JP6243264B2 - Seismic reinforcement method and PC electric pole - Google Patents

Seismic reinforcement method and PC electric pole Download PDF

Info

Publication number
JP6243264B2
JP6243264B2 JP2014056156A JP2014056156A JP6243264B2 JP 6243264 B2 JP6243264 B2 JP 6243264B2 JP 2014056156 A JP2014056156 A JP 2014056156A JP 2014056156 A JP2014056156 A JP 2014056156A JP 6243264 B2 JP6243264 B2 JP 6243264B2
Authority
JP
Japan
Prior art keywords
electrification
fiber
dtex
winding
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014056156A
Other languages
Japanese (ja)
Other versions
JP2015178726A (en
Inventor
裕喜 中田
裕喜 中田
大 岡本
大 岡本
則子 川島
則子 川島
敦久 小川
敦久 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Kuraray Co Ltd
Original Assignee
Railway Technical Research Institute
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Kuraray Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2014056156A priority Critical patent/JP6243264B2/en
Publication of JP2015178726A publication Critical patent/JP2015178726A/en
Application granted granted Critical
Publication of JP6243264B2 publication Critical patent/JP6243264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、鉄道用高架橋上に建植されたPC電化柱の耐震補強方法等に関する。   The present invention relates to a method for seismic reinforcement of a PC electrification pillar erected on a railway viaduct.

鉄道用高架橋の外縁部には、電線を架線するための構造物としてプレストレストコンクリート製電柱(以下、「PC電化柱」と呼称する)が建植(埋め込み)されている。   Prestressed concrete utility poles (hereinafter referred to as “PC electrification pillars”) are built (embedded) on the outer edge of the railway viaduct as a structure for laying wires.

2011年に発生した東日本大震災における鉄道用高架橋の被害では、高架橋および橋脚の被害が限定的であったのに対してPC電化柱の被害が多かったことが報告された。これにより、既設のPC電化柱に対する補強の必要性が認識されるようになった。   It was reported that the damage to the viaduct for the railway in the Great East Japan Earthquake that occurred in 2011 was limited to the damage to the PC electrification pillars, while the damage to the viaduct and pier was limited. As a result, the necessity of reinforcing the existing PC electrification pillar has been recognized.

PC電化柱の補強方法としては、例えばPC電化柱の根元部分に鋼製等の補強材をボルト等で固定する方法が考案されている(例えば、非特許文献1参照)。   As a method for reinforcing the PC electrification pillar, for example, a method of fixing a reinforcing material made of steel or the like to the base portion of the PC electrification pillar with a bolt or the like has been devised (for example, see Non-Patent Document 1).

岩田道敏、渡辺一功、野澤伸一郎、鷹野秀明、「PC電化柱の耐震性向上に関する実験的研究」、コンクリート工学年次論文集、34巻、2号、979〜984頁、2012Michitoshi Iwata, Kazuyoshi Watanabe, Shinichiro Nozawa, Hideaki Takano, “Experimental Study on Improving the Seismic Resistance of PC Electrical Columns”, Annual Report of Concrete Engineering, Vol. 34, No. 2, pp. 979-984, 2012

既設の鉄道用高架橋のPC電化柱に対する補強工事を行う場合には、営業時間外となる夜間の限られた時間内に済ます必要がある。しかし、鉄道用高架橋の場合、地上に敷設された軌道や、道路用高架橋に比べてどうしても補強材料の運搬や移動に手間と時間がかかってしまう。例えば、鉄道用高架橋のPC電化柱は一般的に円柱状であるため、非特許文献1のように鋼製の補強材などを用いる補強方法では、補強材自体が特殊な形状となる。また、鋼製の補強材は重量物となる。このため、補強材の運搬量や運搬方法に制約が生じてしまい、結果的に工期の長期化が予想される。   In the case of reinforcement work for the existing PC electrification pillar of the railway viaduct, it is necessary to do it within the limited time at night, which is outside business hours. However, in the case of a railway viaduct, it takes time and effort to transport and move the reinforcing material, compared to a track laid on the ground and a viaduct for road. For example, since the PC electrification pillar of a railway viaduct is generally cylindrical, the reinforcing material itself has a special shape in a reinforcing method using a steel reinforcing material or the like as in Non-Patent Document 1. Further, the steel reinforcing material becomes a heavy object. For this reason, restrictions arise in the conveyance amount and the conveyance method of a reinforcing material, and the extension of a construction period is anticipated as a result.

