JP6247481B2 - Manufacturing method of component-embedded substrate - Google Patents

Manufacturing method of component-embedded substrate Download PDF

Info

Publication number
JP6247481B2
JP6247481B2 JP2013189620A JP2013189620A JP6247481B2 JP 6247481 B2 JP6247481 B2 JP 6247481B2 JP 2013189620 A JP2013189620 A JP 2013189620A JP 2013189620 A JP2013189620 A JP 2013189620A JP 6247481 B2 JP6247481 B2 JP 6247481B2
Authority
JP
Japan
Prior art keywords
resin layer
electronic component
detection
pair
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013189620A
Other languages
Japanese (ja)
Other versions
JP2015056547A (en
Inventor
松本 健太郎
健太郎 松本
秀和 唐澤
秀和 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2013189620A priority Critical patent/JP6247481B2/en
Publication of JP2015056547A publication Critical patent/JP2015056547A/en
Application granted granted Critical
Publication of JP6247481B2 publication Critical patent/JP6247481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、チップ抵抗器等の電子部品がベース基板上に設けられた樹脂層の内部に内蔵されている部品内蔵型基板の製造方法に係り、特に、樹脂層の硬化後に形成されるビアホールを電子部品の外部電極に対して精度良く位置合わせする技術に関するものである。   The present invention relates to a method of manufacturing a component-embedded substrate in which an electronic component such as a chip resistor is built in a resin layer provided on a base substrate, and more particularly, a via hole formed after the resin layer is cured. The present invention relates to a technique for accurately aligning with an external electrode of an electronic component.

従来より、この種の部品内蔵型基板の製造方法として、図6に示すような工程を備えたものが知られている(例えば、特許文献1参照)。以下、この図6を参照して特許文献1に記載された従来技術を説明する。   2. Description of the Related Art Conventionally, as a method for manufacturing this type of component-embedded substrate, one having a process as shown in FIG. 6 is known (see, for example, Patent Document 1). Hereinafter, the prior art described in Patent Document 1 will be described with reference to FIG.

まず、図6(a)に示すように、ベース基板10上の所定位置にクランプや吸着機を用いて電子部品11を接着固定した後、この電子部品11の設計上の搭載位置に対する位置ずれ量を測定する。その際、電子部品11の表面には図示せぬ部品マークが施されており、この部品マークを自動外観検査機によって検査して設計データと比較することにより、搭載された電子部品11の位置ずれ量がデータとして記憶される。   First, as shown in FIG. 6A, after the electronic component 11 is bonded and fixed to a predetermined position on the base substrate 10 by using a clamp or a suction device, the amount of positional deviation of the electronic component 11 with respect to the design mounting position. Measure. At that time, a component mark (not shown) is provided on the surface of the electronic component 11. The component mark is inspected by an automatic visual inspection machine and compared with design data, thereby shifting the position of the mounted electronic component 11. The quantity is stored as data.

次に、図6(b)に示すように、電子部品11の上方面より絶縁材12を積み重ね、これを積層プレスによって加熱・加圧した後、図6(c)に示すように、レーザ加工によって絶縁材12の所定位置にビアホール13を形成する。かかるビアホール13の形成工程には前述した位置ずれ量のデータが使用され、このデータをレーザ加工条件に取り込むことにより、電子部品11の外部電極11aに接続するビアホール13が形成される。   Next, as shown in FIG. 6 (b), the insulating material 12 is stacked from the upper surface of the electronic component 11, and this is heated and pressurized by a laminating press, and then laser processing is performed as shown in FIG. 6 (c). Thus, a via hole 13 is formed at a predetermined position of the insulating material 12. In the step of forming the via hole 13, the data on the amount of displacement described above is used, and by taking this data into the laser processing conditions, the via hole 13 connected to the external electrode 11 a of the electronic component 11 is formed.

次に、無電解メッキと電解メッキを順に行ってビアホール13の内部と絶縁材12の表面に銅メッキを付着した後、絶縁材12表面の銅メッキ部をパターニングして回路形成することにより、図6(d)に示すように、接続ビア14と導体パターン15を有する部品内蔵型基板が製造される。   Next, after performing electroless plating and electrolytic plating in order to deposit copper plating on the inside of the via hole 13 and the surface of the insulating material 12, the copper plated portion on the surface of the insulating material 12 is patterned to form a circuit. As shown in FIG. 6D, a component-embedded substrate having the connection via 14 and the conductor pattern 15 is manufactured.

特開2007−207880号公報JP 2007-207880 A

ところで、特許文献1に開示された従来技術において、絶縁材として硬化時の収縮率が大きな絶縁性樹脂(例えばエポキシ系樹脂)を使用した場合、絶縁性樹脂の硬化前と硬化後とでベース基板上における電子部品の搭載位置にずれが生じてしまうため、樹脂硬化前に記憶した位置データに基づいて樹脂硬化後の正しい箇所にビアホールを形成したつもりでも、形成されたビアホールと電子部品の外部電極との位置がずれてしまう虞がある。特に、近年においては電子部品の小型化が促進されており、それに伴って電子部品に設けられた外部電極の面積が小さくなっているため、ビアホールの僅かな位置ずれによって導通不良や短絡不良等の不具合が発生するという問題があった。   By the way, in the prior art disclosed in Patent Document 1, when an insulating resin (for example, epoxy resin) having a large shrinkage rate at the time of curing is used as an insulating material, the base substrate is before and after the insulating resin is cured. Since the mounting position of the electronic component on the top will shift, even if you intend to form a via hole at the correct location after resin curing based on the position data stored before resin curing, the formed via hole and the external electrode of the electronic component There is a risk that the position will be shifted. In particular, in recent years, miniaturization of electronic components has been promoted, and the area of the external electrodes provided on the electronic components has been reduced accordingly. There was a problem that a bug occurred.

本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、ビアホールと電子部品の外部電極とを高精度に位置合わせすることができる部品内蔵型基板の製造方法を提供することにある。   The present invention has been made in view of the actual situation of the prior art, and an object of the present invention is to provide a method of manufacturing a component-embedded substrate capable of aligning a via hole and an external electrode of an electronic component with high accuracy. There is to do.

