 Non-aqueous electrolyte secondary battery Active JP6249228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069766A JP6249228B2 (en) 2014-03-28 2014-03-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069766A JP6249228B2 (en) 2014-03-28 2014-03-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015191854A JP2015191854A (en) 2015-11-02
JP6249228B2 true JP6249228B2 (en) 2017-12-20

Family

ID=54426178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069766A Active JP6249228B2 (en) 2014-03-28 2014-03-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6249228B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686998B2 (en) * 2004-03-30 2011-05-25 パナソニック株式会社 Method for evaluating positive electrode active material
JP2005340073A (en) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode plate for nonaqueous secondary cell
JP2007095534A (en) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
JP5737596B2 (en) * 2010-10-15 2015-06-17 トヨタ自動車株式会社 Secondary battery
US9997743B2 (en) * 2011-03-03 2018-06-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2015191854A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
US10361426B2 (en) Secondary graphite particle and secondary lithium battery comprising the same
KR101666402B1 (en) Electrode Material Improved Energy Density and Lithium Secondary Battery Comprising the Same
KR101595333B1 (en) Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
KR101488696B1 (en) Cathode Active Material and Lithium Secondary Battery Containing the Same
JP2013197091A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including the same
KR101579700B1 (en) Nonaqueous electrolyte secondary battery and use of same
CN111525088B (en) Negative electrode for lithium ion secondary battery
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
KR101623724B1 (en) Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same
KR20150033661A (en) Non-aqueous electrolyte secondary cell and method for manufacturing non-aqueous electrolyte secondary cell
KR101189501B1 (en) Anode for Secondary Battery
KR101966494B1 (en) Lithium ion secondary battery
JP2017045633A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
KR20150015417A (en) The Method for Preparing Lithium Secondary Battery and the Lithium Secondary Battery Prepared by Using the Same
KR101954240B1 (en) Lithium Secondary Battery Having Cathode Containing Aqueous Binder
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2007242348A (en) Lithium-ion secondary battery
JPWO2013084840A1 (en) Nonaqueous electrolyte secondary battery and assembled battery using the same
JP6061144B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101247166B1 (en) Anode for Secondary Battery
KR20130117709A (en) Lithium battery having higher performance
JP6249228B2 (en) Non-aqueous electrolyte secondary battery
KR20130002750A (en) Secondary battery for high voltage
KR101595328B1 (en) Anode Electrodes for Secondary Battery and Lithium Secondary Battery Containing The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171108

R151 Written notification of patent or utility model registration

Ref document number: 6249228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151