JP6248743B2 - Fluorescent light source device - Google Patents

Fluorescent light source device Download PDF

Info

Publication number
JP6248743B2
JP6248743B2 JP2014065692A JP2014065692A JP6248743B2 JP 6248743 B2 JP6248743 B2 JP 6248743B2 JP 2014065692 A JP2014065692 A JP 2014065692A JP 2014065692 A JP2014065692 A JP 2014065692A JP 6248743 B2 JP6248743 B2 JP 6248743B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
light source
excitation light
source device
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014065692A
Other languages
Japanese (ja)
Other versions
JP2015191903A (en
Inventor
政治 北村
政治 北村
井上 正樹
正樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2014065692A priority Critical patent/JP6248743B2/en
Priority to PCT/JP2015/056947 priority patent/WO2015146568A1/en
Publication of JP2015191903A publication Critical patent/JP2015191903A/en
Application granted granted Critical
Publication of JP6248743B2 publication Critical patent/JP6248743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、励起光により励起されて蛍光を放射する波長変換部材を備えた蛍光光源装置に関する。   The present invention relates to a fluorescent light source device including a wavelength conversion member that emits fluorescence when excited by excitation light.

例えば照明装置などに利用される光源装置としては、励起光源からの励起光と、この励起光を受けて励起する蛍光体よりなる波長変換部材から放射される蛍光との混光を放射する蛍光光源装置が知られている(特許文献1参照。)。このような蛍光光源装置においては、波長変換部材を構成する蛍光体が励起光を受けて発熱することにより、当該蛍光体に温度消光が生じるため、励起光と蛍光との放射強度比が変化することによって色むらが生じやすい。このため、従来の蛍光光源装置においては、色むらを抑制する種々の手段が施されている(特許文献2および特許文献3参照。)。   For example, as a light source device used for an illumination device or the like, a fluorescent light source that emits mixed light of excitation light from an excitation light source and fluorescence emitted from a wavelength conversion member made of a phosphor that receives and excites this excitation light. An apparatus is known (see Patent Document 1). In such a fluorescent light source device, the phosphor constituting the wavelength conversion member receives the excitation light and generates heat, so that temperature quenching occurs in the phosphor, and the radiation intensity ratio between the excitation light and the fluorescence changes. Color unevenness easily occurs. For this reason, in the conventional fluorescent light source device, various means for suppressing color unevenness are applied (see Patent Document 2 and Patent Document 3).

特開2011−198560号公報JP 2011-198560 A 特開2012−89316号公報JP 2012-89316 A 特開2013−102078号公報JP 2013-102078 A

しかしながら、上記の蛍光光源装置においては、高輝度化を図るために出力の高い励起光を波長変換部材に照射した場合には、波長変換部材に生じた熱が十分に排熱されず、蛍光体には温度消光が生じる。このため、高い発光効率が得られず、しかも、励起光と蛍光体から放射される蛍光との放射強度比が変化するため、蛍光光源装置から放射される光には色むらが生じ、演色性が低下する、という問題がある。   However, in the above fluorescent light source device, when the wavelength conversion member is irradiated with excitation light having a high output in order to increase the luminance, the heat generated in the wavelength conversion member is not sufficiently exhausted, and the phosphor Temperature quenching occurs. For this reason, high luminous efficiency cannot be obtained, and the emission intensity ratio between the excitation light and the fluorescence emitted from the phosphor changes, so that the color emitted from the fluorescent light source device has uneven color and the color rendering property. There is a problem that decreases.

そこで、本発明の目的は、波長変換部材に高い出力の励起光を入射した場合であっても、発光効率の低下を抑制することができ、演色性に優れた光を放射することができる蛍光光源装置を提供することにある。   Therefore, an object of the present invention is to provide a fluorescent light that can suppress a decrease in light emission efficiency and emit light with excellent color rendering even when high-power excitation light is incident on the wavelength conversion member. The object is to provide a light source device.

本発明の蛍光光源装置は、励起光源としてレーザダイオードを備え、当該レーザダイオードから離間して、励起光入射領域に配置された、励起光により励起されて蛍光を放射する波長変換部材を備えた蛍光光源装置であって、
前記波長変換部材は、放熱性基板と、この放熱性基板上に、前記励起光入射領域内において分割されて互いに離間した複数の分割領域の各々に配置された複数の波長変換要素と、互いに隣接する前記波長変換要素の間に形成された、前記励起光を拡散反射する拡散反射材とを有してなり、前記拡散反射材は光拡散用粒子よりなり、前記波長変換要素の各々は、励起光入射面から蛍光が出射されるものであることを特徴とする。
The fluorescence light source device of the present invention includes a laser diode as an excitation light source, and a fluorescence provided with a wavelength conversion member that is spaced apart from the laser diode and disposed in an excitation light incident region and that is excited by excitation light and emits fluorescence. A light source device,
The wavelength converting member is adjacent to a heat dissipating substrate and a plurality of wavelength converting elements disposed on the heat dissipating substrate and each of a plurality of divided regions separated in the excitation light incident region and separated from each other. A diffuse reflector that diffuses and reflects the excitation light formed between the wavelength conversion elements, and the diffuse reflector is made of light diffusing particles, and each of the wavelength conversion elements is excited The fluorescent light is emitted from the light incident surface.

本発明の蛍光光源装置においては、前記拡散反射材は、前記励起光入射領域における前記分割領域以外の領域をカバーするよう形成されていることが好ましい。
また、前記波長変換部材は、互いに異なる波長の蛍光を放射する複数種類の波長変換要素が、互いに隣接する状態で配置されてなることが好ましい。
また、前記励起光が青色光であり、前記波長変換部材が、黄色の蛍光を放射する波長変換要素を有してなるものであってもよい。
また、前記励起光が青色光であり、前記波長変換部材が、緑色の蛍光を放射する波長変換要素および赤色の蛍光を放射する波長変換要素を有してなるものであってもよい。
In the fluorescent light source device of the present invention, it is preferable that the diffuse reflector is formed so as to cover a region other than the divided region in the excitation light incident region.
Moreover, it is preferable that the wavelength conversion member is formed by arranging a plurality of types of wavelength conversion elements that radiate fluorescence having different wavelengths from each other.
The excitation light may be blue light, and the wavelength conversion member may include a wavelength conversion element that emits yellow fluorescence.
The excitation light may be blue light, and the wavelength conversion member may include a wavelength conversion element that emits green fluorescence and a wavelength conversion element that emits red fluorescence.