上記の目的を達成する解決手段として、本発明による部品内蔵型基板の製造方法は、外部電極を有する電子部品と一対の検知磁石とをベース基板上に搭載する工程と、前記ベース基板上における前記電子部品と前記一対の検知磁石の位置関係を基準位置として記憶する工程と、前記ベース基板上に前記電子部品と前記一対の検知磁石を覆うように未硬化状態の樹脂層を形成する工程と、前記樹脂層を硬化する工程と、硬化後の前記樹脂層の表面に磁性体を近づけて前記一対の検知磁石の位置を変動位置として検出する工程と、この変動位置と前記基準位置から前記樹脂層内における前記電子部品の補正位置を算出し、その算出結果に基づいて前記外部電極と接続されるビアホールを形成する工程と、を含むことを特徴としている。 As a means for achieving the above object, a method of manufacturing a component-embedded substrate according to the present invention includes a step of mounting an electronic component having an external electrode and a pair of detection magnets on a base substrate, and the above-mentioned on the base substrate. Storing a positional relationship between the electronic component and the pair of detection magnets as a reference position, and forming an uncured resin layer on the base substrate so as to cover the electronic component and the pair of detection magnets; A step of curing the resin layer, a step of detecting a position of the pair of detection magnets as a variation position by bringing a magnetic body close to the surface of the cured resin layer, and the resin layer from the variation position and the reference position And calculating a correction position of the electronic component inside, and forming a via hole connected to the external electrode based on the calculation result.

このような工程によって製造された部品内蔵型基板では、樹脂層の形成前にベース基板上における電子部品と一対の検知磁石の位置関係を予め基準位置として記憶しておき、硬化後の樹脂層の表面に磁性体を近づけて内部の検知磁石の変動位置を検出したなら、この変動位置と既に記憶されている基準位置との関係から硬化後の電子部品の補正位置を算出して、当該補正位置にビアホールを形成するようにしたので、樹脂層の硬化時の収縮に伴って電子部品の搭載位置がずれても、ビアホールと電子部品の外部電極とを高精度に位置合わせすることができる。 In the component-embedded substrate manufactured by such a process, the positional relationship between the electronic component and the pair of detection magnets on the base substrate is stored in advance as a reference position before the resin layer is formed, and the cured resin layer If the fluctuation position of the internal detection magnet is detected by bringing a magnetic body close to the surface, the correction position of the cured electronic component is calculated from the relationship between the fluctuation position and the reference position that has already been stored, and the correction position Since the via hole is formed in the via hole, the via hole and the external electrode of the electronic component can be aligned with high precision even if the mounting position of the electronic component is shifted due to the shrinkage when the resin layer is cured.

上記した部品内蔵型基板の製造方法において、磁性流体(磁性コロイド溶液)や小さな鉄球等の磁性体を用いて樹脂層に内蔵された検知磁石の位置を検出するようにしても良いが、磁性体として永久磁石を使用すると、検知磁石の吸引力が増加するので好ましい。ただし、磁性体として永久磁石を使用した場合、電子部品の外部電極に含有される磁性材料(例えばニッケル)にも吸引されて誤検知の可能性があるため、この永久磁石を硬化後の樹脂層の表面に近づけて検知磁石と反発させた後、当該位置で永久磁石の極性を反転して検知磁石に吸引させることにより、樹脂層内における検知磁石の位置が変動位置として検出されるようにすることが好ましく、このようにすると検知磁石の位置をより正確に検出することができる。   In the method of manufacturing a component-embedded substrate described above, the position of the detection magnet built in the resin layer may be detected using a magnetic material such as a magnetic fluid (magnetic colloid solution) or a small iron ball. It is preferable to use a permanent magnet as the body because the attractive force of the detection magnet increases. However, if a permanent magnet is used as the magnetic material, the magnetic material (for example, nickel) contained in the external electrode of the electronic component may be attracted and misdetected. The position of the detection magnet in the resin layer is detected as a fluctuating position by reversing the polarity of the permanent magnet at that position and causing the detection magnet to attract the rebound from the surface of the resin. Preferably, the position of the detection magnet can be detected more accurately.

また、上記の目的を達成する他の解決手段として、本発明による部品内蔵型基板の製造方法は、外部電極を有する電子部品と未着磁状態の一対の検知磁性体とをベース基板上に搭載する工程と、前記ベース基板上における前記電子部品と前記一対の検知磁性体の位置関係を基準位置として記憶する工程と、前記ベース基板上に前記電子部品と前記一対の検知磁性体を覆うように未硬化状態の樹脂層を形成する工程と、前記樹脂層を硬化する工程と、未着磁状態の前記一対の検知磁性体を磁化する工程と、硬化後の前記樹脂層の表面に磁性体を近づけて磁化した前記一対の検知磁性体の位置を変動位置として検出する工程と、この変動位置と前記基準位置から前記樹脂層内における前記電子部品の補正位置を算出し、その算出結果に基づいて前記外部電極と接続されるビアホールを形成する工程と、を含むことを特徴としている。 As another means for achieving the above object, a method for manufacturing a component-embedded substrate according to the present invention includes mounting an electronic component having an external electrode and a pair of non- magnetized detection magnetic bodies on a base substrate. a step of, so as to cover a step of storing the positional relationship of the electronic component and the pair of sensing magnetic body in the base substrate as a reference position, said electronic component and said pair of sensing magnetic on the base substrate A step of forming an uncured resin layer, a step of curing the resin layer, a step of magnetizing the pair of unmagnetized detection magnetic bodies, and a magnetic material on the surface of the cured resin layer. A step of detecting the position of the pair of sensing magnetic bodies magnetized close to each other as a fluctuation position, a correction position of the electronic component in the resin layer is calculated from the fluctuation position and the reference position, and based on the calculation result Previous It is characterized in that it comprises a step of forming a via hole connected to an external electrode.

このような工程によって製造された部品内蔵型基板では、樹脂層の形成前にベース基板上における電子部品と未着磁状態の一対の検知磁性体との位置関係を予め基準位置として記憶しておき、樹脂層の硬化後に未着磁状態の一対の検知磁性体を磁化させてから、樹脂層の表面に磁性体を近づけて内部の検知磁性体の変動位置を検出したなら、この変動位置と既に記憶されている基準位置との関係から硬化後の電子部品の補正位置を算出して、当該補正位置にビアホールを形成するようにしたので、樹脂層の硬化時の収縮に伴って電子部品の搭載位置がずれても、ビアホールと電子部品の外部電極とを高精度に位置合わせすることができる。 In the component-embedded substrate manufactured by such a process, the positional relationship between the electronic component on the base substrate and the pair of unmagnetized detection magnetic bodies is stored in advance as a reference position before the resin layer is formed. After magnetizing a pair of unmagnetized detection magnetic bodies after the resin layer is cured, if the magnetic body is brought close to the surface of the resin layer and the fluctuation position of the internal detection magnetic body is detected, this fluctuation position and the Since the correction position of the cured electronic component is calculated from the relationship with the stored reference position, and a via hole is formed at the correction position, mounting of the electronic component is accompanied by shrinkage when the resin layer is cured. Even if the position is shifted, the via hole and the external electrode of the electronic component can be aligned with high accuracy.