また、来たるべき次の震災に備えて、早期にPC電化柱の耐震補強を完了させる要請があるが、鉄道用高架橋に建植されているPC電化柱の数は膨大である。そのため、補強材料の運搬が容易になることは勿論のこと、1本1本のPC電化柱に対する補強作業等が少しでも簡略化できれば、鉄道路線全体のPC電化柱の耐震補強を早期に完了することができる。   In addition, in preparation for the next earthquake disaster, there is a request to complete the seismic reinforcement of PC electrification pillars at an early stage, but the number of PC electrification pillars built on the railway viaduct is enormous. Therefore, if the reinforcement work for one PC electrification pillar can be simplified as much as possible as well as the transportation of the reinforcing material becomes easy, the seismic reinforcement of the PC electrification pillar of the whole railway line is completed at an early stage. be able to.

本発明は、こうした事情を鑑みて考案されたものであり、作業工数を短縮できるPC電化柱の耐震補強技術を提供することを目的とする。   The present invention has been devised in view of such circumstances, and an object of the present invention is to provide a seismic reinforcement technique for PC electrification columns that can reduce the number of work steps.

以上の課題を解決するための第1の発明は、鉄道用高架橋上に建植されたPC電化柱の耐震補強方法であって、付け根に未定着部を設けて1.5m以上4.0m以下の所定の高さまで前記PC電化柱の外周に繊維構造体を巻き立てる巻き立て工程と、前記PC電化柱の中空部に中詰め材を注入する注入工程と、を含む耐震補強方法である。   1st invention for solving the above subject is the earthquake-proof reinforcement method of the PC electrification pillar erected on the viaduct for railways, Comprising: An unfixed part is provided in the root, and 1.5 m or more and 4.0 m or less And a pouring step of winding a fiber structure around the PC electrification column to a predetermined height, and an injection step of injecting a filling material into the hollow portion of the PC electrification column.

第1の発明によれば、繊維構造体をPC電化柱に巻き立てることで耐震補強が実現できる。繊維構造体は、巻物状にして運搬できる軽量物であるため運搬性に優れる。また、繊維構造体をPC電化柱に巻回する範囲は、付け根に未定着部を設けて、すなわち繊維が付け根に達していない状態、又は、場合によっては繊維が付け根部に達しているが、繊維が基礎の充填材に定着されていない状態にして、1.5m以上4.0m以下の所定の高さまでの範囲で済む。また、PC電化柱の中空部に注入する中詰め材は、例えば軽量モルタルやウレタン発泡体等でよいため、こちらの運搬性も良い。従って、鉄道用高架橋上のPC電化柱の耐震補強を簡易に実現し得る。また、付け根に未定着部を設けて繊維構造体を巻き立てるため、付け根付近を弱部とすることができる。これにより、PC電化柱が破壊され得るほどの力が加わった時に、PC電化柱の応力が高架橋スラブにまで及ぶことを防止し、高架橋スラブの損傷を防ぐことができる。   According to 1st invention, earthquake-proof reinforcement is realizable by winding a fiber structure around a PC electrification pillar. Since the fiber structure is a lightweight material that can be transported in the form of a scroll, it is excellent in transportability. In addition, the range in which the fiber structure is wound around the PC electrification pillar is provided with an unfixed portion at the root, that is, the state where the fiber does not reach the root, or in some cases, the fiber reaches the root, The fiber is not fixed to the base filler, and may be in a range up to a predetermined height of 1.5 m or more and 4.0 m or less. Moreover, since the filling material inject | poured into the hollow part of a PC electrification pillar may be a lightweight mortar, a urethane foam, etc., for example, the conveyance property here is also good. Therefore, the seismic reinforcement of the PC electrification pillar on the railway viaduct can be easily realized. Moreover, since the unfixed part is provided at the base and the fiber structure is wound up, the vicinity of the base can be set as a weak part. Thereby, when the force which can destroy a PC electrification pillar is added, it can prevent that the stress of a PC electrification pillar reaches to a viaduct slab, and can prevent damage to a viaduct slab.

第2の発明は、注入工程は、前記巻き立て工程による巻き立てが施された範囲より上まで前記中詰め材を注入する、第1の発明の耐震補強方法である。   2nd invention is the earthquake-proof reinforcement method of 1st invention which inject | pours the said filling material into the injection | pouring process above the range where the winding-up by the said winding-up process was given.

第2の発明によれば、繊維構造体が巻き立てられたその内側に中詰めをして、PC電化柱の圧縮破壊に伴う中空部への体積変化を拘束し、PC電化柱の耐力および変形性能を向上させることができる。   According to the second aspect of the present invention, the fiber structure is rolled up inside to restrain the volume change to the hollow portion due to the compression failure of the PC electric column, and the proof stress and deformation of the PC electric column. Performance can be improved.

第3の発明は、前記巻き立て工程が、織物である前記繊維構造体を巻き立てる工程である、第1又は第2の発明の耐震補強方法である。   3rd invention is the earthquake-proof reinforcement method of 1st or 2nd invention in which the said winding-up process is a process of winding up the said fiber structure which is a textile fabric.