本発明の蛍光光源装置によれば、励起光入射領域内において分割されて互いに離間した複数の分割領域の各々に波長変換要素を配置することにより、単一の波長変換要素を有する場合に比較して、波長変換要素の各々を励起光入射領域内の広範囲にわたって分散して配置することができる。そのため、波長変換要素に生じた熱を高い効率で排熱することができる。従って、波長変換部材に高い出力の励起光を入射した場合であっても、波長変換部材の発熱による温度消光が低減されるので、発光効率の低下を抑制することができる。しかも、互いに隣接する波長変換要素の間には、励起光を拡散反射する拡散反射材が形成されているため、優れた演色性を有する光を放射することができる。   According to the fluorescent light source device of the present invention, the wavelength conversion element is arranged in each of a plurality of divided areas that are divided in the excitation light incident area and separated from each other, thereby comparing with the case of having a single wavelength conversion element. Thus, each of the wavelength conversion elements can be dispersed and arranged over a wide range in the excitation light incident region. Therefore, heat generated in the wavelength conversion element can be exhausted with high efficiency. Therefore, even when high-power excitation light is incident on the wavelength conversion member, temperature quenching due to heat generation of the wavelength conversion member is reduced, so that a decrease in light emission efficiency can be suppressed. Moreover, since a diffuse reflector that diffusely reflects the excitation light is formed between the wavelength conversion elements adjacent to each other, light having excellent color rendering properties can be emitted.

本発明の蛍光光源装置の一例における構成を示す説明図であり、(a)は側面図、(b)は正面図である。It is explanatory drawing which shows the structure in an example of the fluorescence light source device of this invention, (a) is a side view, (b) is a front view. 波長変換部材の一例における構成を示す説明図であり、(a)は平面図、(b)は、(a)に示す波長変換部材のA−A断面である。It is explanatory drawing which shows the structure in an example of the wavelength conversion member, (a) is a top view, (b) is an AA cross section of the wavelength conversion member shown to (a). 波長変換部材の変形例を示す説明図であり、(a)は平面図、(b)は、(a)に示す波長変換部材のA−A断面である。It is explanatory drawing which shows the modification of a wavelength conversion member, (a) is a top view, (b) is an AA cross section of the wavelength conversion member shown to (a). 波長変換部材の他の変形例を示す説明図であり、(a)は平面図、(b)は、(a)に示す波長変換部材のA−A断面である。It is explanatory drawing which shows the other modification of the wavelength conversion member, (a) is a top view, (b) is an AA cross section of the wavelength conversion member shown to (a). 波長変換部材の更に他の変形例を示す説明用断面図である。It is sectional drawing for description which shows the other modification of the wavelength conversion member. 励起光入射領域の変形例を示す説明図である。It is explanatory drawing which shows the modification of an excitation light incident area | region. 実施例2に係る蛍光光源装置から放射される光のスペクトル図である。6 is a spectrum diagram of light emitted from a fluorescent light source device according to Example 2. FIG.

以下、本発明の蛍光光源装置の実施の形態について説明する。
図1は、本発明の蛍光光源装置の一例における構成を示す説明図であり、(a)は側面図、(b)は正面図である。この蛍光光源装置は、それぞれ励起光Lを出射する複数(図示の例では8個)の励起光源10と、この励起光源10からの励起光Lにより励起されて蛍光を放射する波長変換部材20と、波長変換部材20からの蛍光を反射する凹面ミラー30と、波長変換部材20および凹面ミラー30からの蛍光および励起光Lを平行光に変換して混光するレンズ40とにより構成されている。
Hereinafter, embodiments of the fluorescent light source device of the present invention will be described.
1A and 1B are explanatory views showing a configuration of an example of the fluorescent light source device of the present invention, in which FIG. 1A is a side view and FIG. 1B is a front view. The fluorescent light source device includes a plurality of (eight in the illustrated example) excitation light sources 10 that emit excitation light L, and a wavelength conversion member 20 that is excited by the excitation light L from the excitation light source 10 to emit fluorescence. The concave mirror 30 that reflects the fluorescence from the wavelength conversion member 20 and the lens 40 that converts the fluorescence and excitation light L from the wavelength conversion member 20 and the concave mirror 30 into parallel light and mixes them.

具体的に説明すると、励起光源10の各々は、凹面ミラー30の開口31の周縁に沿って互いに等間隔で離間した状態で配置されている。また、励起光源10の各々は、凹面ミラー30の底部を臨む姿勢で配置されており、これにより、凹面ミラー30の底部が励起光入射領域Nとされている。凹面ミラー30の底部すなわち励起光入射領域Nには、矩形の貫通孔32が形成され、この貫通孔32に、板状の波長変換部材20が配置されている。また、凹面ミラー30の前方には、レンズ40が波長変換部材20に対向するよう配置されている。   More specifically, each of the excitation light sources 10 is arranged along the peripheral edge of the opening 31 of the concave mirror 30 so as to be spaced apart from each other at equal intervals. In addition, each of the excitation light sources 10 is arranged in a posture facing the bottom of the concave mirror 30, whereby the bottom of the concave mirror 30 is set as an excitation light incident region N. A rectangular through hole 32 is formed in the bottom of the concave mirror 30, that is, the excitation light incident region N, and the plate-like wavelength conversion member 20 is disposed in the through hole 32. Further, the lens 40 is disposed in front of the concave mirror 30 so as to face the wavelength conversion member 20.