本発明による部品内蔵型基板の製造方法は、ベース基板上における電子部品と一対の検知磁石(または検知磁性体)の搭載位置が樹脂層の硬化時の収縮に伴って同じように位置ずれするという知見に基づき、硬化後の樹脂層の表面に磁性体を近づけて内部の検知磁石(または検知磁性体)の変動位置を検出し、この変動位置と樹脂層の形成前に予め記憶しておいた電子部品との位置関係から、新たに硬化後の電子部品の補正位置を算出して当該位置にビアホールを形成するようにしたので、樹脂層の硬化時の収縮に伴って電子部品の搭載位置がずれても、ビアホールと電子部品の外部電極とを高精度に位置合わせすることができ、導通不良や短絡不良といった不具合が発生することを防止できる。 According to the method for manufacturing a component-embedded substrate according to the present invention, the mounting position of the electronic component and the pair of detection magnets (or detection magnetic bodies) on the base substrate is similarly displaced as the resin layer shrinks during curing. Based on the knowledge, the magnetic body is brought close to the surface of the cured resin layer to detect the fluctuation position of the internal detection magnet (or detection magnetic substance), and the fluctuation position and the resin layer are stored in advance before forming the resin layer. Since the corrected position of the electronic component after curing is newly calculated from the positional relationship with the electronic component and a via hole is formed at the position, the mounting position of the electronic component is changed as the resin layer shrinks during curing. Even if they are misaligned, the via hole and the external electrode of the electronic component can be aligned with high accuracy, and it is possible to prevent problems such as poor conduction and short circuit.

本発明による部品内蔵型基板の断面図である。It is sectional drawing of the component built-in type board | substrate by this invention. 第1実施形態例に係る部品内蔵型基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the component built-in type board | substrate which concerns on the example of 1st Embodiment. 第1実施形態例に係る部品内蔵型基板の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the component built-in type board | substrate which concerns on the example of 1st Embodiment. 第2実施形態例に係る部品内蔵型基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the component built-in type board | substrate which concerns on the example of 2nd Embodiment. 第2実施形態例に係る部品内蔵型基板の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the component built-in type board | substrate which concerns on the example of 2nd Embodiment. 従来例に係る部品内蔵型基板の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the component built-in type board | substrate which concerns on a prior art example.

以下、発明の実施の形態を図面を参照しながら説明すると、図1に示すように、本発明による部品内蔵型基板1は、両面基板等のベース基板2と、ベース基板2上に搭載された電子部品3および該電子部品3を挟むように搭載された2個の検知磁石4(4A,4B)と、これら電子部品3と検知磁石4を覆うようにベース基板2に設けられた樹脂層5と、樹脂層5の所定位置に設けられた接続ビア6と、樹脂層5の表面に設けられた導体パターン7とによって主に構成されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a component-embedded substrate 1 according to the present invention is mounted on a base substrate 2 such as a double-sided substrate and the base substrate 2. The electronic component 3 and two detection magnets 4 (4A, 4B) mounted so as to sandwich the electronic component 3, and the resin layer 5 provided on the base substrate 2 so as to cover the electronic component 3 and the detection magnet 4 And a connection via 6 provided at a predetermined position of the resin layer 5 and a conductor pattern 7 provided on the surface of the resin layer 5.

ベース基板2の上面には図示せぬ電極パッド部が設けられており、この電極パッド部に電子部品3の底面が接着固定されている。電子部品3は例えばチップ抵抗器であり、この電子部品3には一対の外部電極3aや図示せぬ抵抗体等が設けられている。検知磁石4は直方体形状の永久磁石であり、検知磁石4と電子部品3はほぼ同じ高さ寸法に設定されている。なお、2個の検知磁石4を区別するために、以下の説明では図示左側の検知磁石に符号4Aを付し、図示右側の検知磁石に符号4Bを付すこととする。樹脂層5はエポキシ系樹脂等からなる熱硬化性樹脂であり、ベース基板2上の検知磁石4と電子部品3は硬化状態の樹脂層5に内蔵されている。接続ビア6は電子部品3の外部電極3aと樹脂層5の表面の導体パターン7とを接続する銅メッキ等からなる導体であり、後述するように、この接続ビア6は樹脂層5に形成されたビアホール5aの内部に形成されている。   An electrode pad portion (not shown) is provided on the upper surface of the base substrate 2, and the bottom surface of the electronic component 3 is bonded and fixed to the electrode pad portion. The electronic component 3 is, for example, a chip resistor, and the electronic component 3 is provided with a pair of external electrodes 3a, a resistor (not shown), and the like. The detection magnet 4 is a rectangular parallelepiped permanent magnet, and the detection magnet 4 and the electronic component 3 are set to have substantially the same height. In order to distinguish between the two detection magnets 4, in the following description, reference numeral 4A is assigned to the left detection magnet and reference numeral 4B is assigned to the detection magnet on the right side of the figure. The resin layer 5 is a thermosetting resin made of an epoxy resin or the like, and the detection magnet 4 and the electronic component 3 on the base substrate 2 are built in the cured resin layer 5. The connection via 6 is a conductor made of copper plating or the like that connects the external electrode 3 a of the electronic component 3 and the conductor pattern 7 on the surface of the resin layer 5. As will be described later, the connection via 6 is formed in the resin layer 5. It is formed inside the via hole 5a.

次に、上記の如く構成された部品内蔵型基板1の第1実施形態例に係る製造方法について、図2と図3を参照しながら説明する。   Next, a manufacturing method according to the first embodiment of the component-embedded substrate 1 configured as described above will be described with reference to FIGS.