第3の発明によれば、補強材としての繊維構造体の運搬性が向上し、また巻き立ての施工性も向上する。   According to 3rd invention, the conveyance property of the fiber structure as a reinforcing material improves, and the construction property of winding is also improved.

第4の発明は、前記巻き立て工程が、ポリビニルアルコール(以下「PVA」という)系繊維で構成される前記繊維構造体を巻き立てる工程である、第1〜第3の何れかの発明の耐震補強方法である。   The fourth invention is the earthquake resistance of any one of the first to third inventions, wherein the winding step is a step of winding the fiber structure composed of polyvinyl alcohol (hereinafter referred to as “PVA”) fibers. It is a reinforcement method.

詳細は、後述の実施形態で説明するが、PVA系繊維は耐アルカリ性および耐候性に優れる。よって、第4の発明は、高い耐候性が要求される高架橋上のPC電化柱の補強に好適である。   Although details will be described in the embodiments described later, the PVA fibers are excellent in alkali resistance and weather resistance. Therefore, 4th invention is suitable for reinforcement of the PC electrification pillar on the high bridge | crosslinking in which high weather resistance is requested | required.

より望ましくは、第5の発明として、前記PVA系繊維が、(1)平均繊度が1100dtex以上、2000dtex以下のマルチフィラメントであり、(2)引張強度が6cN/dtex以上、12cN/dtex以下であり、且つ(3)ヤング率が130cN/dtex以上、260cN/dtex以下である、第4の発明の耐震補強方法を構成することができる。   More preferably, as a fifth invention, the PVA fiber is (1) a multifilament having an average fineness of 1100 dtex or more and 2000 dtex or less, and (2) a tensile strength of 6 cN / dtex or more and 12 cN / dtex or less. And (3) The seismic reinforcement method of 4th invention whose Young's modulus is 130 cN / dtex or more and 260 cN / dtex or less can be comprised.

第6の発明は、第1〜第5の何れかの発明の耐震補強方法によって補強されたPC電化柱である。   A sixth invention is a PC electrification column reinforced by the seismic reinforcement method of any one of the first to fifth inventions.

第6の発明によれば、耐震補強を施したPC電化柱をより少ない工数で提供することができる。既設のPC電化柱を交換する場合や、新たに敷設する場合に好適である。   According to the sixth aspect of the invention, it is possible to provide the PC electrification pillar subjected to earthquake-proof reinforcement with a smaller number of man-hours. This is suitable for replacing an existing PC electrification pole or newly laying it.

本発明によれば、繊維構造体をPC電化柱に巻き立てることで耐震補強が実現できる。繊維構造体は、巻物状にして運搬できる軽量物であるため運搬性に優れる。また、繊維構造体をPC電化柱に巻回する範囲は、付け根に未定着部を設けて、すなわち繊維が付け根に達していない状態、又は、場合によっては繊維が付け根部に達しているが、繊維が基礎の充填材に定着されていない状態にして、1.5m以上4.0m以下の所定の高さまでの範囲で済む。また、PC電化柱の中空部に注入する中詰め材は、例えば軽量モルタルやウレタン発泡体等でよいため、こちらの運搬性も良い。従って、鉄道用高架橋上のPC電化柱の耐震補強を簡易に実現し得る。また、付け根に未定着部を設けて繊維構造体を巻き立てるため、付け根付近を弱部とすることができる。これにより、PC電化柱が破壊され得るほどの力が加わった時に、PC電化柱の応力が高架橋スラブにまで及ぶことを防止し、高架橋スラブの損傷を防ぐことができる。   According to the present invention, seismic reinforcement can be realized by winding a fiber structure around a PC electrification pillar. Since the fiber structure is a lightweight material that can be transported in the form of a scroll, it is excellent in transportability. In addition, the range in which the fiber structure is wound around the PC electrification pillar is provided with an unfixed portion at the root, that is, the state where the fiber does not reach the root, or in some cases, the fiber reaches the root, In a state where the fibers are not fixed to the base filler, a range from 1.5 m to 4.0 m up to a predetermined height is sufficient. Moreover, since the filling material inject | poured into the hollow part of a PC electrification pillar may be a lightweight mortar, a urethane foam, etc., for example, the conveyance property here is also good. Therefore, the seismic reinforcement of the PC electrification pillar on the railway viaduct can be easily realized. Moreover, since the unfixed part is provided at the base and the fiber structure is wound up, the vicinity of the base can be set as a weak part. Thereby, when the force which can destroy a PC electrification pillar is added, it can prevent that the stress of a PC electrification pillar reaches to a viaduct slab, and can prevent damage to a viaduct slab.