図2は、波長変換部材の一例における構成を示す説明図であり、(a)は平面図、(b)は、(a)に示す波長変換部材のA−A断面である。この波長変換部材20は、放熱性基板21を有する。この放熱性基板21の表面上には、例えば矩形の励起光入射領域N内において分割されて互いに離間した複数の矩形の分割領域Dが形成されている。放熱性基板21の表面上における分割領域Dの各々には、例えば半田よりなる接着膜23を介して、矩形の板状の波長変換要素22が配置されている。互いに隣接する波長変換要素22の間には、励起光Lを拡散反射する拡散反射材25が形成されている。図示の例では、拡散反射材25は、励起光入射領域Nにおける分割領域D以外の領域をカバーするよう形成されている。
以上において、分割領域Dすなわち波長変換要素22が配置される領域は、励起光入射領域N内において分散した状態で形成されていることが好ましい。
2A and 2B are explanatory views showing a configuration of an example of the wavelength conversion member, where FIG. 2A is a plan view and FIG. 2B is an AA cross section of the wavelength conversion member shown in FIG. The wavelength conversion member 20 has a heat dissipation substrate 21. On the surface of the heat dissipating substrate 21, for example, a plurality of rectangular divided regions D that are divided in a rectangular excitation light incident region N and separated from each other are formed. In each of the divided regions D on the surface of the heat dissipation substrate 21, a rectangular plate-shaped wavelength conversion element 22 is disposed via an adhesive film 23 made of, for example, solder. Between the wavelength conversion elements 22 adjacent to each other, a diffuse reflector 25 that diffusely reflects the excitation light L is formed. In the example shown in the figure, the diffuse reflector 25 is formed so as to cover a region other than the divided region D in the excitation light incident region N.
In the above, it is preferable that the divided region D, that is, the region in which the wavelength conversion element 22 is disposed, is formed in a dispersed state in the excitation light incident region N.

励起光源10から出射される励起光Lは、蛍光光源装置の用途等に応じて、紫外線および可視光線から適宜選択することができる。例えば蛍光光源装置の用途が照明装置である場合には、励起光Lとして青色光が選択される。また、励起光源10としては、レーザダイオードを用いることができる。   The excitation light L emitted from the excitation light source 10 can be appropriately selected from ultraviolet rays and visible rays according to the use of the fluorescent light source device and the like. For example, when the use of the fluorescent light source device is a lighting device, blue light is selected as the excitation light L. As the excitation light source 10, a laser diode can be used.

波長変換部材20における放熱性基板21を構成する材料としては、熱伝導率の高い金属材料を用いることができる。このような金属材料の具体例としては、銅、銅合金、アルミニウム、アルミニウム合金、ニッケルなどを用いることができる。   As a material constituting the heat dissipation substrate 21 in the wavelength conversion member 20, a metal material having high thermal conductivity can be used. As specific examples of such a metal material, copper, copper alloy, aluminum, aluminum alloy, nickel, and the like can be used.

波長変換部材20における波長変換要素22は、蛍光体結晶よりなるものであっても、蛍光体結晶粉末がバインダーによって結着されてなるものであってもよい。
蛍光体結晶としては、Ce:LuAG(Lu3 Al5 12)、Pr:YAGなどの緑色蛍光体、Eu:CASN(CaAlSiN)、Eu:S−CASN(SrCaAlSiN)、YAG:Sm、YAG:Prなどの赤色蛍光体、Ce:YAG(Y3 Al5 12)などの黄色蛍光体を用いることができる。これらの蛍光体結晶は、単独でまたは組み合わせて用いることができる。
これらの蛍光体結晶において、希土類元素のドープ量は、例えば0.5mol%程度である。
The wavelength conversion element 22 in the wavelength conversion member 20 may be made of a phosphor crystal, or may be formed by binding phosphor crystal powder with a binder.
As phosphor crystals, green phosphors such as Ce: LuAG (Lu 3 Al 5 O 12 ), Pr: YAG, Eu: CASN (CaAlSiN), Eu: S-CASN (SrCaAlSiN), YAG: Sm, YAG: Pr For example, a red phosphor such as Ce: YAG (Y 3 Al 5 O 12 ) can be used. These phosphor crystals can be used alone or in combination.
In these phosphor crystals, the rare earth element doping amount is, for example, about 0.5 mol%.

蛍光体結晶として単結晶を用いる場合には、当該蛍光体単結晶は、例えばチョクラルスキー法によって得ることができる。具体的に説明すると、先ず、坩堝内において種子結晶を溶融された原料に接触させる。次いで、この状態で、種子結晶を回転させながら鉛直方向に引き上げて当該種子結晶に単結晶を成長させる。このようにして、蛍光体単結晶が得られる。   When a single crystal is used as the phosphor crystal, the phosphor single crystal can be obtained by, for example, the Czochralski method. Specifically, first, the seed crystal is brought into contact with the melted raw material in the crucible. Next, in this state, the seed crystal is pulled up in the vertical direction while rotating the seed crystal to grow a single crystal on the seed crystal. In this way, a phosphor single crystal is obtained.

蛍光体結晶として多結晶を用いる場合には、当該蛍光体多結晶は、例えば以下のようにして得ることができる。先ず、母材、賦活材および焼成助剤などの原材料をボールミルなどによって粉砕処理することによって、サブミクロン以下の原材料微粒子を調製する。次いで、この原材料微粒子を例えばスリップキャスト法によって焼結する。その後、得られた焼結体に対して熱間等方圧加圧加工を施すことによって、蛍光体多結晶が得られる。   When a polycrystal is used as the phosphor crystal, the phosphor polycrystal can be obtained, for example, as follows. First, raw materials such as a base material, an activation material, and a firing aid are pulverized by a ball mill or the like to prepare raw material fine particles of submicron or less. Next, the raw material fine particles are sintered by, for example, a slip casting method. Then, a phosphor polycrystal is obtained by subjecting the obtained sintered body to hot isostatic pressing.

蛍光体結晶粉末がバインダーによって結着されてなる波長変換要素22を形成する場合において、蛍光体結晶粉末の平均粒径は、例えば1〜60μmである。
波長変換要素22における蛍光体結晶粉末の割合は、例えば30〜70体積%である。 バインダーとしては、ガラスなどの無機バインダー、シリコーン樹脂などの有機バインダーを用いることができる。
In the case of forming the wavelength conversion element 22 in which the phosphor crystal powder is bound by the binder, the average particle diameter of the phosphor crystal powder is, for example, 1 to 60 μm.
The ratio of the phosphor crystal powder in the wavelength conversion element 22 is, for example, 30 to 70% by volume. As the binder, an inorganic binder such as glass or an organic binder such as silicone resin can be used.