まず、図3(a)に示すように、ベース基板2上の所定位置に電子部品3と該電子部品3を挟むように2個の検知磁石4A,4Bをクランプや吸着機を用いて接着固定する(図2の部品搭載工程)。次に、自動外観検査機等を用いて電子部品3に設けられた一対の外部電極3aと2個の検知磁石4A,4Bの位置を検査し、それらの位置関係を基準位置として記憶する(図2の基準位置記憶工程)。具体的には、一方の検知磁石4Aの搭載位置をP1、他方の検知磁石4の搭載位置をP2、電子部品3に設けられた一方の外部電極3aの位置をP3、他方の外部電極3aの位置をP4とすると、P1とP2間の距離(=X1)や、P1とP3間の距離(=X2)や、P2とP4間の距離(=X3)等が基準位置として記憶される。   First, as shown in FIG. 3A, the electronic component 3 and the two detection magnets 4A and 4B are bonded and fixed at predetermined positions on the base substrate 2 using clamps or suction machines so as to sandwich the electronic component 3. (Part mounting process in FIG. 2). Next, the positions of the pair of external electrodes 3a and the two detection magnets 4A and 4B provided on the electronic component 3 are inspected using an automatic visual inspection machine or the like, and the positional relationship between them is stored as a reference position (FIG. 2 reference position storing step). Specifically, the mounting position of one detection magnet 4A is P1, the mounting position of the other detection magnet 4 is P2, the position of one external electrode 3a provided on the electronic component 3 is P3, and the position of the other external electrode 3a is If the position is P4, the distance between P1 and P2 (= X1), the distance between P1 and P3 (= X2), the distance between P2 and P4 (= X3), etc. are stored as the reference position.

次に、図3(b)に示すように、電子部品3と検知磁石4A,4Bを覆うようにエポキシ系樹脂からなる樹脂ペーストをディスペンサ等によって充填し、ベース基板2上に未硬化状態の樹脂層5を形成した(図2の樹脂層形成工程)後、この樹脂層5を150℃〜180℃の温度で硬化する(図2の樹脂層硬化工程)。もしくは、樹脂層5としてベース基板2上にプリプレグ(半硬化状の樹脂シート)を重ねた(図2の樹脂層形成工程)後、この樹脂層5を加圧・加熱して硬化する(図2の樹脂層硬化工程)。かかる樹脂の硬化によって樹脂層5が収縮するため、図3(c)に示すように、樹脂層5に内蔵された電子部品3と各検知磁石4の搭載位置が樹脂層5の形成前に対して位置ずれする。   Next, as shown in FIG. 3B, a resin paste made of an epoxy resin is filled with a dispenser or the like so as to cover the electronic component 3 and the detection magnets 4A and 4B, and an uncured resin is formed on the base substrate 2. After forming the layer 5 (resin layer forming step in FIG. 2), the resin layer 5 is cured at a temperature of 150 ° C. to 180 ° C. (resin layer curing step in FIG. 2). Alternatively, after the prepreg (semi-cured resin sheet) is stacked on the base substrate 2 as the resin layer 5 (resin layer forming step in FIG. 2), the resin layer 5 is cured by pressing and heating (FIG. 2). Resin layer curing step). Since the resin layer 5 contracts due to the curing of the resin, the mounting position of the electronic component 3 and each detection magnet 4 built in the resin layer 5 is different from that before the resin layer 5 is formed, as shown in FIG. Position.

次に、図3(d)に示すように、樹脂層5の表面に磁性体8を近づけて検知磁石4A,4Bに吸着させることにより、樹脂層5に内蔵された検知磁石4A,4Bの位置を変動位置として検出する(図2の変動位置検出工程)。この磁性体8としては例えば永久磁石を使用することが可能であり、その場合、予め検知磁石4A,4Bをその磁束がベース基板2の上下面に向くように配置しておき、永久磁石8(磁性体)の極性を検知磁石4A,4Bと反発する向きにして検知磁石4A,4Bのおおよその位置を確認した後、当該位置で永久磁石8の極性を反転して検知磁石4A,4Bに吸引させると、検知磁石4A,4Bの変動位置を正確に検出することができる。あるいは、磁性体8として磁性スライム等と呼ばれる磁性流体(磁性コロイド溶液)を使用することも可能であり、このように磁化されていない磁性体8を使用すると、電子部品3の外部電極3aに含有される磁性材料(例えばニッケル)と誤検知することなく、検知磁石4A,4Bの変動位置を正確に検出することができる。   Next, as shown in FIG. 3D, the position of the detection magnets 4 </ b> A and 4 </ b> B built in the resin layer 5 is obtained by bringing the magnetic body 8 close to the surface of the resin layer 5 and attracting it to the detection magnets 4 </ b> A and 4 </ b> B. Is detected as a fluctuating position (fluctuating position detecting step in FIG. 2). For example, a permanent magnet can be used as the magnetic body 8. In this case, the detection magnets 4A and 4B are arranged in advance so that the magnetic flux faces the upper and lower surfaces of the base substrate 2, and the permanent magnet 8 ( After confirming the approximate position of the detection magnets 4A and 4B with the polarity of the magnetic body) opposite to that of the detection magnets 4A and 4B, the polarity of the permanent magnet 8 is reversed at that position and attracted to the detection magnets 4A and 4B. By doing so, it is possible to accurately detect the fluctuation positions of the detection magnets 4A and 4B. Alternatively, it is also possible to use a magnetic fluid (magnetic colloid solution) called magnetic slime or the like as the magnetic body 8. When the magnetic body 8 that is not magnetized in this way is used, it is contained in the external electrode 3 a of the electronic component 3. It is possible to accurately detect the fluctuating positions of the detection magnets 4A and 4B without erroneously detecting the detected magnetic material (for example, nickel).

ここで、樹脂硬化後の一方の検知磁石4Aの位置をQ1、他方の検知磁石4Bの位置をQ2、一方の外部電極3aの位置をQ3、他方の外部電極3aの位置をQ4とすると、磁性体8を用いてQ1とQ2の位置は検出できるが、Q3とQ4の位置は検出できないため、今回検出した検知磁石4A,4Bの変動位置と樹脂層5の形成前に記憶しておいた前記基準位置のデータとに基づいて、Q3とQ4の位置を電子部品3の補正位置として算出する(図2の補正位置算出工程)。例えば、変動位置であるQ1とQ2間の距離がY1と検出された場合、Q1とQ3間の距離Y2はY2=Y1×X2/X1(X1:X2=Y1:Y2の関係から)となり、Q2とQ4間の距離Y3はY3=Y1×X3/X1(X1:X3=Y1:Y3の関係から)となるから、これらY2とY3から両外部電極3aの位置Q3,Q4を補正位置として求めることができる。   Here, if the position of one detection magnet 4A after resin curing is Q1, the position of the other detection magnet 4B is Q2, the position of one external electrode 3a is Q3, and the position of the other external electrode 3a is Q4, the magnetic Although the positions of Q1 and Q2 can be detected using the body 8, but the positions of Q3 and Q4 cannot be detected, the fluctuation positions of the detection magnets 4A and 4B detected this time and the above-mentioned stored before the resin layer 5 is formed. Based on the reference position data, the positions of Q3 and Q4 are calculated as correction positions of the electronic component 3 (correction position calculation step in FIG. 2). For example, if the distance between Q1 and Q2, which is the fluctuation position, is detected as Y1, the distance Y2 between Q1 and Q3 is Y2 = Y1 × X2 / X1 (from the relationship of X1: X2 = Y1: Y2), and Q2 Y3 is Y3 = Y1 × X3 / X1 (from the relationship of X1: X3 = Y1: Y3), and the positions Q3 and Q4 of the external electrodes 3a are obtained from these Y2 and Y3 as the correction positions. Can do.