PC電化柱の外観例を示す図。The figure which shows the example of an external appearance of PC electrification pillar. PC電化柱の構造例を示す断面図。Sectional drawing which shows the structural example of PC electrification pillar. PVA系繊維であるクラレ社製「ビニロン(登録商標)」の強力保持率に関する性能例を示す図。The figure which shows the performance example regarding the strong retention of the Kuraray "vinylon (trademark)" which is a PVA type fiber. PVA系繊維であるクラレ社製「ビニロン(登録商標)」の耐候性に関する性能例を示す図。The figure which shows the performance example regarding the weather resistance of Kuraray "Vinylon (trademark)" which is a PVA type fiber. PVA系繊維であるクラレ社製「ビニロン(登録商標)」の耐アルカリ性に関する性能例を示す図。The figure which shows the performance example regarding the alkali resistance of Kuraray "vinylon (trademark)" which is a PVA type fiber. PC電化柱(1)及びラーメン高架橋柱(2)の骨格曲線の計算例を示す図。The figure which shows the example of calculation of the skeleton curve of a PC electrification pillar (1) and a ramen viaduct pillar (2) .

図1は、本実施形態のPC電化柱の外観図である。
図2は、本実施形態のPC電化柱の縦断面図である。
PC電化柱10は、プレストレストコンクリート(PC)製の電柱であって、張出スラブ4に設けられた建植用の凹部に充填材Fが充填された上で、当該電柱の根元側先端が嵌入されて建植される。PC電化柱10は、中空状に形成されている。
FIG. 1 is an external view of a PC electrification pillar of this embodiment.
FIG. 2 is a longitudinal sectional view of the PC electrification pillar of the present embodiment.
The PC electrification pole 10 is an electric pole made of prestressed concrete (PC), and a filling material F is filled in a recessed portion for planting provided in the overhanging slab 4, and the tip of the base side of the electric pole is inserted. Being built. The PC electrification pillar 10 is formed in a hollow shape.

PC電化柱10は、外周部にPVA系の連続繊維(ポリビニルアルコール系繊維:PVA系繊維)を巻き立てて形成した補強層12が設けられている。具体的には、補強層12は、PC電化柱10の付け根、すなわち張出スラブ4の上面との境界部から数cm程度(長くても5cm未満)の未定着部14を設けるようにして、1.5m以上4.0m以下の所定の高さまでPVA系繊維を巻き立てる(巻き立て工程。なお、巻き立てたPVA系繊維は接着材(含浸材)等で固定すると好適である。なお、場合によっては、PVA系繊維の補強層12がPC電化柱10の付け根部に達しているが、基礎の充填材Fに定着されていない状態としてもよい。   The PC electrification pillar 10 is provided with a reinforcing layer 12 formed by winding up a PVA-based continuous fiber (polyvinyl alcohol-based fiber: PVA-based fiber) on the outer peripheral portion. Specifically, the reinforcing layer 12 is provided with an unfixed portion 14 of about several centimeters (less than 5 cm at the longest) from the base portion of the PC electrification column 10, that is, the boundary with the upper surface of the overhanging slab 4. Winding up the PVA fiber to a predetermined height of 1.5 m or more and 4.0 m or less (winding step. The wound PVA fiber is preferably fixed with an adhesive (impregnating material) or the like. Depending on the case, the reinforcing layer 12 of the PVA fiber reaches the base of the PC electrification pillar 10, but may not be fixed to the base filler F.

PVA系繊維の巻き立ては、下から上へでも良いし上から下へでもよい。また、巻回する回数は、所望する補強効果が得られる厚さまで行われる。その際、下から上へ巻き回した後、再び下から上へ巻き回しを重ねるといった具合に複数回に分割して行うとしてもよいし、上方へ向けて所定の高さまで巻き回した後、そのまま連続して下方へ向けて巻き回すように往復して巻き立てることとしてもよい。巻き立てる高さを、付け根から1.5m以上4.0m以下の所定の高さまでとしたのは、2011年の東日本大震災において、鉄道用高架橋上に建植されたPC電化柱の多くが1.2m程度の高さで破壊されたことによる。   The winding of the PVA fiber may be from the bottom to the top or from the top to the bottom. Further, the winding is performed up to a thickness that provides a desired reinforcing effect. At that time, after winding from the bottom to the top, it may be divided into a plurality of times, such as overlapping the winding from the bottom to the top again, or after winding up to a predetermined height, as it is It is good also as winding up reciprocatingly so that it may wind continuously toward the downward direction. The number of PC electrification poles built on the railway viaduct in the 2011 Great East Japan Earthquake is 1. that the winding height is 1.5 m or more and 4.0 m or less from the base. Because it was destroyed at a height of about 2m.