波長変換部材20は、全ての波長変換要素22がそれぞれ同一の波長の蛍光を放射する同種類である、すなわち蛍光体結晶の組成が同一のものであってもよいが、互いに異なる波長の蛍光を放射する複数種類の波長変換要素22を有するものであってもよい。波長変換部材20が複数種類の波長変換要素22を有する場合には、異なる種類の波長変換部材22が互いに隣接する状態で配置されていることが好ましい。   The wavelength conversion member 20 may be of the same type in which all the wavelength conversion elements 22 each emit fluorescence of the same wavelength, that is, the composition of the phosphor crystal may be the same, but the fluorescence of different wavelengths may be used. You may have the multiple types of wavelength conversion element 22 to radiate | emit. When the wavelength conversion member 20 has a plurality of types of wavelength conversion elements 22, it is preferable that the different types of wavelength conversion members 22 are arranged adjacent to each other.

また、波長変換部材20は、図2に示すように、それぞれ同一の形状および寸法の波長変換要素22を有するものであってもよいが、図3および図4に示すように、互いに異なる形状および寸法の複数形態の波長変換要素22a,22b,22c,22dを有するものであってもよい。特に、波長変換部材20が互いに異なる波長の蛍光を放射する複数種類の波長変換要素22を有する場合には、それぞれの波長変換要素22の発光効率などを考慮して形状および寸法を設定することにより、所要のスペクトルの光を放射することができる。   Further, the wavelength conversion member 20 may have the wavelength conversion elements 22 having the same shape and dimensions as shown in FIG. 2, but as shown in FIG. 3 and FIG. You may have the wavelength conversion element 22a, 22b, 22c, 22d of the plural form of a dimension. In particular, when the wavelength conversion member 20 has a plurality of types of wavelength conversion elements 22 that emit fluorescence having different wavelengths, the shape and dimensions are set in consideration of the light emission efficiency of each wavelength conversion element 22 and the like. The light of the required spectrum can be emitted.

波長変換要素22の各々の表面の面積は、0.5〜400mm2 であることが好ましい。波長変換要素22の表面の面積が過小である場合には、波長変換要素22の取扱い性が低く、波長変換部材20を製造することが困難となることがある。一方、波長変換要素22の表面の面積が過大である場合には、波長変換部材20のサイズが大きくなるため、蛍光光源装置全体のサイズが大きくなってしまう。 The area of each surface of the wavelength conversion element 22 is preferably 0.5 to 400 mm 2 . When the area of the surface of the wavelength conversion element 22 is too small, the handleability of the wavelength conversion element 22 is low, and it may be difficult to manufacture the wavelength conversion member 20. On the other hand, when the area of the surface of the wavelength conversion element 22 is excessive, the size of the wavelength conversion member 20 increases, and thus the size of the entire fluorescent light source device increases.

波長変換要素22の各々の表面の合計の面積(分割領域Dの合計の面積)は、励起光入射領域Nの面積の50〜98%であることが好ましい。波長変換要素22の表面の合計の面積が過小である場合には、励起光入射領域Nの面積が相対的に大きく、励起光に対する蛍光の割合が少ないため、白色光が得られないことがある。一方、波長変換要素22の表面の合計の面積が過大である場合には、励起光に対して蛍光の割合が多いため、白色光が得られないことがある。   The total area of the surfaces of the wavelength conversion elements 22 (the total area of the divided regions D) is preferably 50 to 98% of the area of the excitation light incident region N. When the total area of the surface of the wavelength conversion element 22 is too small, white light may not be obtained because the area of the excitation light incident region N is relatively large and the ratio of fluorescence to the excitation light is small. . On the other hand, when the total area of the surface of the wavelength conversion element 22 is excessive, white light may not be obtained because the ratio of fluorescence to the excitation light is large.

波長変換要素22の各々の厚みは、例えば100〜1000μmである。
波長変換部材20における波長変換要素22の数は、波長変換要素22の各々の表面の面積や、励起光入射領域Nの面積などを考慮して適宜設定することができるが、例えば2〜20個である。
Each thickness of the wavelength conversion element 22 is, for example, 100 to 1000 μm.
The number of wavelength conversion elements 22 in the wavelength conversion member 20 can be appropriately set in consideration of the surface area of each wavelength conversion element 22, the area of the excitation light incident region N, and the like. It is.

隣接する波長変換要素22の間の離間距離dは、0.1〜2mmであることが好ましい。この離間距離dが過小である場合には、互いに隣接する波長変換要素22の間に、拡散反射材25を形成することが困難となることがある。一方、この離間距離dが過大である場合には、波長変換部材20のサイズが大きくなるため、蛍光光源装置全体のサイズが大きくなってしまう。   The separation distance d between adjacent wavelength conversion elements 22 is preferably 0.1 to 2 mm. If the separation distance d is too small, it may be difficult to form the diffuse reflector 25 between the wavelength conversion elements 22 adjacent to each other. On the other hand, when the separation distance d is excessive, the size of the wavelength conversion member 20 increases, so that the size of the entire fluorescent light source device increases.

波長変換部材20における拡散反射材25としては、バインダー中に光拡散用粒子が分散されてなるものを用いることができる。
光拡散用粒子としては、TiO2 ,SiO2 ,Al2 3 などよりなる無機粒子を用いることができる。光拡散用粒子の平均粒径は、例えば0.01〜50μmである。拡散反射材25中における光拡散用粒子の含有割合は、例えば30体積%である。
バインダーとしては、ガラスなどの無機バインダー、シリコーン樹脂などの有機バインダーを用いることができる。
As the diffuse reflection material 25 in the wavelength conversion member 20, a material in which light diffusion particles are dispersed in a binder can be used.
As the light diffusing particles, inorganic particles made of TiO 2 , SiO 2 , Al 2 O 3 or the like can be used. The average particle diameter of the light diffusing particles is, for example, 0.01 to 50 μm. The content ratio of the light diffusing particles in the diffuse reflector 25 is, for example, 30% by volume.
As the binder, an inorganic binder such as glass or an organic binder such as silicone resin can be used.