次に、このようにして算出された補正位置にレーザ加工機を用いてレーザ光を照射することにより、図3(e)に示すように、樹脂層5の所定位置に円錐台形状のビアホール5aを形成する(図2のビアホール形成工程)。その際、樹脂硬化時の収縮に伴ってずれた電子部品3の補正位置にビアホール5aを形成するため、ビアホール5aは電子部品3の外部電極3aに対して高い位置精度で形成されることになる。   Next, by irradiating the correction position calculated in this way with a laser beam using a laser processing machine, a frustoconical via hole 5a is formed at a predetermined position of the resin layer 5 as shown in FIG. (Via hole forming step in FIG. 2). At that time, since the via hole 5a is formed at the correction position of the electronic component 3 which is displaced due to the shrinkage at the time of resin curing, the via hole 5a is formed with high positional accuracy with respect to the external electrode 3a of the electronic component 3. .

次に、無電解メッキと電解メッキを順に行ってビアホール5aの内部と絶縁材5の表面に銅メッキを付着した後、絶縁材5表面の銅メッキ部をパターニングして回路形成することにより、図1に示すような接続ビア6と導体パターン7を有する部品内蔵型基板1が完成する。   Next, after performing electroless plating and electrolytic plating in order to attach copper plating to the inside of the via hole 5a and the surface of the insulating material 5, the copper plating portion on the surface of the insulating material 5 is patterned to form a circuit. The component built-in substrate 1 having the connection via 6 and the conductor pattern 7 as shown in FIG.

以上説明したように、第1実施形態例に係る部品内蔵型基板1の製造方法では、樹脂層5の形成前にベース基板2上における電子部品3と検知磁石4A,4Bの位置関係を予め基準位置として記憶しておき、硬化後の樹脂層5の表面に磁性体8を近づけて内部の検知磁石4A,4Bの変動位置を検出したなら、この変動位置と既に記憶されている基準位置との関係から硬化後の電子部品3の補正位置を算出して、当該補正位置にビアホール5aを形成するようにしたので、樹脂層5の硬化時の収縮に伴って電子部品3の搭載位置がずれても、ビアホール5aと電子部品3の外部電極3aとを高精度に位置合わせすることができ、導通不良や短絡不良といった不具合の発生を防止することができる。   As described above, in the method of manufacturing the component-embedded substrate 1 according to the first embodiment, the positional relationship between the electronic component 3 and the detection magnets 4A and 4B on the base substrate 2 is previously determined before the resin layer 5 is formed. If the variation position of the internal detection magnets 4A and 4B is detected by bringing the magnetic body 8 close to the surface of the cured resin layer 5 and stored, the variation position and the reference position already stored are stored. Since the correction position of the electronic component 3 after curing is calculated from the relationship and the via hole 5a is formed at the correction position, the mounting position of the electronic component 3 is shifted as the resin layer 5 contracts during curing. In addition, the via hole 5a and the external electrode 3a of the electronic component 3 can be aligned with high accuracy, and the occurrence of problems such as poor conduction and short circuit can be prevented.

次に、部品内蔵型基板1の第2実施形態例に係る製造方法について、図4と図5を参照しながら説明する。   Next, a manufacturing method according to the second embodiment of the component-embedded substrate 1 will be described with reference to FIGS.

この第2実施形態例においては、まず、図5(a)に示すように、ベース基板2上の所定位置に電子部品3と該電子部品3を挟むように2個の検知磁性体9(9A,9B)をクランプや吸着機を用いて接着固定する(図4の部品搭載工程)。検知磁性体9は磁化されていない未着磁状態の磁性材料からなり、その外観形状は第1実施形態例の検知磁石4と同様である。なお、以下の説明では2個の検知磁性体9を区別するために、図示左側の検知磁性体に符号9Aを付し、図示右側の検知磁性体に符号9Bを付すこととする。   In this second embodiment, first, as shown in FIG. 5A, the electronic component 3 and two detection magnetic bodies 9 (9A) are sandwiched between the electronic component 3 at a predetermined position on the base substrate 2. 9B) is bonded and fixed using a clamp or a suction machine (component mounting step in FIG. 4). The detection magnetic body 9 is made of an unmagnetized magnetic material that is not magnetized, and its external shape is the same as that of the detection magnet 4 of the first embodiment. In the following description, in order to distinguish the two detection magnetic bodies 9, the detection magnetic body on the left side in the figure is denoted by reference numeral 9A, and the detection magnetic body on the right side in the figure is denoted by reference numeral 9B.

次に、自動外観検査機等を用いて電子部品3に設けられた一対の外部電極3aと2個の検知磁性体9A,9Bの位置を検査し、それらの位置関係を基準位置として記憶する(図4の基準位置記憶工程)。具体的には、一方の検知磁性体9Aの搭載位置をP1、他方の検知磁性体9Bの搭載位置をP2、電子部品3に設けられた一方の外部電極3aの位置をP3、他方の外部電極3aの位置をP4とすると、P1とP2間の距離(=X1)や、P1とP3間の距離(=X2)や、P2とP4間の距離(=X3)等が基準位置として記憶される。   Next, the positions of the pair of external electrodes 3a and the two detection magnetic bodies 9A and 9B provided on the electronic component 3 are inspected using an automatic appearance inspection machine or the like, and the positional relationship between them is stored as a reference position ( Reference position storing step in FIG. 4). Specifically, the mounting position of one detection magnetic body 9A is P1, the mounting position of the other detection magnetic body 9B is P2, the position of one external electrode 3a provided on the electronic component 3 is P3, and the other external electrode If the position of 3a is P4, the distance between P1 and P2 (= X1), the distance between P1 and P3 (= X2), the distance between P2 and P4 (= X3), etc. are stored as reference positions. .