巻回する素材としてのPVA系繊維は、平均繊度が1100〜2000dtexのマルチフィラメントであって、引張強度が6〜12cN/dtex、ヤング率が130〜260cN/dtexとすると望ましい。   The PVA fiber as a material to be wound is preferably a multifilament having an average fineness of 1100 to 2000 dtex, a tensile strength of 6 to 12 cN / dtex, and a Young's modulus of 130 to 260 cN / dtex.

そして、巻回する素材としてのPVA系繊維は、例えば幅が比較的狭い帯状あるいは幅が比較的広い布状の平素材、例えば、織物や、編物、一軸シート、多軸シート、簾状、不織物などの繊維構造体を成しており、巻物状にして運搬することができる。従来の補強技術のように予め成形された鋼製の補強部材を搬入する場合に比べて、遙かに軽く、積載が容易であるため、運搬等に係る工数を低減できる。   The PVA fiber as a material to be wound is, for example, a relatively narrow belt-like or relatively wide cloth-like flat material such as a woven fabric, a knitted fabric, a uniaxial sheet, a multiaxial sheet, a cocoon-like, non-woven fabric. A fiber structure such as a woven fabric is formed, and can be transported in the form of a scroll. Compared to the case where a steel reinforcing member formed in advance as in the conventional reinforcing technique is carried in, it is much lighter and easier to load, so the number of man-hours related to transportation and the like can be reduced.

そして、PVA系繊維は、高強力・低伸度・耐候性・耐アルカリ性に優れた特徴を有する。例えば、図3に示すように、PVA系繊維は、ポリエステルやポリアミド、レーヨンなどを素材とする繊維に比べて強力保持率に優れている。また、図4に示すように、ポリエステルやポリアミド、アラミドなどを素材とする繊維に比べて耐候性に優れている。また、図5に示すように、ポリエステル系繊維や、耐アルカリ性ガラス繊維などに比べて耐アルカリ性に優れている。   And PVA type fiber has the characteristics excellent in high tenacity, low elongation, weather resistance, and alkali resistance. For example, as shown in FIG. 3, PVA fibers are superior in strength retention compared to fibers made from polyester, polyamide, rayon, or the like. Moreover, as shown in FIG. 4, it is excellent in weather resistance compared with the fiber which uses polyester, polyamide, aramid, etc. as a raw material. Moreover, as shown in FIG. 5, it is excellent in alkali resistance compared with a polyester fiber, an alkali-resistant glass fiber, etc.

巻き立てたPVA系繊維を固定するための接着材(含浸材)は、例えば、エポキシ樹脂や、アクリル樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、フェノール樹脂、メラミン樹脂、ビニルエステル樹脂などを適宜利用可能であるが、汎用性と経済性の観点から選ぶとエポキシ樹脂又はアクリル樹脂が比較的好適である。   The adhesive (impregnating material) for fixing the wound PVA fiber is, for example, epoxy resin, acrylic resin, unsaturated polyester resin, polyurethane resin, polyurea resin, phenol resin, melamine resin, vinyl ester resin, etc. Although it can be used as appropriate, an epoxy resin or an acrylic resin is relatively suitable when selected from the viewpoint of versatility and economy.

なお、繊維巻きを行った場合、通常は接着材(含浸材)により固定された繊維の上から上塗り材が塗布される。本実施形態においても上塗り材を塗布してもよいが、補強材として高耐久性の繊維を用いたこと、また、PC電化柱それ自体が高架橋上にあるために切創等のいたずらを受け難い事を鑑みれば、通常想定される使用環境下においては上塗り材の塗布を省略することもできる。その場合、上塗り材の運搬等に係る工数や上塗り施工の手間を低減させる効果がある。   In addition, when fiber winding is performed, the top coat material is usually applied from above the fibers fixed by an adhesive (impregnating material). In this embodiment, a top coat material may be applied, but since highly durable fibers are used as a reinforcing material, and the PC electrification pillar itself is on the viaduct, it is less susceptible to tampering such as cutting. In view of the above, the application of the top coat material can be omitted under a normally assumed use environment. In that case, there is an effect of reducing the man-hours related to the transport of the top coat material and the trouble of top coat construction.

未定着部14は、PVA系繊維をPC電化柱10の付け根に達しないように巻き回す、あるいは、PVA系繊維を付け根部まで巻き回しているが、基礎の充填材Fに定着されていない部分を残すようにして接着材等で固定することによって設けられる。この未定着部14は、非補強部となり意図的に設けられた弱部として機能し、仮に未補強のPC電化柱10が破壊され得るほどの強い力が加わったとしても、張出スラブ4に破損が及ばないようになる。   The unfixed portion 14 is a portion where the PVA fiber is wound so as not to reach the root of the PC electrification pillar 10 or the PVA fiber is wound up to the root but not fixed to the base filler F It is provided by fixing it with an adhesive or the like so as to leave a mark. The unfixed portion 14 functions as a weak portion intentionally provided as a non-reinforcing portion, and even if a strong force is applied so that the unreinforced PC electrification column 10 can be broken, Damage will not reach.