上記の波長変換部材20は、例えば以下のようにして製造することができる。
先ず、蛍光体結晶よりなる、或いは蛍光体結晶粉末がバインダーによって結着されてなる板状の波長変換要素用材料を用意する。この波長変換要素用材料を、例えばダイシング装置によって切断することにより、所要の形態の波長変換要素22を形成する。次いで、放熱性基板21の表面に、スクリーン印刷等によって、半田ペーストを分割領域Dのパターンに従って塗布する。その後、半田ペーストによる塗布膜の各々の表面上に、例えばダイボンダー装置によって、波長変換要素22を配置する。そして、半田ペーストによる塗布膜を加熱することにより、放熱性基板21の表面に、半田よりなる接着膜23を介して波長変換要素22を接着する。
Said wavelength conversion member 20 can be manufactured as follows, for example.
First, a plate-shaped wavelength conversion element material made of a phosphor crystal or phosphor powder powder bound by a binder is prepared. The wavelength conversion element 22 having a required form is formed by cutting the wavelength conversion element material with, for example, a dicing apparatus. Next, a solder paste is applied to the surface of the heat dissipation substrate 21 according to the pattern of the divided regions D by screen printing or the like. Then, the wavelength conversion element 22 is arrange | positioned by the die bonder apparatus, for example on each surface of the coating film by a solder paste. And the wavelength conversion element 22 is adhere | attached on the surface of the thermal radiation board | substrate 21 via the adhesive film 23 which consists of solder by heating the coating film by a solder paste.

次いで、放熱性基板21の表面における波長変換要素22が配置された領域以外の領域に、例えばディスペンサによって、光拡散用粒子およびバインダー材料を含有する拡散反射材形成用ペーストを塗布する。そして、拡散反射材形成用ペーストによる塗布膜を加熱することにより、拡散反射材25を形成する。このようにして、図2および図3に示す波長変換部材20が得られる。   Next, a paste for forming a diffuse reflector containing particles for light diffusion and a binder material is applied to a region other than the region where the wavelength conversion element 22 is disposed on the surface of the heat dissipation substrate 21 by, for example, a dispenser. And the diffuse reflection material 25 is formed by heating the coating film by the paste for diffuse reflection material formation. In this way, the wavelength conversion member 20 shown in FIGS. 2 and 3 is obtained.

以上において、半田ペーストによる塗布膜の加熱条件は、例えば加熱温度が250℃、加熱時間が2分間である。
また、拡散反射材形成用ペーストによる塗布膜の加熱条件は、用いられるバインダー材料の種類によって異なるが、バインダー材料としてシリコーン樹脂材料を用いる場合には、例えば加熱温度が150℃、加熱時間が1時間である。
In the above, the heating conditions of the coating film with the solder paste are, for example, a heating temperature of 250 ° C. and a heating time of 2 minutes.
In addition, although the heating conditions of the coating film by the diffuse reflecting material forming paste vary depending on the type of binder material used, when a silicone resin material is used as the binder material, for example, the heating temperature is 150 ° C. and the heating time is 1 hour. It is.

本発明の蛍光光源装置を例えば照明装置に適用する場合には、励起光源10および波長変換部材20として、下記の(1)または(2)の組み合わせのものを用いることが好ましい。
(1)励起光Lとして青色光を放射する励起光源10と、黄色の蛍光を放射する波長変換要素22を有する波長変換部材20との組み合わせ。
(2)励起光Lとして青色光を放射する励起光源10と、緑色の蛍光を放射する波長変換要素22および赤色の蛍光を放射する波長変換要素22を有する波長変換部材20との組み合わせ。
When the fluorescent light source device of the present invention is applied to, for example, a lighting device, it is preferable to use a combination of the following (1) or (2) as the excitation light source 10 and the wavelength conversion member 20.
(1) A combination of an excitation light source 10 that emits blue light as the excitation light L and a wavelength conversion member 20 having a wavelength conversion element 22 that emits yellow fluorescence.
(2) A combination of an excitation light source 10 that emits blue light as the excitation light L, and a wavelength conversion member 20 having a wavelength conversion element 22 that emits green fluorescence and a wavelength conversion element 22 that emits red fluorescence.

上記の蛍光光源装置によれば、励起光入射領域N内において分割されて互いに離間した複数の分割領域Dの各々に波長変換要素22を配置することにより、単一の波長変換要素を有する場合に比較して、波長変換要素22の各々を励起光入射領域N内の広範囲にわたって分散して配置することができる。そのため、波長変換要素22に生じた熱を高い効率で排熱することができる。従って、波長変換部材20に高い出力の励起光Lを入射した場合であっても、波長変換要素22の発熱による温度消光が低減されるので、発光効率の低下を抑制することができる。しかも、互いに隣接する波長変換要素22の間には、励起光Lを拡散反射する拡散反射材25が形成されているため、優れた演色性を有する光を放射することができる。   According to the fluorescent light source device described above, when the wavelength conversion element 22 is arranged in each of the plurality of divided areas D which are divided in the excitation light incident area N and separated from each other, the single wavelength conversion element is provided. In comparison, each of the wavelength conversion elements 22 can be dispersed and arranged over a wide range in the excitation light incident region N. Therefore, the heat generated in the wavelength conversion element 22 can be exhausted with high efficiency. Therefore, even when the high-power excitation light L is incident on the wavelength conversion member 20, temperature quenching due to heat generation of the wavelength conversion element 22 is reduced, so that a decrease in light emission efficiency can be suppressed. Moreover, since the diffuse reflector 25 that diffusely reflects the excitation light L is formed between the wavelength conversion elements 22 adjacent to each other, light having excellent color rendering properties can be emitted.