次に、図5(b)に示すように、電子部品3と検知磁性体9A,9Bを覆うようにエポキシ系樹脂からなる樹脂ペーストをディスペンサ等によって充填し、ベース基板2上に未硬化状態の樹脂層5を形成した(図4の樹脂層形成工程)後、この樹脂層5を150℃〜180℃の温度で硬化する(図4の樹脂層硬化工程)。もしくは、樹脂層5としてベース基板2上にプリプレグ(半硬化状の樹脂シート)を重ねた(図4の樹脂層形成工程)後、この樹脂層5を加圧・加熱して硬化する(図4の樹脂層硬化工程)。かかる樹脂の硬化によって樹脂層5が収縮するため、図5(c)に示すように、樹脂層5に内蔵された電子部品3と両検知磁性体9A,9Bの搭載位置が樹脂層5の形成前に対して位置ずれする。   Next, as shown in FIG. 5B, a resin paste made of an epoxy resin is filled with a dispenser or the like so as to cover the electronic component 3 and the detection magnetic bodies 9A and 9B, and the base substrate 2 is uncured. After forming the resin layer 5 (resin layer forming step in FIG. 4), the resin layer 5 is cured at a temperature of 150 ° C. to 180 ° C. (resin layer curing step in FIG. 4). Alternatively, after a prepreg (semi-cured resin sheet) is stacked on the base substrate 2 as the resin layer 5 (resin layer forming step in FIG. 4), the resin layer 5 is cured by pressing and heating (FIG. 4). Resin layer curing step). Since the resin layer 5 contracts due to the curing of the resin, as shown in FIG. 5C, the mounting position of the electronic component 3 incorporated in the resin layer 5 and the two detection magnetic bodies 9A and 9B is the formation of the resin layer 5. Misalignment with respect to the front.

次に、未着磁状態の検知磁性体9A,9Bを磁化した(図4の磁性体着磁工程)後、図5(d)に示すように、樹脂層5の表面に磁性体8を近づけて検知磁性体9A,9Bに吸着させることにより、樹脂層5に内蔵された検知磁性体9A,9Bの位置を変動位置として検出する(図4の変動位置検出工程)。この磁性体8として永久磁石を使用することも可能であるが、電子部品3の外部電極3aに含有される磁性材料(例えばニッケル)との誤検知を考慮すると、磁化されていない磁性流体(磁性コロイド溶液)を磁性体8として使用することが好ましい。また、第1実施形態例の検知磁石4として用いられ永久磁石に比べると、磁性体着磁工程で磁化された検知磁性体9A,9Bの磁力は小さいため、この点からも、小さい磁力でも反応する磁性流体(磁性コロイド溶液)を磁性体8として使用することが好ましい。   Next, after magnetizing the non-magnetized detection magnetic bodies 9A and 9B (magnetic body magnetization step in FIG. 4), the magnetic body 8 is brought close to the surface of the resin layer 5 as shown in FIG. Then, the position of the detection magnetic bodies 9A and 9B incorporated in the resin layer 5 is detected as a fluctuation position by being adsorbed to the detection magnetic bodies 9A and 9B (fluctuation position detection process in FIG. 4). Although it is possible to use a permanent magnet as the magnetic body 8, in view of erroneous detection with a magnetic material (for example, nickel) contained in the external electrode 3a of the electronic component 3, an unmagnetized magnetic fluid (magnetic) A colloidal solution is preferably used as the magnetic body 8. Further, since the magnetic force of the detection magnetic bodies 9A and 9B magnetized in the magnetic body magnetization step is small compared to the permanent magnet used as the detection magnet 4 of the first embodiment, the reaction can be achieved even with a small magnetic force. It is preferable to use a magnetic fluid (magnetic colloid solution) as the magnetic body 8.

ここで、樹脂硬化後の一方の検知磁性体9Aの位置をQ1、他方の検知磁性体9Bの位置をQ2、一方の外部電極3aの位置をQ3、他方の外部電極3aの位置をQ4とすると、磁性体8を用いてQ1とQ2の位置は検出できるが、Q3とQ4の位置は検出できないため、今回検出した検知磁性体9A,9Bの変動位置と樹脂層5の形成前に記憶しておいた前記基準位置のデータとに基づいて、Q3とQ4の位置を電子部品3の補正位置として算出する(図4の補正位置算出工程)。例えば、変動位置であるQ1とQ2間の距離がY1と検出された場合、Q1とQ3間の距離Y2はY2=Y1×X2/X1(X1:X2=Y1:Y2の関係から)となり、Q2とQ4間の距離Y3はY3=Y1×X3/X1(X1:X3=Y1:Y3の関係から)となるから、これらY2とY3から両外部電極3aの位置Q3,Q4を補正位置として求めることができる。   Here, when the position of one detection magnetic body 9A after curing of the resin is Q1, the position of the other detection magnetic body 9B is Q2, the position of one external electrode 3a is Q3, and the position of the other external electrode 3a is Q4. The positions of Q1 and Q2 can be detected using the magnetic body 8, but the positions of Q3 and Q4 cannot be detected. Therefore, the fluctuation positions of the detected magnetic bodies 9A and 9B detected this time are stored before forming the resin layer 5. Based on the data of the reference position, the positions of Q3 and Q4 are calculated as the correction positions of the electronic component 3 (correction position calculation step in FIG. 4). For example, if the distance between Q1 and Q2, which is the fluctuation position, is detected as Y1, the distance Y2 between Q1 and Q3 is Y2 = Y1 × X2 / X1 (from the relationship of X1: X2 = Y1: Y2), and Q2 Y3 is Y3 = Y1 × X3 / X1 (from the relationship of X1: X3 = Y1: Y3), and the positions Q3 and Q4 of the external electrodes 3a are obtained from these Y2 and Y3 as the correction positions. Can do.

次に、このようにして算出された補正位置にレーザ加工機を用いてレーザ光を照射することにより、図5(e)に示すように、樹脂層5の所定位置に円錐台形状のビアホール5aを形成する(図4のビアホール形成工程)。その際、樹脂硬化時の収縮に伴ってずれた電子部品3の補正位置にビアホール5aを形成するため、ビアホール5aは電子部品3の外部電極3aに対して高い位置精度で形成されることになる。   Next, the correction position calculated in this manner is irradiated with a laser beam using a laser processing machine, whereby a frustoconical via hole 5a is formed at a predetermined position of the resin layer 5 as shown in FIG. (Via hole forming step in FIG. 4). At that time, since the via hole 5a is formed at the correction position of the electronic component 3 which is displaced due to the shrinkage at the time of resin curing, the via hole 5a is formed with high positional accuracy with respect to the external electrode 3a of the electronic component 3. .