具体的に説明すると、PC電化柱10は、図6の骨格曲線の計算例に示す通り、ラーメン高架橋柱等(図6(2))とは破壊性状が異なり、PC鋼材が降伏せずにコンクリートが圧縮破壊する可能性が高い(図6(1))。仮に、東日本大震災の時のように未補強のPC電化柱10を破壊し得るほどの仮想力が作用したとする。補強層12を設けたことで補強層12の拘束によりコンクリートの強度が上昇し、PC電化柱10の耐力が大きく上昇するため、PC電化柱10は、東日本大震災の時のように付け根から1.2m程の位置で破壊することなく、この仮想力にも耐え得るであろう。しかし、もしも未定着部14を設けていないとすれば、PC電化柱10が破壊されることで逃されたであろう仮想力は、PC電化柱10が植設されている張出スラブ4の埋設部P(図1参照)に及ぶこととなる。結果、PC電化柱10が破壊されるよりも先に張出スラブ4の埋設部Pが損傷する可能性が高くなる。 Specifically, as shown in the calculation example of the skeletal curve in FIG. 6, the PC electrification pillar 10 is different from the ramen viaduct pillar (FIG. 6 (2) ) in the destructive property, and the PC steel material does not yield. There is a high possibility of compression failure (Fig. 6 (1) ). Suppose that a virtual force has been applied so that the unreinforced PC electrification pillar 10 can be destroyed as in the case of the Great East Japan Earthquake. By providing the reinforcing layer 12, the strength of the concrete increases due to the restraint of the reinforcing layer 12, and the proof stress of the PC electrification pillar 10 greatly increases. Therefore, the PC electrification pillar 10 is 1. It will be able to withstand this virtual force without breaking at a position of about 2m. However, if the unfixed portion 14 is not provided, the virtual force that would have been lost due to the destruction of the PC electrification column 10 is the force of the overhanging slab 4 in which the PC electrification column 10 is implanted. It will reach the buried portion P (see FIG. 1). As a result, there is a high possibility that the embedded portion P of the overhanging slab 4 is damaged before the PC electrification pillar 10 is destroyed.

張出スラブ4が損傷した場合、鉄道運行の復旧には、PC電化柱10の交換作業とは比べられない多くの時間を要するのでこれは望ましくない。しかし、本実施形態のように未定着部14を設けると、未定着部14は補強されたPC電化柱10の弱部として機能する。つまり、張出スラブ4が損傷するよりも先にPC電化柱10が未定着部14を起点に破壊されるため、張出スラブ4が損傷する可能性は極めて低くなる。   If the overhanging slab 4 is damaged, it is not desirable because the restoration of the railway operation requires a lot of time that cannot be compared with the replacement work of the PC electrification pillar 10. However, when the unfixed portion 14 is provided as in this embodiment, the unfixed portion 14 functions as a weak portion of the reinforced PC electrification column 10. In other words, since the PC electrification column 10 is broken starting from the unfixed portion 14 before the overhanging slab 4 is damaged, the possibility that the overhanging slab 4 is damaged becomes extremely low.

また、本実施形態の耐震補強方法では、PC電化柱10の中空部16内に中詰め材18が充填される(注入工程)。具体的には、中詰め材18は、補強層12よりも上部分にドリル等で開けられた注入孔20に差し込んだ注入管22から、補強層12よりも上に到るまで注入される。中詰め材18としては、注入後に硬化形成される軽量材料(例えば、軽量モルタルやウレタン発泡体)を用いることができる。なお、注入孔20は中詰め材18の注入完了後に補修する。   Moreover, in the seismic reinforcement method of this embodiment, the filling material 18 is filled in the hollow part 16 of the PC electrification pillar 10 (injection process). Specifically, the filling material 18 is injected from the injection tube 22 inserted into the injection hole 20 opened by a drill or the like above the reinforcing layer 12 until reaching the upper side of the reinforcing layer 12. As the filling material 18, a lightweight material (for example, lightweight mortar or urethane foam) that is cured after injection can be used. The injection hole 20 is repaired after the filling of the filling material 18 is completed.