本発明においては、上記の実施の形態に限定されず、以下のような種々の変更を加えることが可能である。
(1)図5に示すように、波長変換要素22の裏面には、励起光および波長変換要素22から放射される蛍光を反射する光反射膜24が形成されていてもよい。光反射膜24としては、誘電体多層膜を用いることができる。このような構成の蛍光光源装置によれば、より高い効率で所要の光を放射することができる。
(2)励起光入射領域Nは、矩形のものに限られず、例えば図6に示すように、円形のものであってもよい。
In the present invention, the present invention is not limited to the above-described embodiment, and various modifications as described below can be added.
(1) As shown in FIG. 5, a light reflection film 24 that reflects excitation light and fluorescence emitted from the wavelength conversion element 22 may be formed on the back surface of the wavelength conversion element 22. As the light reflecting film 24, a dielectric multilayer film can be used. According to the fluorescent light source device having such a configuration, required light can be emitted with higher efficiency.
(2) The excitation light incident area N is not limited to a rectangular one, but may be a circular one as shown in FIG. 6, for example.

〈実施例1〉
図2に示す構成に従い、下記の仕様の波長変換部材(20)を作製した。
[放熱性基板(21)]
材質:ニッケル(熱伝導率=90Wm-1-1
寸法:10mm×10mm×1mm
[波長変換要素(22)]
材質:Y3 Al5 12:Ce(YAG:Ce)(熱伝導率=11.7Wm-1-1
寸法:1.67(5/3)mm×1.67(5/3)mm×0.1mm
波長変換要素の数:9個
[拡散反射材(25)] バインダーの材質:シリコーン樹脂
拡散用粒子の材質:TiO2
光拡散用粒子の平均粒径:0.1μm
光拡散用粒子の含有割合:30体積%
拡散反射材の外形寸法:9mm×9mm×0.1mm
隣接する波長変換要素の間の幅:1mm
<Example 1>
A wavelength conversion member (20) having the following specifications was produced according to the configuration shown in FIG.
[Heat dissipation substrate (21)]
Material: Nickel (thermal conductivity = 90 Wm -1 K -1 )
Dimensions: 10mm x 10mm x 1mm
[Wavelength conversion element (22)]
Material: Y 3 Al 5 O 12 : Ce (YAG: Ce) (thermal conductivity = 11.7 Wm −1 K −1 )
Dimensions: 1.67 (5/3) mm x 1.67 (5/3) mm x 0.1 mm
Number of wavelength conversion elements: 9 [diffuse reflective material (25)] Binder material: Silicone resin Diffusion particle material: TiO 2
Average particle size of light diffusion particles: 0.1 μm
Content ratio of light diffusion particles: 30% by volume
External dimensions of diffuse reflector: 9 mm x 9 mm x 0.1 mm
Width between adjacent wavelength conversion elements: 1 mm

上記の波長変換部材および励起光源として下記のレーザダイオード125個を用い、図1に示す蛍光光源装置を作製した。この蛍光光源装置における励起光入射領域は、7.8mm×7.8mmの矩形のものである。
[レーザダイオード]
発光ピーク波長:445nm(青色光)
出力:1.6W
A fluorescent light source device shown in FIG. 1 was produced using the following 125 laser diodes as the wavelength conversion member and the excitation light source. The excitation light incident area in this fluorescent light source device is a rectangle of 7.8 mm × 7.8 mm.
[Laser diode]
Peak emission wavelength: 445 nm (blue light)
Output: 1.6W

〈比較例1〉
波長変換要素の数を1個、波長変換要素の寸法を5mm×5mm×0.1mmに変更したこと以外は、実施例1と同様の構成の蛍光光源装置を作製した。
<Comparative example 1>
A fluorescent light source device having the same configuration as in Example 1 was produced except that the number of wavelength conversion elements was one and the dimensions of the wavelength conversion elements were changed to 5 mm × 5 mm × 0.1 mm.

実施例1および比較例1に係る蛍光光源装置について、合計200Wの出力で励起光源から波長変換部材に励起光を照射し、波長変換要素の平均温度および蛍光光源装置から放射される光の放射強度を測定した。波長変換要素の平均温度および比較例1に係る蛍光光源装置から放射される光の放射強度を1としたときの相対強度を下記表1に示す。   About the fluorescence light source device which concerns on Example 1 and Comparative Example 1, the excitation light is irradiated to the wavelength conversion member from the excitation light source with a total output of 200 W, the average temperature of the wavelength conversion element, and the radiation intensity of the light emitted from the fluorescence light source device Was measured. Table 1 below shows the relative intensity when the average temperature of the wavelength conversion element and the emission intensity of light emitted from the fluorescent light source device according to Comparative Example 1 are set to 1.

Figure 0006248743
Figure 0006248743

表1の結果から明らかなように、実施例1に係る蛍光光源装置によれば、波長変換要素に生じた熱が高い効率で排熱され、これにより、発光効率の低下が抑制されることが確認された。   As is clear from the results in Table 1, according to the fluorescent light source device according to Example 1, the heat generated in the wavelength conversion element is exhausted with high efficiency, thereby suppressing a decrease in light emission efficiency. confirmed.

〈実施例2〉
図3に示す構成に従い、下記の仕様の波長変換部材(20)を作製した。
[放熱性基板(21)]
材質:ニッケル(熱伝導率=90Wm-1-1
寸法:10mm×10mm×1mm
[波長変換要素(22a)] 材質:Lu3 Al5 12:Ce(LuAG:Ce)(熱伝導率=6.44Wm-1-1) 寸法:2.6mm×1.46mm×0.1mm
波長変換要素の数:1個
[波長変換要素(22b)]
材質:Lu3 Al5 12:Ce(LuAG:Ce)(熱伝導率=6.44Wm-1-1) 寸法:1.56mm×1.3mm×0.1mm
波長変換要素の数:4個
[波長変換要素(22c)] 材質:(Ca,Sr)AlSiN3 :Eu(SCASN:Eu)(熱伝導率=20Wm-1-1
寸法:2.17mm×1.56mm×0.1mm
波長変換要素の数:2個
[波長変換要素(22d)]
材質:(Ca,Sr)AlSiN3 :Eu(SCASN:Eu)(熱伝導率=20Wm-1-1
寸法:1.09mm×1.43mm×0.1mm
波長変換要素の数:2個
[拡散反射材(25)]
バインダーの材質:シリコーン樹脂
拡散用粒子の材質:TiO2
光拡散用粒子の平均粒径:0.1μm
光拡散用粒子の含有割合:30体積%
拡散反射材の外形寸法:9mm×9mm×0.1mm
隣接する波長変換要素の間の幅:1mm
<Example 2>
A wavelength conversion member (20) having the following specifications was produced according to the configuration shown in FIG.
[Heat dissipation substrate (21)]
Material: Nickel (thermal conductivity = 90 Wm -1 K -1 )
Dimensions: 10mm x 10mm x 1mm
[Wavelength conversion element (22a)] Material: Lu 3 Al 5 O 12 : Ce (LuAG: Ce) (thermal conductivity = 6.44 Wm −1 K −1 ) Dimensions: 2.6 mm × 1.46 mm × 0.1 mm
Number of wavelength conversion elements: 1 [wavelength conversion element (22b)]
Material: Lu 3 Al 5 O 12 : Ce (LuAG: Ce) (thermal conductivity = 6.44 Wm −1 K −1 ) Dimensions: 1.56 mm × 1.3 mm × 0.1 mm
Number of wavelength conversion elements: 4 [wavelength conversion elements (22c)] Material: (Ca, Sr) AlSiN 3 : Eu (SCASN: Eu) (thermal conductivity = 20 Wm −1 K −1 )
Dimensions: 2.17mm x 1.56mm x 0.1mm
Number of wavelength conversion elements: 2 [wavelength conversion element (22d)]
Material: (Ca, Sr) AlSiN 3 : Eu (SCASN: Eu) (thermal conductivity = 20 Wm −1 K −1 )
Dimensions: 1.09mm x 1.43mm x 0.1mm
Number of wavelength conversion elements: 2 [diffuse reflector (25)]
Binder material: Silicone resin Diffusion particle material: TiO 2
Average particle size of light diffusion particles: 0.1 μm
Content ratio of light diffusion particles: 30% by volume
External dimensions of diffuse reflector: 9 mm x 9 mm x 0.1 mm
Width between adjacent wavelength conversion elements: 1 mm

上記の波長変換部材および励起光源として下記のレーザダイオード125個を用い、図1に示す蛍光光源装置を作製した。この蛍光光源装置における励起光入射領域は、7.8mm×7.8mmの矩形のものである。
[レーザダイオード]
発光ピーク波長:445nm(青色光)
定格出力:1.6W
A fluorescent light source device shown in FIG. 1 was produced using the following 125 laser diodes as the wavelength conversion member and the excitation light source. The excitation light incident area in this fluorescent light source device is a rectangle of 7.8 mm × 7.8 mm.
[Laser diode]
Peak emission wavelength: 445 nm (blue light)
Rated output: 1.6W

実施例2に係る蛍光光源装置について、合計200Wの出力で励起光源から波長変換部材に励起光を照射し、放射される光の分光スペクトルを測定した。結果を図7に示す。図7において、縦軸は相対分光放射強度、横軸は波長を示す。また、曲線aは、蛍光光源装置から放射される光の分光スペクトル、曲線bは、Ce:LuAGよりなる波長変換要素から放射される蛍光スペクトル、曲線cは、Eu:SCASNよりなる波長変換要素から放射される蛍光スペクトルである。
また、この蛍光光源装置から放射される光について、平均演色評価数Raおよび色温度を測定したところ、平均演色評価数Raが90、色温度が3500Kであった。
以上の結果から、実施例2に係る蛍光光源装置によれば、演色性に優れた光が放射されることが確認された。
For the fluorescent light source device according to Example 2, the wavelength conversion member was irradiated with excitation light from the excitation light source with a total output of 200 W, and the spectrum of the emitted light was measured. The results are shown in FIG. In FIG. 7, the vertical axis represents relative spectral radiant intensity, and the horizontal axis represents wavelength. Curve a is a spectral spectrum of light emitted from the fluorescent light source device, curve b is a fluorescent spectrum emitted from a wavelength conversion element made of Ce: LuAG, and curve c is a wavelength conversion element made of Eu: SCASN. It is an emitted fluorescence spectrum.
Further, when the average color rendering index Ra and the color temperature of the light emitted from the fluorescent light source device were measured, the average color rendering index Ra was 90 and the color temperature was 3500K.
From the above results, according to the fluorescent light source device according to Example 2, it was confirmed that light excellent in color rendering was emitted.

10 励起光源
20 波長変換部材
21 放熱性基板
22,22a,22b,22c,22d 波長変換要素
23 接着膜
24 光反射膜
25 拡散反射材
30 凹面ミラー
31 開口
32 貫通孔
40 レンズ
D 分割領域
N 励起光入射領域
DESCRIPTION OF SYMBOLS 10 Excitation light source 20 Wavelength conversion member 21 Heat-radiating board | substrate 22,22a, 22b, 22c, 22d Wavelength conversion element 23 Adhesive film 24 Light reflection film 25 Diffuse reflection material 30 Concave mirror 31 Opening 32 Through-hole 40 Lens D Divided area N Excitation light Incident area

Claims (5)