次に、無電解メッキと電解メッキを順に行ってビアホール5aの内部と絶縁材5の表面に銅メッキを付着した後、絶縁材5表面の銅メッキ部をパターニングして回路形成することにより、図1に示すような接続ビア6と導体パターン7を有する部品内蔵型基板1が完成する。なお、着磁後の検知磁性体9A,9Bの磁力は永久磁石に比べると十分に小さいため、検知磁性体9A,9Bが着磁(磁化)されたまま部品内蔵型基板1として完成しても特に問題はないが、図4の変動位置検出工程が終了した後に検知磁性体9A,9Bを消磁(脱磁)する工程を付加すると、製品状態で電子部品3が検知磁性体9A,9Bから磁力の影響を全く受けなくなるため、より好ましい。   Next, after performing electroless plating and electrolytic plating in order to attach copper plating to the inside of the via hole 5a and the surface of the insulating material 5, the copper plating portion on the surface of the insulating material 5 is patterned to form a circuit. The component built-in substrate 1 having the connection via 6 and the conductor pattern 7 as shown in FIG. Since the magnetic forces of the detected magnetic bodies 9A and 9B after magnetization are sufficiently smaller than those of the permanent magnets, even if the detected magnetic bodies 9A and 9B are magnetized (magnetized), they are completed as the component-embedded substrate 1. Although there is no particular problem, if a step of demagnetizing (demagnetizing) the detection magnetic bodies 9A and 9B after the fluctuation position detection step of FIG. 4 is added, the electronic component 3 is magnetically applied from the detection magnetic bodies 9A and 9B in the product state. It is more preferable because it is not affected at all.

以上説明したように、第2実施形態例に係る部品内蔵型基板1の製造方法では、樹脂層5の形成前にベース基板2上における電子部品3と未着磁状態の検知磁性体9A,9Bの位置関係を予め基準位置として記憶しておき、樹脂層5の硬化後に未着磁状態の検知磁性体9A,9Bを磁化させてから、樹脂層5の表面に磁性体8を近づけて内部の検知磁性体9A,9Bの変動位置を検出したなら、この変動位置と既に記憶されている基準位置との関係から硬化後の電子部品3の補正位置を算出して、当該補正位置にビアホール5aを形成するようにしたので、樹脂層5の硬化時の収縮に伴って電子部品3の搭載位置がずれても、ビアホール5aと電子部品3の外部電極3aとを高精度に位置合わせすることができ、導通不良や短絡不良といった不具合の発生を防止することができる。   As described above, in the method of manufacturing the component-embedded substrate 1 according to the second embodiment, the electronic component 3 on the base substrate 2 and the non-magnetized detection magnetic bodies 9A and 9B are formed before the resin layer 5 is formed. Is stored in advance as a reference position, and after magnetizing the detection magnetic bodies 9A and 9B in an unmagnetized state after the resin layer 5 is cured, the magnetic body 8 is brought close to the surface of the resin layer 5 and the inside If the fluctuation positions of the detection magnetic bodies 9A and 9B are detected, the correction position of the cured electronic component 3 is calculated from the relation between the fluctuation position and the reference position that has already been stored, and the via hole 5a is provided at the correction position. Since it is formed, the via hole 5a and the external electrode 3a of the electronic component 3 can be aligned with high accuracy even if the mounting position of the electronic component 3 is shifted due to the shrinkage when the resin layer 5 is cured. , Continuity failure and short circuit failure It is possible to prevent the occurrence of the condition.

また、この第2実施形態例では、樹脂層5の硬化後に未着磁状態の検知磁性体9A,9Bを磁化させて変動位置を検出するようにしているため、ベース基板2上における電子部品3と検知磁性体9A,9Bの搭載位置が近付いた場合でも、検知磁性体9A,9Bの磁力が電子部品3の動作時に悪影響を及ぼすことはほとんどなく、ベース基板2上における電子部品3と検知磁性体9A,9Bの部品レイアウトの自由度を高めることができる。   In the second embodiment, since the detection magnetic bodies 9A and 9B in the non-magnetized state are magnetized after the resin layer 5 is cured to detect the fluctuating position, the electronic component 3 on the base substrate 2 is detected. Even when the mounting positions of the detection magnetic bodies 9A and 9B approach each other, the magnetic force of the detection magnetic bodies 9A and 9B hardly affects the operation of the electronic component 3, and the electronic component 3 on the base substrate 2 and the detection magnetic The degree of freedom of component layout of the bodies 9A and 9B can be increased.

なお、上記第1および第2実施形態例では、樹脂層に内蔵する電子部品としてチップ抵抗器を例示して説明したが、チップコンデンサやICチップ等の外部電極を有する他の電子部品を用いることも可能である。   In the first and second embodiments, the chip resistor is exemplified as the electronic component incorporated in the resin layer. However, other electronic components having external electrodes such as a chip capacitor and an IC chip are used. Is also possible.

1 部品内蔵型基板
2 ベース基板
3 電子部品
3a 外部電極
4,4A,4B 検知磁石
5 樹脂層
5a ビアホール
6 接続ビア
7 導体パターン
8 磁性体
9,9A,9B 検知磁性体
DESCRIPTION OF SYMBOLS 1 Component built-in type board | substrate 2 Base board | substrate 3 Electronic component 3a External electrode 4, 4A, 4B Detection magnet 5 Resin layer 5a Via hole 6 Connection via 7 Conductor pattern 8 Magnetic body 9, 9A, 9B Detection magnetic body

Claims (3)

外部電極を有する電子部品と一対の検知磁石とをベース基板上に搭載する工程と、
前記ベース基板上における前記電子部品と前記一対の検知磁石の位置関係を基準位置として記憶する工程と、
前記ベース基板上に前記電子部品と前記一対の検知磁石を覆うように未硬化状態の樹脂層を形成する工程と、
前記樹脂層を硬化する工程と、
硬化後の前記樹脂層の表面に磁性体を近づけて前記一対の検知磁石の位置を変動位置として検出する工程と、
この変動位置と前記基準位置から前記樹脂層内における前記電子部品の補正位置を算出し、その算出結果に基づいて前記外部電極と接続されるビアホールを形成する工程と、
を含むことを特徴とする部品内蔵型基板の製造方法。
Mounting an electronic component having an external electrode and a pair of detection magnets on a base substrate;
Storing a positional relationship between the electronic component and the pair of detection magnets on the base substrate as a reference position;
Forming an uncured resin layer on the base substrate so as to cover the electronic component and the pair of detection magnets;
Curing the resin layer;
A step of detecting a position of the pair of detection magnets as a variable position by bringing a magnetic body close to the surface of the cured resin layer;
Calculating a correction position of the electronic component in the resin layer from the fluctuation position and the reference position, and forming a via hole connected to the external electrode based on the calculation result;
A method for manufacturing a component-embedded substrate, comprising:
請求項1の記載において、前記磁性体が永久磁石であり、この永久磁石を硬化後の前記樹脂層の表面に近づけて前記検知磁石と反発させた後、当該位置で前記永久磁石の磁極を反転して前記検知磁石に吸引させることにより、前記樹脂層内における前記検知磁石の位置が前記変動位置として検出されることを特徴とする部品内蔵型基板の製造方法。   2. The magnetic material according to claim 1, wherein the magnetic body is a permanent magnet, and the permanent magnet is brought close to the surface of the cured resin layer to repel the detection magnet, and then the magnetic pole of the permanent magnet is reversed at the position. Then, the position of the detection magnet in the resin layer is detected as the variation position by causing the detection magnet to be attracted to the component built-in substrate manufacturing method. 外部電極を有する電子部品と未着磁状態の一対の検知磁性体とをベース基板上に搭載する工程と、
前記ベース基板上における前記電子部品と前記一対の検知磁性体の位置関係を基準位置として記憶する工程と、
前記ベース基板上に前記電子部品と前記一対の検知磁性体を覆うように未硬化状態の樹脂層を形成する工程と、
前記樹脂層を硬化する工程と、
未着磁状態の前記一対の検知磁性体を磁化する工程と、
硬化後の前記樹脂層の表面に磁性体を近づけて磁化した前記一対の検知磁性体の位置を変動位置として検出する工程と、
この変動位置と前記基準位置から前記樹脂層内における前記電子部品の補正位置を算出し、その算出結果に基づいて前記外部電極と接続されるビアホールを形成する工程と、
を含むことを特徴とする部品内蔵型基板の製造方法。
Mounting an electronic component having an external electrode and a pair of unmagnetized detection magnetic bodies on a base substrate;
Storing a positional relationship between the electronic component and the pair of detection magnetic bodies on the base substrate as a reference position;
Forming an uncured resin layer on the base substrate so as to cover the electronic component and the pair of detection magnetic bodies;
Curing the resin layer;
Magnetizing the pair of sensing magnetic bodies in an unmagnetized state;
Detecting the position of the pair of detection magnetic bodies magnetized by bringing the magnetic body close to the surface of the resin layer after curing as a variable position;
Calculating a correction position of the electronic component in the resin layer from the fluctuation position and the reference position, and forming a via hole connected to the external electrode based on the calculation result;
A method for manufacturing a component-embedded substrate, comprising:
JP2013189620A 2013-09-12 2013-09-12 Manufacturing method of component-embedded substrate Active JP6247481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189620A JP6247481B2 (en) 2013-09-12 2013-09-12 Manufacturing method of component-embedded substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189620A JP6247481B2 (en) 2013-09-12 2013-09-12 Manufacturing method of component-embedded substrate

Publications (2)

Publication Number Publication Date
JP2015056547A JP2015056547A (en) 2015-03-23
JP6247481B2 true JP6247481B2 (en) 2017-12-13

Family

ID=52820716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189620A Active JP6247481B2 (en) 2013-09-12 2013-09-12 Manufacturing method of component-embedded substrate

Country Status (1)

Country Link
JP (1) JP6247481B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125714A (en) * 1984-11-26 1986-06-13 Matsushita Electric Works Ltd Method for detecting hole drilling position on multi-layer printing wiring board
JPH10112477A (en) * 1996-10-04 1998-04-28 Fuji Xerox Co Ltd Manufacture of semiconductor device, and semiconductor device
JP4471244B2 (en) * 1999-12-02 2010-06-02 イビデン株式会社 Method of manufacturing printed circuit board with built-in electronic component and punching device
JP2002329964A (en) * 2001-04-27 2002-11-15 Mitsubishi Paper Mills Ltd Method of manufacturing multilayer printed wiring board
JP2010263035A (en) * 2009-05-01 2010-11-18 Mitsubishi Electric Corp Method of manufacturing printed wiring board

Also Published As

Publication number Publication date
JP2015056547A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
CN105027691B (en) Printed circuit board and manufacturing methods
CN101188915B (en) Method of manufacturing a component-embedded printed circuit board
CN110024495B (en) Method for manufacturing LED carrier assembly
KR101713642B1 (en) Substrate with built-in component and method for manufacturing substrate with built-in component
JP5525618B2 (en) Manufacturing method of component-embedded substrate and component-embedded substrate using the same
JP6247481B2 (en) Manufacturing method of component-embedded substrate
CN110191568A (en) It is aligned using physical alignment label and virtual alignment label
US11366181B2 (en) Component carrier with integrated flux gate sensor
TWI701760B (en) Equipment attaching apparatus and method for equipment attaching
JP2018185175A (en) Method for manufacturing inspection jig
KR101538099B1 (en) Career jig for carrying PCB
JP2015056445A (en) Method for manufacturing part built-in type substrate
CN102036486A (en) Method for making false double-sided board
US7851255B2 (en) Placement of an integrated circuit
JP2010175490A (en) Manufacturing method of magnetic sensor and magnetic sensor
JP2009117647A (en) Semiconductor device and manufacturing method thereof
JP2018206996A (en) Circuit structure of printed circuit board and printed circuit board
KR101185521B1 (en) Board for processing of a hole of printed circuit board
WO2014115288A1 (en) Method for manufacturing component-embedded substrate
JP2005064423A (en) Chip-type electronic component and its identifying method
JP6050047B2 (en) Wiring board manufacturing method
US20130333925A1 (en) Flexible-Rigid Circuit Board Composite and Method for Producing a Flexible-Rigid Circuit Board Composite
WO2009079179A2 (en) Placement of an integrated circuit
JP2015182418A (en) Printing mask and printing method
JP2008091222A (en) Connection socket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R150 Certificate of patent or registration of utility model

Ref document number: 6247481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250