上述した通り、PC電化柱10の破壊はコンクリートの圧縮破壊である。中詰め材18を注入することで、PC電化柱10の圧縮破壊に伴う中空部への体積変化を拘束する。PC電化柱10の外側はPVA系繊維、中空部は中詰め材18で体積変化を拘束する。これにより、耐力および変形性能を向上させ、耐震性能を発揮させることができる。また、中詰め材18として、軽量モルタルやウレタン発泡体といった比較的軽量な材料を使用することで、高架橋上への補強材の運搬の手間を更に低減する効果も得られる。   As described above, the destruction of the PC electrification pillar 10 is a compression failure of concrete. By injecting the filling material 18, the volume change to the hollow part accompanying the compression fracture of the PC electrification pillar 10 is restrained. The outside of the PC electrification pillar 10 restrains the volume change by the PVA fiber and the hollow portion by the filling material 18. Thereby, proof stress and deformation performance can be improved and seismic performance can be exhibited. Further, by using a relatively lightweight material such as lightweight mortar or urethane foam as the filling material 18, an effect of further reducing the labor for carrying the reinforcing material on the viaduct can be obtained.

上記の巻き立て工程と注入工程は、どちらを先にしても構わない。前述のように、PVA系繊維上への上塗り材の塗布は省略できる。もし上塗り材の塗布を省略するならば、巻き立て工程と注入工程とが終了すれば、巻き立てられたPVA系繊維を露出させた状態で施工完了となる。   Either the winding step or the injection step may be performed first. As described above, the application of the topcoat material on the PVA fiber can be omitted. If the application of the topcoat material is omitted, when the winding process and the injection process are completed, the construction is completed with the wound PVA fibers exposed.

以上、本実施形態によれば、鉄道用高架橋に建植されているPC電化柱の耐震性を向上させる耐震補強ができる。しかも、補強に必要な材料の高架橋上の運搬性に優れ、補強作業に係る手間も少ない。そのため、鉄道路線全体のPC電化柱の耐震補強工事の工期短縮化を図ることができる。   As mentioned above, according to this embodiment, the seismic reinforcement which improves the seismic resistance of the PC electrification pillar built in the viaduct for railways can be performed. In addition, the material necessary for reinforcement is excellent in transportability on the viaduct and there is little labor involved in the reinforcement work. Therefore, it is possible to shorten the work period of the seismic reinforcement work for the PC electrification pillars on the entire railway line.

2…鉄道用高架橋
4…張出スラブ
10…PC電化柱
12…補強層
14…未定着部
16…中空部
18…中詰め材
20…注入孔
22…注入管
F…充填材
DESCRIPTION OF SYMBOLS 2 ... Railroad viaduct 4 ... Overhang slab 10 ... PC electrification pillar 12 ... Reinforcement layer 14 ... Unfixed part 16 ... Hollow part 18 ... Filling material 20 ... Injection hole 22 ... Injection pipe F ... Filling material

Claims (5)

鉄道用高架橋上に建植されたPC電化柱の耐震補強方法であって、
建植面から高さ5cm未満の付け根部分を建植されている基礎に定着されていない状態とする未定着部として設けて、この未定着部から1.5m以上4.0m以下の所定の高さまで前記PC電化柱の外周にポリビニルアルコール(以下「PVA」という)系繊維の連続繊維を巻き立てる巻き立て工程と、
前記PC電化柱の中空部に中詰め材を注入する注入工程と、
を含む耐震補強方法。
A method for seismic reinforcement of PC electrification pillars built on a railway viaduct,
A root portion less than 5 cm in height from the planting surface is provided as an unfixed portion that is not fixed to the foundation where the planting is being performed, and a predetermined height of 1.5 m to 4.0 m from the unfixed portion. A winding step of winding a continuous fiber of polyvinyl alcohol (hereinafter referred to as “PVA”) fiber on the outer periphery of the PC electric pole;
An injection step of injecting a filling material into the hollow portion of the PC electrification pillar;
Seismic reinforcement method including
前記注入工程は、前記巻き立て工程による巻き立てが施された範囲より上まで前記中詰め材を注入する、
請求項1に記載の耐震補強方法。
The injecting step injects the filling material up to a range above which the winding by the winding step has been performed,
The earthquake-proof reinforcement method of Claim 1.
前記PVA系繊維上への上塗り材の塗布を行わず、前記巻き立て工程により巻き立てられた前記PVA系繊維を露出させた状態で耐震補強施工を完了とする、Without applying the topcoat material on the PVA fiber, the seismic reinforcement construction is completed with the PVA fiber wound by the winding step exposed.
請求項1又は2に記載の耐震補強方法。The earthquake-proof reinforcement method of Claim 1 or 2.
前記PVA系繊維は、(1)平均繊度が1100dtex以上、2000dtex以下のマルチフィラメントであり、且つ、(2)引張強度が6cN/dtex以上、12cN/dtex以下であり、且つ、(3)ヤング率が130cN/dtex以上、260cN/dtex以下である、
請求項1〜3の何れか一項に記載の耐震補強方法。
The PVA fiber is (1) a multifilament having an average fineness of 1100 dtex or more and 2000 dtex or less, (2) a tensile strength of 6 cN / dtex or more and 12 cN / dtex or less, and (3) Young's modulus. Is 130 cN / dtex or more and 260 cN / dtex or less,
The earthquake-proof reinforcement method as described in any one of Claims 1-3 .
請求項1〜の何れか一項に記載の耐震補強方法によって補強されたPC電化柱。 The PC electrification pillar reinforced by the earthquake-proof reinforcement method as described in any one of Claims 1-4 .
JP2014056156A 2014-03-19 2014-03-19 Seismic reinforcement method and PC electric pole Expired - Fee Related JP6243264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014056156A JP6243264B2 (en) 2014-03-19 2014-03-19 Seismic reinforcement method and PC electric pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014056156A JP6243264B2 (en) 2014-03-19 2014-03-19 Seismic reinforcement method and PC electric pole