励起光源としてレーザダイオードを備え、当該レーザダイオードから離間して、励起光入射領域に配置された、励起光により励起されて蛍光を放射する波長変換部材を備えた蛍光光源装置であって、
前記波長変換部材は、放熱性基板と、この放熱性基板上に、前記励起光入射領域内において分割されて互いに離間した複数の分割領域の各々に配置された複数の波長変換要素と、互いに隣接する前記波長変換要素の間に形成された、前記励起光を拡散反射する拡散反射材とを有してなり、前記拡散反射材は光拡散用粒子よりなり、前記波長変換要素の各々は、励起光入射面から蛍光が出射されるものであることを特徴とする蛍光光源装置。
A fluorescent light source device including a laser diode as an excitation light source, and a wavelength conversion member that is spaced apart from the laser diode and disposed in an excitation light incident region and that emits fluorescence when excited by excitation light,
The wavelength converting member is adjacent to a heat dissipating substrate and a plurality of wavelength converting elements disposed on the heat dissipating substrate and each of a plurality of divided regions separated in the excitation light incident region and separated from each other. A diffuse reflector that diffuses and reflects the excitation light formed between the wavelength conversion elements, and the diffuse reflector is made of light diffusing particles, and each of the wavelength conversion elements is excited A fluorescent light source device characterized in that fluorescence is emitted from a light incident surface.
前記拡散反射材は、前記励起光入射領域における前記分割領域以外の領域をカバーするよう形成されていることを特徴とする請求項1に記載の蛍光光源装置。   The fluorescent light source device according to claim 1, wherein the diffuse reflector is formed so as to cover a region other than the divided region in the excitation light incident region. 前記波長変換部材は、互いに異なる波長の蛍光を放射する複数種類の波長変換要素が、互いに隣接する状態で配置されてなることを特徴とする請求項1に記載の蛍光光源装置。   The fluorescent light source device according to claim 1, wherein the wavelength conversion member includes a plurality of types of wavelength conversion elements that emit fluorescence having different wavelengths and are arranged adjacent to each other. 前記励起光が青色光であり、前記波長変換部材が、黄色の蛍光を放射する波長変換要素を有してなることを特徴とする請求項1に記載の蛍光光源装置。   The fluorescence light source device according to claim 1, wherein the excitation light is blue light, and the wavelength conversion member includes a wavelength conversion element that emits yellow fluorescence. 前記励起光が青色光であり、前記波長変換部材が、緑色の蛍光を放射する波長変換要素および赤色の蛍光を放射する波長変換要素を有してなることを特徴とする請求項3に記載の蛍光光源装置。   The excitation light is blue light, and the wavelength conversion member includes a wavelength conversion element that emits green fluorescence and a wavelength conversion element that emits red fluorescence. Fluorescent light source device.
JP2014065692A 2014-03-27 2014-03-27 Fluorescent light source device Active JP6248743B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014065692A JP6248743B2 (en) 2014-03-27 2014-03-27 Fluorescent light source device
PCT/JP2015/056947 WO2015146568A1 (en) 2014-03-27 2015-03-10 Fluorescent light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065692A JP6248743B2 (en) 2014-03-27 2014-03-27 Fluorescent light source device

Publications (2)

Publication Number Publication Date
JP2015191903A JP2015191903A (en) 2015-11-02
JP6248743B2 true JP6248743B2 (en) 2017-12-20

Family

ID=54195093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065692A Active JP6248743B2 (en) 2014-03-27 2014-03-27 Fluorescent light source device

Country Status (2)

Country Link
JP (1) JP6248743B2 (en)
WO (1) WO2015146568A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015105853U1 (en) * 2015-11-04 2017-02-08 Zumtobel Lighting Gmbh lighting device
CN107062024A (en) * 2017-06-09 2017-08-18 超视界激光科技(苏州)有限公司 A kind of adaptive laser lighting lamp
CN107013825A (en) * 2017-06-09 2017-08-04 超视界激光科技(苏州)有限公司 Wavelength converter, light-emitting device and laser lighting lamp
CN109424940B (en) * 2017-07-04 2021-05-04 中强光电股份有限公司 Optical wavelength conversion module and illumination module
JP2019082674A (en) * 2017-10-31 2019-05-30 パナソニックIpマネジメント株式会社 Lighting unit and projection type video display device
JP2019109330A (en) * 2017-12-18 2019-07-04 パナソニックIpマネジメント株式会社 Wavelength conversion device, light source apparatus, illumination apparatus and projection type video display apparatus
EP3543596B1 (en) * 2018-03-20 2020-08-26 ZKW Group GmbH Light module for a motor vehicle headlamp
JP2024025381A (en) * 2022-08-12 2024-02-26 市光工業株式会社 Vehicular light conversion panel, vehicular lighting fixture unit, vehicular lighting fixture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321943A (en) * 1997-05-15 1998-12-04 Tokyo Inst Of Technol Thin color display using vertical cavity surface emitter laser device having monochromatic emission spectrum
CN107087343B (en) * 2011-05-27 2019-04-19 夏普株式会社 Light emitting device and lighting device
JP2013102078A (en) * 2011-11-09 2013-05-23 Stanley Electric Co Ltd Light source device and luminaire
JP2014052606A (en) * 2012-09-10 2014-03-20 Sharp Corp Phosphor substrate, light-emitting device, display device and luminaire
JP2014042074A (en) * 2013-11-20 2014-03-06 Koito Mfg Co Ltd Light emitting module
JP6246622B2 (en) * 2014-03-05 2017-12-13 シャープ株式会社 Light source device and lighting device

Also Published As

Publication number Publication date
JP2015191903A (en) 2015-11-02
WO2015146568A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6248743B2 (en) Fluorescent light source device
CN108885286B (en) Wavelength conversion member, method for manufacturing same, and light-emitting device
CN105423238B (en) Wavelength conversion member, light emitting device, projector, and method of manufacturing wavelength conversion member
JP6111960B2 (en) Fluorescent light source device
US8931922B2 (en) Ceramic wavelength-conversion plates and light sources including the same
JP5491867B2 (en) Lighting device, in particular lighting device with luminescent ceramic
JP2012243624A (en) Light source device and lighting device
TW201229434A (en) Solid-state lamps with light guide and photoluminescence material
JP2013201434A (en) Light-emitting device, display device, and lighting device
JP2017107071A (en) Wavelength conversion member and wavelength conversion element, and light emitting device using the same
JP6524474B2 (en) Wavelength conversion member and light emitting device
JP2006019409A (en) Light emitting device as well as illumination, back light for display and display employing same
JP2011159832A (en) Semiconductor light emitting device
JP2006310817A (en) Incandescent emitting device and luminaire
TWI669375B (en) Wavelength conversion member and light emitting device
CN109798457A (en) A kind of transmission-type blue laser light fixture
US20150241758A1 (en) Compact solid-state camera flash
CN116293491A (en) Wavelength conversion member, method for manufacturing same, and light-emitting device
JP2012079989A (en) Light source device and lighting fixture
CN116324265A (en) Laser phosphor light source with improved brightness and thermal management
JP5781367B2 (en) Light source device and lighting device
JPWO2020066615A1 (en) Wavelength conversion member and white light output device using it
RU2525166C2 (en) Method to control chromaticity of light flux of white light diode and device for method realisation
JP2016119361A (en) Light-emitting device
JP2011159769A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6248743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250