Publications (2)

Publication Number Publication Date
JP2015178726A JP2015178726A (en) 2015-10-08
JP6243264B2 true JP6243264B2 (en) 2017-12-06

Family

ID=54262956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014056156A Expired - Fee Related JP6243264B2 (en) 2014-03-19 2014-03-19 Seismic reinforcement method and PC electric pole

Country Status (1)

Country Link
JP (1) JP6243264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211196A (en) * 2015-05-01 2016-12-15 アップコン株式会社 Utility pole seismic retrofitting method
KR102237620B1 (en) * 2018-04-04 2021-04-23 (주) 진흥이엔지 Crack strength and ground reinforcement method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043033A (en) * 1991-01-28 1991-08-27 Fyfe Edward R Process of improving the strength of existing concrete support columns
US5245812A (en) * 1992-07-29 1993-09-21 Landers Phillip G Method of strengthening a structural element
JP3192277B2 (en) * 1993-05-14 2001-07-23 新日本製鐵株式会社 Concrete columns
JP2002295023A (en) * 2001-04-02 2002-10-09 Nippon Telegraph & Telephone East Corp Crack repairing method for concrete member
JP2002345133A (en) * 2001-05-15 2002-11-29 Nippon Telegraph & Telephone East Corp Method of repairing pre-stressed concrete pole
JP4933868B2 (en) * 2006-09-06 2012-05-16 宇部日東化成株式会社 Mesh for repair or reinforcement of concrete structure and method for manufacturing the same
JP2009097177A (en) * 2007-10-15 2009-05-07 Hiroyasu Minayoshi Construction method for fiber sheet on columnar element
JP5809487B2 (en) * 2011-09-02 2015-11-11 東日本旅客鉄道株式会社 Column structure and column reinforcement method
JP5922978B2 (en) * 2012-04-19 2016-05-24 東日本旅客鉄道株式会社 Column fixing structure and column repair method

Also Published As

Publication number Publication date
JP2015178726A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6329702B2 (en) Assembling-type reinforced concrete pier column member
CN101503881B (en) Method for reinforcing underwater structure by fiber-reinforced composite material grid ribs
CN105064613A (en) Built-in FRP local restraint concrete composite member
Amiraslanzadeh et al. A comparative study on seismic retrofitting methods for unreinforced masonry brick walls
JP6243264B2 (en) Seismic reinforcement method and PC electric pole
CN106193071A (en) The multiple structure Ecological Slope protection system of a kind of band diaphragm plate and construction method thereof
Cheng et al. New soil nail material—Pilot study of grouted GFRP pipe nails in Korea and Hong Kong
CN103243834B (en) Self-resetting support
CN108798681B (en) Underpinning system for zero-distance crossing existing subway station by middle-hole method and construction method thereof
CN203821381U (en) Rectangular pre-stressed filling pile
CN207376945U (en) A kind of concrete prefabricated wallboard of steel bar girder and structural system
CN103243711A (en) Composite pipe pile with inner ribs
Ravikumar et al. Application of FRP for strengthening and retrofitting of civil engineering structures
US20110061315A1 (en) Elastic construction foundation method
JP5305268B2 (en) Lightweight embankment method and lightweight embankment structure
KR20130108845A (en) Slope stabilization structures anchor system and its construction method
JP2018003523A (en) Pile foundation structure, and reinforcement method for existing pile
CN203129702U (en) Large space frame antique city wall structure
JP2002256571A (en) Reconstructing method for building, using method for existing pile and building
CN105155866A (en) Separable sheath floor-adding structure of masonry buildings and floor-adding method thereof
JP2009167694A (en) Lightweight banking method and lightweight banking structure
CN103334596A (en) Method of external prestressing and steel cover reinforced concrete pier column
CN211395698U (en) Stiff core curtain pile and dado stake anchor combined supporting construction
JP5676800B1 (en) Method of introducing PS into constructed building later and its building
CN203905045U (en) Moving foundation of hoisting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees